JP2005193172A - Fluidized reaction method and method for producing acrylonitrile - Google Patents

Fluidized reaction method and method for producing acrylonitrile Download PDF

Info

Publication number
JP2005193172A
JP2005193172A JP2004003013A JP2004003013A JP2005193172A JP 2005193172 A JP2005193172 A JP 2005193172A JP 2004003013 A JP2004003013 A JP 2004003013A JP 2004003013 A JP2004003013 A JP 2004003013A JP 2005193172 A JP2005193172 A JP 2005193172A
Authority
JP
Japan
Prior art keywords
catalyst
reactor
fluidized bed
acrylonitrile
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004003013A
Other languages
Japanese (ja)
Inventor
Isao Tanaka
功 田中
Hiroshi Kameo
広志 亀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dianitrix Co Ltd
Original Assignee
Dianitrix Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dianitrix Co Ltd filed Critical Dianitrix Co Ltd
Priority to JP2004003013A priority Critical patent/JP2005193172A/en
Publication of JP2005193172A publication Critical patent/JP2005193172A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To improve the fluidity of catalysts within a reactor by supplying a small amount of unused catalysts so as to maintain a high production efficiency of acrylonitrile. <P>SOLUTION: The method for producing acrylonitrile comprises, in a method for conducting fluidized reaction using a fluidized bed reactor, for example, supplying raw material gas containing hydrocarbon, ammonia, and oxygen to a reactor 1 and collecting an acrylonitrile component in gas that is generated by vapor-phase oxidation reaction in the presence of fluid granular catalysts within the reactor 1. Part of the granular catalysts in a fluidized bed 2 within the reactor 1 are extracted, the extracts are classified to obtain fine granular catalysts with a grain diameter between 20 and 44 μm, and then the fine granular catalysts are returned to the fluidized bed 2. At the same time, unused granular catalysts are supplied in a small amount to adjust the proportion of the amount of the fine granular catalysts in the whole granular catalysts, thereby producing acrylonitrile. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、流動反応方法に関し、詳しくは触媒の流動層に技術的特徴を有する流動層反応方法、および流動層反応器内の粒状触媒の存在下で原料ガスを気相酸化反応させるアクリロニトリルの製造方法に関する。   The present invention relates to a fluidized reaction method, and more specifically, a fluidized bed reaction method having technical characteristics in a fluidized bed of a catalyst, and production of acrylonitrile in which a raw material gas is subjected to a gas phase oxidation reaction in the presence of a granular catalyst in the fluidized bed reactor. Regarding the method.

近年、アクリロニトリルは、プロパンまたはプロピレンとアンモニアとの気相酸化反応により大規模に生産されており、その代表的な製造方法として、微粉流動層タイプの触媒を収容した流動層反応器の底部に、プロパンまたはプロピレン、アンモニアおよび空気などの酸素含有ガスを供給し、反応器内に通した冷却用配管に水等の冷却媒体を通すことで反応熱を除熱しながら酸化反応を継続させて行うアクリロニトリルの製造方法が知られている。   In recent years, acrylonitrile has been produced on a large scale by a gas phase oxidation reaction of propane or propylene and ammonia, and as a typical production method thereof, at the bottom of a fluidized bed reactor containing a finely divided fluidized bed type catalyst, Propylene or propylene, ammonia, and oxygen-containing gas such as air is supplied, and the acrylonitrile is formed by continuing the oxidation reaction while removing the heat of reaction by passing a cooling medium such as water through a cooling pipe passing through the reactor. Manufacturing methods are known.

この方法では、反応器から留出するアクリロニトリルを含む酸化反応ガスに、アクリル酸、酢酸、青酸、アセトニトリル、アクロレインなどの他に、未反応のアンモニア、酸素、窒素、プロパン、プロピレンが含まれる。   In this method, the oxidation reaction gas containing acrylonitrile distilled out from the reactor contains unreacted ammonia, oxygen, nitrogen, propane, and propylene in addition to acrylic acid, acetic acid, hydrocyanic acid, acetonitrile, acrolein, and the like.

この酸化反応ガスを硫酸水溶液で洗浄して冷却し、未反応のアンモニアを中和して硫酸アンモニウム水溶液として除去し、その後、吸収塔にてアクリロニトリル、青酸、アセトニトリル、アクロレイン等の生成物を水に吸収または溶解させて、これらを酸化反応ガスから分離する。   This oxidation reaction gas is washed with an aqueous sulfuric acid solution and cooled, and unreacted ammonia is neutralized and removed as an aqueous ammonium sulfate solution. Thereafter, products such as acrylonitrile, hydrocyanic acid, acetonitrile, and acrolein are absorbed into water by an absorption tower. Alternatively, they are dissolved and separated from the oxidation reaction gas.

そしてアクリロニトリル等が溶解した水溶液からは、回収塔にてストリッピングや蒸留などの手段を適宜組み合わせてアクリロニトリルを回収している。   From the aqueous solution in which acrylonitrile or the like is dissolved, acrylonitrile is recovered by appropriately combining means such as stripping or distillation in a recovery tower.

