JP2015138730A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2015138730A
JP2015138730A JP2014011073A JP2014011073A JP2015138730A JP 2015138730 A JP2015138730 A JP 2015138730A JP 2014011073 A JP2014011073 A JP 2014011073A JP 2014011073 A JP2014011073 A JP 2014011073A JP 2015138730 A JP2015138730 A JP 2015138730A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
material layer
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014011073A
Other languages
Japanese (ja)
Inventor
正晴 瀬上
Masaharu Segami
正晴 瀬上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014011073A priority Critical patent/JP2015138730A/en
Publication of JP2015138730A publication Critical patent/JP2015138730A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a secondary battery capable of effectively enhancing battery inner pressure during overcharging.SOLUTION: The secondary battery includes a positive electrode 50 and a negative electrode. The positive electrode 50 includes a positive electrode current collector 52 and a positive electrode active material layer 54 held on the positive electrode current collector 52. The positive electrode active material layer 54 includes a first positive electrode active material layer 54a formed on the positive electrode current collector 52 and a second positive electrode active material layer 54b formed on the first positive electrode active material layer 54a and the positive electrode current collector 52 around the layer 54a so as to cover the first positive electrode active material layer 54a. The first positive electrode active material layer 54a includes a first positive electrode active material capable of discharging oxygen in overcharging, and the second positive electrode active material layer 54b includes a second positive electrode active material whose humidity resistance is higher than the first positive electrode active material.

Description

本発明は、正極活物質層を備えた二次電池に関する。   The present invention relates to a secondary battery including a positive electrode active material layer.

リチウムイオン二次電池その他の二次電池は、車両搭載用電源あるいはパソコンや携帯端末等の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、車両搭載用高出力電源として好ましく用いられている。このような二次電池は、過充電状態になると、正極から電荷担体が過剰に放出され、負極では電荷担体が過剰に挿入される。このため、正極と負極の両極が熱的に不安定になる。正極と負極の両極が熱的に不安定になると、やがては電解液の有機溶媒が分解され、発熱反応が生じて電池の安定性が損なわれる。   Lithium ion secondary batteries and other secondary batteries are becoming increasingly important as on-vehicle power supplies or personal computers and portable terminals. In particular, a lithium ion secondary battery that is lightweight and obtains a high energy density is preferably used as a high-output power source mounted on a vehicle. When such a secondary battery is overcharged, excessive charge carriers are released from the positive electrode, and excessive charge carriers are inserted into the negative electrode. For this reason, both the positive electrode and the negative electrode are thermally unstable. When both the positive electrode and the negative electrode become thermally unstable, the organic solvent of the electrolytic solution is eventually decomposed, and an exothermic reaction occurs, thereby impairing the stability of the battery.

かかる問題に対して、例えば、電池内部のガス圧力が所定圧力以上になると充電を遮断する電流遮断機構を電池ケースに備え、電解液中に予め定められた過充電状態に達するとガスを発生させるガス発生剤を添加した非水電解液二次電池が開示されている。かかるガス発生剤としては、例えば、シクロヘキシルベンゼン(CHB)やビフェニル(BP)などが用いられている(例えば特許文献1)。CHBやBPは、過充電時において重合反応が活性化し、水素ガスを発生させる。これにより、電池ケース内の圧力が高くなり、電流遮断機構が作動して過充電電流を遮断する。   To solve this problem, for example, the battery case is equipped with a current interruption mechanism that interrupts charging when the gas pressure inside the battery exceeds a predetermined pressure, and gas is generated when a predetermined overcharge state is reached in the electrolyte. A non-aqueous electrolyte secondary battery to which a gas generating agent is added is disclosed. As such a gas generating agent, for example, cyclohexylbenzene (CHB) or biphenyl (BP) is used (for example, Patent Document 1). CHB and BP activate the polymerization reaction during overcharge and generate hydrogen gas. Thereby, the pressure in a battery case becomes high, an electric current interruption mechanism act | operates, and an overcharge electric current is interrupted | blocked.

特開2013−243020号公報JP 2013-243020 A

ところで、電池が過充電となった際には、電流遮断機構を効率よく作動させるために、電池の内圧を速やかに上昇させる必要がある。過充電時に電池の内圧を速やかに上昇させるためには、前述したガス発生剤の添加量を多くすることが考えられる。しかし、ガス発生剤は電池の抵抗成分として働くため、ガス発生剤の添加量を多くすると、電池性能(例えば入出力特性)が低下する要因になり得る。本発明は上記課題を解決するものである。   By the way, when the battery is overcharged, it is necessary to quickly increase the internal pressure of the battery in order to efficiently operate the current interruption mechanism. In order to quickly increase the internal pressure of the battery during overcharge, it is conceivable to increase the amount of the gas generating agent described above. However, since the gas generating agent functions as a resistance component of the battery, if the amount of the gas generating agent added is increased, battery performance (for example, input / output characteristics) may be a factor. The present invention solves the above problems.

