JP2019182795A - Floating layer reaction device, and manufacturing method of acrylonitrile - Google Patents

Floating layer reaction device, and manufacturing method of acrylonitrile Download PDF

Info

Publication number
JP2019182795A
JP2019182795A JP2018076676A JP2018076676A JP2019182795A JP 2019182795 A JP2019182795 A JP 2019182795A JP 2018076676 A JP2018076676 A JP 2018076676A JP 2018076676 A JP2018076676 A JP 2018076676A JP 2019182795 A JP2019182795 A JP 2019182795A
Authority
JP
Japan
Prior art keywords
fluidized bed
bed reactor
oxygen
gas
source gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018076676A
Other languages
Japanese (ja)
Other versions
JP7094760B2 (en
Inventor
和彦 佐野
Kazuhiko Sano
和彦 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2018076676A priority Critical patent/JP7094760B2/en
Priority to CN201821111768.6U priority patent/CN208679101U/en
Publication of JP2019182795A publication Critical patent/JP2019182795A/en
Application granted granted Critical
Publication of JP7094760B2 publication Critical patent/JP7094760B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

To provide a floating layer reaction device and a manufacturing method of acrylonitrile, capable of alleviating thermal effects of abnormal heat generation at a lower part of a floating layer reactor for manufacturing acrylonitrile on the floating layer reaction device, and as a result, capable of manufacturing acrylonitrile stably and safely.SOLUTION: There is provided a floating layer reaction device having a floating layer reactor containing a catalyst layer, and a raw material gas supplier for supplying a raw material gas into the floating layer reactor, and used for manufacturing acrylonitrile, and further having a heat insulation material arranged in vicinity of the floating layer reactor.SELECTED DRAWING: Figure 1

Description

本発明は、流動層反応装置及びアクリロニトリルの製造方法に関する。   The present invention relates to a fluidized bed reactor and a method for producing acrylonitrile.

流動層技術は19世紀後半に開発されて以来、各種の製造技術に応用がなされている。流動層の主たる工業的応用としては、石炭ガス化炉、FCCプラント、プロピレンのアンモ酸化によるアクリロニトリル製造プラント、ポリエチレン気相重合プラント、無水マレイン酸製造プラント等が挙げられる。流動層反応器は、反応熱の除去又は付加が容易であるため、層内を均一温度に維持できること、生産性が高いこと等の特徴を有している。このため、流動層反応器は、今後も各方面での応用、改良が期待されている。   Since the fluidized bed technology was developed in the latter half of the 19th century, it has been applied to various manufacturing technologies. Main industrial applications of fluidized beds include coal gasification furnaces, FCC plants, acrylonitrile production plants by propylene ammoxidation, polyethylene gas phase polymerization plants, maleic anhydride production plants, and the like. The fluidized bed reactor is characterized in that the reaction heat can be easily removed or added, so that the inside of the bed can be maintained at a uniform temperature, and the productivity is high. For this reason, fluidized bed reactors are expected to be applied and improved in various fields.

一般的な流動層反応装置の内部構造については、例えば、非特許文献1に記載されている。このような通常の流動層反応装置の概略図を図3に示す。図3に示す流動層反応装置では、流動層反応器1の酸素含有ガス導入管2から酸素含有ガスを導入し、導入した酸素含有ガスを酸素含有ガス分散板3の吹出し孔を通して触媒層6に導入する。一方、原料導入管4より原料ガスを導入し、導入した原料ガスを原料分散管5の吹出し管を通して触媒層6に導入する。これにより、触媒層6にて、酸素含有ガスと原料とで触媒を流動させる。   The internal structure of a general fluidized bed reactor is described in Non-Patent Document 1, for example. A schematic diagram of such a normal fluidized bed reactor is shown in FIG. In the fluidized bed reactor shown in FIG. 3, an oxygen-containing gas is introduced from the oxygen-containing gas introduction pipe 2 of the fluidized bed reactor 1, and the introduced oxygen-containing gas passes through the blowout holes of the oxygen-containing gas dispersion plate 3 to the catalyst layer 6. Introduce. On the other hand, the raw material gas is introduced from the raw material introduction pipe 4, and the introduced raw material gas is introduced into the catalyst layer 6 through the outlet pipe of the raw material dispersion pipe 5. Thereby, the catalyst is caused to flow between the oxygen-containing gas and the raw material in the catalyst layer 6.

触媒層6を出る生成ガスに同伴するように触媒層6から触媒粒子の一部が飛び出す。その一部は、生成ガスに同伴するように流動層反応装置外に排出される。そこで、流動層反応器1では、触媒粒子の外部への排出を防止するためのサイクロン8a、8b、8cが流動層反応器1の上部に配設されている。生成ガスと、この生成ガスと同伴する触媒粒子は、サイクロン入口7からサイクロンに導入される。このようなサイクロンは、通常、触媒粒子の捕集効率を上げるために3段のサイクロンが直列につながれた形態で用いられる。なお、生成ガスがサイクロン内で流通する順序に対応して、3段のサイクロンをそれぞれ、「No.1サイクロン」、「No.2サイクロン」、「No.3サイクロン」という。図3の流動層反応装置は、3段のサイクロンを1系列有するが、流動層反応装置は、生成ガス量に応じて、3段のサイクロンを2系列以上有することもある。そして、生成ガスは、生成ガス流出管10を通して流動層反応器1外部へ排出され、触媒粒子は、ディプレッグ9a、9b、9cを通して、触媒層6に戻される。   Part of the catalyst particles jumps out of the catalyst layer 6 so as to accompany the product gas exiting the catalyst layer 6. A part of it is discharged out of the fluidized bed reactor so as to accompany the product gas. Therefore, in the fluidized bed reactor 1, cyclones 8 a, 8 b, 8 c for preventing the catalyst particles from being discharged to the outside are disposed on the upper part of the fluidized bed reactor 1. The product gas and the catalyst particles accompanying the product gas are introduced into the cyclone from the cyclone inlet 7. Such a cyclone is usually used in a form in which three stages of cyclones are connected in series in order to increase the collection efficiency of the catalyst particles. The three-stage cyclones are referred to as “No. 1 cyclone”, “No. 2 cyclone”, and “No. 3 cyclone”, respectively, in accordance with the order in which the product gas flows in the cyclone. The fluidized bed reactor of FIG. 3 has one series of three-stage cyclones, but the fluidized bed reactor may have two or more series of three-stage cyclones depending on the amount of product gas. The product gas is discharged to the outside of the fluidized bed reactor 1 through the product gas outflow pipe 10, and the catalyst particles are returned to the catalyst layer 6 through the diplegs 9a, 9b, 9c.

特許文献1には、エアー及びプロピレンのノズルピッチを90mm以上250mm以下、かつノズル密度を16個/m2以上120個/m2以下とするα,β−不飽和ニトリルの製造装置が記載されている。 Patent Document 1 describes an apparatus for producing an α, β-unsaturated nitrile having an air and propylene nozzle pitch of 90 mm to 250 mm and a nozzle density of 16 nozzles / m 2 to 120 nozzles / m 2. Yes.

特開平3−123767号公報JP-A-3-123767

橋本健治、工業反応装置、培風館、(1984)、170頁Kenji Hashimoto, Industrial Reaction Equipment, Baifukan, (1984), page 170

非特許文献1に記載の流動層反応装置に設置されている酸素含有ガス分散板は、酸素含有ガスの均一分散及び良好な触媒流動を達成する観点から使用される。アクリロニトリルを製造する流動層反応装置においても、同様な観点で酸素含有ガス分散板が設置されている。このようなアクリロニトリルを製造する流動層反応装置に関して、本発明者は、運転経過に伴い又は緊急停止後の運転再開時に流動層反応器下部に局所的な高温部が発現する場合があることを見出した。   The oxygen-containing gas dispersion plate installed in the fluidized bed reactor described in Non-Patent Document 1 is used from the viewpoint of achieving uniform dispersion of the oxygen-containing gas and good catalyst flow. Also in a fluidized bed reactor for producing acrylonitrile, an oxygen-containing gas dispersion plate is installed from the same viewpoint. Regarding such a fluidized bed reactor for producing acrylonitrile, the present inventor has found that a local high temperature part may develop at the bottom of the fluidized bed reactor as the operation progresses or when the operation is restarted after an emergency stop. It was.

特許文献1に記載の酸素含有ガス分散板及び原料ガス分散管の構造では、目的生成物の収率を高位に維持するため、良好なガス分散及び触媒流動を達成できるものの、局所的な高温部の発現が流動層反応装置へ及ぼす熱的影響に対応することはできない。   In the structure of the oxygen-containing gas dispersion plate and the raw material gas dispersion pipe described in Patent Document 1, in order to maintain the yield of the target product at a high level, good gas dispersion and catalyst flow can be achieved. It is not possible to cope with the thermal effect that the development of has on the fluidized bed reactor.

