JP2007046145A - Method for operating blast furnace with little variation of furnace heat - Google Patents

Method for operating blast furnace with little variation of furnace heat Download PDF

Info

Publication number
JP2007046145A
JP2007046145A JP2005325085A JP2005325085A JP2007046145A JP 2007046145 A JP2007046145 A JP 2007046145A JP 2005325085 A JP2005325085 A JP 2005325085A JP 2005325085 A JP2005325085 A JP 2005325085A JP 2007046145 A JP2007046145 A JP 2007046145A
Authority
JP
Japan
Prior art keywords
furnace
tuyere
raceway
blast furnace
eah
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005325085A
Other languages
Japanese (ja)
Other versions
JP4739920B2 (en
Inventor
Morimasa Ichida
守政 一田
Takashi Orimoto
隆 折本
Koichi Yokoyama
浩一 横山
Masayoshi Takao
正義 高尾
Toshio Majima
俊雄 間嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005325085A priority Critical patent/JP4739920B2/en
Publication of JP2007046145A publication Critical patent/JP2007046145A/en
Application granted granted Critical
Publication of JP4739920B2 publication Critical patent/JP4739920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for operating a blast furnace with which the variation of furnace heat is restrained as less as possible by enlarging a dropping range of charged material at the lower part of the furnace without enlarging a raceway shape. <P>SOLUTION: The method for operating the blast furnace having little variation of the furnace heat, has the peculiarity, in which in the blast furnace operational method, the outstanding length L<SB>OT</SB>(m) of a tuyere is set to the length from more than 0.4m to permissible range of the tuyere strength, and the raceway position is shifted to the furnace center side. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、装入物の降下領域を拡大し、炉熱変動を抑制する高炉操業方法に関するものである。   The present invention relates to a blast furnace operating method that expands a descending region of a charge and suppresses furnace heat fluctuation.

高炉操業においては、大型高炉を用い、高微粉炭比操業又は高出銑比操業を行うことが通常である。   In blast furnace operation, it is usual to use a large blast furnace and perform a high pulverized coal ratio operation or a high tapping ratio operation.

しかし、高微粉炭比操業においては、レースウェイ内におけるコークス粉量の増大により、炉下部における通気性が悪化し、炉芯内へのガスの流入量が減少し、また、図1に示すように、レースウェイが、Rから、コークス粉の堆積を伴うR‘へ縮小・縦長化し、レースウェイ深度が低下することが予想される。   However, in the operation with high pulverized coal ratio, the increase in the amount of coke powder in the raceway deteriorates the air permeability in the lower part of the furnace, and the amount of gas flowing into the furnace core decreases, as shown in FIG. In addition, it is expected that the raceway is reduced and lengthened from R to R ′ accompanied by the accumulation of coke powder, and the raceway depth is reduced.

高炉内で上記現象が生じると、炉下部における降下領域が縮小して、融着帯の炉下部における滞留時間が短縮し、その結果、未溶解物がレースウェイ内に流入して、炉芯内の温度が低下(炉熱変動)する。   When the above phenomenon occurs in the blast furnace, the descending area in the lower part of the furnace is reduced, and the residence time in the lower part of the cohesive zone is shortened. As a result, undissolved material flows into the raceway and the inside of the furnace core The temperature of the furnace decreases (furnace heat fluctuation).

また、高出銑比操業においても、同様に、レースウェイ深度が低下(縮小・縦長化)して、炉下部における融着帯の滞留時間が短縮し、その結果、未溶解物がレースウェイ内に流入して、炉芯内の温度が低下(炉熱変動)する。   Similarly, in high-power ratio operation, the raceway depth also decreases (shrinks and lengthens), and the residence time of the cohesive zone at the bottom of the furnace is shortened. The temperature in the furnace core decreases (furnace heat fluctuation).

このように、高炉操業においては、羽口先端に形成されるレースウェイの深度は、重要な操業要因である。   Thus, in blast furnace operation, the depth of the raceway formed at the tip of the tuyere is an important operating factor.

通常、大型高炉の操業においては、下記式で示す炉床有効」断面積比率EAHを、羽口中心レベルにおい高温域レースウェイ空間が占める面積を示す指標として用いる。   Normally, in operation of a large blast furnace, the hearth effective cross-sectional area ratio EAH represented by the following formula is used as an index indicating the area occupied by the high-temperature area raceway space at the tuyere center level.

図2は、高炉の内容積と炉床有効断面積比率EAHの関係を示す。図2に示すように、レースウェイ深度DRを1.2〜1.5mとした場合のEAH(LOT=0.4m[従来値(0.4〜0.55m)]で下式から計算)は、高炉内容積が増加するに伴い縮小する。即ち、高炉を大型化(高炉内容積の増加)すると、羽口レベルでの炉芯の占有面積比率(1−EAH)が増大する。 FIG. 2 shows the relationship between the internal volume of the blast furnace and the hearth effective sectional area ratio EAH. As shown in FIG. 2, calculated from the following equation in the case of the 1.2~1.5m the raceway depth D R EAH (L OT = 0.4m [ conventional value (0.4~0.55m)] ) Decreases as the blast furnace volume increases. That is, when the size of the blast furnace is increased (increase in the volume inside the blast furnace), the ratio of the core area occupied at the tuyere level (1-EAH) increases.

EAH=[π・(HD/2)2−π・{HD/2−(DR+LOT)}2]/π・(HD/2)2D:炉床径(m)、DR:レースウェイ深度(m)、LOT:羽口突出し長さ EAH = [π · (H D / 2) 2 −π · {H D / 2− (D R + L OT )} 2 ] / π · (H D / 2) 2 H D : hearth diameter (m), D R : Raceway depth (m), L OT : Feather overhang length

高炉が大型化し、炉芯の占有面積比率が増大すると、炉下部での装入物降下領域の縮小、融着帯の滞留時間の短縮による伝熱の不足、溶解能力の低下を招き、炉芯における還元が不活性になる可能性がある。   When the blast furnace becomes larger and the ratio of the occupied area of the core increases, the lowering of the charge drop area at the lower part of the furnace, the lack of heat transfer due to the shortened residence time of the cohesive zone, and the melting capacity are reduced. Reduction in can be inactive.

炉芯が不活性化するのを防止するためには、炉下部での装入物の降下領域を拡大して、装入物の伝熱時間を確保すると同時に、低温度の炉芯領域をできるだけ小さくすることが必要であるが、図2から明らかなように、レースウェイ深度を大きくすると、EAHが増大するので、上記不活性化防止策の一つとして、羽口風速を上昇してレースウェイ深度を拡大することが考えられる。   In order to prevent the furnace core from being deactivated, the lowering area of the charge at the lower part of the furnace is expanded to ensure the heat transfer time of the charge, and at the same time, the low temperature furnace core area is as much as possible. As is clear from FIG. 2, as the raceway depth is increased, EAH increases. Therefore, as one of the inactivation prevention measures, the tuyere wind speed is increased and the raceway is increased. It is conceivable to increase the depth.

そして、羽口風速を上昇してレースウェイ深度を拡大する試みが、各社の高炉にて行われている(非特許文献1、特許文献1及び2、参照)。   Attempts to increase the tuyere wind speed and expand the raceway depth have been made in blast furnaces of various companies (see Non-Patent Document 1, Patent Documents 1 and 2).