このとき回収されるアクリロニトリルは、粗アクリロニトリルであり、さらに精製系へ送られて青酸を含む軽沸分の分離、脱水、高沸分の分離が行なわれて、最終的には製品となるアクリロニトリルが得られる。   Acrylonitrile recovered at this time is crude acrylonitrile, which is further sent to a purification system for separation of light-boiling components including hydrocyanic acid, dehydration, and separation of high-boiling components. can get.

このようなアクリロニトリルの連続製造工程における反応器1は、図1に示すように、流動層2と呼ばれる供給微粉流動性の触媒を収容しており、底部から空気を分散器(図示せず。)を介して供給し、その上方に原料のプロピレンおよびアンモニア(図中に矢印で示す。)をそれぞれ供給している。   As shown in FIG. 1, the reactor 1 in such a continuous production process of acrylonitrile contains a feed fine powder fluidity catalyst called a fluidized bed 2, and disperses air from the bottom (not shown). The raw material propylene and ammonia (indicated by arrows in the figure) are respectively supplied above.

また、反応器1は、発生した反応熱をスチームとして回収する冷却管3や、サイクロン4、5、6およびこれにより分離された粒度および比重が大きい触媒粒子を反応器の下部へ戻す触媒戻し管(ディプレッグ)7、8、9を有している。   The reactor 1 includes a cooling pipe 3 that collects the generated heat of reaction as steam, and a catalyst return pipe that returns the cyclones 4, 5, and 6 and catalyst particles separated thereby by a large particle size and specific gravity to the lower part of the reactor. (Dipleg) 7, 8, 9

このような反応器1内の流動層2を構成する流動性の触媒は、例えばリン、モリブデン、ビスマス、鉄、アンチモン等の元素を含む微粉状の触媒であり、触媒の物性(粒子密度、粒度分布、強度など)により所要の流動性を持たせたものである。   The fluid catalyst constituting the fluidized bed 2 in the reactor 1 is a finely divided catalyst containing elements such as phosphorus, molybdenum, bismuth, iron, antimony, etc., and the physical properties of the catalyst (particle density, particle size) Distribution, strength, etc.) to give the required fluidity.

微粉流動性の触媒物性の典型的な例としては、粒子密度1〜2g/cm3のものであり、平均粒径は50〜80μm程度である。そして、触媒として良好な流動性があるように、44μm以下のいわゆるグッド・フラクション(good fraction)と呼ばれる微粒子の存在は不可欠であり、そのような微粒子の所要の含有量は20〜60%であり、望ましくは20から50%であり(非特許文献1)、微粒子濃度上昇に伴いアクリロニトリル(AN)収率が上昇する(非特許文献2)。 Typical examples of the physical properties of the finely divided fluid catalyst are those having a particle density of 1 to 2 g / cm 3 and an average particle diameter of about 50 to 80 μm. And, in order to have good fluidity as a catalyst, the presence of so-called “good fraction” of 44 μm or less is indispensable, and the required content of such fine particles is 20 to 60%. Desirably, it is 20 to 50% (Non-Patent Document 1), and the acrylonitrile (AN) yield increases as the fine particle concentration increases (Non-Patent Document 2).

アクリロニトリルの連続製造工程において流動層2から反応器1内の空間部分に飛び出した触媒は、サイクロン4、5、6で捕集されて触媒戻し管(ディプレッグ)7、8、9から流動(触媒)層2内に返還される。   In the continuous production process of acrylonitrile, the catalyst that jumps out from the fluidized bed 2 into the space in the reactor 1 is collected by the cyclones 4, 5, and 6 and flows from the catalyst return pipes (diplegs) 7, 8, and 9 (catalyst). Returned to Tier 2.

ところで、このような工程でアクリロニトリルを連続して製造すると、触媒はその活性が経時的に低下して、捕集できなかった微粒子等の分だけ触媒量も徐々に減少する。また、このようにして損失する触媒のうち、特に粒径44μm以下の微粒子が減少することによって流動化状態も悪化する。   By the way, when acrylonitrile is continuously produced in such a process, the activity of the catalyst decreases with time, and the amount of catalyst gradually decreases by the amount of fine particles that could not be collected. Further, among the catalyst lost in this manner, the fluidized state is also deteriorated by reducing the fine particles having a particle diameter of 44 μm or less.

従来、このような触媒の活性低下の事態を回避して、アクリロニトリルの連続した製造を効率よく行うために、反応器から触媒の一部を抜き出し、反応器内へは新しく未使用の触媒を補充するようにしていた。   Conventionally, in order to avoid such a decrease in the activity of the catalyst and efficiently perform continuous production of acrylonitrile, a part of the catalyst is extracted from the reactor, and the reactor is filled with a new unused catalyst. I was trying to do it.

