JP2007224399A - Bottom-blow tuyere to be used in smelting vessel - Google Patents

Bottom-blow tuyere to be used in smelting vessel Download PDF

Info

Publication number
JP2007224399A
JP2007224399A JP2006049803A JP2006049803A JP2007224399A JP 2007224399 A JP2007224399 A JP 2007224399A JP 2006049803 A JP2006049803 A JP 2006049803A JP 2006049803 A JP2006049803 A JP 2006049803A JP 2007224399 A JP2007224399 A JP 2007224399A
Authority
JP
Japan
Prior art keywords
tuyere
outer tube
tube
gas
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006049803A
Other languages
Japanese (ja)
Inventor
Seiji Hosohara
聖司 細原
Sadakimi Kiyota
禎公 清田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006049803A priority Critical patent/JP2007224399A/en
Publication of JP2007224399A publication Critical patent/JP2007224399A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bottom-blow tuyere which can more effectively cool a metallic material of the tuyere. <P>SOLUTION: The bottom-blow tuyere is arranged in the bottom of a smelting vessel which accommodates a molten metal; is used for blowing a smelting gas into a smelting vessel therethrough; and has a cylindrical outer pipe and a cylindrical solid inner pipe arranged so that the central axis of the outer pipe matches the central axis of the inner pipe to provide an annular space between the outer pipe and the inner pipe. The outer pipe has such protrusions on the inner wall surface as not to contact with the outer wall surface of the inner pipe. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、溶融金属を収容して精錬する容器の底部に配設され、精錬用ガスを容器内の溶融金属に吹き込む羽口(以下、底吹き羽口という)に関するものである。   The present invention relates to a tuyere (hereinafter referred to as a bottom-blown tuyere) that is disposed at the bottom of a container for containing and refining molten metal and blows a refining gas into the molten metal in the container.

溶融金属を精錬する場合、攪拌による反応促進等の目的で溶融金属内へガスを吹き込むことがある。たとえば製鉄工程において転炉で銑鉄の脱炭を行なう場合のように、転炉の底からアルゴンや窒素等の不活性ガスを吹き込むことが行なわれている。
不活性ガスを吹き込む羽口には種々の形式が使用されているが、その一つに特許文献1に開示されているような、円筒を同心状に組み合わせ、内管の内部は耐火物等を充填しておき、内管と外管との間隙からガスを吹き込む形式(以下、環状羽口という)のものがある。この形式は、構造が簡単であり、多数の細管を合わせた細管集合型羽口と比べて、製作コストが比較的安価であるという利点がある。
When refining a molten metal, gas may be blown into the molten metal for the purpose of promoting the reaction by stirring. For example, as in the case of decarburization of pig iron in a converter in an iron making process, an inert gas such as argon or nitrogen is blown from the bottom of the converter.
Various types of tuyere are used for blowing inert gas. One of them is a concentric combination of cylinders as disclosed in Patent Document 1, and the inside of the inner tube is made of refractory or the like. There is a type in which gas is blown through a gap between the inner tube and the outer tube (hereinafter referred to as an annular tuyere). This type has an advantage that the structure is simple and the manufacturing cost is relatively low as compared with a capillary tube type tuyere combined with many tubes.

一般に容器の底からガスを吹き込む場合に、羽口でガス流量を低減していくと、特に溶鋼等の1600℃以上の高温溶融金属を対象とした場合、溶鋼が羽口内へ逆流する湯差しと呼ばれる現象によって羽口が損耗する惧れがある。環状羽口の場合には、ガス流量がこの湯差し限界流量よりも大きいガス流量を流しているにも関わらず、外部からの熱負荷の大きい外管部が溶融し、損耗することがしばしばある。   Generally, when gas is blown from the bottom of a container, if the gas flow rate is reduced at the tuyere, especially when targeting hot molten metal such as molten steel at 1600 ° C or higher, a hot water bottle in which the molten steel flows back into the tuyere There is a risk that the tuyere will be worn out by the phenomenon called. In the case of an annular tuyere, the outer pipe portion having a large heat load from the outside is often melted and worn even though the gas flow rate is larger than the hot water limit flow rate. .