非特許文献1では、降下領域拡大の対策として、羽口風速を上げてレースウェイ深度を深くする試みが提案されている。しかし、羽口風速の増加は、レースウェイ内のコークスの粉化を促進し、レースウェイ近傍のコークス充填層に粉が堆積するので、炉下部の通気性が悪化し、逆に、装入物の降下領域が狭くなる可能性がある。   Non-Patent Document 1 proposes an attempt to increase the tuyere wind speed and increase the raceway depth as a countermeasure for expanding the descending region. However, the increase in tuyere wind speed promotes the coke pulverization in the raceway, and the powder accumulates in the coke packed bed near the raceway. There is a possibility that the descending area of the narrower.

特許文献1では、レースウェイ深度が設定値以下となるように羽口風速を制御する方法が提案され、また、特許文献2では、レースウェイ深度が設定値以下となるように羽口径を制御する方法が提案されているが、いずれの方法も、装入物の降下領域が狭くなる可能性を抱えている。   Patent Document 1 proposes a method for controlling the tuyere wind speed so that the raceway depth is equal to or less than the set value. Patent Document 2 controls the tuyere diameter so that the raceway depth is equal to or less than the set value. Although methods have been proposed, both methods have the potential to narrow the charge drop area.

それ故、羽口風速を上げる又は制御する方法を採用する場合、同時に、コークスの品質、特に、強度を高める必要があるが、コークスの強度向上は、溶銑コスト上昇の原因となるので、上記方法は、実際には実行し難い方法である。   Therefore, when adopting a method for increasing or controlling the tuyere wind speed, it is necessary to simultaneously increase the quality of the coke, in particular the strength. Is actually a tricky practice.

また、コークス粉の発生を抑制するためコークス強度を高め、レースウェイ形状を大きくした場合、レースウェイ形状の不安定性が増大して、未溶融物がレースウェイに流入して、炉下部における炉熱が低下する可能性がある。   In addition, if the coke strength is increased and the raceway shape is increased in order to suppress the generation of coke powder, the instability of the raceway shape increases and unmelted material flows into the raceway, causing May be reduced.

特開昭62−1808号公報JP-A-62-1808 特開昭62−1809号公報JP-A-62-1809 CAMP−ISIJ、12(1999)、632CAMP-ISIJ, 12 (1999), 632

本発明は、上記従来技術における課題に鑑み、レースウェイ形状を大きくせずに、炉下部における装入物の降下領域を拡大し、炉熱変動や各種操業指標の円周バランスの乱れをできるだけ抑制する高炉操業方法を提供することを課題とする。   In view of the above problems in the prior art, the present invention expands the descending region of the charge in the lower part of the furnace without increasing the raceway shape, and suppresses as much as possible the furnace heat fluctuation and the disturbance of the circumferential balance of various operation indices. An object is to provide a method for operating a blast furnace.

炉下部における降下領域を規定し、結果的に炉床有効断面積比率に影響を及ぼす炉芯の立ち上がり起点は、レースウェイの位置で決まる。   The starting point of the core that defines the descending region at the bottom of the furnace and consequently affects the effective area ratio of the hearth is determined by the position of the raceway.

本発明者は、この点に着目し、羽口突出し長さを大きくすれば、レースウェイ深度を大きくすることなく、ほぼ同じ形状を維持しつつ、レースウェイの位置、即ち、炉下部における装入物の降下領域を規定する炉芯の立ち上がり起点を炉中心側へ移行することができ、その結果、上記降下領域を拡大することができるとの発想に至った。   The present inventor pays attention to this point, and if the tuyere protruding length is increased, the raceway position, that is, the charging at the lower part of the furnace is maintained without increasing the raceway depth while maintaining substantially the same shape. The rise start point of the furnace core that defines the descending region of the object can be shifted to the furnace center side, and as a result, the idea has been reached that the descending region can be expanded.

羽口突出し長さは、従来、高炉の炉床径の大小に拠らず約0.4mとするのが通常であるが、本発明者は、上記発想の下で、羽口を通常の約0.4mを超えて突き出し、鋭意研究した。   Conventionally, the tuyere overhang length is usually about 0.4 m regardless of the size of the hearth diameter of the blast furnace. Protruding beyond 0.4m, I studied earnestly.

その結果、本発明者は、図3に示すように、羽口を通常の約0.4m(図中L)を超えて突出せば(図中L0)、レースウェイ深度を大きくすることなく、ほぼ同じ形状を維持しつつ、レースウェイの位置を炉中心側へ移行することができ(図中Ro、参照)、炉下部における装入物の降下領域を拡大するとともに、レースウェイ内への未溶融物の流入を抑制して、炉下部における炉熱変動を小さく抑制できることを見出した。 As a result, as shown in FIG. 3, the present inventor, without projecting the tuyere beyond the normal about 0.4 m (L in the figure) (L 0 in the figure), does not increase the raceway depth. The raceway position can be shifted to the furnace center side (see Ro in the figure) while maintaining almost the same shape, and the descending area of the charge in the lower part of the furnace is expanded and the raceway is moved into the raceway. It has been found that the inflow of unmelted material can be suppressed, and the furnace heat fluctuation in the lower part of the furnace can be reduced.

上記知見は、基本的には、全数の羽口に適用することを前提としているが、少なくとも全羽口数の70%を超える羽口に上記知見を適用できれば、全数の羽口に適用した場合とほぼ同じ効果を発現できる。そして、上記の羽口突出し条件下では、羽口直上に形成される停滞層の立ち上がり角度が小さくなるため、融着帯根部の脱落などが少なくなり、朝顔部での降下挙動が安定することを見出した。   Basically, the above knowledge is premised on the application to all tuyere, but if the above knowledge can be applied to at least 70% of the tuyere, it can be applied to all tuyere. Almost the same effect can be expressed. And under the above tuyere protruding condition, the rising angle of the stagnant layer formed just above the tuyere becomes smaller, so that the root of the cohesive zone falls off and the descent behavior at the morning glory is stable. I found it.

また、本発明者は、上記知見に基づく羽口突き出しは、高炉の炉芯肥大に起因して発生する送風支管風量、出銑量、溶銑温度、溶銑品質、炉床側壁レンガ温度の円周方向アンバランスを解消する対策としても効果的であることを見出した。   Further, the inventor of the present invention, the tuyere protrusion based on the above knowledge is the circumferential direction of the blower branch air volume, the amount of molten iron, the hot metal temperature, the hot metal quality, the hearth side wall brick temperature generated due to the enlargement of the core of the blast furnace It was found that it is also effective as a measure to eliminate imbalance.

さらに、本発明者は、羽口を所定長さ突き出す際、突出し対象羽口を含む扇形断面(中心角θ)の面積を、局部炉床有効断面積LEAHとして、下記式で定義し、該LEAHが所定の値以上になるように羽口の突出し長さを設定すれば、より炉熱変動を小さく制御できることを見いだした。
LEAH=EAH・θ/360
Further, the present inventor defines the area of the fan-shaped cross section (center angle θ) including the target tuyere when projecting the tuyere for a predetermined length as a local hearth effective cross-sectional area LEAH by the following formula: It has been found that the furnace heat fluctuation can be controlled to be smaller if the tuyere protrusion length is set so that is equal to or greater than a predetermined value.
LEAH = EAH · θ / 360

なお、以上の知見については、後で詳述する。   The above knowledge will be described later in detail.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1) 高炉操業方法において、羽口の突出し長さLOT(m)を、0.4mを超え、羽口の強度上可能な範囲内の長さに設定し、レースウェイ位置を炉中心側へ移行させることを特徴とする炉熱変動の小さい高炉操業方法。 (1) In the blast furnace operation method, the tuyere protrusion length L OT (m) is set to a length exceeding 0.4 m and within the possible range for the tuyere strength, and the raceway position is on the furnace center side. A method for operating a blast furnace with small fluctuations in furnace heat, characterized in that

(2) 前記レースウェイ位置の移行に際し、レースウェイ深度を大きくせずに、レースウェイ形状を維持することを特徴とする前記(1)に記載の炉熱変動の小さい高炉操業方法。   (2) The blast furnace operating method with a small furnace heat fluctuation according to (1), wherein the raceway shape is maintained without increasing the raceway depth when the raceway position is shifted.