本発明者は、鋭意検討した結果、過充電時に酸素を放出し得る正極活物質を用いることにより、過充電時における電池の内圧を効果的に上昇させることに思い至った。ただし、過充電時に酸素を放出し得るような正極活物質は耐湿性が劣るため、大気中に曝すと電池性能(例えば電池容量)が低下してしまう。そこで、さらに検討を進め、上記過充電時に酸素を放出し得る正極活物質を含む層(第1正極活物質層)を、より耐湿性が高い正極活物質を含む層(第2正極活物質層)で覆うことにより、電池性能を良好に維持しつつ、過充電時における電池の内圧を効果的に高め得ることを見出し、本発明を完成した。   As a result of intensive studies, the present inventor has come up with the idea of effectively increasing the internal pressure of the battery during overcharge by using a positive electrode active material capable of releasing oxygen during overcharge. However, since the positive electrode active material capable of releasing oxygen during overcharge has poor moisture resistance, battery performance (for example, battery capacity) is reduced when exposed to the atmosphere. Therefore, further investigation is conducted, and the layer containing the positive electrode active material (first positive electrode active material layer) capable of releasing oxygen during overcharge is replaced with the layer containing the positive electrode active material having higher moisture resistance (second positive electrode active material layer). ), It was found that the internal pressure of the battery during overcharge can be effectively increased while maintaining good battery performance, and the present invention has been completed.

即ち、本発明によって提供される二次電池は、正極および負極を備える二次電池である。
前記正極は、正極集電体と、前記正極集電体に保持された正極活物質層とを備える。前記正極活物質層は、前記正極集電体の上に形成された第1正極活物質層と、前記第1正極活物質層を覆うように、前記第1正極活物質層およびその周囲の前記正極集電体の上に形成された第2正極活物質層とを有する。そして、前記第1正極活物質層は、過充電時に酸素を放出し得る第1正極活物質を含み、前記第2正極活物質層は、前記第1正極活物質よりも耐湿性が高い第2正極活物質を含む。かかる構成によると、電池性能を良好に維持しつつ、過充電状態になったときに速やかに電池の内圧が上昇し、電流遮断機構を適切に作動させることができる。したがって、本発明によれば、高性能で、かつ、安定性に優れた二次電池を提供することができる。
That is, the secondary battery provided by the present invention is a secondary battery including a positive electrode and a negative electrode.
The positive electrode includes a positive electrode current collector and a positive electrode active material layer held by the positive electrode current collector. The positive electrode active material layer includes a first positive electrode active material layer formed on the positive electrode current collector, and the first positive electrode active material layer and the surroundings thereof so as to cover the first positive electrode active material layer. And a second positive electrode active material layer formed on the positive electrode current collector. The first positive electrode active material layer includes a first positive electrode active material capable of releasing oxygen during overcharge, and the second positive electrode active material layer has a second moisture resistance higher than that of the first positive electrode active material. Contains a positive electrode active material. According to this configuration, while maintaining the battery performance satisfactorily, the internal pressure of the battery quickly increases when the battery is overcharged, and the current interrupt mechanism can be appropriately operated. Therefore, according to the present invention, a secondary battery having high performance and excellent stability can be provided.

図1は、二次電池の構造の一例を示す図である。FIG. 1 is a diagram illustrating an example of the structure of a secondary battery. 図2は、正極シートの要部を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing the main part of the positive electrode sheet. 図3は、SOCと内圧との関係を示すグラフである。FIG. 3 is a graph showing the relationship between SOC and internal pressure.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。また、「リチウムイオン二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間のリチウムイオンの移動により充放電する二次電池をいう。また、電極活物質とは、電荷担体となる化学種(リチウムイオン二次電池ではリチウムイオン)を可逆的に吸蔵および放出し得る材料をいう。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. In the present specification, the “secondary battery” refers to a general power storage device that can be repeatedly charged and discharged, and is a term including a so-called storage battery such as a lithium ion secondary battery and a power storage element such as an electric double layer capacitor. The “lithium ion secondary battery” refers to a secondary battery that uses lithium ions as electrolyte ions and is charged and discharged by the movement of lithium ions between positive and negative electrodes. The electrode active material refers to a material capable of reversibly occluding and releasing chemical species (lithium ions in a lithium ion secondary battery) serving as a charge carrier.

以下、本発明の一実施形態に係る非水系二次電池を図面に基づいて説明する。なお、同じ作用を奏する部材、部位には適宜に同じ符号を付している。また、各図面は模式的に描かれており、必ずしも実物を反映していない。各図面は、一例を示すのみであり、特に言及されない限りにおいて本発明を限定しない。以下、リチウムイオン二次電池に本発明を適用する場合を例として、本発明の実施形態を説明するが、本発明の適用対象を限定する意図ではない。   Hereinafter, a non-aqueous secondary battery according to an embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected suitably to the member and site | part which show | play the same effect | action. Each drawing is schematically drawn and does not necessarily reflect the real thing. Each drawing shows an example only and does not limit the present invention unless otherwise specified. Hereinafter, embodiments of the present invention will be described by taking as an example the case where the present invention is applied to a lithium ion secondary battery, but it is not intended to limit the application target of the present invention.

図1は、本発明の一実施形態に係るリチウムイオン二次電池100を示している。このリチウムイオン二次電池100は、図1に示すように、捲回電極体20と電池ケース30とを備えている。本発明の一実施形態に係るリチウムイオン二次電池100は、図1に示すように、扁平形状の捲回電極体20が、図示しない液状電解質(電解液)とともに、扁平な角形の電池ケース(即ち外装容器)30に収容されている。   FIG. 1 shows a lithium ion secondary battery 100 according to an embodiment of the present invention. As shown in FIG. 1, the lithium ion secondary battery 100 includes a wound electrode body 20 and a battery case 30. As shown in FIG. 1, a lithium ion secondary battery 100 according to an embodiment of the present invention includes a flat rectangular battery case 20 having a flat wound electrode body 20 together with a liquid electrolyte (electrolytic solution) (not shown). That is, it is accommodated in the exterior container 30.