これを回避するために、外管の肉厚を減少させて受熱面積を小さくする方法が考えられるが、強度との兼ね合いから肉厚減少量には限界があり、効果も小さい。
また環状羽口の内管と外管との間隙距離を小さくすることによって、同じガス流量でも線速度を増加させることで抜熱量を大きくするという方法も考えられるが、ガス流量を増加させたいときの上方弾力性が制限されてしまう。さらに内管と外管を組み合わせた羽口金物の製作上の寸法精度の面でも制約がある。しかも、ガスの線速度を過剰に増加させることは、羽口部分の保護に役立つとされている羽口上端部に付着する凝固鉄(いわゆるマッシュルーム)の生成を妨げる惧れがある。
In order to avoid this, a method of reducing the heat receiving area by reducing the thickness of the outer tube is conceivable. However, there is a limit to the amount of reduction in thickness in consideration of strength, and the effect is small.
In addition, by reducing the gap distance between the inner tube and outer tube of the annular tuyere, it is conceivable to increase the heat removal amount by increasing the linear velocity even at the same gas flow rate, but when you want to increase the gas flow rate The upper elasticity of the is limited. In addition, there is a restriction in terms of dimensional accuracy in the manufacture of tuyere hardware that combines an inner tube and an outer tube. Moreover, excessively increasing the linear velocity of the gas may hinder the production of solidified iron (so-called mushrooms) attached to the upper end of the tuyere, which is supposed to help protect the tuyere.

このような羽口形状の工夫だけでなく、送給するガス中に、高温で分解して吸熱反応を生じる炭化水素等を混合するという方法も考えられるが、炭化水素を混合するためには新たな設備が必要であり、大きな投資課題となる。
特開昭57-114623 号公報
In addition to such a shape of the tuyere, a method of mixing hydrocarbons that decompose at high temperatures and cause an endothermic reaction in the gas to be fed is also conceivable. Equipment is necessary, which is a big investment issue.
JP-A-57-114623

本発明は上記のような問題を解消し、羽口金物(すなわち外管と内管)の冷却効果を高めることが可能な底吹き羽口を提供することを目的とする。   An object of the present invention is to provide a bottom-blown tuyere that can solve the above problems and can enhance the cooling effect of the tuyere hardware (that is, the outer tube and the inner tube).

本発明は、溶融金属を収容して精錬する精錬用容器の底部に配設され、精錬用ガスを精錬用容器内へ吹き込む底吹き羽口であって、円筒状の外管と円筒中実状の内管とを有し、かつ外管の中心軸と内管の中心軸とを一致させて配置して外管と内管との間に環状の空間を設けるとともに、外管の内壁面に設けられかつ内管の外壁面に接触しない突起を有する底吹き羽口である。   The present invention is a bottom blowing tuyere disposed at the bottom of a refining vessel for containing and refining molten metal, and blows a refining gas into the refining vessel, and has a cylindrical outer tube and a solid cylindrical shape. The inner tube has an inner tube, and the central axis of the outer tube and the central axis of the inner tube are aligned to provide an annular space between the outer tube and the inner tube, and provided on the inner wall surface of the outer tube. And a bottom blowing tuyere having protrusions that do not contact the outer wall surface of the inner tube.

本発明の底吹き羽口においては、外管の内径が40mm以上であることが好ましい。   In the bottom blowing tuyere of the present invention, the inner diameter of the outer tube is preferably 40 mm or more.

本発明によれば、底吹き羽口の羽口金物の冷却効果を高めることができる。   According to the present invention, the cooling effect of the tuyere hardware of the bottom blowing tuyere can be enhanced.