(3) 前記突出し長さLOT(m)を、下記式で示す炉床有効断面積比率EAHが0.50以上0.95以下の値になるよう設定することを特徴とする前記(1)又は(2)に記載の炉熱変動の小さい高炉操業方法。 (3) The protrusion length L OT (m) is set so that the hearth effective cross-sectional area ratio EAH represented by the following formula is 0.50 or more and 0.95 or less. Or the blast furnace operating method with small furnace heat fluctuation | variation as described in (2).

EAH=[π・(HD/2)2−π・{HD/2−(DR+LOT)}2]/π・(HD/2)2
ここで、HD:炉床径(m)、DR:レースウェイ深度(m)
EAH = [π · (H D / 2) 2 −π · {H D / 2− (D R + L OT )} 2 ] / π · (H D / 2) 2
Where H D : hearth diameter (m), D R : raceway depth (m)

(4) 送風支管風量が平均値の90%未満の羽口の数が全羽口数の25%を超えた場合、前記突出し長さLOT(m)を、上記式で示す炉床有効断面積比率EAHが0.50以上の値になるように設定することを特徴とする前記(1)又は(2)に記載の炉熱変動の小さい高炉操業方法。 (4) When the number of tuyere whose blowing air flow is less than 90% of the average value exceeds 25% of the total tuyere, the protruding length L OT (m) is expressed as the effective hearth sectional area represented by the above formula. The blast furnace operating method with small fluctuation in furnace heat according to (1) or (2), wherein the ratio EAH is set to a value of 0.50 or more.

(5) 出銑量の出銑口間の差異が500t以上となった場合、前記突出し長さLOT(m)を、上記式で示すEAHが0.50以上の値になるように設定することを特徴とする前記(1)又は(2)に記載の炉熱変動の小さい高炉操業方法。 (5) When the difference between the spouts of the spout amount is 500 t or more, the protruding length L OT (m) is set so that the EAH represented by the above formula is 0.50 or more. The method for operating a blast furnace according to (1) or (2), wherein the furnace heat fluctuation is small.

(6) 溶銑温度の出銑口間の差異が50℃以上となった場合、前記突出し長さLOT(m)を、上記式で示すEAHが0.50以上の値になるように設定することを特徴とする前記(1)又は(2)に記載の炉熱変動の小さい高炉操業方法。 (6) When the difference between the hot metal temperature outlets is 50 ° C. or more, the protruding length L OT (m) is set so that the EAH represented by the above formula is 0.50 or more. The method for operating a blast furnace according to (1) or (2), wherein the furnace heat fluctuation is small.

(7) 溶銑中Si値の出銑口間の差異が0.50%以上となった場合、前記突出し長さLOT(m)を、上記式で示すEAHが0.50以上の値になるように設定することを特徴とする前記(1)又は(2)に記載の炉熱変動の小さい高炉操業方法。 (7) When the difference between the spouts of the Si value in the hot metal is 0.50% or more, the EAH shown by the above formula is a value of 0.50 or more for the protruding length L OT (m). The blast furnace operating method with a small furnace heat fluctuation according to the above (1) or (2), characterized in that it is set as follows.

(8) 1箇所以上の炉床側壁レンガ温度が、炉床側壁レンガ温度の平均値の10%を超えて上昇した場合、該温度上昇部位近傍の羽口の突出し長さLOT(m)を、0.4mを超え、羽口の強度上可能な範囲内の長さに設定し、レースウェイ位置を炉中心側へ移行させることを特徴とする炉熱変動の小さい高炉操業方法。 (8) When the temperature of one or more hearth side wall bricks exceeds 10% of the average value of the hearth side wall brick temperature, the protrusion length L OT (m) of the tuyere in the vicinity of the temperature rising portion is set to A method of operating a blast furnace with a small furnace heat fluctuation, characterized in that the length of the tuyere is set to a length that exceeds 0.4 m and within the possible range of the tuyere strength, and the raceway position is shifted to the furnace center side.

(9) 前記レースウェイ位置の移行に際し、レースウェイ深度を大きくせずに、レースウェイ形状を維持することを特徴とする前記(8)に記載の炉熱変動の小さい高炉操業方法。   (9) The blast furnace operating method with small furnace heat fluctuation according to (8), wherein the raceway shape is maintained without increasing the raceway depth when the raceway position is shifted.

(10) 前記突出し長さLOT(m)を、下記式で示す局部炉床有効断面積比率LEAHが0.50以上の値になるように設定することを特徴とする前記(8)又は(9)に記載の炉熱変動の小さい高炉操業方法。 (10) The protruding length L OT (m) is set so that the local hearth effective cross-sectional area ratio LEAH represented by the following formula is a value of 0.50 or more. 9) A method for operating a blast furnace with a small furnace heat fluctuation.

LEAH=[π・(HD/2)2−π・{HD/2−(DR+LOT)}2]/π・(HD/2)2・θ/360
ここで、HD:炉床径(m)、DR:レースウェイ深度(m)、θ:突出し対象羽口を含む扇形断面の中心角(deg)
LEAH = [π · (H D / 2) 2 −π · {H D / 2− (D R + L OT )} 2 ] / π · (H D / 2) 2 · θ / 360
Here, H D : hearth diameter (m), D R : raceway depth (m), θ: central angle of fan-shaped cross section including protruding tuyere (deg)

本発明によれば、レースウェイ形状を大きくせずに、炉下部における装入物の降下領域を拡大し、炉熱変動を小さく抑制できるので、高炉の生産性を高めることができる。   According to the present invention, it is possible to increase the descending region of the charge in the lower part of the furnace without increasing the raceway shape and to suppress the furnace heat fluctuation, thereby improving the productivity of the blast furnace.

また、炉芯肥大に起因して発生する送風支管風量、出銑量、溶銑温度、溶銑品質、炉床側壁レンガ温度の円周方向アンバランスを解消して、炉熱変動を小さく抑制することができるので、高炉の生産性を高めることができる。   In addition, it eliminates the circumferential imbalance between the blower branch air volume, the amount of hot metal, the hot metal temperature, the hot metal quality, and the hearth side wall brick temperature generated due to the furnace core enlargement, thereby suppressing the fluctuation of the furnace heat to a small level. As a result, the productivity of the blast furnace can be increased.

さらに、本発明によれば、炉内において、融着帯根部の脱落などが少なくなり、朝顔部での降下挙動を安定化することができる。   Furthermore, according to the present invention, the dropout of the root of the cohesive zone is reduced in the furnace, and the descent behavior at the morning glory can be stabilized.

前記発想の蓋然性を確認するため、本発明者は、まず、融点120℃の擬似鉱石とコークスを炉頂から装入し、左右2本の羽口から180℃の熱風を吹き込む二次元温間模型実験を行った。その結果を図4及び図5に示す。   In order to confirm the probability of the above idea, the present inventor first charged a pseudo ore with a melting point of 120 ° C. and coke from the top of the furnace, and blown hot air of 180 ° C. from the two left and right tuyere. The experiment was conducted. The results are shown in FIGS.