電池ケース30は、一端(電池の通常の使用状態における上端部に相当する。)に開口部を有する箱形(すなわち有底直方体状)のケース本体32と、その開口部に取り付けられて該開口部を塞ぐ矩形状プレート部材からなる蓋体34とから構成される。電池ケース30の材質は、例えばアルミニウムが例示される。図1に示すように、蓋体34には外部接続用の正極端子42および負極端子44が形成されている。蓋体34の両端子42、44の間には、安全弁36が形成されている。   The battery case 30 has a box-shaped (that is, bottomed rectangular parallelepiped) case body 32 having an opening at one end (corresponding to the upper end in a normal use state of the battery), and the opening attached to the opening. It is comprised from the cover body 34 which consists of a rectangular-shaped plate member which plugs up a part. The material of the battery case 30 is exemplified by aluminum, for example. As shown in FIG. 1, a positive electrode terminal 42 and a negative electrode terminal 44 for external connection are formed on the lid 34. A safety valve 36 is formed between both terminals 42 and 44 of the lid 34.

捲回電極体20は、長尺なシート状正極(正極シート50)と、該正極シート50と同様の長尺シート状負極(負極シート60)とを計二枚の長尺シート状セパレータ(セパレータ70)とを備えている。   The wound electrode body 20 includes a long sheet-like positive electrode (positive electrode sheet 50) and a long sheet-like negative electrode (negative electrode sheet 60) similar to the positive electrode sheet 50, in total, two long sheet-like separators (separators). 70).

正極シート50は、帯状の正極集電体52と正極活物質層54とを備えている。正極集電体52には、例えば、厚さが凡そ15μmの帯状のアルミニウム箔が用いられている。正極集電体52の幅方向片側の縁部に沿って正極活物質層非形成部52aが設定されている。図示例では、正極活物質層54は、正極集電体52に設定された正極活物質層非形成部52aを除いて、正極集電体52の両面に保持されている。正極活物質層54には、正極活物質や導電材やバインダが含まれている。ここでは、正極活物質層54は、正極活物質を含む正極合剤(ペースト)を正極集電体52に塗布し、乾燥させ、予め定められた厚さにプレスすることによって形成されている。   The positive electrode sheet 50 includes a strip-shaped positive electrode current collector 52 and a positive electrode active material layer 54. For the positive electrode current collector 52, for example, a strip-shaped aluminum foil having a thickness of about 15 μm is used. A positive electrode active material layer non-forming portion 52 a is set along an edge portion on one side in the width direction of the positive electrode current collector 52. In the illustrated example, the positive electrode active material layer 54 is held on both surfaces of the positive electrode current collector 52 except for the positive electrode active material layer non-forming portion 52 a set in the positive electrode current collector 52. The positive electrode active material layer 54 includes a positive electrode active material, a conductive material, and a binder. Here, the positive electrode active material layer 54 is formed by applying a positive electrode mixture (paste) containing a positive electrode active material to the positive electrode current collector 52, drying it, and pressing it to a predetermined thickness.

ここで、図2は、正極シート50の断面を示す模式図である。この実施形態では、正極活物質層54は、第1正極活物質層54aと第2正極活物質層54bとの少なくとも2層構造を有している。この正極活物質層54については、後でより詳細に説明する。   Here, FIG. 2 is a schematic view showing a cross section of the positive electrode sheet 50. In this embodiment, the positive electrode active material layer 54 has at least a two-layer structure of a first positive electrode active material layer 54a and a second positive electrode active material layer 54b. The positive electrode active material layer 54 will be described in detail later.

負極シート60は、帯状の負極集電体62と負極活物質層64とを備えている。負極集電体62には、例えば、厚さが凡そ10μmの帯状の銅箔が用いられている。負極集電体62の幅方向片側には、縁部に沿って負極活物質層非形成部62aが設定されている。負極活物質層64は、負極集電体62に設定された負極活物質層非形成部62aを除いて、負極集電体62の両面に保持されている。負極活物質層64には、負極活物質や増粘剤やバインダなどが含まれている。   The negative electrode sheet 60 includes a strip-shaped negative electrode current collector 62 and a negative electrode active material layer 64. For the negative electrode current collector 62, for example, a strip-shaped copper foil having a thickness of about 10 μm is used. On one side in the width direction of the negative electrode current collector 62, a negative electrode active material layer non-formation part 62a is set along the edge. The negative electrode active material layer 64 is held on both surfaces of the negative electrode current collector 62 except for the negative electrode active material layer non-forming portion 62 a set in the negative electrode current collector 62. The negative electrode active material layer 64 includes a negative electrode active material, a thickener, a binder, and the like.

負極活物質としては、従来からリチウムイオン二次電池に用いられる物質の一種または二種以上を特に限定なく使用することができる。好適例として、グラファイトカーボンなどの炭素系材料が挙げられる。そして正極と同様、かかる負極活物質を、PVDF、SBR、CMC(増粘剤としても機能し得る)等のバインダとともに適当な分散媒体に分散させて混練することによって、負極合剤(ペースト)を調製することができる。負極活物質層64は、この負極合剤を負極集電体62に塗布し、乾燥させ、予め定められた厚さにプレスすることによって形成されている。   As the negative electrode active material, one type or two or more types of materials conventionally used in lithium ion secondary batteries can be used without any particular limitation. Preferable examples include carbon-based materials such as graphite carbon. And like a positive electrode, this negative electrode active material is disperse | distributed to a suitable dispersion medium with binders, such as PVDF, SBR, and CMC (it can function also as a thickener), and knead | mixing a negative electrode mixture (paste). Can be prepared. The negative electrode active material layer 64 is formed by applying this negative electrode mixture to the negative electrode current collector 62, drying it, and pressing it to a predetermined thickness.