従って、本発明が解決しようとする課題は、アクリロニトリルを製造するための流動層反応器の下部における異常発熱が流動層反応装置に及ぼす熱的影響を緩和することが可能であり、その結果、安定かつ安全にアクリロニトリルを製造可能な流動層反応装置及びアクリロニトリルの製造方法を提供することである。   Therefore, the problem to be solved by the present invention is that it is possible to alleviate the thermal influence on the fluidized bed reactor due to abnormal heat generation in the lower part of the fluidized bed reactor for producing acrylonitrile. Another object of the present invention is to provide a fluidized bed reactor capable of producing acrylonitrile safely and a method for producing acrylonitrile.

本発明者は、従来の流動層反応器下部における異常発熱を生じさせる原因が、流動層反応器下部における触媒等の堆積及びガスの滞留にあると推定した。そして、本発明者は、さらに鋭意検討した結果、原料ガスを供給するための原料ガス供給器の近傍に断熱材を配設すると、上記課題を解決できることを見出し、本発明を完成するに至った。   The present inventor estimated that the cause of abnormal heat generation in the lower part of the conventional fluidized bed reactor is the accumulation of the catalyst and the like in the lower part of the fluidized bed reactor and the retention of gas. And as a result of further intensive studies, the present inventor found that the above problems can be solved by arranging a heat insulating material in the vicinity of the raw material gas supply device for supplying the raw material gas, and the present invention has been completed. .

即ち、本発明は以下のとおりである。
(1)
触媒層を含む流動層反応器と、前記流動層反応器内に原料ガスを供給する原料ガス供給器と、を備え、アクリロニトリルを製造するために用いられる流動層反応装置であって、
前記原料ガス供給器の近傍に配設された断熱材を更に備えている流動層反応装置。
(2)
前記流動層反応器が、前記触媒層の下方に配設され、前記原料ガス供給器により供給された原料ガスを前記触媒層内に分散させる原料ガス分散管と、前記原料ガス分散管と所定距離をおいて、前記原料ガス分散管の下方に配設され、前記流動層反応器内に供給された酸素含有ガスを前記触媒層内に分散させる酸素含有ガス分散板と、を備え、
前記断熱材の配設箇所が下記(A)及び/又は(B)を含む、(1)の流動層反応装置。
(A)前記酸素含有ガス分散板上
(B)前記酸素ガス含有ガス分散板から、前記原料ガス分散管から上方向に1m離れた高さ位置までの間の前記流動層反応器の内壁
(3)
前記酸素含有ガス分散板が、前記酸素含有ガスを前記触媒層内に均一に分散させるように、複数の孔を有し、
前記断熱材が、前記複数の孔を覆わないように配設された、(1)又は(2)の流動層反応装置。
(4)
前記断熱材が、前記流動層反応器の側壁の内壁面に配設された、(1)〜(3)のいずれかの流動層反応装置。
(5)
触媒層を含む流動層反応器に、プロピレン及び/又はプロパン、並びにアンモニアを含む原料ガスと、酸素含有ガスとを供給する工程(1)と、
前記原料ガスを前記触媒層に通過させてアクリロニトリルを得る工程(2)と、
を含み、
前記流動層反応器は、前記原料ガスを供給する部位の近傍に断熱材が配設されている、アクリロニトリルの製造方法。
(6)
前記断熱材を用いて、前記原料ガスを供給する部位の近傍の異常発熱による影響を緩和する工程(3)を更に含む、(5)のアクリロニトリルの製造方法。
That is, the present invention is as follows.
(1)
A fluidized bed reactor comprising a fluidized bed reactor including a catalyst layer and a source gas supplier for supplying a source gas into the fluidized bed reactor, and used for producing acrylonitrile,
A fluidized bed reaction apparatus further comprising a heat insulating material disposed in the vicinity of the raw material gas supplier.
(2)
The fluidized bed reactor is disposed below the catalyst layer, and a source gas dispersion pipe for dispersing the source gas supplied by the source gas supplier in the catalyst layer, and a predetermined distance from the source gas dispersion pipe And an oxygen-containing gas dispersion plate disposed below the source gas dispersion pipe and dispersing the oxygen-containing gas supplied into the fluidized bed reactor in the catalyst layer,
The fluidized bed reactor according to (1), wherein the location of the heat insulating material includes the following (A) and / or (B).
(A) On the oxygen-containing gas dispersion plate (B) The inner wall (3) of the fluidized bed reactor between the oxygen gas-containing gas dispersion plate and a height position 1 m away from the source gas dispersion pipe )
The oxygen-containing gas dispersion plate has a plurality of holes so that the oxygen-containing gas is uniformly dispersed in the catalyst layer;
The fluidized bed reactor according to (1) or (2), wherein the heat insulating material is disposed so as not to cover the plurality of holes.
(4)
The fluidized bed reactor according to any one of (1) to (3), wherein the heat insulating material is disposed on an inner wall surface of a side wall of the fluidized bed reactor.
(5)
Supplying a feed gas containing propylene and / or propane and ammonia and an oxygen-containing gas to a fluidized bed reactor containing a catalyst bed (1);
A step (2) of obtaining acrylonitrile by passing the source gas through the catalyst layer;
Including
The fluidized bed reactor is a method for producing acrylonitrile, in which a heat insulating material is disposed in the vicinity of a portion where the source gas is supplied.
(6)
The method for producing acrylonitrile according to (5), further comprising a step (3) of using the heat insulating material to alleviate the influence of abnormal heat generation in the vicinity of the portion where the source gas is supplied.

本発明によれば、アクリロニトリルを製造するための流動層反応器の下部における異常発熱による熱的影響を緩和可能であり、その結果、安定かつ安全にアクリロニトリルを製造可能な流動層反応装置及びアクリロニトリルの製造方法を提供可能である。   According to the present invention, it is possible to mitigate the thermal influence due to abnormal heat generation in the lower part of the fluidized bed reactor for producing acrylonitrile. As a result, the fluidized bed reactor capable of producing acrylonitrile stably and safely, and the acrylonitrile A manufacturing method can be provided.

図1は、本発明の流動層反応装置の一例を示す概略断面図である。FIG. 1 is a schematic sectional view showing an example of a fluidized bed reactor according to the present invention. 図2は、本発明の流動層反応装置の下部の拡大図である。FIG. 2 is an enlarged view of the lower part of the fluidized bed reactor of the present invention. 図3は、一般的な流動層反応装置の一例を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing an example of a general fluidized bed reactor. 図4は、一般的な流動層反応装置の下部の拡大図である。FIG. 4 is an enlarged view of a lower part of a general fluidized bed reactor.

以下、必要に応じて図面を参照しつつ、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で種々変形して実施することができる。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, a form for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail with reference to the drawings as necessary. The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. The present invention can be implemented with various modifications within the scope of the gist. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

本実施形態の流動層反応装置は、触媒層を含む流動層反応器と、流動層反応器内に原料ガスを供給する原料ガス供給器と、を備え、アクリロニトリルを製造するために用いられる流動層反応装置である。流動層反応装置は、原料ガス供給器の近傍(例えば、原料ガス供給器の流動層反応器内への排出口)に配設された断熱材を更に備えている。流動層反応装置が断熱材を備えることにより、流動層反応装置は、流動層反応器の下部における異常発熱による熱的影響を緩和可能であり、その結果、安定かつ安全にアクリロニトリルを製造できる。   The fluidized bed reactor according to the present embodiment includes a fluidized bed reactor including a catalyst bed, and a source gas supplier that supplies a source gas into the fluidized bed reactor, and is used for producing acrylonitrile. It is a reactor. The fluidized bed reaction apparatus further includes a heat insulating material disposed in the vicinity of the source gas supply device (for example, the outlet of the source gas supply device into the fluidized bed reactor). When the fluidized bed reactor is provided with a heat insulating material, the fluidized bed reactor can alleviate the thermal influence due to abnormal heat generation in the lower part of the fluidized bed reactor, and as a result, acrylonitrile can be produced stably and safely.