図4は、タイムラインと炉下部温度分布に及ぼす羽口突出し長さLOT((1):25mm(実炉換算値225mm)、(2):45mm(実炉換算値405mm[従来値])、(3):65mm(実炉換算値585mm))の影響を示す。 FIG. 4 shows the tuyere overhang length L OT ((1): 25 mm (actual furnace conversion value 225 mm), (2): 45 mm (actual furnace conversion value 405 mm [conventional value]) affecting the time line and furnace bottom temperature distribution. , (3): 65 mm (actual furnace conversion value 585 mm)).

なお、図4において、横軸は、炉中心(C)から炉壁(W)方向への距離(mm)を示し、縦軸は、羽口から炉頂方向への高さレベルを示す。また、図4の下段の図(b)は、100〜160℃までの10℃間隔の等温線を示す。   In FIG. 4, the horizontal axis indicates the distance (mm) from the furnace center (C) to the furnace wall (W) direction, and the vertical axis indicates the height level from the tuyere to the furnace top direction. Moreover, the lower figure (b) of FIG. 4 shows the isotherm of a 10 degreeC space | interval from 100-160 degreeC.

また、図5は、朝顔下端における「降下幅/炉床径」に及ぼす羽口突出し長さLOTの影響を示す。 Further, FIG. 5, protrudes tuyere on "drop width / Royuka径" in morning glory bottom shows the effect of length L OT.

図4(1)及び図5に示すように、羽口突出し長さLOTが25mm(実炉換算値225mm)と、通常の45mm(実炉換算値405mm)より短い場合には、朝顔部での装入物の降下領域が縮小し、レースウェイ直上の朝顔部において、コークスアーチの形成と崩壊の繰り返し現象が観察され、レースウェイ形状は縦長となり、装入物は炉壁近傍をスリップしながら降下した。 4 (1) and FIG. 5, the length L OT is 25mm protruding tuyere (actual furnace converted value 225 mm), is shorter than the normal 45 mm (actual furnace converted value 405mm) is the bosh section In the morning glory area just above the raceway, the repeated phenomenon of coke arch formation and collapse was observed, the raceway shape became vertically long, and the charge slipped near the furnace wall. Descent.

一方、図4(3)及び図5に示すように、羽口突出し長さLOTが65mm(実炉換算値585mm)と、通常の45mm(実炉換算値405mm)より長い場合には、朝顔部での装入物の降下領域が拡大し、レースウェイ直上での装入物の降下がスムースであった。 On the other hand, as shown in FIG. 4 (3) and 5, the protruding tuyere length L OT is 65 mm (actual furnace converted value 585 mm), when longer than normal 45 mm (actual furnace converted value 405mm) is morning glory The area of charge drop at the club was expanded, and the charge drop just above the raceway was smooth.

そして、図6に示すように、羽口突出し長さLOTの増大に伴い、炉内圧力損失(ΔP)が低下した。これは、羽口突出し長さLOTの増大に伴い、朝顔部の装入物の降下領域が拡大したためである。 Then, as shown in FIG. 6, the pressure loss (ΔP) in the furnace decreased as the tuyere protruding length LOT increased. This is due to the increase in length L OT protruding tuyere is because the drop region of the charge of the bosh section is expanded.

羽口突出し長さLOTが45mm(実炉換算値405mm)の場合において、羽口突出し長さLOTを変更せず、羽口径を縮小して羽口風速を上昇させて、レースウェイ深度を拡大することにより、羽口突出し長さLOTが65mm(実炉換算値585mm)の場合と同じ降下幅を確保した場合(図5中×印、参照)、図6に示すように、炉内圧力損失(ΔP)が大幅に上昇して(図中×印、参照)、ガス流れが変動し、装入物のスリップ、ドロップが多発した。 When tuyere protrusion length LOT is 45mm (actual furnace equivalent value 405mm), without changing tuyere protrusion length LOT , the tuyere diameter is reduced to increase tuyere wind speed, and the raceway depth is increased. by expanding, if the length L OT protruding tuyere securing the same drop width as that of 65 mm (actual furnace converted value 585 mm) (in FIG. 5 × marks, reference), as shown in FIG. 6, the furnace The pressure loss (ΔP) increased significantly (see x in the figure), the gas flow fluctuated, and the material slipped and dropped frequently.

即ち、羽口突出し長さLOTを従来値(約0.4m)以上に増大することにより、朝顔部において、炉内圧力損失(ΔP)を小さくして、装入物の降下領域を拡大することができる。 That is, by increasing the tuyere overhang length LOT to a value greater than the conventional value (about 0.4 m), the furnace pressure loss (ΔP) is reduced in the morning glory portion, and the charge descending region is expanded. be able to.

以上の実験結果から得られ、本発明の基礎をなす知見について、図3に基づいて説明する。   The knowledge that is obtained from the above experimental results and forms the basis of the present invention will be described with reference to FIG.

羽口突出し長さが通常の長さ(約0.4m)の場合(図中L)、レースウェイRが形成され、装入物の降下領域の降下幅はWである。この場合において、羽口風速を上昇させ、レースウェイ深度を拡大して、レースウェイR’を形成すると、炉芯立ち上がり起点が炉中心側へ移動するので、降下幅WはW0まで拡大するが、一方、レースウェイ内部でのコークスの粉化が増大し、炉下部における通気性が悪化する。 When the tuyere protruding length is a normal length (about 0.4 m) (L in the figure), the raceway R is formed, and the descending width of the charge descending region is W. In this case, if the tuyere wind speed is increased, the raceway depth is increased, and the raceway R ′ is formed, the furnace core rising start point moves to the furnace center side, so the descending width W increases to W 0. On the other hand, coke pulverization inside the raceway increases, and air permeability in the lower part of the furnace deteriorates.

そして、炉下部における通気性が悪化すると、レースウェイ形状が不安定となり、未溶融物がレースウェイ内へ流入して、炉下部において炉熱が大きく変動する。   When the air permeability in the lower part of the furnace deteriorates, the raceway shape becomes unstable, the unmelted material flows into the raceway, and the furnace heat greatly fluctuates in the lower part of the furnace.

これに対し、羽口突出し長さが通常の長さ(約0.4m)を超える場合(図中L0)においては、羽口突出し長さが通常の長さ(約0.4m)で、羽口風速を上昇させない場合に形成されるレースウェイRと同じ形状のレースウェイR0が形成され、炉芯立ち上がり起点が炉中心側へ移動するので、装入物の降下領域の降下幅はWからW0まで拡大し、炉床有効断面積EAHは向上する。 On the other hand, when the tuyere overhang length exceeds the normal length (about 0.4 m) (L 0 in the figure), the tuyere overhang length is the normal length (about 0.4 m), Since the raceway R 0 having the same shape as the raceway R formed when the tuyere wind speed is not increased is formed and the furnace core rising start point moves to the furnace center side, the fall width of the charge lowering region is W From W to W 0 , and the hearth effective area EAH is improved.

図7に、レースウェイ深度を1.2mに維持し、羽口突出し長さを増大した場合における炉床有効断面積EAHと高炉の内容積(m3)との関係を示す。また、図8に、炉床有効断面積EAHと羽口突出し長さLOT(m)との関係を示す。 FIG. 7 shows the relationship between the hearth effective sectional area EAH and the internal volume (m 3 ) of the blast furnace when the raceway depth is maintained at 1.2 m and the tuyere protruding length is increased. FIG. 8 shows the relationship between the hearth effective area EAH and the tuyere overhang length L OT (m).

図7及び図8から、羽口の突出し長さを、通常の長さ(約0.4m)を超える長さに設定することにより、炉床有効断面積EAHを0.50以上に維持できることが解る。   From FIGS. 7 and 8, it is possible to maintain the hearth effective sectional area EAH at 0.50 or more by setting the protruding length of the tuyere to a length exceeding the normal length (about 0.4 m). I understand.