「化学工業」、1984年化学工業社発行、第48巻、第11号、p.73-74“Chemical Industry”, published by Kagaku Kogyosha in 1984, Vol. 48, No. 11, p.73-74 「エイ・アイ・シーエイチ・イー・シンポジウム・シリーズ」(A.I.Ch.E.Symposium Series),米国、エイアイシーエイチイー発行、第184巻、第262号、p.68-73"AI HC Symposium Series" (A.I.Ch.E. Symposium Series), US, ICH ISS, Volume 184, No. 262, p.68-73

しかし、上記した従来のアクリロニトリルの製造方法では、経時的に減少した粒径44μm以下の微粒子を補って所要の流動性を維持するように、新品の触媒をかなり多量に補給する必要があり、これでは触媒の流動性改善効果のために触媒本来の活性に劣化のないものまでも、高価な未使用(新)触媒で交換されることになり、その補給量には無駄が多いという問題があった。   However, in the above conventional acrylonitrile production method, it is necessary to replenish a fairly large amount of a new catalyst so as to supplement the fine particles having a particle diameter of 44 μm or less that have decreased over time and maintain the required fluidity. In order to improve the fluidity of the catalyst, even if the original activity of the catalyst is not deteriorated, it will be replaced with an expensive unused (new) catalyst, and the replenishment amount is wasteful. It was.

そこで、この発明の課題は、上記した問題点が解決されるように比較的少量の未使用触媒を補給して反応器内の触媒の流動性を改善し、これによりアクリロニトリルの生産効率を可及的に高く維持することである。   Therefore, the object of the present invention is to improve the fluidity of the catalyst in the reactor by replenishing a relatively small amount of unused catalyst so as to solve the above-mentioned problems, thereby improving the production efficiency of acrylonitrile. To keep it high.

上記の課題を解決するために、この発明においては、流動層反応器を用いて流動反応を行う方法において、流動層反応器中の粒状触媒の一部を抜き取り、この抜き取られた触媒を分級して得るファイン粒子径触媒を前記流動層反応器内に返還すると共に、未使用の粒状触媒を補充して粒状触媒全体に占めるファイン粒子径触媒量の割合を調整することを特徴とする流動反応方法としたのである。   In order to solve the above problems, in the present invention, in a method of performing a fluid reaction using a fluidized bed reactor, a part of the granular catalyst in the fluidized bed reactor is extracted, and the extracted catalyst is classified. The fine particle size catalyst obtained is returned to the fluidized bed reactor and the amount of fine particle size catalyst in the whole granular catalyst is adjusted by replenishing unused granular catalyst. It was.

上記したように構成されるこの発明の流動反応方法によると、反応器内の流動層から抜き取られた粒状触媒を分級して得たファイン粒子径の触媒を前記反応器内の流動層に返還するので、流動層において流動性改善に特に有用なファイン粒子径触媒を抜き取りに伴って廃棄することなく再利用でき、その分、未使用の新粒状触媒の補給量を減らすことができる。   According to the fluidized reaction method of the present invention configured as described above, the fine particle size catalyst obtained by classifying the particulate catalyst extracted from the fluidized bed in the reactor is returned to the fluidized bed in the reactor. Therefore, the fine particle diameter catalyst particularly useful for improving fluidity in the fluidized bed can be reused without being discarded along with the extraction, and the replenishment amount of the unused new granular catalyst can be reduced correspondingly.

または、上記の課題を解決するために、炭化水素とアンモニアと酸素を含む原料ガスを流動層反応器に供給し、この流動層反応器内の粒状触媒の存在下で気相酸化反応により生成したガス中のアクリロニトリル成分を回収するアクリロニトリルの製造方法において、前記流動層反応器内の粒状触媒の一部を抜き取り、この抜き取られた触媒を分級して得る粒径20〜44μmのファイン粒子径触媒を前記流動層反応器内に返還すると共に、未使用の粒状触媒を補充して粒状触媒全体に占めるファイン粒子径触媒量の割合を調整することを特徴とするアクリロニトリルの製造方法としたのである。   Alternatively, in order to solve the above problem, a raw material gas containing hydrocarbon, ammonia and oxygen is supplied to a fluidized bed reactor, and is generated by a gas phase oxidation reaction in the presence of a granular catalyst in the fluidized bed reactor. In the method for producing acrylonitrile for recovering the acrylonitrile component in the gas, a fine particle diameter catalyst having a particle diameter of 20 to 44 μm obtained by extracting a part of the granular catalyst in the fluidized bed reactor and classifying the extracted catalyst. While returning to the fluidized bed reactor, an unused granular catalyst is replenished to adjust the proportion of the fine particle diameter catalyst amount in the entire granular catalyst, thereby producing an acrylonitrile production method.

上記したように構成されるこの発明のアクリロニトリルの製造方法によると、反応器内の流動層から抜き取られた触媒を分級して得た粒径20〜44μmのファイン粒子径触媒を前記反応器内の流動層に返還するので、流動層において流動性改善に特に有用なファイン粒子径触媒が抜き取りに伴って廃棄されることなく再利用され、その分だけ未使用の粒状触媒の補給量を減らせる。   According to the acrylonitrile production method of the present invention configured as described above, a fine particle size catalyst having a particle size of 20 to 44 μm obtained by classifying the catalyst extracted from the fluidized bed in the reactor is provided in the reactor. Since it is returned to the fluidized bed, the fine particle diameter catalyst that is particularly useful for improving fluidity in the fluidized bed is reused without being discarded along with the extraction, and the replenishment amount of the unused granular catalyst can be reduced accordingly.