[流動層反応装置]
図1は、本実施形態の流動層反応装置の一例を示す概略断面図である。図1に示す流動層反応装置は、流動層反応器1と、流動層反応器1内に原料ガスを供給する原料ガス供給器4とを備える。図1に示す流動層反応器1は、気相反応の反応系と外部とを分画する気相反応装置の本体部分に相当する。流動層反応器1の形状としては、特に限定されず、公知の形状であってもよい。原料ガス供給器4としては、原料ガスを流動層反応器1内に原料ガスを供給可能であれば特に限定されない。原料ガス供給器4の形状としては、特に限定されず、例えば、管状の形態を有するものであってもよい。原料ガスとしては、アクリロニトリルを製造するために通常用いられる原料ガスが挙げられ、より詳細にはプロピレン及び/又はプロパン、並びにアンモニアが挙げられる。
[Fluidized bed reactor]
FIG. 1 is a schematic cross-sectional view showing an example of a fluidized bed reactor according to the present embodiment. The fluidized bed reaction apparatus shown in FIG. 1 includes a fluidized bed reactor 1 and a raw material gas supplier 4 that supplies a raw material gas into the fluidized bed reactor 1. A fluidized bed reactor 1 shown in FIG. 1 corresponds to a main part of a gas phase reactor that separates a reaction system of a gas phase reaction from the outside. The shape of the fluidized bed reactor 1 is not particularly limited, and may be a known shape. The source gas supply device 4 is not particularly limited as long as the source gas can be supplied into the fluidized bed reactor 1. The shape of the raw material gas supply device 4 is not particularly limited, and may be, for example, a tubular shape. Examples of the raw material gas include a raw material gas usually used for producing acrylonitrile, and more specifically, propylene and / or propane, and ammonia.

(流動層反応器1)
流動層反応器1は、例えば、その内部の下部に形成された触媒層6と、触媒層6の下方に配設され、原料ガス供給器4により供給された原料ガスを触媒層6内に分散させる原料ガス分散管5と、流動層反応器1の底部に配設され、流動層反応器1内部に酸素含有ガスを導入する酸素含有ガス導入管2と、原料ガス分散管5と所定距離をおいて、原料ガス分散管の下方に配設され、酸素ガス導入管2により流動層反応器1内に供給された酸素含有ガスを触媒層6内に分散させる酸素含有ガス分散板3と、流動層反応器1内の上方に配設された3段のサイクロン8a、8b、及び8cと、サイクロン8aの入り口に相当するサイクロン入口7と、各サイクロン8a、8b、及び8cと接続した3段のディプレッグ9a、9b、及び9cと、流動層反応器1の塔頂部に配設された生成ガス流出管10と、冷却コイル11と、空気(酸素含有ガス)分散板3と、原料ガス分散管5との間に施工により配設された断熱材12とを備えている。
(Fluidized bed reactor 1)
The fluidized bed reactor 1 includes, for example, a catalyst layer 6 formed in the lower part of the inside thereof, and is disposed below the catalyst layer 6, and the source gas supplied by the source gas supplier 4 is dispersed in the catalyst layer 6. The raw material gas dispersion pipe 5, the oxygen-containing gas introduction pipe 2 that is disposed at the bottom of the fluidized bed reactor 1 and introduces the oxygen-containing gas into the fluidized bed reactor 1, and the raw material gas dispersion pipe 5 have a predetermined distance. The oxygen-containing gas dispersion plate 3 is disposed below the source gas dispersion pipe and disperses the oxygen-containing gas supplied into the fluidized bed reactor 1 through the oxygen gas introduction pipe 2 into the catalyst layer 6, and Three stages of cyclones 8a, 8b, and 8c disposed above the inside of the bed reactor 1, a cyclone inlet 7 corresponding to the inlet of the cyclone 8a, and three stages connected to each of the cyclones 8a, 8b, and 8c Diplegs 9a, 9b and 9c and fluidized bed Heat insulation provided by construction between the product gas outflow pipe 10, the cooling coil 11, the air (oxygen-containing gas) dispersion plate 3, and the raw material gas dispersion pipe 5 disposed at the top of the reactor 1. The material 12 is provided.

(触媒層6)
触媒層6は、流動層反応器1の内部の下部に形成されている。触媒層6には、反応の種類に応じた流動層触媒が充填されている。流動層触媒としては、特に限定されず、例えば、シリカ等に担持された金属酸化物触媒が挙げられる。反応が、プロピレン及び/又はプロパンのアンモ酸化反応である場合、流動層触媒としては、Mo−V−(Sb及び/又はTi)系、Mo−V−Fe系、及びMo−Bi−Fe系の酸化物が挙げられ、90質量%以上の触媒粒子の粒子径が10〜197μmであり、圧壊強度が10MPa以上であるものが好適に用いられる。
(Catalyst layer 6)
The catalyst layer 6 is formed in the lower part inside the fluidized bed reactor 1. The catalyst layer 6 is filled with a fluidized bed catalyst corresponding to the type of reaction. The fluidized bed catalyst is not particularly limited, and examples thereof include a metal oxide catalyst supported on silica or the like. When the reaction is an ammoxidation reaction of propylene and / or propane, the fluidized bed catalyst includes Mo-V- (Sb and / or Ti), Mo-V-Fe, and Mo-Bi-Fe. An oxide is mentioned, and those having a particle diameter of 90 to 90% by mass of 10 to 197 μm and a crushing strength of 10 MPa or more are preferably used.

(原料ガス分散管5)
原料ガス分散管5は、触媒層6の下方に配設され、原料ガス供給器4により供給された原料ガスを触媒層6内に分散させる。原料ガス分散管5としては、原料ガスを触媒層6内に分散可能であり、管状の形態を有するのであれば特に限定されない。
(Raw material gas dispersion pipe 5)
The raw material gas dispersion pipe 5 is disposed below the catalyst layer 6 and disperses the raw material gas supplied by the raw material gas supplier 4 in the catalyst layer 6. The source gas dispersion pipe 5 is not particularly limited as long as the source gas can be dispersed in the catalyst layer 6 and has a tubular form.

(酸素含有ガス導入管2)
酸素含有ガス導入管2は、流動層反応器1の底部に配設され、流動層反応器1内に酸素含有ガスを導入する。酸素含有ガス導入管2としては、酸素含有ガスを流動層反応器1内部に導入可能であり、管状の形態を有するのであれば特に限定されない。酸素含有ガスとしては、例えば、酸素及び空気が挙げられる。
(Oxygen-containing gas introduction pipe 2)
The oxygen-containing gas introduction pipe 2 is disposed at the bottom of the fluidized bed reactor 1 and introduces an oxygen-containing gas into the fluidized bed reactor 1. The oxygen-containing gas introduction pipe 2 is not particularly limited as long as the oxygen-containing gas can be introduced into the fluidized bed reactor 1 and has a tubular form. Examples of the oxygen-containing gas include oxygen and air.

(酸素含有ガス分散板3)
酸素含有ガス分散板3は、原料ガス分散管5と所定距離をおいて、原料ガス分散管5の下方に配設され、酸素ガス導入管2により流動層反応器1内に供給された酸素含有ガスを触媒層6内に分散させる。酸素含有ガス分散板3としては、酸素含有ガスを触媒層6内に分散可能であり、板状の形態を有するものであれば特に限定されない。酸素含有ガス分散板3の具体例を図2に示す。図2は、図1の酸素含有ガス分散板3及び原料ガス分散管5近傍一例を示す部分概略図である。図2に示す酸素含有ガス分散板3は、酸素含有ガスを触媒層内に均一に分散させるように、複数の孔を有している。図2に示す複数の孔は、所定間隔をおいて均等に配置されている。ただし、本実施形態において、複数の孔の配置形態はこれに限定されない。
(Oxygen-containing gas dispersion plate 3)
The oxygen-containing gas dispersion plate 3 is disposed below the source gas dispersion pipe 5 at a predetermined distance from the source gas dispersion pipe 5, and the oxygen-containing gas supplied into the fluidized bed reactor 1 by the oxygen gas introduction pipe 2. The gas is dispersed in the catalyst layer 6. The oxygen-containing gas dispersion plate 3 is not particularly limited as long as the oxygen-containing gas can be dispersed in the catalyst layer 6 and has a plate-like form. A specific example of the oxygen-containing gas dispersion plate 3 is shown in FIG. FIG. 2 is a partial schematic view showing an example of the vicinity of the oxygen-containing gas dispersion plate 3 and the raw material gas dispersion pipe 5 of FIG. The oxygen-containing gas dispersion plate 3 shown in FIG. 2 has a plurality of holes so that the oxygen-containing gas is uniformly dispersed in the catalyst layer. The plurality of holes shown in FIG. 2 are evenly arranged with a predetermined interval. However, in the present embodiment, the arrangement form of the plurality of holes is not limited to this.

(サイクロン8a〜8c)
サイクロン8a〜8cは、流動層反応器1内の上方に配設される。図1に示す流動層反応器1は、1系列のサイクロンを有するが、本実施形態の流動層反応器のサイクロンの系列数は、1であってもよく、複数であってもよい。
(Cyclone 8a-8c)
The cyclones 8 a to 8 c are disposed above the fluidized bed reactor 1. Although the fluidized bed reactor 1 shown in FIG. 1 has one series of cyclones, the number of cyclone series in the fluidized bed reactor of the present embodiment may be one or plural.