この場合に、羽口風速を上昇させていないので、レースウェイ内部でのコークスの粉化は少なく、炉下部における通気性が良好に維持され、レースウェイの形状は安定に維持され、かつ、装入物の降下領域が拡大されているので、未溶融物がレースウェイ内へ流入せず、炉下部における炉熱が安定する。   In this case, since the tuyere wind speed is not increased, coke pulverization in the raceway is low, air permeability in the lower part of the furnace is maintained well, the raceway shape is maintained stably, and Since the descending area of the entry is enlarged, the unmelted material does not flow into the raceway, and the furnace heat in the lower part of the furnace is stabilized.

さらに、観察結果によれば、羽口直上に形成される停滞層の立ち上がり角度が小さくなるため、融着帯根部の脱落などが少なくなり、朝顔部での降下挙動が安定し、炉下部における炉熱の安定化に寄与する。   Furthermore, according to the observation results, since the rising angle of the stagnant layer formed just above the tuyere is small, the dropout of the root of the cohesive zone is reduced, the descent behavior at the morning glory is stable, and the furnace at the bottom of the furnace Contributes to heat stabilization.

本発明は、上記知見に基づいて、羽口突出し長さを、通常の長さ(約0.4m)を超える長さとすることを特徴とする。ただし、羽口の強度には限度があるので、羽口突出し長さは、羽口の強度上可能な範囲内の長さとする。   Based on the above findings, the present invention is characterized in that the tuyere protruding length is longer than the normal length (about 0.4 m). However, since there is a limit to the tuyere's strength, the tuyere protrusion length should be within the possible range for the tuyere's strength.

本発明においては、必ずしも、全部の羽口について、突出し長さを、通常の長さ(約0.4m)を超える長さとする必要はない。   In the present invention, it is not always necessary that the protruding length of all tuyere be longer than the normal length (about 0.4 m).

例えば、操業中、送風支管風量が平均値の90%未満の羽口の数が全羽口数の25%を超えた場合、炉熱変動が大きくなるので、設備点検及び修理のための定期的な高炉休風日に、これら羽口の突出し長さLOT(m)を、上記式で示す炉床有効断面積比率EAHが0.50以上の値になるように設定してもよい。この設定により、以後の操業において、炉熱変動を抑制することができる。 For example, during operation, if the number of tuyere whose blast branch airflow is less than 90% of the average value exceeds 25% of the total tuyere, the furnace heat fluctuation will increase, so periodic inspection for equipment inspection and repair On the blast furnace off-air day, the protruding length L OT (m) of these tuyere may be set so that the hearth effective cross-sectional area ratio EAH represented by the above formula becomes 0.50 or more. By this setting, the furnace heat fluctuation can be suppressed in the subsequent operation.

また、高炉操業中の炉熱変動は、(a)出銑量の出銑口間の差異、(b)溶銑温度の出銑口間の差異、又は、(c)溶銑中Si値の出銑口間の差異となって現れるので、これら操業指標を追跡して、羽口の突出し長さを変更するタイミングを見いだし、羽口の突出し長さを、所定のLOT(m)に変更してもよい。 In addition, the furnace heat fluctuation during blast furnace operation is either (a) the difference in the amount of iron output, (b) the difference between the hot metal temperature outlets, or (c) the output of the Si value in the hot metal. Since it appears as a difference between the mouths, follow these operation indexes, find the timing to change the protrusion length of the tuyere, and change the protrusion length of the tuyere to a predetermined L OT (m) Also good.

追跡指標として出銑量を用いる場合には、出銑口間の差異が500t以上となった時に、羽口の突出し長さLOT(m)を、上記式で示すEAHが0.50以上の値になるように設定することが好ましい。 When the amount of tapping is used as a tracking index, when the difference between tapping holes becomes 500 t or more, the protrusion length L OT (m) of the tuyere is set so that the EAH represented by the above formula is 0.50 or more. It is preferable to set it to be a value.

追跡指標として溶銑温度を用いる場合には、出銑口間の差異が50℃以上となった時に、羽口の突出し長さLOT(m)を、上記式で示すEAHが0.50以上の値になるように設定することが好ましい。 When the hot metal temperature is used as a tracking index, the protrusion length L OT (m) of the tuyere when the difference between the spouts becomes 50 ° C. or more, the EAH represented by the above formula is 0.50 or more. It is preferable to set it to be a value.

追跡指標として溶銑中Si値を用いる場合には、出銑口間の差異が0.50%以上となった時に、羽口の突出し長さLOT(m)を、上記式で示すEAHが0.50以上の値になるように設定することが好ましい。 When the Si value in hot metal is used as the tracking index, when the difference between the spouts becomes 0.50% or more, the protrusion length L OT (m) of the tuyere is 0 as the EAH shown by the above formula. It is preferable to set the value to be 50 or more.

また、高炉操業中の炉熱変動は、直接、(d)炉床側壁レンガ温度の上昇となって現れるので、該温度を追跡することにより、羽口の突出し長さを変更するタイミングを見いだし、羽口の突出し長さを変更する。   Also, the furnace heat fluctuation during blast furnace operation appears directly as (d) hearth side wall brick temperature rise, so by tracking the temperature, find the timing to change the tuyere protrusion length, Change the protruding length of the tuyere.

この場合、1箇所以上の炉床側壁レンガ温度が、炉床側壁レンガ温度の平均値の10%を超えて上昇した時に、温度上昇部位近傍の羽口の突出し長さLOT(m)を、0.4mを超え、羽口の強度上可能な範囲内の長さに設定し、レースウェイ位置を炉中心側へ移行させる。この設定・移行により、円周方向における炉熱変動を解消する。 In this case, when the temperature of one or more hearth side wall bricks exceeds 10% of the average value of the hearth side wall brick temperature, the tuyere protrusion length L OT (m) near the temperature rising portion is The length is set to a range that exceeds 0.4 m and is possible in the tuyere strength, and the raceway position is shifted to the furnace center side. This setting / transfer eliminates the furnace heat fluctuation in the circumferential direction.

当然のことながら、前記レースウェイ位置の移行に際しては、レースウェイ深度を大きくせずに、レースウェイ形状を維持することが好ましい。   As a matter of course, it is preferable to maintain the raceway shape without increasing the raceway depth when the raceway position is shifted.

また、温度上昇部位近傍の羽口の突出し長さLOT(m)を変更する場合、下記式で示す局部炉床有効断面積比率LEAHが0.50以上の値になるように設定することが、炉熱変動をより小さく抑制できる点で好ましい。
LEAH=EAH・θ/360
ここで、θは、突出し対象羽口を含む扇形断面の中心角(deg)である。
Further, when changing the tuyere protrusion length L OT (m) in the vicinity of the temperature rise portion, the local hearth effective cross-sectional area ratio LEAH represented by the following formula may be set to a value of 0.50 or more. This is preferable in that the furnace heat fluctuation can be further reduced.
LEAH = EAH · θ / 360
Here, θ is the central angle (deg) of the sector cross section that protrudes and includes the target tuyere.