すなわち、比較的高価な未使用の粒状触媒を多量に補給しなくても、流動層から抜き取られた触媒の分級したファイン粒子径触媒を用い、これに未使用の触媒を比較的少量混ぜて補給するだけで、粒径20〜44μmのファイン粒子径触媒の割合を高めて補給することができ、これにより新品の触媒の添加量が節約されて低費用であり、かつ反応器内の触媒の流動性を改善できる。   That is, even if a relatively expensive unused granular catalyst is not replenished in a large amount, a fine particle size catalyst classified from the catalyst extracted from the fluidized bed is used, and a relatively small amount of the unused catalyst is mixed and replenished. This makes it possible to increase the proportion of fine particle size catalyst having a particle size of 20 to 44 μm and replenish it, thereby saving the amount of new catalyst added and reducing the cost, and the flow of the catalyst in the reactor. Can improve sex.

また、前記した問題を確実に解決するには、粒状触媒全体に占めるファイン粒子径触媒の割合が、20〜60重量%、望ましくは20〜50重量%の範囲に調整することが好ましい。   Moreover, in order to solve the above-mentioned problem reliably, it is preferable to adjust the ratio of the fine particle size catalyst to the whole granular catalyst in the range of 20 to 60% by weight, desirably 20 to 50% by weight.

このようにして、反応器内の触媒の流動性が確実に改善され、流動層全体の触媒の活性が均一になって触媒の効率が高まり、その結果、アクリロニトリルの生産効率を高く維持できる。   In this way, the fluidity of the catalyst in the reactor is reliably improved, the activity of the catalyst in the entire fluidized bed becomes uniform, the efficiency of the catalyst is increased, and as a result, the production efficiency of acrylonitrile can be maintained high.

この発明は、以上説明したように、アクリロニトリルの製造における流動層反応器から抜き取られた触媒を分級して所定粒径のファイン粒子径触媒を流動層反応器内に返還し、未使用の粒状触媒の補充と共に触媒全体に占めるファイン粒子径触媒量の割合を調整するので、可及的に少量の新品(未使用)触媒を補給して反応器内の触媒の流動性を改善でき、これにより生産効率を可及的に高く維持できるアクリロニトリルの製造方法になるという利点がある。   As described above, the present invention classifies the catalyst extracted from the fluidized bed reactor in the production of acrylonitrile, returns the fine particle size catalyst having a predetermined particle size to the fluidized bed reactor, and uses the unused granular catalyst. Since the proportion of the fine particle size catalyst amount in the total catalyst is adjusted with the replenishment of the catalyst, the fluidity of the catalyst in the reactor can be improved by supplying as little new (unused) catalyst as possible. There is an advantage that the production method of acrylonitrile can maintain the efficiency as high as possible.

この発明のアクリロニトリルの製造方法では、炭化水素とアンモニアと酸素含有ガスを含む原料ガスを反応器に供給し、この反応器内でアンモニウム酸化触媒を流動層に用いた酸化反応を行わせ、その際に生成したガス中からアクリロニトリル成分を回収し、精製する。   In the method for producing acrylonitrile of the present invention, a raw material gas containing hydrocarbon, ammonia and an oxygen-containing gas is supplied to a reactor, and an oxidation reaction using an ammonium oxidation catalyst in a fluidized bed is performed in the reactor. The acrylonitrile component is recovered from the gas produced in the above step and purified.

この発明に用いる反応器は、流動層反応器であり、これに供給する炭化水素は、ガス状の炭化水素であって、例えばプロピレンなどのオレフィン、もしくはプロパンまたはこれらの混合したガスが用いられる。   The reactor used in the present invention is a fluidized bed reactor, and the hydrocarbon supplied to the reactor is a gaseous hydrocarbon. For example, olefin such as propylene, propane, or a gas mixture thereof is used.

反応器に別途供給される酸素を含む原料ガスは、所定濃度の酸素を含有し、残成分を不活性ガスで組成される混合ガスで構成することも可能であるが、通常は、空気を用いている。   The source gas containing oxygen separately supplied to the reactor may contain a predetermined concentration of oxygen, and the remaining component may be composed of a mixed gas composed of an inert gas. Usually, air is used. ing.

アンモニウムを酸化する気相酸化反応に用いる触媒は、例えばリン、モリブデン、鉄、アンチモン等の元素を含む周知の触媒を用いることができ、一般的には粒子密度1〜2g/cm3で平均粒径は50〜80μm程度のものである。これには、流動性を良好にする粒径20〜44μmのファイン粒子径触媒も含有されており、そのような微粒子の好ましい含有量は20〜60重量%、好ましくは20〜50重量%である。 As the catalyst used in the gas phase oxidation reaction for oxidizing ammonium, for example, a well-known catalyst containing elements such as phosphorus, molybdenum, iron, antimony and the like can be used. Generally, the average particle size is 1 to 2 g / cm 3. The diameter is about 50 to 80 μm. This also contains a fine particle size catalyst with a particle size of 20-44 μm which makes fluidity good, and the preferred content of such fine particles is 20-60% by weight, preferably 20-50% by weight. .