(ディプレッグ9a〜9c)
各ディプレッグ9a〜9cは、各サイクロン8a〜8cと接続している。図1に示す流動層反応器1は、1系列のディプレッグを有するが、本実施形態の流動層反応器のディプレッグの系列数は、1であってもよく、複数であってもよい。
(Dipleg 9a-9c)
Each dipleg 9a-9c is connected to each cyclone 8a-8c. The fluidized bed reactor 1 shown in FIG. 1 has one series of diplegs, but the number of dipleg series in the fluidized bed reactor of the present embodiment may be one or plural.

(生成ガス流出管10)
生成ガス流出管10は、流動層反応器1の塔頂部に配設されており、生成ガスを外部に流出する。生成ガス流出管10としては、生成ガスを外部に流出可能であり、管状の形態を有するものであれば特に限定されない。
(Production gas outflow pipe 10)
The product gas outflow pipe 10 is disposed at the top of the fluidized bed reactor 1 and flows out the product gas to the outside. The product gas outflow pipe 10 is not particularly limited as long as the product gas can flow out to the outside and has a tubular form.

(冷却コイル11)
冷却コイル11としては、コイル状の形態を有し、流動層反応器内の温度を制御可能であれば特に限定されない。この例では、冷却コイルは、複数の除熱管等からなる。気相反応が発熱反応である場合は、流動層反応器1内に設けられた冷却コイル11を用いて反応熱が除熱されて反応温度が制御される。反応温度は反応温度を計測するための反応温度計測用温度計で測定されるが、ケミカルプラントにおいて通常用いられるものでよく、特に形式等は限定されない。流動層反応装置は、反応温度計測用温度計を触媒層の温度分布を把握できる箇所に複数個設置することが好ましい。
(Cooling coil 11)
The cooling coil 11 is not particularly limited as long as it has a coiled form and can control the temperature in the fluidized bed reactor. In this example, the cooling coil includes a plurality of heat removal tubes and the like. When the gas phase reaction is an exothermic reaction, the reaction heat is removed using the cooling coil 11 provided in the fluidized bed reactor 1 to control the reaction temperature. The reaction temperature is measured by a reaction temperature measuring thermometer for measuring the reaction temperature, but it may be one usually used in a chemical plant, and the form is not particularly limited. In the fluidized bed reactor, it is preferable to install a plurality of reaction temperature measuring thermometers at locations where the temperature distribution of the catalyst bed can be grasped.

(断熱材12)
断熱材12は、酸素含有ガス分散板3と原料ガス分散管5との間に施工により配設されている。断熱材12は、図1及び図2に示すように、断面図において、複数の孔を覆わないように施工されている。流動層反応装置は、これにより、酸素ガス分散板3から原料ガス分散管5間で異常発熱があった場合、流動層反応装置に及ぼす熱的影響を緩和することができるとともに、酸素含有ガス及び原料ガスの触媒層6内への分散を阻害することがない。断熱材12は、図2に示すように、酸素含有ガス分散板3の上部に配設されてもよいし、図1に示すように酸素含有ガス分散板3上に配設され、かつ酸素含有ガス分散板3と原料ガス分散管5との間であって、流動層反応器1の内壁面に配設されてもよい。これにより、流動層反応器1の底面及び側壁における異常発熱時の熱的影響を緩和できる。なお、図2では、断熱材12を金属13で断熱材12表面をカバー(被覆)しているが、金属13は、流動層触媒による断熱材12の摩耗を防止する目的でカバーされているものであり、カバーは断熱材12に設置されることが好ましい。
(Insulation material 12)
The heat insulating material 12 is disposed between the oxygen-containing gas dispersion plate 3 and the source gas dispersion pipe 5 by construction. As shown in FIGS. 1 and 2, the heat insulating material 12 is constructed so as not to cover a plurality of holes in the cross-sectional views. Accordingly, the fluidized bed reactor can alleviate the thermal influence on the fluidized bed reactor when abnormal heat is generated between the oxygen gas dispersion plate 3 and the raw material gas dispersion pipe 5, and the oxygen-containing gas and Dispersion of the source gas into the catalyst layer 6 is not hindered. The heat insulating material 12 may be disposed on the oxygen-containing gas dispersion plate 3 as shown in FIG. 2, or on the oxygen-containing gas dispersion plate 3 as shown in FIG. The gas dispersion plate 3 and the raw material gas dispersion pipe 5 may be disposed on the inner wall surface of the fluidized bed reactor 1. Thereby, the thermal influence at the time of abnormal heat_generation | fever in the bottom face and side wall of the fluidized bed reactor 1 can be relieved. In FIG. 2, the surface of the heat insulating material 12 is covered (covered) with the metal 13. However, the metal 13 is covered for the purpose of preventing the heat insulating material 12 from being worn by the fluidized bed catalyst. The cover is preferably installed on the heat insulating material 12.

図1及び図2に示す断熱材12は、酸素含有ガス分散板3と、原料ガス分散管5との間に施工により配設されているが、本実施形態の流動層反応装置において、断熱材は、原料ガス供給器の近傍に配設されていれば特に限定されない。ここでいう「原料ガス供給器の近傍」とは、例えば、流動層反応器下部における異常発熱による熱的影響を適切に緩和できる箇所をいい、安定性及び安全性を向上させる観点から、(A)酸素含有ガス分散板上、及び/又は(B)酸素含有ガス分散板上から、原料ガス分散管から上方向に1m離れた高さ位置までの流動層反応器の内壁に施工により配設されていることが好ましい。同様の観点から、「原料ガス供給器の近傍」は、(A)酸素含有ガス分散板上、及び/又は(B)酸素含有ガス分散板上から、原料ガス分散管から上方向に0.5m離れた高さ位置までの流動層反応器の内壁に施工により配設されていることがより好ましく、(A)酸素含有ガス分散板上、及び/又は(B)酸素含有ガス分散板と原料ガス分散管との間の反応器壁に施工により配設されていることが更に好ましい。また、断熱材は、Mo片(モリブデン片)が堆積し、触媒流動を阻害する懸念のある金属面上に箇所に施工されることが特に好ましい。   The heat insulating material 12 shown in FIG. 1 and FIG. 2 is disposed by construction between the oxygen-containing gas dispersion plate 3 and the raw material gas dispersion pipe 5, but in the fluidized bed reactor of this embodiment, the heat insulating material Is not particularly limited as long as it is disposed in the vicinity of the raw material gas supplier. The term “in the vicinity of the raw material gas supplier” as used herein refers to, for example, a portion where the thermal influence due to abnormal heat generation in the lower part of the fluidized bed reactor can be appropriately mitigated, and from the viewpoint of improving stability and safety (A It is installed on the inner wall of the fluidized bed reactor on the oxygen-containing gas dispersion plate and / or (B) on the inner wall of the fluidized bed reactor up to a height of 1 m away from the source gas dispersion pipe. It is preferable. From the same point of view, “near the source gas supply device” is 0.5 m upward from the source gas dispersion pipe from (A) the oxygen-containing gas dispersion plate and / or (B) the oxygen-containing gas dispersion plate. More preferably, it is disposed by construction on the inner wall of the fluidized bed reactor up to a distant position, and (A) on the oxygen-containing gas dispersion plate and / or (B) the oxygen-containing gas dispersion plate and the raw material gas. More preferably, it is arranged by construction on the reactor wall between the dispersion pipe. In addition, it is particularly preferable that the heat insulating material is applied at a location on a metal surface on which Mo pieces (molybdenum pieces) are deposited and there is a concern that the catalyst flow may be hindered.

断熱材12としては、耐火性のあるセメント状のものが断熱性及び施工のし易さの観点から好ましい。耐火性キャスタブルがより好ましく、主要成分はアルミナ及び二酸化ケイ素で、最高使用温度は1500℃以上のものが好ましい。   As the heat insulating material 12, a fire-resistant cement-like thing is preferable from a viewpoint of heat insulation and the ease of construction. A fire-resistant castable is more preferable, the main components are alumina and silicon dioxide, and the maximum use temperature is preferably 1500 ° C. or higher.