セパレータ70は、正極シート50と負極シート60とを隔てる部材である。この例では、セパレータ70は、微小な孔を複数有する所定幅の帯状の基材から構成されている。該基材には、例えば、多孔質ポリオレフィン系樹脂で構成された単層構造(例えばポリエチレンの単層構造)のシート材、或いは積層構造(例えばポリプロピレンとポリエチレンとポリプロピレンの3層構造)のシート材を用いることができる。   The separator 70 is a member that separates the positive electrode sheet 50 and the negative electrode sheet 60. In this example, the separator 70 is composed of a strip-shaped base material having a predetermined width and having a plurality of minute holes. Examples of the base material include a sheet material having a single layer structure (for example, a single layer structure of polyethylene) made of a porous polyolefin-based resin, or a sheet material having a laminated structure (for example, a three-layer structure of polypropylene, polyethylene, and polypropylene). Can be used.

捲回電極体20は、電池ケース30(この例では、蓋体34)に取り付けられた電極端子42、44に取り付けられている。捲回電極体20は、捲回軸に直交する一の方向において扁平に押し曲げられた状態で電池ケース30に収納されている。また、捲回電極体20は、捲回軸方向において、正極シート50の正極活物質層非形成部52aと負極シート60の負極活物質層非形成部62aとが互いに反対側にはみ出ている。このうち、一方の電極端子42は、正極集電体52の正極活物質層非形成部52aに正極集電タブ42aを介して固定されており、他方の電極端子44は、負極集電体62の負極活物質層非形成部62aに負極集電タブ44aを介して固定されている。かかる捲回電極体20は、ケース本体32の扁平な内部空間に収容される。ケース本体32は、捲回電極体20が収容された後、蓋体34によって塞がれる。   The wound electrode body 20 is attached to electrode terminals 42 and 44 attached to the battery case 30 (in this example, the lid body 34). The wound electrode body 20 is housed in the battery case 30 in a state where the wound electrode body 20 is flatly pushed and bent in one direction orthogonal to the winding axis. In the wound electrode body 20, the positive electrode active material layer non-formed portion 52 a of the positive electrode sheet 50 and the negative electrode active material layer non-formed portion 62 a of the negative electrode sheet 60 protrude on the opposite sides in the winding axis direction. Among these, one electrode terminal 42 is fixed to the positive electrode active material layer non-forming portion 52 a of the positive electrode current collector 52 via the positive electrode current collector tab 42 a, and the other electrode terminal 44 is the negative electrode current collector 62. The negative electrode active material layer non-forming portion 62a is fixed via a negative electrode current collecting tab 44a. The wound electrode body 20 is accommodated in the flat internal space of the case body 32. The case body 32 is closed by the lid 34 after the wound electrode body 20 is accommodated.

電解液(非水電解液)としては、従来からリチウムイオン二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる非水電解液は、典型的には、適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、等を用いることができる。また、上記支持塩としては、例えば、LiPF等のリチウム塩を用いることができる。 As the electrolytic solution (non-aqueous electrolytic solution), the same non-aqueous electrolytic solution conventionally used for lithium ion secondary batteries can be used without any particular limitation. Such a nonaqueous electrolytic solution typically has a composition in which a supporting salt is contained in a suitable nonaqueous solvent. As the non-aqueous solvent, for example, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, or the like can be used. Moreover, as said support salt, lithium salts, such as LiPF 6 , can be used, for example.

非水電解液には、電池電圧が予め定められた電圧以上になると反応し、ガスを発生させるガス発生剤が含まれている。かかるガス発生剤としては、例えば、シクロヘキシルベンゼン(CHB)やビフェニル(BP)などを用いることができる。シクロヘキシルベンゼン(CHB)とビフェニル(BP)は、例えば、例えば、凡そ4.35Vから4.6V程度の過充電時において、重合反応が活性化し、ガス(ここでは、水素ガス)を発生させる。非水電解液に対するガス発生剤の添加量は、例えば、凡そ0.05質量%以上10質量%以下にするとよい。CHBの添加量は、例えば、凡そ1質量%以上5質量%以下(例えば4±1質量%)にするとよい。BPの添加量は、例えば、凡そ0.1質量%以上2質量%以下(例えば1±0.5質量%)にするとよい。なお、ガス発生剤の添加量は、これに限定されず、予め定めた条件で所定量のガスが生じるように調整するとよい。また、ガス発生剤は、シクロヘキシルベンゼン(CHB)とビフェニル(BP)に限定されない。   The non-aqueous electrolyte contains a gas generating agent that reacts and generates gas when the battery voltage becomes equal to or higher than a predetermined voltage. As such a gas generating agent, for example, cyclohexylbenzene (CHB) or biphenyl (BP) can be used. For example, when cyclohexylbenzene (CHB) and biphenyl (BP) are overcharged at about 4.35V to 4.6V, for example, the polymerization reaction is activated, and gas (here, hydrogen gas) is generated. The amount of the gas generating agent added to the non-aqueous electrolyte is preferably about 0.05% by mass or more and 10% by mass or less, for example. The amount of CHB added may be, for example, about 1% by mass to 5% by mass (eg, 4 ± 1% by mass). For example, the amount of BP added is preferably about 0.1% by mass to 2% by mass (eg, 1 ± 0.5% by mass). In addition, the addition amount of a gas generating agent is not limited to this, It is good to adjust so that a predetermined amount of gas may be generated on predetermined conditions. Further, the gas generating agent is not limited to cyclohexylbenzene (CHB) and biphenyl (BP).