このように、本発明においては、各種の操業指標の変化に基づいて、羽口の突き出し長さを、従来長さの約400mmを超える所定の長さに設定し直すことにより、炉下部における炉熱変動を極力抑制し、高炉の生産性を高めることができる。   As described above, in the present invention, based on changes in various operation indexes, the tuyere protruding length is reset to a predetermined length exceeding the conventional length of about 400 mm, so that Thermal fluctuation can be suppressed as much as possible, and the productivity of the blast furnace can be increased.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. It is not done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例1)
本発明を実際の高炉操業に適用した実施例について、以下に説明する。本発明を用いて5775m3の高炉にて、突出し長さの大きい長尺羽口の使用を開始した。具体的には、高炉の定期休風時に、数本の羽口について、従来の突き出し長さ535mmの羽口を突き出し長さ635mmの長尺羽口に取り替え、数ヶ月の期間で、全ての羽口を長尺羽口に取り替えた。
Example 1
Examples in which the present invention is applied to actual blast furnace operation will be described below. Using the present invention, the use of long tuyere with a large protruding length was started in a 5775 m 3 blast furnace. Specifically, during regular blast furnace breaks, for several tuyere, the conventional tuyere with a protruding length of 535 mm was replaced with a long tuyere with a protruding length of 635 mm. The mouth was replaced with a long tuyere.

長尺羽口への取り替え開始以降、炉下部の圧力損失、炉下部の還元負荷を示す指標であるソリューションロスカーボン量SLCが低下し始めた。長尺羽口への取り替え前後の主要な操業指標を、表1に示す。   Since the start of the replacement to the long tuyere, the solution loss carbon amount SLC, which is an index indicating the pressure loss at the lower part of the furnace and the reduction load at the lower part of the furnace, began to decrease. Table 1 shows the main operational indices before and after the replacement to the long tuyere.

全羽口を長尺羽口に取り替えることにより、炉下部の圧力損失、ソリューションロスカーボン量SLC、朝顔レンガ温度が低下し、還元指標であるηCO、ηH2が上昇した。 By replacing all tuyere with long tuyere, the pressure loss at the bottom of the furnace, the solution loss carbon amount SLC, the morning glory brick temperature decreased, and the reduction indices η CO and η H2 increased.

上記現象は、炉下部における降下領域の拡大による融着帯滞留時間の確保により、還元状態が改善され、かつ、降下挙動が安定化した結果であると推定される。   The above phenomenon is presumed to be a result of the reduction state being improved and the descent behavior stabilized by securing the cohesive zone residence time by expanding the descending region in the lower part of the furnace.

Figure 2007046145
Figure 2007046145

(実施例2)
次に、高炉の炉芯肥大に起因して発生する送風支管風量、出銑量、溶銑温度、溶銑品質、炉床側壁レンガ温度等の円周方向アンバランスを解消する対策として、本発明を実施した。
(Example 2)
Next, the present invention is implemented as a measure to eliminate circumferential imbalances such as the air volume of the blower branch pipe, the amount of molten iron, the hot metal temperature, the hot metal quality, the temperature of the hearth side wall bricks, etc. generated due to the enlargement of the core of the blast furnace did.

5775m3の高炉の操業において、送風支管風量が平均値の90%未満の羽口の数が全羽口数の25%超となった。そこで、高炉の休風日に、EAHが0.50以上の値になるように、長尺羽口に交換して羽口の突出し長さLOT(m)を設定した。その結果、休風以降の操業において、送風支管風量が平均値の90%未満の羽口が皆無になった。 In the operation of the 5775m 3 blast furnace, the number of tuyere whose blast branch air volume was less than 90% of the average value exceeded 25% of the total tuyere. Thus, the tuyere protrusion length L OT (m) was set by replacing the tuyere with a long tuyere so that the EAH value would be 0.50 or more on the blast furnace resting day. As a result, there was no tuyere in which the air flow from the branch branch was less than 90% of the average value in the operation after the resting wind.

5775m3の高炉の操業において、出銑量の出銑口間の差異が500t以上となった。そこで、高炉の休風日に、EAHが0.50以上の値になるように、長尺羽口に交換して羽口の突出し長さLOT(m)を設定した。その結果、休風以降の操業において、出銑量の出銑口間の差異が200t未満になった。 In the operation of the 5775m 3 blast furnace, the difference in the output amount between the outlets became 500t or more. Thus, the tuyere protrusion length L OT (m) was set by replacing the tuyere with a long tuyere so that the EAH value would be 0.50 or more on the blast furnace resting day. As a result, in the operation after the resting wind, the difference in the amount of output was less than 200 t.

5775m3の高炉の操業において、溶銑温度の出銑口間の差異が50℃以上となった。そこで、高炉の休風日に、EAHが0.50以上の値になるように、長尺羽口に交換して羽口の突出し長さLOT(m)を設定した。その結果、休風以降の操業において、溶銑温度の出銑口間の差異が20℃未満となった。 In the operation of the 5775 m 3 blast furnace, the difference between the hot metal outlets was 50 ° C. or more. Thus, the tuyere protrusion length L OT (m) was set by replacing the tuyere with a long tuyere so that the EAH value would be 0.50 or more on the blast furnace resting day. As a result, the difference between the hot metal outlets was less than 20 ° C. in the operation after resting.

5775m3の高炉の操業において、溶銑中Si値の出銑口間の差異が0.50%以上となった。そこで、高炉の休風日に、EAHが0.50以上の値になるように、長尺羽口に交換して羽口の突出し長さLOT(m)を設定した。その結果、休風以降の操業において、溶銑中Si値の出銑口間の差異が0.20%未満となった。 In the operation of the 5775 m 3 blast furnace, the difference between the outlets of the Si value in the hot metal became 0.50% or more. Thus, the tuyere protrusion length L OT (m) was set by replacing the tuyere with a long tuyere so that the EAH value would be 0.50 or more on the blast furnace resting day. As a result, the difference between the outlets of the Si value in the hot metal was less than 0.20% in the operation after the wind break.

5775m3の高炉の操業において、1箇所以上の炉床側壁レンガ温度が、炉床側壁レンガ温度の平均値の10%超に上昇した。そこで、高炉の休風日に、当該羽口を含む扇形のLEAHが0.50以上の値になるように、長尺羽口に交換して当該羽口の突出し長さLOT(m)を設定した。その結果、休風以降の操業において、急上昇した1箇所以上の炉床側壁レンガ温度の上昇幅は、炉床側壁レンガ温度の平均値の3%未満に低下した。 In the operation of the 5775m 3 blast furnace, the temperature of one or more hearth side wall bricks increased to more than 10% of the average value of the hearth side wall brick temperature. Therefore, replace the long tuyere with the protruding length L OT (m) of the tuyere so that the fan-shaped LEAH including the tuyere has a value of 0.50 or more on the resting day of the blast furnace. Set. As a result, in the operation after the resting wind, the increase in the temperature of one or more hearth side wall bricks that rapidly increased decreased to less than 3% of the average value of the hearth side wall brick temperature.

前述したように、本発明によれば、レースウェイ形状を大きくせずに、炉下部における装入物の降下領域を拡大し、炉熱変動を小さく抑制できるので、高炉の生産性を高めることができる。   As described above, according to the present invention, it is possible to increase the descending region of the charge in the lower part of the furnace without increasing the raceway shape, and to suppress the furnace heat fluctuation, thereby improving the productivity of the blast furnace. it can.

また、炉芯肥大に起因して発生する送風支管風量、出銑量、溶銑温度、溶銑品質、炉床側壁レンガ温度の円周方向アンバランスを解消して、炉熱変動を小さく抑制できるので、高炉の生産性を高めることができる。   In addition, it eliminates the circumferential imbalance of the blower branch airflow, hot metal temperature, hot metal temperature, hot metal quality, and hearth side wall brick temperature generated due to the furnace core enlargement, so that the furnace heat fluctuation can be suppressed small. The productivity of the blast furnace can be increased.