このように図1に示す実施形態のアクリロニトリルの製造方法では、微粒子状の触媒を充填した反応器1にプロピレンなどのオレフィン、もしくはプロパン、アンモニアおよび空気を供給して高温で反応させ、アクリロニトリルを生成させている。   Thus, in the manufacturing method of acrylonitrile of the embodiment shown in FIG. 1, olefin such as propylene or propane, ammonia and air is supplied to the reactor 1 filled with the fine particle catalyst and reacted at a high temperature to produce acrylonitrile. I am letting.

図1を用いて反応器1での触媒の流動層2の機能を詳しく説明すると、反応器1内には供給微粉流動性の触媒を収容して流動層を形成しており、底部には分散器(図示せず。)を介して空気(図中に矢印で示す。)を供給し、その上方にはガス分散器(図示せず。)を介して原料のプロパンまたはプロピレンおよびアンモニア(図中に矢印で示す。)をそれぞれ供給する。   The function of the fluidized bed 2 of the catalyst in the reactor 1 will be described in detail with reference to FIG. 1. A fluidized bed is formed in the reactor 1 by containing the supplied fine powder fluid catalyst, and dispersed at the bottom. Air (indicated by an arrow in the figure) is supplied through a vessel (not shown), and above that, raw material propane or propylene and ammonia (in the figure) through a gas distributor (not shown). Are indicated by arrows).

また、反応器1には、水を熱媒体として反応熱をスチームとして回収する熱交換機の冷却管3を設け、また反応生成ガスの採集管10、水平板11、不活性ガス供給管12などが設けられている。また、3段式のサイクロン4、5、6で分離された粒度および比重が大きい粒子を反応器の下部へ戻す触媒戻し管(ディプレッグ)7、8、9が設けられ、さらに3段目のサイクロン6を通過した反応ガスを採集管10から抜き出して次工程に送り出している。   The reactor 1 is provided with a heat exchanger cooling pipe 3 for recovering reaction heat as steam using water as a heat medium, a reaction product gas collection pipe 10, a horizontal plate 11, an inert gas supply pipe 12 and the like. Is provided. Further, catalyst return pipes (diplegs) 7, 8, 9 are provided for returning particles separated by the three-stage cyclones 4, 5, 6 and having a large particle size and specific gravity to the lower part of the reactor, and further a third-stage cyclone. The reaction gas that has passed through 6 is extracted from the collection tube 10 and sent to the next step.

このような反応器1には、未使用の触媒(新品触媒)が供給され、また一部抜き出された触媒を分級器(風力分級器)19で分級して、粒径20〜44μmのファイン粒子径触媒の濃度を高め、これを反応器1内に返還すると共に、ファイン粒子径触媒を除去された粒径の大きな触媒を排出した。   Such a reactor 1 is supplied with an unused catalyst (new catalyst), and a partly extracted catalyst is classified by a classifier (wind classifier) 19 to obtain a fine particle size of 20 to 44 μm. The concentration of the particle size catalyst was increased and returned to the reactor 1, and the catalyst having a large particle size from which the fine particle size catalyst was removed was discharged.

反応器1内への触媒の出入量の調整関係について説明すると、反応器1から一部抜き取られた粒状触媒の重量に見合う量だけの量の触媒を、ファイン粒子径触媒の割合を高めた回収触媒の重量と未使用の粒状触媒の補充重量との合計量で補っている。   Explaining the adjustment relationship of the amount of catalyst in and out of the reactor 1, a catalyst having an amount corresponding to the weight of the particulate catalyst partially extracted from the reactor 1 is recovered by increasing the proportion of the fine particle size catalyst. It is supplemented by the total amount of the catalyst weight and the replenishment weight of the unused granular catalyst.

例えば、流動層反応器から一部抜き取られた粒状触媒の重量をAとし、この抜き取られた触媒を分級して粒径20〜44μmのファイン粒子径触媒の割合を高めた回収触媒の重量をaとし、さらに未使用の粒状触媒の補充重量をBとすると、A=a+Bの関係を満たすように調整している。   For example, the weight of the particulate catalyst partially extracted from the fluidized bed reactor is A, and the weight of the recovered catalyst obtained by classifying the extracted catalyst to increase the proportion of fine particle size catalyst having a particle size of 20 to 44 μm is a. Further, when the replenishment weight of the unused granular catalyst is B, the adjustment is made to satisfy the relationship of A = a + B.