[アクリロニトリルの製造方法]
本実施形態のアクリロニトリルの製造方法は、触媒層を含む流動層反応器に、プロピレン及び/又はプロパン、並びにアンモニアを含む原料ガスと、空気又は酸素とを供給する工程(1)と、原料ガスを触媒層に通過させてアクリロニトリルを得る工程(2)と、を含み、流動層反応器は、原料ガスを供給する部位の近傍に断熱材が施工により配設されている。
[Method for producing acrylonitrile]
The method for producing acrylonitrile of the present embodiment includes a step (1) of supplying a raw material gas containing propylene and / or propane and ammonia and air or oxygen to a fluidized bed reactor including a catalyst layer, and a raw material gas. And a step (2) of obtaining acrylonitrile by passing it through the catalyst layer, and in the fluidized bed reactor, a heat insulating material is disposed by construction in the vicinity of the portion for supplying the raw material gas.

以下、図1に示す流動層反応装置を用いた場合を例に挙げて、本実施形態のアクリロニトリル生成方法について説明する。   Hereinafter, the acrylonitrile production | generation method of this embodiment is demonstrated taking the case where the fluidized bed reaction apparatus shown in FIG. 1 is used as an example.

[工程(1)]
工程(1)は、触媒層を含む流動層反応器に、プロピレン及び/又はプロパン、アンモニアを含む原料ガスと、酸素含有ガスを供給する工程である。原料ガスは、例えば、原料ガス供給器4により流動層反応器1に供給される。酸素含有ガスは、例えば、酸素含有ガス導入管2により流動層反応器1に供給される。酸素含有ガスは、安全性の観点から、原料ガスとは配管内で予め混合せず、酸素含有ガス導入管2を通じ、流動層反応器1の下部に設けられた酸素含有ガス分散板3から反応器に導入される。
[Step (1)]
Step (1) is a step of supplying a raw material gas containing propylene and / or propane and ammonia and an oxygen-containing gas to a fluidized bed reactor containing a catalyst layer. The source gas is supplied to the fluidized bed reactor 1 by, for example, the source gas supply unit 4. The oxygen-containing gas is supplied to the fluidized bed reactor 1 through, for example, an oxygen-containing gas introduction pipe 2. From the viewpoint of safety, the oxygen-containing gas is not mixed with the raw material gas in advance in the pipe, but reacts from the oxygen-containing gas dispersion plate 3 provided at the lower portion of the fluidized bed reactor 1 through the oxygen-containing gas introduction pipe 2. Introduced into the vessel.

供給された原料ガスは、流動層反応器1の下側に接続された原料ガス供給器4及び原料ガス供給器4と接続した原料ガス分散管5を通じて、必要量の流動層触媒が充填されている流動層反応器内に供給される。酸素含有ガスは、流動層反応器1の底部(下側)に接続された酸素含有ガス導入管2及び酸素含有ガス分散板3を通じて、必要量の流動層触媒が充填されている流動層反応器内に導入される。反応原料及び反応生成物は、概して反応器内を下から上へと流通する。   The supplied raw material gas is filled with a necessary amount of the fluidized bed catalyst through the raw material gas supply device 4 connected to the lower side of the fluidized bed reactor 1 and the raw material gas dispersion pipe 5 connected to the raw material gas supply device 4. In the fluidized bed reactor. A fluidized bed reactor in which an oxygen-containing gas is filled with a required amount of a fluidized bed catalyst through an oxygen-containing gas introduction pipe 2 and an oxygen-containing gas dispersion plate 3 connected to the bottom (lower side) of the fluidized bed reactor 1. Introduced in. The reaction raw materials and reaction products generally flow through the reactor from bottom to top.

原料ガスが触媒層に導入されることで、流動層触媒は流動化する。尚、図1には流動触媒層6の界面が記載されている。該界面は、原料ガス未導入時は静止している。原料ガス導入後は、触媒層の空隙率の増加及び大小のあわだちによって界面の突出が起こるため、層高は均一ではなくなる。従って、界面の位置はあくまで近似的・平均的に図示されたものにすぎない。   The fluidized bed catalyst is fluidized by introducing the raw material gas into the catalyst layer. FIG. 1 shows the interface of the fluidized catalyst layer 6. The interface is stationary when the raw material gas is not introduced. After the introduction of the raw material gas, since the interface protrudes due to an increase in the porosity of the catalyst layer and large and small air bubbles, the layer height is not uniform. Therefore, the position of the interface is merely shown in an approximate and average manner.

[工程(2)]
工程(2)は、原料ガスを触媒層に通過させてアクリロニトリルを得る工程である。原料ガスは触媒層を通過しながら反応して、アクリロニトリル、アセトニトリル、シアン化水素等を含む生成ガスが得られる。
[Step (2)]
Step (2) is a step of obtaining acrylonitrile by passing the raw material gas through the catalyst layer. The raw material gas reacts while passing through the catalyst layer to obtain a product gas containing acrylonitrile, acetonitrile, hydrogen cyanide and the like.

[工程(3)]
本実施形態におけるアクリロニトリルの製造方法は、断熱材12を用いて、原料ガスを供給する部位の近傍(例えば、原料供給器の近傍)の異常発熱による影響(例えば、熱的損傷)を緩和(又は抑制)する工程(3)を更に含むことが好ましい。緩和工程(3)は、工程(2)の前に行ってもよく、工程(2)の後に行ってもよい。
[Process (3)]
The method for producing acrylonitrile in the present embodiment uses the heat insulating material 12 to mitigate the influence (for example, thermal damage) due to abnormal heat generation in the vicinity of the portion for supplying the raw material gas (for example, in the vicinity of the raw material supplier) (or It is preferable to further include a step (3) of (suppressing). The relaxation step (3) may be performed before the step (2) or after the step (2).

本実施形態におけるアクリロニトリルの製造方法は、生成ガスを触媒層から排出してサイクロンに導入したのち、生成ガスを流動層反応器から排出する工程(4)、及び/又は、生成ガスがサイクロンに導入される際に同伴される触媒を回収して前記触媒層へ戻す工程(5)を、さらに含んでいてもよい。   The method for producing acrylonitrile in the present embodiment includes a step (4) of discharging the product gas from the catalyst bed and introducing it into the cyclone, and then discharging the product gas from the fluidized bed reactor, and / or introducing the product gas into the cyclone. A step (5) of recovering the catalyst entrained during the process and returning it to the catalyst layer may be further included.

[工程(4)]
工程(4)は、生成ガスを触媒層から排出してサイクロンに導入したのち、前記生成ガスを流動層反応器1から排出する工程である。例えば、工程(2)で得られた生成ガスは触媒層から排出されてサイクロン入り口7からサイクロン8a、8b及び8cに導入されたのち、流動層反応器1から排出される。
[Step (4)]
Step (4) is a step of discharging the product gas from the fluidized bed reactor 1 after discharging the product gas from the catalyst layer and introducing it into the cyclone. For example, the product gas obtained in the step (2) is discharged from the catalyst layer, introduced into the cyclones 8a, 8b and 8c from the cyclone inlet 7, and then discharged from the fluidized bed reactor 1.

[工程(5)]
工程(5)は、生成ガスがサイクロンに導入される際に同伴される触媒を回収して前記触媒層へ戻す工程である。生成ガスが触媒層から排出される際に、生成ガスに触媒が同伴されるため、触媒が飛散される。生成ガスと同伴して飛散された触媒を捕集して生成ガスと分離するために、例えば、図1に示すような第1段サイクロン8a、第2段サイクロン8b及び第3段サイクロン8cを用いる。触媒を同伴している生成ガスは図1のサイクロン入り口7に流入され、第1段サイクロン8a、第2段サイクロン8b、第3段サイクロン8cの順に通過して、生成ガスと触媒は分離される。分離された触媒は、それぞれのサイクロンに取り付けられた第1段ディプレッグ9a、第2段ディプレッグ9b及び第3段ディプレッグ9c中に回収され、触媒層6へ戻される。
[Step (5)]
Step (5) is a step of recovering the catalyst entrained when the product gas is introduced into the cyclone and returning it to the catalyst layer. When the product gas is discharged from the catalyst layer, the catalyst is scattered because the catalyst is entrained in the product gas. For example, a first-stage cyclone 8a, a second-stage cyclone 8b, and a third-stage cyclone 8c as shown in FIG. 1 are used in order to collect and separate the catalyst scattered with the generated gas. . The product gas accompanying the catalyst flows into the cyclone inlet 7 of FIG. 1 and passes through the first-stage cyclone 8a, the second-stage cyclone 8b, and the third-stage cyclone 8c in this order, and the produced gas and the catalyst are separated. . The separated catalyst is recovered in the first stage dipleg 9a, the second stage dipleg 9b, and the third stage dipleg 9c attached to each cyclone and returned to the catalyst layer 6.