図1は、本発明の底吹き羽口の例を模式的に示す断面図である。本発明の底吹き羽口1は、内管2と外管3からなる2重管構造の周囲と内管2内部に耐火物5を配置したものである。以下に詳しく説明する。
底吹き羽口1の中心部には内管2が配設される。内管2の内部は耐火物である。
内管2の外側には外管3を配設する。内管2の中心軸と外管3の中心軸は一致し、かつ内管2の外径d2と外管3の内径D1 は、D1>d2の関係を満足する。つまり内管2と外管3は同心の2重管構造をなし、内管2と外管3との間に環状の空間が形成される。この環状の空間が、ガスの流路となる。
FIG. 1 is a cross-sectional view schematically showing an example of a bottom blowing tuyere of the present invention. The bottom blow tuyere 1 according to the present invention has a refractory 5 disposed around a double pipe structure including an inner tube 2 and an outer tube 3 and inside the inner tube 2. This will be described in detail below.
An inner tube 2 is disposed at the center of the bottom blowing tuyere 1. The inside of the inner pipe 2 is a refractory material.
An outer tube 3 is disposed outside the inner tube 2. The central axis of the inner tube 2 and the central axis of the outer tube 3 coincide with each other, and the outer diameter d 2 of the inner tube 2 and the inner diameter D 1 of the outer tube 3 satisfy the relationship of D 1 > d 2 . That is, the inner tube 2 and the outer tube 3 have a concentric double tube structure, and an annular space is formed between the inner tube 2 and the outer tube 3. This annular space becomes a gas flow path.

外管3の内壁面に突起4を設ける。この突起4を設けることによって、外管3とガスの接触面積が増加し、冷却効果を高めることができる。
突起4は、ガスの流通を妨げることなく、外管3と冷却用ガスの接触面積を拡大するものである。したがって突起4の先端を内管2の外壁面に接触させず、突起4と内管2との間の空間および互いに隣り合う突起4の間の空間をガスの流路とする。
A protrusion 4 is provided on the inner wall surface of the outer tube 3. By providing this projection 4, the contact area between the outer tube 3 and the gas increases, and the cooling effect can be enhanced.
The protrusion 4 expands the contact area between the outer tube 3 and the cooling gas without hindering the gas flow. Therefore, the tip of the protrusion 4 is not brought into contact with the outer wall surface of the inner tube 2, and the space between the protrusion 4 and the inner tube 2 and the space between the adjacent protrusions 4 are used as gas flow paths.

突起4の形状は特に限定しない。たとえば平板状(いわゆるフィン)の突起,半球状の突起,直方体の突起等のように、外管3とガスの接触面積を拡大する形状であれば良い。
突起4の個数は特に限定しない。ただし、均一な冷却効果を得るために、2個以上の突起4を均等に分散させることが好ましい。つまり、図1に示すような外管3の中心軸に垂直な断面においては、2個以上の突起4を等間隔で配置することが好ましい。また、外管3の中心軸に平行な断面(図示せず)においても、2個以上の突起4を等間隔で配置することが好ましい。
The shape of the protrusion 4 is not particularly limited. For example, a shape that expands the contact area between the outer tube 3 and the gas, such as a flat (so-called fin) protrusion, a hemispherical protrusion, a rectangular parallelepiped protrusion, or the like may be used.
The number of protrusions 4 is not particularly limited. However, in order to obtain a uniform cooling effect, it is preferable that two or more protrusions 4 are evenly dispersed. That is, it is preferable to arrange two or more protrusions 4 at equal intervals in a cross section perpendicular to the central axis of the outer tube 3 as shown in FIG. In addition, it is preferable that two or more protrusions 4 are arranged at equal intervals even in a cross section (not shown) parallel to the central axis of the outer tube 3.

突起4の個数の上限値は特に限定しない。ガスの流通を妨げない範囲で、外管3や内管2の寸法に応じて設定すれば良い。
外管3の内径D1は、40mm以上とすることが好ましい。その理由は、外管3の内径を大きくすることによって、開口部(すなわち溶融金属に接触する部位)におけるガスの気泡の膨張を抑制でき、底吹き羽口の損耗を軽減できるからである。
The upper limit value of the number of protrusions 4 is not particularly limited. What is necessary is just to set according to the dimension of the outer tube | pipe 3 or the inner tube | pipe 2 in the range which does not prevent the distribution | circulation of gas.
The inner diameter D 1 of the outer tube 3 is preferably not more than 40mm. The reason is that by increasing the inner diameter of the outer tube 3, it is possible to suppress the expansion of gas bubbles in the opening (that is, the portion in contact with the molten metal) and to reduce the wear of the bottom blowing tuyere.