このようにすると、流動層反応器から一部抜き取られた粒状触媒の重量に見合う量を、ファイン粒子径触媒の割合を高めた回収触媒の重量と未使用の粒状触媒の補充重量との合計量で補うので、全体の触媒量には変化がなく、未使用の粒状触媒の補充重量を最も少なくし、すなわち高価な新品触媒の消費量を少なくして、触媒の流動性を効率よく改善できる。   In this way, the amount corresponding to the weight of the particulate catalyst partially extracted from the fluidized bed reactor is the total amount of the recovered catalyst weight in which the fine particle diameter catalyst ratio is increased and the replenishment weight of the unused particulate catalyst. Therefore, there is no change in the total catalyst amount, and the replenishment weight of the unused granular catalyst can be minimized, that is, the consumption of expensive new catalyst can be reduced, and the fluidity of the catalyst can be improved efficiently.

図1に示される流動床(層)反応器でアクリロニトリルを製造した。すなわち、プロピレン7.8kg/hr、アンモニア3.5kg/hrおよび空気54kg/hrを各流速で反応器1に供給し、この反応器1内には粒径20〜44μmのファイン粒子径触媒の割合が37重量%の触媒を収容し、アンモニア酸化反応を行った。   Acrylonitrile was produced in the fluidized bed (bed) reactor shown in FIG. That is, 7.8 kg / hr of propylene, 3.5 kg / hr of ammonia and 54 kg / hr of air were supplied to the reactor 1 at each flow rate, and the proportion of fine particle size catalyst having a particle size of 20 to 44 μm was contained in the reactor 1. Contained 37% by weight of the catalyst and an ammonia oxidation reaction was carried out.

そして、反応器1には、未使用の触媒(前記同様の新品触媒)を補充する供給路を接続し、また一部抜き出した触媒を風力などによる分級器19で分級し、粒径20〜44μmのファイン粒子径触媒の濃度を62重量%に高めて反応器1内に返還した。その場合の触媒補給量は、未使用の触媒0.6kgに対して分級触媒(使用中に抜き出されて分級された粒径20〜44μmのファイン粒子径触媒含有濃度62重量%のもの)0.1kgの割合とした。この操作を1週間に一回の割合でおこなったところ反応器1内のファイン粒子径触媒の濃度は約31%に調整できた。   The reactor 1 is connected to a supply path for replenishing an unused catalyst (the same new catalyst as described above), and a partly extracted catalyst is classified by a classifier 19 such as wind power, so that the particle size is 20 to 44 μm. The concentration of the fine particle size catalyst was increased to 62% by weight and returned to the reactor 1. In this case, the catalyst replenishment amount is 0% of the unused catalyst and classified catalyst (with a fine particle size catalyst content of 62% by weight with a particle size of 20 to 44 μm extracted and classified during use) 0 The ratio was 1 kg. When this operation was performed once a week, the concentration of the fine particle size catalyst in the reactor 1 could be adjusted to about 31%.

このような実施例1における製造方法では、反応器1の流動層から抜き取られた触媒の分級したファイン粒子径触媒に対し、未使用の触媒を混ぜて粒径20〜44μmのファイン粒子径触媒の割合を高めて流動層に補給したが、これにより反応器内の触媒の流動性は常に良好に維持されてアクリロニトリルの製造効率は良好であり、しかも新品の触媒の添加量が節約されて低費用であった。   In such a production method in Example 1, a fine particle size catalyst having a particle size of 20 to 44 μm is mixed by mixing an unused catalyst with a fine particle size catalyst classified from the catalyst extracted from the fluidized bed of the reactor 1. The ratio was increased and replenished to the fluidized bed, but the fluidity of the catalyst in the reactor was always kept good, the acrylonitrile production efficiency was good, and the amount of new catalyst added was saved, resulting in low cost. Met.

実施例1において、分級触媒0.3kgの割合としたこと以外は、全く同様にしてアクリロニトリルを製造した。すなわち、触媒補給量を、未使用触媒0.6kgに対して分級された粒径20〜44μmのファイン粒子径触媒含有濃度62重量%の分級触媒0.3kgの割合とした。このようにすると、反応器内のファイン粒子径触媒の濃度は約37%に調整され、反応器内の触媒の流動性は常に良好に維持されて、アクリロニトリルの生産効率を高く維持することができた。   In Example 1, acrylonitrile was produced in exactly the same manner except that the ratio of the classification catalyst was 0.3 kg. That is, the catalyst replenishment amount was set to a ratio of 0.3 kg of a classified catalyst having a fine particle size catalyst content concentration of 62% by weight and a particle size of 20 to 44 μm classified with respect to 0.6 kg of the unused catalyst. In this way, the concentration of the fine particle size catalyst in the reactor is adjusted to about 37%, the fluidity of the catalyst in the reactor is always kept good, and the production efficiency of acrylonitrile can be kept high. It was.