また、このリチウムイオン二次電池100は、電流遮断機構90を備えている。電流遮断機構90は、電池ケース内の圧力が異常に高くなった場合に、電流経路を遮断する機構である。この実施形態では、電流遮断機構90は、図1に示すように、正極における電池電流の導通経路が遮断されるように、正極端子42の内側に構築されている。   Further, the lithium ion secondary battery 100 includes a current interruption mechanism 90. The current interruption mechanism 90 is a mechanism that interrupts the current path when the pressure in the battery case becomes abnormally high. In this embodiment, as shown in FIG. 1, the current interruption mechanism 90 is constructed inside the positive electrode terminal 42 so that the conduction path of the battery current in the positive electrode is interrupted.

以下、正極活物質層54について、より詳細に説明する。   Hereinafter, the positive electrode active material layer 54 will be described in more detail.

図2は、正極シート50の断面を示す模式図であり、正極集電体52とその一方の側に形成された正極活物質層54とを示したものである。正極集電体52の他方の側に形成された正極活物質層54については同様の構成であるため、図示および説明は省略する。正極活物質層54は、図2に示すように、第1正極活物質層54aと第2正極活物質層54bとを備えている。以下、第1正極活物質層54a、第2正極活物質層54bの順に説明する。   FIG. 2 is a schematic view showing a cross section of the positive electrode sheet 50, showing the positive electrode current collector 52 and the positive electrode active material layer 54 formed on one side thereof. Since the positive electrode active material layer 54 formed on the other side of the positive electrode current collector 52 has the same configuration, illustration and description thereof are omitted. As shown in FIG. 2, the positive electrode active material layer 54 includes a first positive electrode active material layer 54a and a second positive electrode active material layer 54b. Hereinafter, the first positive electrode active material layer 54a and the second positive electrode active material layer 54b will be described in this order.

第1正極活物質層54aは、正極集電体52の上に形成されている。第1正極活物質層54aは、図示しない第1正極活物質と導電材とバインダとを含んでいる。第1正極活物質には、過充電時に酸素を放出し得る物質が用いられている。   The first positive electrode active material layer 54 a is formed on the positive electrode current collector 52. The first positive electrode active material layer 54a includes a first positive electrode active material, a conductive material, and a binder (not shown). As the first positive electrode active material, a material capable of releasing oxygen during overcharge is used.

第1正極活物質としては、リチウムを吸蔵・放出可能であり、かつ、過充電時に酸素を放出し得る物質であればよい。また、過充電時にのみ酸素を放出し得る正極活物質を用いることが好ましい。さらに、後述する第2正極活物質層54bに用いられる第2正極活物質に比べて、単位質量当りの充電容量密度(充電エネルギー密度)が高く、電池容量の増大に寄与し得る正極活物質であることが好ましい。このような条件を満たす正極活物質を特に制限なく用いることができる。かかる正極活物質としては、LiNiO、LiFeO、LiCuO、LiCoO等のリチウム遷移金属複合酸化物が例示される。これら複合酸化物は、充電エネルギー密度が高く、かつ、過充電時にはLi放出に伴うカチオンの価数変化が追いつかず酸素を放出するため、本発明の目的に適した第1正極活物質として好適に使用し得る。これら複合酸化物の一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The first positive electrode active material may be any material that can occlude and release lithium and can release oxygen during overcharge. It is also preferable to use a positive electrode active material that can release oxygen only during overcharge. Furthermore, it is a positive electrode active material that has a higher charge capacity density (charge energy density) per unit mass than the second positive electrode active material used for the second positive electrode active material layer 54b described later, and can contribute to an increase in battery capacity. Preferably there is. A positive electrode active material that satisfies such conditions can be used without particular limitation. Examples of the positive electrode active material include lithium transition metal composite oxides such as Li 2 NiO 2 , Li 5 FeO 4 , Li 2 CuO 2 , and Li 6 CoO 4 . Since these composite oxides have a high charge energy density and do not catch up with the change in the valence of the cation associated with Li release during overcharge, they release oxygen, which is suitable as the first positive electrode active material suitable for the purpose of the present invention. Can be used. One kind of these complex oxides may be used alone, or two or more kinds may be used in combination.

第2正極活物質層54bは、第1正極活物質層54aを覆うように、第1正極活物質層54aおよびその周囲の正極集電体52の上に形成されている。第2正極活物質層54bは、第1正極活物質層54aが露出しないように、第1正極活物質層54a全体を覆っている。第2正極活物質層54bは、図示しない第2正極活物質と導電材とバインダとを含んでいる。第2正極活物質には、第1正極活物質よりも耐湿性が高い物質が用いられている。   The second positive electrode active material layer 54b is formed on the first positive electrode active material layer 54a and the positive electrode current collector 52 around it so as to cover the first positive electrode active material layer 54a. The second positive electrode active material layer 54b covers the entire first positive electrode active material layer 54a so that the first positive electrode active material layer 54a is not exposed. The second positive electrode active material layer 54b includes a second positive electrode active material, a conductive material, and a binder (not shown). A material having higher moisture resistance than the first positive electrode active material is used for the second positive electrode active material.