流動層反応器内において、空気(酸素)分散板3から原料分散管5の間の距離は、通常50〜450mmと比較的狭い上、同空間には原料ガスや空気(酸素)を流動層触媒内に噴出する多数のノズルが存在する。加えて、前記原料分散管のサポート、温度計、各種ノズル等も存在している。アクリロニトリル製造中、流動層反応器内の流動層触媒に含まれるモリブデン(Mo)は、その一部が流動層触媒から昇華して、反応ガス中に出る。昇華したMo化合物は、冷却コイル、反応器の器壁、ノズル、サイクロン等の低温部表面に、多くがMo酸化物として蒸着する。これらMo酸化物は、流動層触媒を巻き込んだりして前記表面で固体化する。発明者は、運転が経過するに従って、Mo酸化物の層は増加し、驚くべきことに厚さが5〜20mmに達することもあることを見出している。Mo酸化物層は、運転中の冷却コイルの切替によるヒートショック等や通常停止、緊急停止時の温度履歴等により剥がれ落ち、反応器下部に落ちる。落下によりMo酸化物は砕かれ、表面積が数平方cm〜数十平方cmの板状のMo片となる。前記Mo片の多くは、流動層触媒とともに流動し、細分化を繰り返して、サイズが数mm〜ミクロンオーダーの小片となる。一方、流動しない質量を持つ大型のMo片や反応器下部の外周部とか流動を阻害する機器、例えば温度計、ノズル、サポートの近傍等流動性が悪い場所に落下したMo片等は、前述のように細分化されず、Mo片が堆積する場合がある。この堆積したMo片は、良好な触媒流動を阻害するので、当該部位の触媒は不良触媒となったり、異常発熱を起こしやすかったりする。本発明者は、上述した課題を解決するために、原料ガスを供給する部位の近傍における異常発熱に対処する装置を備えることが有効であることを見出している。   In the fluidized bed reactor, the distance between the air (oxygen) dispersion plate 3 and the raw material dispersion pipe 5 is usually 50 to 450 mm, and the raw material gas or air (oxygen) is fed into the fluidized bed catalyst in the same space. There are a number of nozzles that erupt inside. In addition, there are a support for the raw material dispersion pipe, a thermometer, various nozzles, and the like. During the acrylonitrile production, molybdenum (Mo) contained in the fluidized bed catalyst in the fluidized bed reactor is partially sublimated from the fluidized bed catalyst and exits into the reaction gas. Most of the sublimated Mo compound is vapor-deposited as Mo oxide on the surfaces of low temperature parts such as cooling coils, reactor walls, nozzles, and cyclones. These Mo oxides solidify on the surface by entraining a fluidized bed catalyst. The inventor has found that as the operation proceeds, the Mo oxide layer increases and surprisingly the thickness can reach 5-20 mm. The Mo oxide layer is peeled off due to heat shock or the like due to switching of the cooling coil during operation, temperature history during normal stop, emergency stop, etc., and falls to the lower part of the reactor. The Mo oxide is crushed by dropping to form a plate-like Mo piece having a surface area of several square centimeters to several tens of square centimeters. Most of the Mo pieces flow together with the fluidized bed catalyst and are repeatedly subdivided into small pieces having a size of several mm to micron order. On the other hand, a large Mo piece having a mass that does not flow, an outer peripheral part of the lower part of the reactor, or a device that hinders the flow, such as a Mo piece that has dropped in a place with poor fluidity such as the vicinity of a thermometer, nozzle, support, etc. In some cases, Mo pieces are deposited without being subdivided. Since this deposited Mo piece inhibits good catalyst flow, the catalyst at the site becomes a defective catalyst or is likely to cause abnormal heat generation. In order to solve the above-described problems, the present inventor has found that it is effective to provide an apparatus that copes with abnormal heat generation in the vicinity of a portion that supplies a source gas.

次に、本実施形態を実施例及び比較例により更に詳細に説明する。ただし、本実施形態はその要旨を逸脱しない限り、下記の実施例に限定されるものではない。   Next, this embodiment will be described in more detail with reference to examples and comparative examples. However, the present embodiment is not limited to the following examples unless departing from the gist thereof.

なお、実施例で用いた流動層反応装置は、図1に示す流動層反応装置と同様である。計測器及び付属設備は通常使用されるものであり、通常の誤差範囲内のものであった。   The fluidized bed reactor used in the examples is the same as the fluidized bed reactor shown in FIG. The measuring instrument and attached equipment were normally used and were within the normal error range.

反応生成物の収率及び未反応率は、生成ガスをサンプリングし、ガスクロマトグラフィー(GC)で測定した分析データから下式により計算した。
(反応生成物の収率(%))=(生成物中の炭素質量(g))/(供給した反応原料である有機化合物中の炭素質量(g))×100
(未反応率(%))=(未反応の反応原料である有機化合物中の炭素質量(g))/(供給した反応原料である有機化合物中の炭素質量(g))×100
なお、GCの測定機器及び測定条件は以下のとおりとした。
ガスクロマトグラフィー:島津GC−14B
カラム:Porapack−QS(50〜80Mesh)
検出器:FID
キャリヤーガス:窒素
The yield and unreacted rate of the reaction product were calculated from the analytical data obtained by sampling the product gas and measured by gas chromatography (GC) according to the following equation.
(Yield (%) of reaction product) = (carbon mass in product (g)) / (carbon mass in organic compound (g) as reaction raw material supplied) × 100
(Unreacted rate (%)) = (Carbon mass (g) in organic compound as unreacted reaction raw material) / (Carbon mass (g) in organic compound as supplied reaction raw material) × 100
The GC measuring equipment and measurement conditions were as follows.
Gas chromatography: Shimadzu GC-14B
Column: Porapack-QS (50-80 Mesh)
Detector: FID
Carrier gas: Nitrogen

[実施例1]
反応の原料ガスであるプロピレン、アンモニア及び空気を図1に示す流動層反応器1に供給し、プロピレンのアンモ酸化反応を下記のとおりに行った。
[Example 1]
Propylene, ammonia, and air, which are raw material gases for the reaction, were supplied to the fluidized bed reactor 1 shown in FIG. 1, and an ammoxidation reaction of propylene was performed as follows.

流動層反応器1は、内径8m、長さ20mの縦型円筒型で、下から2mの位置に酸素含有ガス分散板3、その上に原料ガス分散管5を有するものであった。触媒層の温度を測定するための温度計が、酸素含有ガス分散板3から上方1.5〜4.5mの間に20点取り付けられていた。反応器上部温度を測定するための温度計が、サイクロン8a〜8c上部の空間に2点取り付けられていた。酸素含有ガス分散板3上には、図2に示すように断熱材12が設置されていた。断熱材12は、最高使用温度1800℃、主要化学成分としてAlが96%、SiOが0.5%、カサ比重2.7−2.8、熱伝導率は400℃で1.13kcal/mh℃、800℃で1.27kcal/mh℃である耐火キャスタブルを使用した。触媒には、粒径10〜100μm、平均粒径55μm、粒径24μm以下の含有率が1.4wt.%であるモリブデン−ビスマス−鉄系担持触媒を用い、静止層高2.7mとなるよう充填した。酸素含有ガス分散板3から空気を56000Nm3/h供給し、原料ガス供給器4からプロピレンを6200Nm3/h及びアンモニアを6600Nm3/h供給した。反応温度は440℃、反応器上部の圧力は0.70kg/cm2G、流動層反応器1の下部(原料ガス分散管5付近)の圧力は0.73kg/cm2Gであった。 The fluidized bed reactor 1 was a vertical cylindrical type having an inner diameter of 8 m and a length of 20 m, and had an oxygen-containing gas dispersion plate 3 at a position 2 m from the bottom and a raw material gas dispersion pipe 5 thereon. 20 thermometers for measuring the temperature of the catalyst layer were attached between 1.5 to 4.5 m above the oxygen-containing gas dispersion plate 3. Two thermometers for measuring the reactor upper temperature were attached to the space above the cyclones 8a to 8c. On the oxygen-containing gas dispersion plate 3, a heat insulating material 12 was installed as shown in FIG. The heat insulating material 12 has a maximum operating temperature of 1800 ° C., 96% of Al 2 O 3 as main chemical components, 0.5% of SiO 2 , a bulk specific gravity of 2.7-2.8, and a thermal conductivity of 400 ° C. A refractory castable of 13 kcal / mh ° C. and 1.27 kcal / mh ° C. at 800 ° C. was used. The catalyst has a particle size of 10 to 100 μm, an average particle size of 55 μm, a particle size of 24 wt. % Molybdenum-bismuth-iron-based supported catalyst and packed so as to have a stationary layer height of 2.7 m. The air from the oxygen-containing gas dispersing plate 3 and 56000Nm 3 / h feed, a 6200Nm 3 / h and ammonia propylene from raw material gas supply unit 4 was 6600Nm 3 / h feed. The reaction temperature was 440 ° C., the pressure at the top of the reactor was 0.70 kg / cm 2 G, and the pressure at the bottom of the fluidized bed reactor 1 (near the raw material gas dispersion pipe 5) was 0.73 kg / cm 2 G.