さらに、本発明によれば、炉内において、羽口直上に形成される停滞層の立ち上がり角度が小さくなるため、融着帯根部の脱落などが少なくなり、朝顔部での降下挙動が安定し、炉下部における炉熱が安定化する。したがって、本発明は、鉄鋼産業において利用可能性の高いものである。   Furthermore, according to the present invention, in the furnace, the rising angle of the stagnant layer formed immediately above the tuyere is reduced, so that the dropout of the root of the cohesive zone is reduced, the descent behavior in the morning glory is stable, The furnace heat at the bottom of the furnace is stabilized. Therefore, the present invention has high applicability in the steel industry.

従来のレースウェイの形状と深度の変化を示す図である。It is a figure which shows the change of the shape and depth of the conventional raceway. レースウェイ深度を大きくした時の炉床有効」断面積比率EAH(従来値[0.4m]で計算)と高炉内容積の関係を示す図である。It is a figure which shows the relationship between the hearth effective area cross-sectional area ratio EAH (calculated with the conventional value [0.4m]) and blast furnace volume when raceway depth is enlarged. 本発明によるレースウェイの位置、形状及び深度を、従来との対比で示す図である。It is a figure which shows the position, shape, and depth of the raceway by this invention by contrast with the past. 二次元温間模型実験の結果(タイムラインと炉下部温度分布に及ぼす羽口突出し長さの影響)を示す図である。(1)は、羽口突出長さ25mm(実炉換算値225mm)の場合を示し、(2)は、羽口突出長さ45mm(実炉換算値405mm[従来値])の場合を示し、(3)は、羽口突出長さ65mm(実炉換算値585mm)の場合を示す。It is a figure which shows the result of a two-dimensional warm model experiment (effect of tuyere overhang length on timeline and furnace lower part temperature distribution). (1) shows the case of tuyere protrusion length 25 mm (actual furnace conversion value 225 mm), (2) shows the case of tuyere protrusion length 45 mm (actual furnace conversion value 405 mm [conventional value]), (3) shows a case where the tuyere protrusion length is 65 mm (actual furnace conversion value 585 mm). 二次元温間模型実験の結果(朝顔下端における「降下幅/炉床径」に及ぼす羽口突出し長さの影響)を示す図である。It is a figure which shows the result of the two-dimensional warm model experiment (effect of tuyere overhang length on "falling width / hearth diameter" at the morning glory lower end). 二次元温間模型実験の結果(炉内圧力損失に及ぼす羽口突出し長さの影響)を示す図である。It is a figure which shows the result (effect of a tuyere protrusion length on the pressure loss in a furnace) of a two-dimensional warm model experiment. レースウェイ深度を1.2mに維持し、羽口突出し長さを増大した場合における炉床有効断面積EAHと高炉の内容積(m3)との関係を示す図である。It is a figure which shows the relationship between the hearth effective cross-sectional area EAH and the internal volume (m < 3 >) of a blast furnace in case a raceway depth is maintained at 1.2 m and tuyere protruding length is increased. 炉床有効断面積EAHと羽口突出し長さLOT(m)との関係を示す図である。Hearth projecting effective area EAH and tuyeres is a diagram showing the relationship between the length L OT (m).

符号の説明Explanation of symbols

L 通常の羽口
0 本発明の羽口
R、R’ レースウェイ
Ro 本発明によるレースウェイ
L normal tuyere L 0 tuyere of the present invention R, R 'raceway Ro raceway according to the present invention

Claims (10)

高炉操業方法において、羽口の突出し長さLOT(m)を、0.4mを超え、羽口の強度上可能な範囲内の長さに設定し、レースウェイ位置を炉中心側へ移行させることを特徴とする炉熱変動の小さい高炉操業方法。 In the blast furnace operation method, the tuyere protrusion length L OT (m) is set to a length exceeding 0.4 m and within the range possible for the tuyere strength, and the raceway position is shifted to the furnace center side. A method of operating a blast furnace with a small fluctuation in furnace heat. 前記レースウェイ位置の移行に際し、レースウェイ深度を大きくせずに、レースウェイ形状を維持することを特徴とする請求項1に記載の炉熱変動の小さい高炉操業方法。   2. The blast furnace operating method according to claim 1, wherein the raceway shape is maintained without increasing the raceway depth when the raceway position is shifted. 前記突出し長さLOT(m)を、下記式で示す炉床有効断面積比率EAHが0.50以上0.95以下の値になるよう設定することを特徴とする請求項1又は2に記載の炉熱変動の小さい高炉操業方法。
EAH=[π・(HD/2)2−π・{HD/2−(DR+LOT)}2]/π・(HD/2)2
ここで、HD:炉床径(m)、DR:レースウェイ深度(m)
The protrusion length L OT (m) is set so that the hearth effective sectional area ratio EAH represented by the following formula becomes a value of 0.50 or more and 0.95 or less. Blast furnace operation method with small furnace heat fluctuation.
EAH = [π · (H D / 2) 2 −π · {H D / 2− (D R + L OT )} 2 ] / π · (H D / 2) 2
Where H D : hearth diameter (m), D R : raceway depth (m)
送風支管風量が平均値の90%未満の羽口の数が全羽口数の25%を超えた場合、前記突出し長さLOT(m)を、下記式で示す炉床有効断面積比率EAHが0.50以上の値になるように設定することを特徴とする請求項1又は2に記載の炉熱変動の小さい高炉操業方法。
EAH=[π・(HD/2)2−π・{HD/2−(DR+LOT)}2]/π・(HD/2)2
ここで、HD:炉床径(m)、DR:レースウェイ深度(m)
When the number of tuyere whose blast branch airflow is less than 90% of the average value exceeds 25% of the total tuyere, the protruding length L OT (m) is expressed by the hearth effective area ratio EAH represented by the following formula: The blast furnace operating method with small fluctuation in furnace heat according to claim 1 or 2, characterized in that the value is set to 0.50 or more.
EAH = [π · (H D / 2) 2 −π · {H D / 2− (D R + L OT )} 2 ] / π · (H D / 2) 2
Where H D : hearth diameter (m), D R : raceway depth (m)
出銑量の出銑口間の差異が500t以上となった場合、前記突出し長さLOT(m)を、下記式で示すEAHが0.50以上の値になるように設定することを特徴とする請求項1又は2に記載の炉熱変動の小さい高炉操業方法。
EAH=[π・(HD/2)2−π・{HD/2−(DR+LOT)}2]/π・(HD/2)2
ここで、HD:炉床径(m)、DR:レースウェイ深度(m)
When the difference between the spouts of the spout amount is 500 t or more, the protruding length L OT (m) is set so that EAH represented by the following formula is a value of 0.50 or more. The blast furnace operating method with small furnace heat fluctuations according to claim 1 or 2.
EAH = [π · (H D / 2) 2 −π · {H D / 2− (D R + L OT )} 2 ] / π · (H D / 2) 2
Where H D : hearth diameter (m), D R : raceway depth (m)
溶銑温度の出銑口間の差異が50℃以上となった場合、前記突出し長さLOT(m)を、下記式で示すEAHが0.50以上の値になるように設定することを特徴とする請求項1又は2に記載の炉熱変動の小さい高炉操業方法。
EAH=[π・(HD/2)2−π・{HD/2−(DR+LOT)}2]/π・(HD/2)2
ここで、HD:炉床径(m)、DR:レースウェイ深度(m)
When the difference between the hot metal outlets is 50 ° C. or more, the protruding length L OT (m) is set so that the EAH represented by the following formula is 0.50 or more. The blast furnace operating method with small furnace heat fluctuations according to claim 1 or 2.
EAH = [π · (H D / 2) 2 −π · {H D / 2− (D R + L OT )} 2 ] / π · (H D / 2) 2
Where H D : hearth diameter (m), D R : raceway depth (m)
溶銑中Si値の出銑口間の差異が0.50%以上となった場合、前記突出し長さLOT(m)を、下記式で示すEAHが0.50以上の値になるように設定することを特徴とする請求項1又は2に記載の炉熱変動の小さい高炉操業方法。
EAH=[π・(HD/2)2−π・{HD/2−(DR+LOT)}2]/π・(HD/2)2
ここで、HD:炉床径(m)、DR:レースウェイ深度(m)
When the difference between the outlets of the Si value in the hot metal is 0.50% or more, the protruding length L OT (m) is set so that the EAH represented by the following formula is 0.50 or more. The method of operating a blast furnace according to claim 1 or 2, wherein the furnace heat fluctuation is small.
EAH = [π · (H D / 2) 2 −π · {H D / 2− (D R + L OT )} 2 ] / π · (H D / 2) 2
Where H D : hearth diameter (m), D R : raceway depth (m)
1箇所以上の炉床側壁レンガ温度が、炉床側壁レンガ温度の平均値の10%を超えて上昇した場合、該温度上昇部位近傍の羽口の突出し長さLOT(m)を、0.4mを超え、羽口の強度上可能な範囲内の長さに設定し、レースウェイ位置を炉中心側へ移行させることを特徴とする炉熱変動の小さい高炉操業方法。 When the temperature of one or more hearth side wall bricks exceeds 10% of the average value of the hearth side wall brick temperature, the tuyere overhang length L OT (m) in the vicinity of the temperature rise portion is set to 0. A blast furnace operating method with small fluctuations in furnace heat, characterized in that it is set to a length exceeding 4 m and within the possible range of tuyere strength, and the raceway position is shifted to the furnace center side. 前記レースウェイ位置の移行に際し、レースウェイ深度を大きくせずに、レースウェイ形状を維持することを特徴とする請求項8に記載の炉熱変動の小さい高炉操業方法。   The method of operating a blast furnace according to claim 8, wherein the raceway shape is maintained without increasing the raceway depth when the raceway position is shifted. 前記突出し長さLOT(m)を、下記式で示す局部炉床有効断面積比率LEAHが0.50以上の値になるように設定することを特徴とする請求項8又は9に記載の炉熱変動の小さい高炉操業方法。
LEAH=[π・(HD/2)2−π・{HD/2−(DR+LOT)}2]/π・(HD/2)2・θ/360
ここで、HD:炉床径(m)、DR:レースウェイ深度(m)、θ:突出し対象羽口を含む扇形断面の中心角(deg)
The furnace according to claim 8 or 9, wherein the protruding length L OT (m) is set so that a local hearth effective cross-sectional area ratio LEAH represented by the following formula becomes a value of 0.50 or more. Blast furnace operation method with small heat fluctuation.
LEAH = [π · (H D / 2) 2 −π · {H D / 2− (D R + L OT )} 2 ] / π · (H D / 2) 2 · θ / 360
Here, H D : hearth diameter (m), D R : raceway depth (m), θ: central angle of fan-shaped cross section including protruding tuyere (deg)
JP2005325085A 2005-07-14 2005-11-09 Blast furnace operation method with small furnace heat fluctuation Active JP4739920B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005325085A JP4739920B2 (en) 2005-07-14 2005-11-09 Blast furnace operation method with small furnace heat fluctuation