以上に説明したように、外管3と内管2の環状の間隙よりガスを吹き込む構造を有する羽口金物の外管3の内壁面に突起4を設けることによって、外管3と冷却用ガスの接触面積を拡大し、冷却効果を高めることができる。
内管2は、外管3との間隙により外側の耐火物からの入熱を遮断されているので、温度上昇は抑制される。これに対して外管3は、その内壁面は冷却用ガスと接触するが、外壁面は高温の耐火物5と接触している。したがって外管3は、耐火物からの熱伝導によって温度が上昇しやすいので、内壁面に突起4を設けて冷却効果を高める。内管2の外壁面に突起を設けて良いが、冷却用ガスの流通を妨げる惧れがあるので、内管2に突起を設けない方が好ましい。
As described above, by providing the protrusion 4 on the inner wall surface of the outer tube 3 of the tuyere metal having a structure in which gas is blown from the annular gap between the outer tube 3 and the inner tube 2, the outer tube 3 and the cooling gas are provided. The contact area can be expanded and the cooling effect can be enhanced.
Since the inner pipe 2 is blocked from heat input from the outer refractory by the gap with the outer pipe 3, the temperature rise is suppressed. In contrast, the outer wall 3 of the outer tube 3 is in contact with the cooling gas, but the outer wall is in contact with the high temperature refractory 5. Therefore, since the temperature of the outer tube 3 is likely to rise due to heat conduction from the refractory, the protrusion 4 is provided on the inner wall surface to enhance the cooling effect. Although protrusions may be provided on the outer wall surface of the inner tube 2, it is preferable not to provide protrusions on the inner tube 2 because there is a concern that the flow of the cooling gas may be hindered.

表1に示す7種類の底吹き羽口を作製した。発明例1〜5の底吹き羽口は、図1に示すような直方体(幅2mm,高さ1.8mm,全長にわたって設置)の突起4を外管3の内壁面に設けた。比較例1〜2の底吹き羽口では突起を設けなかった。   Seven types of bottom blow tuyere shown in Table 1 were produced. In the bottom blow tuyere of Invention Examples 1 to 5, protrusions 4 of a rectangular parallelepiped (width 2 mm, height 1.8 mm, installed over the entire length) as shown in FIG. 1 were provided on the inner wall surface of the outer tube 3. No protrusion was provided in the bottom blowing tuyere of Comparative Examples 1 and 2.

Figure 2007224399
Figure 2007224399

まず発明例1の底吹き羽口を実験用転炉(容量5トン)に設置して、溶鋼の脱炭精錬を行なった。冷却用ガスとしてN2ガス(流量2.5Nm3/分)を内管2と外管3との間の環状の空間から溶鋼に吹き込んで脱炭精錬を行なった。
脱炭精錬を行なうにあたって、外管3の先端から50mmの位置の外壁面に熱電対を埋設し、溶鋼温度が1650℃に到達したときの外管3の温度を測定した。その結果は図2に示す通りである。つまり、後述する比較例1の測定値を指標(=1)として、その指標に対して0.85であった。
First, the bottom blow tuyere of Invention Example 1 was installed in an experimental converter (capacity 5 tons) to decarburize and refine the molten steel. Decarburization refining was performed by blowing N 2 gas (flow rate: 2.5 Nm 3 / min) as a cooling gas into the molten steel from the annular space between the inner pipe 2 and the outer pipe 3.
When performing decarburization refining, a thermocouple was embedded in the outer wall surface at a position 50 mm from the tip of the outer tube 3, and the temperature of the outer tube 3 when the molten steel temperature reached 1650 ° C. was measured. The result is as shown in FIG. That is, the measured value of Comparative Example 1 to be described later was set as an index (= 1), and was 0.85 with respect to the index.

次に、発明例2および比較例1の底吹き羽口を用いて、発明例1と同様に脱炭精錬を行なった。外管3の温度は図2に示す通りである。
さらに、発明例3の底吹き羽口を用いて、発明例1と同様に脱炭精錬を行ない、外管3の温度を測定した。その結果は図2に示す通りである。つまり、後述する比較例2の測定値を指標(=1)として、その指標に対して0.86であった。
Next, decarburization refining was performed in the same manner as in Invention Example 1 using the bottom blow tuyere of Invention Example 2 and Comparative Example 1. The temperature of the outer tube 3 is as shown in FIG.
Further, decarburization refining was performed in the same manner as in Invention Example 1 using the bottom blow tuyere of Invention Example 3, and the temperature of the outer tube 3 was measured. The result is as shown in FIG. That is, the measured value of Comparative Example 2 described later was taken as an index (= 1), and was 0.86 with respect to that index.