実施例1において、分級触媒0.6kgとしたこと以外は、全く同様にしてアクリロニトリルを製造した。すなわち、触媒補給量を、未使用触媒0.6kgに対して分級された粒径20〜44μmのファイン粒子径触媒含有濃度62重量%の分級触媒0.6kgの割合とした。このようにすると、反応器内のファイン粒子径触媒の濃度は約42%に調整され、反応器内の触媒の流動性は常に良好に維持された。   In Example 1, acrylonitrile was produced in exactly the same manner except that the classification catalyst was 0.6 kg. That is, the catalyst replenishment amount was set to a ratio of 0.6 kg of a classified catalyst having a fine particle diameter catalyst content of 62% by weight with a particle diameter of 20 to 44 μm classified with respect to 0.6 kg of the unused catalyst. In this way, the concentration of the fine particle size catalyst in the reactor was adjusted to about 42%, and the fluidity of the catalyst in the reactor was always kept good.

比較例1Comparative Example 1

実施例1において、未使用触媒の補給量を1.8kgにし、分級触媒の補給量を無く(0kg)したことの他は、全く同様にしてアクリロニトリルを製造した。   In Example 1, acrylonitrile was produced in exactly the same manner except that the replenishment amount of the unused catalyst was 1.8 kg and the replenishment amount of the classified catalyst was not (0 kg).

このようにすると、反応器内のファイン粒子径触媒の濃度は約35%に調整され、その際に新触媒の補給量は、前述の実施例1、2に比べて3〜6倍量と多くなり、そのために多大な製造コストを要し、これでは低コストでアクリロニトリルの生産効率を高く維持することはできなかった。   In this way, the concentration of the fine particle size catalyst in the reactor is adjusted to about 35%, and the replenishment amount of the new catalyst at that time is 3 to 6 times larger than those in Examples 1 and 2 described above. Therefore, a great manufacturing cost is required, and this makes it impossible to maintain the production efficiency of acrylonitrile at a low cost.

実施形態のアクリロニトリルの製造工程における反応器を示す概略図Schematic which shows the reactor in the manufacturing process of the acrylonitrile of embodiment.

符号の説明Explanation of symbols

1 反応器
2 流動層
3 冷却管
4、5、6 サイクロン
7、8、9 触媒戻し管
10 採集管
11 水平板
12 不活性ガス供給管
DESCRIPTION OF SYMBOLS 1 Reactor 2 Fluidized bed 3 Cooling pipes 4, 5, 6 Cyclone 7, 8, 9 Catalyst return pipe 10 Collection pipe 11 Horizontal plate 12 Inert gas supply pipe

Claims (3)

流動層反応器を用いて流動反応を行う方法において、流動層反応器中の粒状触媒の一部を抜き取り、この抜き取られた触媒を分級して得るファイン粒子径触媒を前記流動層反応器内に返還すると共に、未使用の粒状触媒を補充して粒状触媒全体に占めるファイン粒子径触媒量の割合を調整することを特徴とする流動反応方法。   In a method of performing a fluid reaction using a fluidized bed reactor, a fine particle size catalyst obtained by extracting a part of the particulate catalyst in the fluidized bed reactor and classifying the extracted catalyst is placed in the fluidized bed reactor. A fluid reaction method characterized by adjusting the ratio of the amount of fine particle size catalyst in the whole granular catalyst by replenishing unused granular catalyst while returning. 炭化水素とアンモニアと酸素を含む原料ガスを流動層反応器に供給し、この流動層反応器内の粒状触媒の存在下で気相酸化反応により生成したガス中のアクリロニトリル成分を回収するアクリロニトリルの製造方法において、
前記流動層反応器内の粒状触媒の一部を抜き取り、この抜き取られた触媒を分級して得る粒径20〜44μmのファイン粒子径触媒を前記流動層反応器内に返還すると共に、未使用の粒状触媒を補充して粒状触媒全体に占めるファイン粒子径触媒量の割合を調整することを特徴とするアクリロニトリルの製造方法。
Manufacture of acrylonitrile by supplying raw material gas containing hydrocarbon, ammonia and oxygen to fluidized bed reactor and recovering acrylonitrile components in gas produced by gas phase oxidation reaction in the presence of particulate catalyst in this fluidized bed reactor In the method
A part of the granular catalyst in the fluidized bed reactor is withdrawn, and a fine particle size catalyst having a particle size of 20 to 44 μm obtained by classifying the extracted catalyst is returned to the fluidized bed reactor, and is unused. A method for producing acrylonitrile, comprising replenishing a granular catalyst and adjusting a proportion of a fine particle diameter catalyst amount in the entire granular catalyst.
粒状触媒全体に占めるファイン粒子径触媒の割合を、20〜60重量%の範囲に調整する請求項2に記載のアクリロニトリルの製造方法。   The manufacturing method of the acrylonitrile of Claim 2 which adjusts the ratio of the fine particle diameter catalyst to the whole granular catalyst in the range of 20 to 60 weight%.
JP2004003013A 2004-01-08 2004-01-08 Fluidized reaction method and method for producing acrylonitrile Pending JP2005193172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004003013A JP2005193172A (en) 2004-01-08 2004-01-08 Fluidized reaction method and method for producing acrylonitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004003013A JP2005193172A (en) 2004-01-08 2004-01-08 Fluidized reaction method and method for producing acrylonitrile

Publications (1)