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005205816 2005-07-14
JP2005205816 2005-07-14
JP2005325085A JP4739920B2 (en) 2005-07-14 2005-11-09 Blast furnace operation method with small furnace heat fluctuation

Publications (2)

Publication Number Publication Date
JP2007046145A true JP2007046145A (en) 2007-02-22
JP4739920B2 JP4739920B2 (en) 2011-08-03

Family

ID=37849217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005325085A Active JP4739920B2 (en) 2005-07-14 2005-11-09 Blast furnace operation method with small furnace heat fluctuation

Country Status (1)

Country Link
JP (1) JP4739920B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112111617A (en) * 2020-09-03 2020-12-22 中冶赛迪工程技术股份有限公司 Method for quantitatively evaluating activity index of blast furnace hearth
WO2022264561A1 (en) 2021-06-18 2022-12-22 Jfeスチール株式会社 Oxygen blast furnace and oxygen blast furnace operation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133649A (en) * 1983-01-20 1984-08-01 Nec Corp Data flow computer
JPH05302107A (en) * 1992-04-27 1993-11-16 Nkk Corp Method for activating furnace core in blast furnace
JPH11217611A (en) * 1998-01-30 1999-08-10 Kobe Steel Ltd Tuyere for blast furnace

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59133649A (en) * 1983-01-20 1984-08-01 Nec Corp Data flow computer
JPH05302107A (en) * 1992-04-27 1993-11-16 Nkk Corp Method for activating furnace core in blast furnace
JPH11217611A (en) * 1998-01-30 1999-08-10 Kobe Steel Ltd Tuyere for blast furnace

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112111617A (en) * 2020-09-03 2020-12-22 中冶赛迪工程技术股份有限公司 Method for quantitatively evaluating activity index of blast furnace hearth
CN112111617B (en) * 2020-09-03 2022-03-11 中冶赛迪工程技术股份有限公司 Method for quantitatively evaluating activity index of blast furnace hearth
WO2022264561A1 (en) 2021-06-18 2022-12-22 Jfeスチール株式会社 Oxygen blast furnace and oxygen blast furnace operation method
JP7276612B1 (en) * 2021-06-18 2023-05-18 Jfeスチール株式会社 Oxygen blast furnace and method of operating oxygen blast furnace
TWI812069B (en) * 2021-06-18 2023-08-11 日商杰富意鋼鐵股份有限公司 Oxygen blast furnace and operation method of oxygen blast furnace
KR20230169328A (en) 2021-06-18 2023-12-15 제이에프이 스틸 가부시키가이샤 Oxygen blast furnace and oxygen blast furnace operation method

Also Published As

Publication number Publication date
JP4739920B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
JP4697340B2 (en) Blast furnace operation method
JP4739920B2 (en) Blast furnace operation method with small furnace heat fluctuation
JP5862519B2 (en) Blast furnace operation method
JP4743332B2 (en) Blast furnace operation method
JP5381899B2 (en) Blast furnace operation method
JP4765722B2 (en) Blast furnace start-up operation method
JP4747662B2 (en) Lance for blowing gas reducing material, blast furnace and blast furnace operating method
JP5560726B2 (en) Blast furnace blow-off operation method
JP4894949B2 (en) Blast furnace operation method
JP2006283065A (en) Gas-blowing tuyere
JP5064086B2 (en) Blast furnace operation method
JP5724654B2 (en) Apparatus and method for injecting reducing material into blast furnace
JP2004263258A (en) Method for operating blast furnace
JP5549056B2 (en) Blast furnace operation method
JP6885238B2 (en) How to operate the blast furnace
JPH1129804A (en) Method for injecting pulverized fine coal in blast furnace
JP2011214022A (en) Method for operating blast furnace
JP2921392B2 (en) Blast furnace operation method
JP2853281B2 (en) Pig iron production method
JP5381356B2 (en) Reduced blast furnace operation
JP2022152721A (en) Operation method of blast furnace
JP2013001934A (en) Device and method for blowing reducing material into blast furnace
JP5724659B2 (en) Apparatus and method for injecting reducing material into blast furnace
JP2020200494A (en) Operation method of oxygen blast furnace
JP2007100161A (en) Method for operating blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

R151 Written notification of patent or utility model registration

Ref document number: 4739920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350