次いで、発明例4および比較例2の底吹き羽口を用いて、発明例1と同様に脱炭精錬を行なった。外管3の温度は図2に示す通りである。
図2から明らかなように、発明例1〜4は、比較例1〜2に比べて、いずれも外管3の温度が低かった。
なお、発明例5の底吹き羽口を用いて発明例1と同様に脱炭精錬を行なった結果については後述する。
Next, decarburization refining was performed in the same manner as in Invention Example 1 using the bottom blowing tuyere of Invention Example 4 and Comparative Example 2. The temperature of the outer tube 3 is as shown in FIG.
As is clear from FIG. 2, the temperature of the outer tube 3 was lower in each of the inventive examples 1 to 4 than the comparative examples 1 and 2.
In addition, the result of decarburization refining similarly to invention example 1 using the bottom blowing tuyere of invention example 5 is mentioned later.

また、脱炭精錬が終了した後、発明例1〜4と比較例1〜2の底吹き羽口を回収して、外管3の溶損量を測定した。その結果は図3に示す通りである。なお図3では、発明例1,2の溶損量は比較例1の測定値を指標(=1)とした比率で示し、発明例3,4の溶損量は比較例2の測定値を指標(=1)とした比率で示した。
図3から明らかなように、発明例1〜4は、比較例1〜2に比べて、いずれも外管3の溶損量が少なかった。
Moreover, after decarburization refining was complete | finished, the bottom blowing tuyere of Invention Examples 1-4 and Comparative Examples 1-2 was collect | recovered, and the amount of erosion loss of the outer tube 3 was measured. The result is as shown in FIG. In FIG. 3, the amount of erosion of Invention Examples 1 and 2 is shown as a ratio with the measured value of Comparative Example 1 as an index (= 1), and the amount of erosion of Invention Examples 3 and 4 is the measured value of Comparative Example 2. The ratio is shown as an index (= 1).
As is clear from FIG. 3, Invention Examples 1 to 4 each had a smaller amount of erosion of the outer tube 3 than Comparative Examples 1 and 2.

発明例5の底吹き羽口を、脱炭精錬が終了した後で回収して外管3の溶損量を測定した結果を図4に示す。なお図4では、発明例5の溶損量の測定値を指標(=1)として、図3に示した発明例1〜4の溶損量を指標に対する比率で示した。図4から明らかなように、発明例5の溶損量は、発明例1〜4の約2倍であった。このデータは、外管3の内径が40mm未満の底吹き羽口は、冷却効果が減少することを示している。ただし、図3に示した比較例1の溶損量と比べると、発明例5の溶損量は0.11であり、発明例5の底吹き羽口において冷却効果が十分に発揮されたことが分かる。   FIG. 4 shows the result of collecting the bottom blow tuyere of Invention Example 5 after the decarburization refining and measuring the amount of erosion of the outer pipe 3. In FIG. 4, the measured value of the amount of erosion in Invention Example 5 is taken as an index (= 1), and the amount of erosion in Invention Examples 1 to 4 shown in FIG. 3 is shown as a ratio to the index. As is apparent from FIG. 4, the amount of melting loss in Invention Example 5 was about twice that in Invention Examples 1 to 4. This data shows that the bottom blowing tuyere having an inner diameter of the outer tube 3 of less than 40 mm reduces the cooling effect. However, compared with the amount of erosion of Comparative Example 1 shown in FIG. 3, the amount of erosion of Invention Example 5 is 0.11, and it can be seen that the cooling effect was sufficiently exhibited in the bottom blowing tuyeres of Example 5 of the Invention. .

本発明の底吹き羽口の例を模式的に示す断面図である。It is sectional drawing which shows typically the example of the bottom blowing tuyere of this invention. 外管の温度を示すグラフである。It is a graph which shows the temperature of an outer tube | pipe. 外管の溶損量を示すグラフである。It is a graph which shows the amount of molten loss of an outer tube. 外管の溶損量を示すグラフである。It is a graph which shows the amount of molten loss of an outer tube.