第2正極活物質としては、リチウムを吸蔵・放出可能であり、かつ、第1正極活物質よりも耐湿性が高い物質であればよい。また、第1正極活物質よりも電気伝導性が高い(典型的には負荷特性に優れる電池を構築するのに資する)正極活物質を用いることが好ましい。さらに、第1正極活物質よりも耐久性が高い(典型的にはサイクル特性に優れる電池を構築するのに資する)正極活物質であることが好ましい。このような条件を満たす正極活物質を特に制限なく用いることができる。かかる正極活物質としては、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO等のリチウム遷移金属複合酸化物が例示される。これら複合酸化物は、前述した第1正極活物質よりも耐湿性が高く、なおかつサイクル特性および負荷特性に優れるため、本発明の目的に適した第2正極活物質として好適に使用し得る。これら複合酸化物の一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The second positive electrode active material may be any material that can occlude and release lithium and has higher moisture resistance than the first positive electrode active material. Further, it is preferable to use a positive electrode active material having higher electrical conductivity than the first positive electrode active material (typically contributing to the construction of a battery having excellent load characteristics). Furthermore, a positive electrode active material having higher durability than the first positive electrode active material (typically contributing to construction of a battery having excellent cycle characteristics) is preferable. A positive electrode active material that satisfies such conditions can be used without particular limitation. Examples of the positive electrode active material include lithium transition metal composite oxides such as LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNiO 2 , and LiCoO 2 . Since these composite oxides have higher moisture resistance than the first positive electrode active material described above and are excellent in cycle characteristics and load characteristics, they can be suitably used as a second positive electrode active material suitable for the purpose of the present invention. One kind of these complex oxides may be used alone, or two or more kinds may be used in combination.

なお、第1正極活物質および第2正極活物質の耐湿性の大小関係は、耐湿試験により把握することができる。例えば、第1正極活物質および第2正極活物質をそれぞれ単独で用いた正極を作製し、温度60℃、湿度90%の恒温槽に48時間保存する耐湿試験を実施するとよい。そして、上記耐湿試験前後の正極を用いてコインセルを構築し、耐湿試験前後における電池容量を測定して容量劣化率=[(耐湿試験前の電池容量−耐湿試験後の電池容量)/耐湿試験前の電池容量]×100を算出する。この場合、耐湿性の大小は、上記容量劣化率の大小と逆転する関係として把握され得る。すなわち、上記容量劣化率が小さければ小さいほど、耐湿性が高いと把握され得る。   In addition, the magnitude relationship of the moisture resistance of a 1st positive electrode active material and a 2nd positive electrode active material can be grasped | ascertained by a moisture resistance test. For example, a positive electrode using each of the first positive electrode active material and the second positive electrode active material may be prepared, and a moisture resistance test may be performed in which the positive electrode active material is stored in a constant temperature bath at a temperature of 60 ° C. and a humidity of 90% for 48 hours. Then, a coin cell is constructed using the positive electrode before and after the moisture resistance test, the battery capacity before and after the moisture resistance test is measured, and the capacity deterioration rate = [(battery capacity before the moisture resistance test−battery capacity after the moisture resistance test) / before the moisture resistance test. Battery capacity] × 100. In this case, the magnitude of the moisture resistance can be grasped as a relationship that reverses the magnitude of the capacity deterioration rate. That is, it can be understood that the smaller the capacity deterioration rate, the higher the moisture resistance.

かかる構成のリチウムイオン二次電池では、前述のように、正極集電体52の上に形成された第1正極活物質層54aと、第1正極活物質層54aを覆うように、第1正極活物質層54aおよびその周囲の正極集電体52の上に形成された第2正極活物質層54bと
を有する。そして、第1正極活物質層54aは、過充電時に酸素を放出し得る第1正極活物質を含み、第2正極活物質層54bは、前記第1正極活物質よりも耐湿性が高い第2正極活物質を含む。このように、第1正極活物質層54aにおいて過充電時に酸素を放出し得る第1正極活物質を用いることにより、過充電時における電池ケースの内圧を効果的に高めることができる。そのため、過充電状態になったときに速やかに電池ケースの内圧が上昇し、電流遮断機構90(図1)を適切に作動させることができる。また、第1正極活物質は耐湿性が劣りがちであるところ、より耐湿性が高い第2正極活物質を含む第2正極活物質層54bで第1正極活物質層54aを覆っているので、電池の性能劣化(例えば容量劣化)を防止することができる。したがって、本構成によれば、高性能で、かつ安定性に優れた二次電池を提供することができる。
In the lithium ion secondary battery having such a configuration, as described above, the first positive electrode active material layer 54a formed on the positive electrode current collector 52 and the first positive electrode active material layer 54a are covered so as to cover the first positive electrode active material layer 54a. An active material layer 54a and a second positive electrode active material layer 54b formed on the positive electrode current collector 52 around the active material layer 54a. The first positive electrode active material layer 54a includes a first positive electrode active material capable of releasing oxygen during overcharge, and the second positive electrode active material layer 54b has a second moisture resistance higher than that of the first positive electrode active material. Contains a positive electrode active material. Thus, by using the first positive electrode active material that can release oxygen during overcharge in the first positive electrode active material layer 54a, the internal pressure of the battery case during overcharge can be effectively increased. Therefore, when the battery is overcharged, the internal pressure of the battery case quickly increases, and the current interrupt mechanism 90 (FIG. 1) can be appropriately operated. Further, since the first positive electrode active material tends to be inferior in moisture resistance, the second positive electrode active material layer 54b containing the second positive electrode active material having higher moisture resistance covers the first positive electrode active material layer 54a. Battery performance deterioration (for example, capacity deterioration) can be prevented. Therefore, according to this configuration, it is possible to provide a secondary battery having high performance and excellent stability.