反応器運転開始し、安定後、反応成績を分析したところ、アクリロニトリルの収率は81.5%、プロピレンの未反応率は1.1%であった。開始から1年1ヶ月後間の運転期間中、アクリロニトリルの収率は、80.9〜81.7%、プロピレンの未反応率は、0.80〜1.3%で変動した。その後、生産調整のため、反応器を2週間停止した。2週間の停止期間、反応器内の触媒はそのまま保持していた。再開のため、原料ガス及び空気を反応器に導入した。安定後、及び反応成績を分析したところ、アクリロニトリルの収率は81.4%、プロピレンの未反応率は1.0%であった。再開翌日のアクリロニトリルの収率は79.9%、プロピレンの未反応率は2.3%であった。アクリロニトリル収率の低下及びプロピレンの未反応率が高いため、同日夕方、反応器を停止させた。反応器の内部点検を行ったところ、図2において左から1本目のノズルと同2本目のノズルの間に触媒の塊(約10cm四方)が発見された。近傍のノズルは溶損していたが、断熱材12及び酸素含有ガス分散板3は健全であった。前期触媒の塊をサンプリングして触媒性能を見たが、失活していた。その他の触媒は性能上の問題はなく、再使用が可能であった。   When the reactor was started and stabilized, the reaction results were analyzed. As a result, the yield of acrylonitrile was 81.5%, and the unreacted rate of propylene was 1.1%. During the operation period of one year and one month after the start, the yield of acrylonitrile varied between 80.9-81.7% and the unreacted ratio of propylene varied between 0.80-1.3%. Thereafter, the reactor was stopped for 2 weeks for production adjustment. The catalyst in the reactor was held as it was for a two week shutdown period. Source gas and air were introduced into the reactor for resumption. After stabilization and analysis of the reaction results, the yield of acrylonitrile was 81.4%, and the unreacted ratio of propylene was 1.0%. The yield of acrylonitrile on the next day after the restart was 79.9%, and the unreacted ratio of propylene was 2.3%. The reactor was stopped in the evening of the same day because of the decrease in acrylonitrile yield and the high unreacted propylene rate. When the inside of the reactor was inspected, a catalyst lump (about 10 cm square) was found between the first nozzle and the second nozzle from the left in FIG. The nearby nozzle was melted, but the heat insulating material 12 and the oxygen-containing gas dispersion plate 3 were sound. The catalyst performance was sampled by sampling the catalyst lump in the previous period, but was deactivated. The other catalysts had no performance problems and could be reused.

[実施例2]
実施例1と同様の装置を用いて、原料ガスのうちプロピレンをプロパンに変えて原料ガスを流動層反応器に供給し、プロパンのアンモ酸化反応を下記のとおりに行った。
[Example 2]
Using the same apparatus as in Example 1, propylene was changed to propane in the raw material gas, and the raw material gas was supplied to the fluidized bed reactor, and propane ammoxidation reaction was performed as follows.

触媒には、粒径10〜100μm、平均粒径55μm、粒子径24μm以下の含有率が1.3wt.%であるモリブデン−バナジウム系担持触媒を用い、静止層高2.2mとなるよう充填した。酸素ガス分散板3から空気を64500Nm3/h供給し、原料ガス分散管からプロパンを4300Nm3/h及びアンモニアを4300Nm3/h供給した。反応温度は440℃、流動層反応器1上部の圧力は0.75kg/cm2G、流動層反応器1下部(原料ガス分散管5付近)の圧力は0.77kg/cm2Gであった。 The catalyst has a content of 1.3 wt.% With a particle size of 10-100 μm, an average particle size of 55 μm, and a particle size of 24 μm or less. % Molybdenum-vanadium-based supported catalyst and packed so as to have a stationary layer height of 2.2 m. Oxygen air from gas distribution plate 3 and 64500Nm 3 / h feed, a 4300Nm 3 / h and ammonia propane from feed gas dispersion tube was 4300Nm 3 / h feed. The reaction temperature was 440 ° C., the pressure in the upper part of the fluidized bed reactor 1 was 0.75 kg / cm 2 G, and the pressure in the lower part of the fluidized bed reactor 1 (near the raw material gas dispersion pipe 5) was 0.77 kg / cm 2 G. .

反応器運転開始直後、反応成績を分析したところ、アクリロニトリルの収率は52.1%、プロパンの未反応率は10.8%であった。2年間の運転期間中、アクリロニトリルの収率は、51.7〜52.5%、プロパンの未反応率は、9.9〜11.3%で変動した。2年を経過後、定修を迎え、反応器を停止させた。流動層反応器1の内部点検を行ったところ、図2において一番左側のノズル近傍にMo片が堆積しており、断熱材12のカバーが溶損していた。触媒、酸素含有ガス分散板に異常はなかった。   When the reaction results were analyzed immediately after the start of the reactor operation, the yield of acrylonitrile was 52.1%, and the unreacted rate of propane was 10.8%. During the two-year operation period, the acrylonitrile yield varied from 51.7 to 52.5% and the unreacted propane rate varied from 9.9 to 11.3%. After 2 years, the reactor was shut down and the reactor was shut down. When the inside of the fluidized bed reactor 1 was inspected, Mo pieces were deposited near the leftmost nozzle in FIG. 2, and the cover of the heat insulating material 12 was melted. There was no abnormality in the catalyst and the oxygen-containing gas dispersion plate.

[比較例1]
断熱材12を施工しなかったこと以外は実施例1と同様の流動層反応装置で、実施例1と同様の触媒及び同流量のプロピレン、アンモニア及び空気で流動層反応装置を運転した。
[Comparative Example 1]
The fluidized bed reactor was operated with the same catalyst as in Example 1 and the same flow rate of propylene, ammonia and air as in Example 1 except that the heat insulating material 12 was not applied.

反応器運転開始直後、反応成績を分析したところ、アクリロニトリルの収率は81.5%、プロピレンの未反応率は1.1%であった。1年間の運転期間中、アクリロニトリルの収率は、79.9〜81.7%、プロピレンの未反応率は、0.75〜2.0%で変動した。反応開始から1年後、反応器を停止した。反応器の内部点検を実施したところ、外周付近に触媒の塊があり、前記触媒の塊付近に位置する原料ガス分散管ノズル3本及び酸素含有ガス分散板が溶損していた。酸素含有ガス分散板の補修のため、停止期間が通常より3週間伸びた。   When the reaction results were analyzed immediately after the start of the reactor operation, the yield of acrylonitrile was 81.5%, and the unreacted rate of propylene was 1.1%. During the one-year operation period, the yield of acrylonitrile varied from 79.9 to 81.7%, and the unreacted rate of propylene varied from 0.75 to 2.0%. One year after the start of the reaction, the reactor was stopped. When the inside inspection of the reactor was conducted, there was a catalyst lump near the outer periphery, and the three raw material gas dispersion pipe nozzles and the oxygen-containing gas dispersion plate located near the catalyst lump were melted. Due to the repair of the oxygen-containing gas dispersion plate, the outage period was extended by 3 weeks.

本発明は、流動層反応装置を用いて気相反応を実施する際に、有効に利用できる。   The present invention can be effectively used when performing a gas phase reaction using a fluidized bed reactor.