Publication Number Publication Date
JP2005193172A true JP2005193172A (en) 2005-07-21

Family

ID=34818040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004003013A Pending JP2005193172A (en) 2004-01-08 2004-01-08 Fluidized reaction method and method for producing acrylonitrile

Country Status (1)

Country Link
JP (1) JP2005193172A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011500564A (en) * 2007-10-11 2011-01-06 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー Ammoxidation or oxidation method of propane and isobutane
JP2015139736A (en) * 2014-01-28 2015-08-03 三菱レイヨン株式会社 Fluid bed reactor and production method of nitrile compound using the same
KR20160131047A (en) 2014-04-25 2016-11-15 미쯔비시 레이온 가부시끼가이샤 Fluid bed reactor and method of producing nitrile compound using same
JP2018192446A (en) * 2017-05-19 2018-12-06 旭化成株式会社 FLUID BED REACTION DEVICE AND MANUFACTURING METHOD OF α,β-UNSATURATED NITRILE
WO2019220521A1 (en) * 2018-05-15 2019-11-21 旭化成株式会社 Method for producing unsaturated nitrile
JP2020200274A (en) * 2019-06-11 2020-12-17 旭化成株式会社 Method for producing acrylonitrile

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011500564A (en) * 2007-10-11 2011-01-06 イネオス ユーエスエイ リミテッド ライアビリティ カンパニー Ammoxidation or oxidation method of propane and isobutane
JP2015139736A (en) * 2014-01-28 2015-08-03 三菱レイヨン株式会社 Fluid bed reactor and production method of nitrile compound using the same
KR20160131047A (en) 2014-04-25 2016-11-15 미쯔비시 레이온 가부시끼가이샤 Fluid bed reactor and method of producing nitrile compound using same
KR20180078333A (en) 2014-04-25 2018-07-09 미쯔비시 케미컬 주식회사 Fluid bed reactor and method of producing nitrile compound using same
JP2018192446A (en) * 2017-05-19 2018-12-06 旭化成株式会社 FLUID BED REACTION DEVICE AND MANUFACTURING METHOD OF α,β-UNSATURATED NITRILE
CN108940137A (en) * 2017-05-19 2018-12-07 旭化成株式会社 The manufacturing method of fluidized bed reaction and 'alpha ', ' bela '-unsaturated nitrile
CN108940137B (en) * 2017-05-19 2021-07-27 旭化成株式会社 Fluidized bed reactor and method for producing alpha, beta-unsaturated nitrile
WO2019220521A1 (en) * 2018-05-15 2019-11-21 旭化成株式会社 Method for producing unsaturated nitrile
US11905233B2 (en) 2018-05-15 2024-02-20 Asahi Kasei Kabushiki Kaisha Process for producing unsaturated nitrile
JP2020200274A (en) * 2019-06-11 2020-12-17 旭化成株式会社 Method for producing acrylonitrile

Similar Documents

Publication Publication Date Title
CN105722816B (en) The method that beta-unsaturated esters are prepared from aldehyde is esterified by direct oxidation
US20090018362A1 (en) Acrylic acid preparation method
MXPA06007869A (en) Process for the purification of olefinically unsaturated nitriles.
US20160304412A1 (en) Method for preparing a light olefin using an oxygen-containing compound, and device for use thereof
JP2010222309A (en) Method for purifying acrylonitrile
JP5106765B2 (en) Nitrile compound production method and production apparatus
JP6427225B1 (en) Fluid bed reactor and method for producing α, β-unsaturated nitrile
JP3976824B2 (en) Production method of acrylonitrile
JP2005193172A (en) Fluidized reaction method and method for producing acrylonitrile
JP2022188228A (en) Processes and systems for using silica particles in fluid bed reactor
CN107624109A (en) Method for aldehyde manufacture
CN109894059B (en) Process for producing (meth) acrylonitrile
JPH0892189A (en) Decreasing method for disposed substance during acrylonitrile production
FI62273B (en) FOERFARANDE FOER FRAMSTAELLNING AV TITANIUMTETRAKLORID
JP3091168B2 (en) Ammoxidation process in a fluidized bed reactor.
JPS59123526A (en) Performance of reaction byusing recirculation type magnetically stabilized bed in order to control reaction temperature distribution
CN100439313C (en) Multistage fluidized bed reactor for preparing propenoic acid from propene oxidation and preparing method
CN1660758A (en) Process for the selective (AMM) oxidation of lower molecular weight alkanes and alkenes
JP4183796B2 (en) Method for producing α, β-unsaturated nitrile
JP2004331533A (en) Method for producing acrylonitrile
CN109701360B (en) Device and method for removing and utilizing carbon dioxide in low-carbon olefin and acetic acid co-oxidation product gas
JP2003002870A (en) Method for coproducing prussic acid in production of unsaturated nitrile
CN109704957B (en) Method for removing carbon dioxide from allyl acetate product gas
JP2011201784A (en) Manufacturing method of acrylonitrile
JP4444673B2 (en) Method for producing acrylonitrile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105