ここで開示される技術の好ましい一態様では、図2に示すように、第2正極活物質層54bの厚みT2が、第1正極活物質層54bの厚みT1よりも厚い。例えば、第2正極活物質層54bの厚みT2は、第1正極活物質層54bの厚みT1よりも厚ければよく、例えば30μm〜100μm程度であり、好ましくは50μm〜80μmである。また、第1正極活物質層54bの厚みT1は、第2正極活物質層54bの厚みT2よりも薄ければよく、例えば、第2正極活物質層54bの厚みT2の凡そ1/10〜2/3程度であり、好ましくは1/5〜1/2であり、より好ましくは1/4〜1/3である。このような第2正極活物質層54bおよび第1正極活物質層54bの厚みの範囲内であると、第2正極活物質層54bで第1正極活物質層54bを適切に保護することができる。   In a preferred embodiment of the technology disclosed herein, as shown in FIG. 2, the thickness T2 of the second positive electrode active material layer 54b is thicker than the thickness T1 of the first positive electrode active material layer 54b. For example, the thickness T2 of the second positive electrode active material layer 54b may be thicker than the thickness T1 of the first positive electrode active material layer 54b, and is, for example, about 30 μm to 100 μm, and preferably 50 μm to 80 μm. The thickness T1 of the first positive electrode active material layer 54b only needs to be smaller than the thickness T2 of the second positive electrode active material layer 54b. For example, approximately 1/10 to 2 of the thickness T2 of the second positive electrode active material layer 54b. / 3, preferably 1/5 to 1/2, more preferably 1/4 to 1/3. When the thickness is within the thickness range of the second positive electrode active material layer 54b and the first positive electrode active material layer 54b, the first positive electrode active material layer 54b can appropriately protect the first positive electrode active material layer 54b. .

ここで開示される技術の好ましい一態様では、第2正極活物質層54bの塗工幅W2が、第1正極活物質層54bの塗工幅W1よりも広い。例えば、第2正極活物質層54bの塗工幅W2は、第1正極活物質層54bの塗工幅W1よりも広ければよく、例えば10cm〜30cm程度であり、好ましくは15cm〜20cmである。また、第1正極活物質層54bの塗工幅W1は、第2正極活物質層54bの塗工幅W2よりも狭ければよく、例えば3cm〜10cm程度であり、好ましくは5cm〜8cmである。このような第2正極活物質層54bおよび第1正極活物質層54bの塗工幅の範囲内であると、第2正極活物質層54bで第1正極活物質層54bを適切に保護することができる。   In a preferred embodiment of the technology disclosed herein, the coating width W2 of the second positive electrode active material layer 54b is wider than the coating width W1 of the first positive electrode active material layer 54b. For example, the coating width W2 of the second positive electrode active material layer 54b may be wider than the coating width W1 of the first positive electrode active material layer 54b, for example, about 10 cm to 30 cm, and preferably 15 cm to 20 cm. Moreover, the coating width W1 of the 1st positive electrode active material layer 54b should just be narrower than the coating width W2 of the 2nd positive electrode active material layer 54b, for example, is about 3 cm-10 cm, Preferably it is 5 cm-8 cm. . When the coating width of the second positive electrode active material layer 54b and the first positive electrode active material layer 54b is within such a range, the second positive electrode active material layer 54b appropriately protects the first positive electrode active material layer 54b. Can do.

なお、正極活物質層54全体では、正極活物質層54の幅方向の中央部Cには第1正極活物質層54bが存在するが、正極活物質層54の幅方向の両端部Eには第1正極活物質層54bが存在しない。そのため、正極活物質層54は、幅方向の中央部Cと両端部Eとで単位面積当たりの充電容量が異なる。このように正極内で充電容量の分布に偏りがあると、負極上で部分的にLiの析出が起こり、電池性能が低下する要因になり得る。このような不都合を解消するため、第1正極活物質層54bの単位長さ当たり(正極シートの長手方向における単位長さ当たり)の充電容量は、第1正極活物質層54aの単位長さ当たりの充電容量は、第2正極活物質層54bの単位長さ当たりの充電容量の5%以下(例えば1%〜5%、好ましくは3%以下)となるように各正極活物質層54a、54bの目付量を調整することが望ましい。   In the positive electrode active material layer 54 as a whole, the first positive electrode active material layer 54b exists in the central portion C in the width direction of the positive electrode active material layer 54, but at both ends E in the width direction of the positive electrode active material layer 54 The first positive electrode active material layer 54b does not exist. Therefore, the positive electrode active material layer 54 has different charge capacities per unit area at the central portion C and both end portions E in the width direction. If the charge capacity distribution is uneven in the positive electrode as described above, Li may partially precipitate on the negative electrode, which may be a factor in reducing battery performance. In order to eliminate such an inconvenience, the charging capacity per unit length of the first positive electrode active material layer 54b (per unit length in the longitudinal direction of the positive electrode sheet) is set to be per unit length of the first positive electrode active material layer 54a. The positive electrode active material layers 54a and 54b have a charge capacity of 5% or less (for example, 1% to 5%, preferably 3% or less) of the charge capacity per unit length of the second positive electrode active material layer 54b. It is desirable to adjust the weight per unit area.