1 流動層反応器
2 酸素含有ガス導入管
3 酸素含有ガス分散板
4 原料ガス導入管
5 原料ガス分散管
6 触媒層
7 サイクロン入口
8c 第1段サイクロン
8b 第2段サイクロン
8a 第3段サイクロン
9c 第1段ディプレッグ
9b 第2段ディプレッグ
9a 第3段ディプレッグ
10 生成ガス流出管
11 冷却コイル
12 断熱材
13 金属
DESCRIPTION OF SYMBOLS 1 Fluidized bed reactor 2 Oxygen containing gas introduction pipe 3 Oxygen containing gas dispersion plate 4 Raw material gas introduction pipe 5 Raw material gas dispersion pipe 6 Catalyst layer 7 Cyclone inlet 8c First stage cyclone 8b Second stage cyclone 8a Third stage cyclone 9c First 1st stage prepreg 9b 2nd stage dipleg 9a 3rd stage dipleg 10 Product gas outflow pipe 11 Cooling coil 12 Heat insulating material 13 Metal

Claims (6)

触媒層を含む流動層反応器と、前記流動層反応器内に原料ガスを供給する原料ガス供給器と、を備え、アクリロニトリルを製造するために用いられる流動層反応装置であって、
前記原料ガス供給器の近傍に配設された断熱材を更に備えている流動層反応装置。
A fluidized bed reactor comprising a fluidized bed reactor including a catalyst layer and a source gas supplier for supplying a source gas into the fluidized bed reactor, and used for producing acrylonitrile,
A fluidized bed reaction apparatus further comprising a heat insulating material disposed in the vicinity of the raw material gas supplier.
前記流動層反応器が、前記触媒層の下方に配設され、前記原料ガス供給器により供給された原料ガスを前記触媒層内に分散させる原料ガス分散管と、前記原料ガス分散管と所定距離をおいて、前記原料ガス分散管の下方に配設され、前記流動層反応器内に供給された酸素含有ガスを前記触媒層内に分散させる酸素含有ガス分散板と、を備え、
前記断熱材の配設箇所が下記(A)及び/又は(B)を含む、請求項1記載の流動層反応装置。
(A)前記酸素含有ガス分散板上
(B)前記酸素ガス含有ガス分散板から、前記原料ガス分散管から上方向に1m離れた高さ位置までの間の前記流動層反応器の内壁
The fluidized bed reactor is disposed below the catalyst layer, and a source gas dispersion pipe for dispersing the source gas supplied by the source gas supplier in the catalyst layer, and a predetermined distance from the source gas dispersion pipe And an oxygen-containing gas dispersion plate disposed below the source gas dispersion pipe and dispersing the oxygen-containing gas supplied into the fluidized bed reactor in the catalyst layer,
The fluidized bed reactor according to claim 1, wherein the place where the heat insulating material is disposed includes the following (A) and / or (B).
(A) On the oxygen-containing gas dispersion plate (B) Inner wall of the fluidized bed reactor between the oxygen gas-containing gas dispersion plate and a height position 1 m away from the source gas dispersion pipe
前記酸素含有ガス分散板が、前記酸素含有ガスを前記触媒層内に均一に分散させるように、複数の孔を有し、
前記断熱材が、前記複数の孔を覆わないように配設された、請求項1又は2記載の流動層反応装置。
The oxygen-containing gas dispersion plate has a plurality of holes so that the oxygen-containing gas is uniformly dispersed in the catalyst layer;
The fluidized bed reactor according to claim 1 or 2, wherein the heat insulating material is disposed so as not to cover the plurality of holes.
前記断熱材が、前記流動層反応器の側壁の内壁面に配設された、請求項1〜3のいずれか1項に記載の流動層反応装置。   The fluidized bed reactor according to any one of claims 1 to 3, wherein the heat insulating material is disposed on an inner wall surface of a side wall of the fluidized bed reactor. 触媒層を含む流動層反応器に、プロピレン及び/又はプロパン、並びにアンモニアを含む原料ガスと、酸素含有ガスとを供給する工程(1)と、
前記原料ガスを前記触媒層に通過させてアクリロニトリルを得る工程(2)と、
を含み、
前記流動層反応器は、前記原料ガスを供給する部位の近傍に断熱材が配設されている、アクリロニトリルの製造方法。
Supplying a feed gas containing propylene and / or propane and ammonia and an oxygen-containing gas to a fluidized bed reactor containing a catalyst bed (1);
A step (2) of obtaining acrylonitrile by passing the source gas through the catalyst layer;
Including
The fluidized bed reactor is a method for producing acrylonitrile, in which a heat insulating material is disposed in the vicinity of a portion where the source gas is supplied.
前記断熱材を用いて、前記原料ガスを供給する部位の近傍の異常発熱による影響を緩和する工程(3)を更に含む、請求項5記載のアクリロニトリルの製造方法。   The manufacturing method of acrylonitrile of Claim 5 which further includes the process (3) of relieving the influence by the abnormal heat_generation | fever near the site | part which supplies the said source gas using the said heat insulating material.
JP2018076676A 2018-04-12 2018-04-12 Fluidized bed reactor and method for producing acrylonitrile Active JP7094760B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018076676A JP7094760B2 (en) 2018-04-12 2018-04-12 Fluidized bed reactor and method for producing acrylonitrile
CN201821111768.6U CN208679101U (en) 2018-04-12 2018-07-13 Fluidized bed reaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018076676A JP7094760B2 (en) 2018-04-12 2018-04-12 Fluidized bed reactor and method for producing acrylonitrile

Publications (2)

Publication Number Publication Date
JP2019182795A true JP2019182795A (en) 2019-10-24
JP7094760B2 JP7094760B2 (en) 2022-07-04

Family

ID=65881074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018076676A Active JP7094760B2 (en) 2018-04-12 2018-04-12 Fluidized bed reactor and method for producing acrylonitrile

Country Status (2)

Country Link
JP (1) JP7094760B2 (en)
CN (1) CN208679101U (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140697U (en) * 1981-02-28 1982-09-03
JPH06211768A (en) * 1992-10-14 1994-08-02 Standard Oil Co:The Prevention of nitrogenation during production of acrylonitrile
JP2003504180A (en) * 1999-07-13 2003-02-04 ザ・スタンダード・オイル・カンパニー Sparger for introducing oxygen into a fluidized bed reactor
WO2012035881A1 (en) * 2010-09-14 2012-03-22 旭化成ケミカルズ株式会社 Gaseous phase exothermic reaction method and gaseous phase exothermic reaction device
JP2015139736A (en) * 2014-01-28 2015-08-03 三菱レイヨン株式会社 Fluid bed reactor and production method of nitrile compound using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007016032A (en) 1995-02-01 2007-01-25 Asahi Kasei Chemicals Corp Fluidized bed reactor and method for reaction using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57140697U (en) * 1981-02-28 1982-09-03
JPH06211768A (en) * 1992-10-14 1994-08-02 Standard Oil Co:The Prevention of nitrogenation during production of acrylonitrile
JP2003504180A (en) * 1999-07-13 2003-02-04 ザ・スタンダード・オイル・カンパニー Sparger for introducing oxygen into a fluidized bed reactor
WO2012035881A1 (en) * 2010-09-14 2012-03-22 旭化成ケミカルズ株式会社 Gaseous phase exothermic reaction method and gaseous phase exothermic reaction device
JP2015139736A (en) * 2014-01-28 2015-08-03 三菱レイヨン株式会社 Fluid bed reactor and production method of nitrile compound using the same

Also Published As

Publication number Publication date
JP7094760B2 (en) 2022-07-04
CN208679101U (en) 2019-04-02

Similar Documents

Publication Publication Date Title
JP5914638B2 (en) Process for methanol synthesis
JP5856079B2 (en) Synthetic liquid hydrocarbon production process and Fischer-Tropsch synthesis reactor
JP5960249B2 (en) Fischer-Tropsch process in radial reactor
JP5155390B2 (en) Apparatus and method for catalytic gas phase reaction and use thereof
TWI535490B (en) Gas - phase exothermic reaction method and gas - phase exothermic reaction device
KR20110133419A (en) Method of Producing TriChlorosilane (TCS) rich Chlorosilane product stably from a Fluidized Gas Phase Reactor (FBR) and the structure of the reactor-ⅱ.
JP2019156737A (en) Fluid bed reactor and acrylic nitrile production method
TWI516471B (en) Process
JP6322637B2 (en) Steam reforming reactor-gas system having a removable tube that supplies a gas for dense loading of a bayonet tube for the exchanger
CN103313782B (en) Multi-tube reactor having structured packing
KR20120098834A (en) Gas phase reaction method
WO2014111315A1 (en) Auto-thermal reforming reactor
JP2016536127A (en) Fluidized bed reactor including conical gas distributor and associated fluorination process
JP6341919B2 (en) Steam reforming reactor-gas system using an auxiliary tube supplying solid particles for dense loading of catalyst into a bayonet tube for the exchanger
JP2019182795A (en) Floating layer reaction device, and manufacturing method of acrylonitrile
RU2501600C1 (en) Device to produce sulfur
JP5312355B2 (en) Reactor and reaction product manufacturing method using the same
JP2010247053A (en) Vapor phase reaction method and vapor phase reaction apparatus
CN110511109A (en) A kind of method and apparatus of ethane continuous production ethylene
JP6045404B2 (en) Continuous fixed bed catalytic reactor and catalytic reaction method using the same
US20160136604A1 (en) Reactor for partial oxidation of hydrocarbon gases
JPH06218270A (en) Vertical type fluidized bed catalyst reactor
JP2015527186A (en) Reactor for carrying out an exothermic reaction in the gas phase
JP2020083832A (en) Unsaturated nitrile production method
RU2628390C2 (en) Advanced coal gasification

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220622

R150 Certificate of patent or registration of utility model

Ref document number: 7094760

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150