符号の説明Explanation of symbols

1 底吹き羽口
2 内管
3 外管
4 突起
5 耐火物
1 Bottom blowing tuyere 2 Inner pipe 3 Outer pipe 4 Protrusion 5 Refractory

Claims (2)

溶融金属を収容して精錬する精錬用容器の底部に配設され、精錬用ガスを前記精錬用容器内へ吹き込む底吹き羽口であって、円筒状の外管と円筒中実状の内管とを有し、かつ前記外管の中心軸と前記内管の中心軸とを一致させて配置して前記外管と前記内管との間に環状の空間を設けるとともに、前記外管の内壁面に設けられかつ前記内管の外壁面に接触しない突起を有することを特徴とする底吹き羽口。   A bottom blowing tuyere that is disposed at the bottom of a refining vessel for containing and refining molten metal and blows refining gas into the refining vessel, and includes a cylindrical outer tube and a cylindrical solid inner tube, And an annular space is provided between the outer tube and the inner tube by aligning the central axis of the outer tube with the central axis of the inner tube, and the inner wall surface of the outer tube. A bottom-blown tuyere having a protrusion provided on the outer tube and not in contact with the outer wall surface of the inner tube. 前記外管の内径が40mm以上であることを特徴とする請求項1に記載の底吹き羽口。   The bottom blow tuyere according to claim 1, wherein an inner diameter of the outer tube is 40 mm or more.
JP2006049803A 2006-02-27 2006-02-27 Bottom-blow tuyere to be used in smelting vessel Pending JP2007224399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006049803A JP2007224399A (en) 2006-02-27 2006-02-27 Bottom-blow tuyere to be used in smelting vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006049803A JP2007224399A (en) 2006-02-27 2006-02-27 Bottom-blow tuyere to be used in smelting vessel

Publications (1)

Publication Number Publication Date
JP2007224399A true JP2007224399A (en) 2007-09-06

Family

ID=38546471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006049803A Pending JP2007224399A (en) 2006-02-27 2006-02-27 Bottom-blow tuyere to be used in smelting vessel

Country Status (1)

Country Link
JP (1) JP2007224399A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180055874A (en) 2016-02-25 2018-05-25 신닛테츠스미킨 카부시키카이샤 Gas blowing nozzle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180055874A (en) 2016-02-25 2018-05-25 신닛테츠스미킨 카부시키카이샤 Gas blowing nozzle

Similar Documents

Publication Publication Date Title
JPS6045685B2 (en) Double pipe tuyere for bottom blowing
JP7184179B2 (en) Steelmaking slag reforming method and lance
JP2007224399A (en) Bottom-blow tuyere to be used in smelting vessel
JP6406517B2 (en) Bottom blowing tuyere for converter
JP2006283065A (en) Gas-blowing tuyere
JP5395972B2 (en) H steel cooling structure in the settling ceiling part of the flash smelting furnace, and cooling method of the H steel in the settling ceiling part of the flash melting furnace
JP5463623B2 (en) Brick structure of converter bottom blowing tuyere
JP4487824B2 (en) Bottom-blown tuyere used in refining vessels
JP4765372B2 (en) Gas blown tuyere
CA1217336A (en) Annular tuyere and method
JP2006283052A (en) Gas-blowing tuyere
JP2012229487A (en) Tuyere block
KR101261424B1 (en) A Lance Nozzle for Blow-Refinement
JP2011202236A (en) Top-blowing lance for converter, and method for operating converter
JP2009068099A (en) Structure for gas-blowing tuyere in refining vessel
JP6011808B2 (en) Annular tuyere for gas injection
JP2004285441A (en) Brick-laid structure at furnace bottom of converter having bottom-blowing tuyere
KR101199567B1 (en) A Lance Nozzle for Blow-Refinement
JPWO2017145758A1 (en) Gas blowing nozzle
JP6399067B2 (en) Gas blowing method with bottom blow tuyere and steel refining method
JP2007046145A (en) Method for operating blast furnace with little variation of furnace heat
JP3909589B2 (en) Method for protecting bottom blown double pipe tuyere of molten metal refining furnace
JPH10273714A (en) Bottom blowing tuyere
JP2018178206A (en) Gas injection nozzle and gas injection method using the same
CN101260446B (en) End reducing furnace for non-blast-furnace iron smelting