第1正極活物質層54aおよび第2正極活物質層54bに用いられる導電材としては、アセチレンブラック(AB)、ケッチェンブラック等のカーボンブラックやその他(グラファイト等)の粉末状カーボン材料が例示される。また、第1正極活物質層54aおよび第2正極活物質層54bに用いられるバインダとしては、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンラバー(SBR)、カルボキシメチルセルロース(CMC)等が例示される。   Examples of the conductive material used for the first positive electrode active material layer 54a and the second positive electrode active material layer 54b include carbon black such as acetylene black (AB) and ketjen black and other powdery carbon materials (graphite and the like). The Examples of the binder used for the first positive electrode active material layer 54a and the second positive electrode active material layer 54b include polyvinylidene fluoride (PVDF), styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC).

第1正極活物質層54aおよび第2正極活物質層54bを備えた正極を用いて評価用セルを構築し、正極の耐湿性を評価した。以下、具体的な方法を示す。   An evaluation cell was constructed using the positive electrode provided with the first positive electrode active material layer 54a and the second positive electrode active material layer 54b, and the moisture resistance of the positive electrode was evaluated. A specific method will be described below.

<実施例1>
本例では、第1正極活物質をLiNiOとし、第2正極活物質をLiNi1/3Co1/3Mn1/3(充電容量:158mAh/g)とした。
<Example 1>
In this example, the first positive electrode active material was Li 2 NiO 2 and the second positive electrode active material was LiNi 1/3 Co 1/3 Mn 1/3 O 2 (charge capacity: 158 mAh / g).

第1正極活物質としてのLiNiOは、次のようにして作製した。まず、試薬のLiO粉末と試薬のNiO粉末とを1:1のモル比で混合し、乳鉢で20分間粉砕混合した後、プレス成形により直径20mm×厚み5mmの円柱ペレットを作成した。このペレットを窒素雰囲気下800℃で12時間焼成した。焼成後のペレットを乳鉢で粉砕し、緑色の粉末を得た。この粉末のX線回折パターンからLiNiOであることを確認した。得られたLiNiO92質量部と、PVDF3質量部と、AB4質量部とを混合してペーストを調製し、アルミ箔上に塗布した後、300kg重でプレスして正極を作製した。この正極と負極(Li金属)とを用いてコインセルを構築し、4.1V〜2.5Vの範囲で充放電させることによりLiNiOの充電容量を求めた。結果を表1に示す。 Li 2 NiO 2 as the first positive electrode active material was produced as follows. First, the reagent LiO 2 powder and the reagent NiO 2 powder were mixed at a molar ratio of 1: 1, pulverized and mixed in a mortar for 20 minutes, and then a cylindrical pellet having a diameter of 20 mm and a thickness of 5 mm was formed by press molding. The pellet was fired at 800 ° C. for 12 hours in a nitrogen atmosphere. The fired pellets were pulverized in a mortar to obtain a green powder. From the X-ray diffraction pattern of this powder, it was confirmed to be Li 2 NiO 2 . 92 parts by mass of Li 2 NiO 2 obtained, 3 parts by mass of PVDF, and 4 parts by mass of AB were mixed to prepare a paste, which was applied onto an aluminum foil, and then pressed with 300 kg weight to produce a positive electrode. A coin cell was constructed using the positive electrode and the negative electrode (Li metal), and the charge capacity of Li 2 NiO 2 was determined by charging and discharging in the range of 4.1 V to 2.5 V. The results are shown in Table 1.

上記充電容量測定と同様のペーストをアルミ箔(正極集電体:厚み15μm、幅20cm)上に塗工幅7cmで塗布し、120℃で10分間乾燥させることにより、正極集電体の上に第1正極活物質層を形成した。また、第1正極活物質層を覆うように、第2正極活物質としてのLiNi1/3Co1/3Mn1/3を含むペースト(LiNi1/3Co1/3Mn1/392質量部、PVDF3質量部、AB4質量部)を、第1正極活物質層およびその周囲の正極集電体の上に塗工幅17cmで塗布し、120℃で10分間乾燥させることにより、第1正極活物質層の上に第2正極活物質層を形成した。その後、ロールプレスにより正極活物質層全体の厚み(片面)が60μmとなるようにプレスした。第1正極活物質層および第2正極活物質層の目付量、第1正極活物質層の単位長さ当たりの充電容量に対する第2正極活物質層の単位長さ当たりの充電容量の比を表1に示す。なお、上記第1正極活物質層および第2正極活物質層の形成は、正極集電体の裏面も同様に行った。このようにして実施例1に係る正極を得た。 The same paste as the above-mentioned charge capacity measurement was applied on an aluminum foil (positive electrode current collector: thickness 15 μm, width 20 cm) with a coating width of 7 cm, and dried at 120 ° C. for 10 minutes, so that it was applied on the positive electrode current collector. A first positive electrode active material layer was formed. In addition, a paste containing LiNi 1/3 Co 1/3 Mn 1/3 O 2 as the second positive electrode active material (LiNi 1/3 Co 1/3 Mn 1/3 so as to cover the first positive electrode active material layer. By coating O 2 92 parts by mass, PVDF 3 parts by mass, AB 4 parts by mass on the first positive electrode active material layer and the surrounding positive electrode current collector with a coating width of 17 cm and drying at 120 ° C. for 10 minutes. Then, a second positive electrode active material layer was formed on the first positive electrode active material layer. Then, it pressed so that the thickness (one side) of the whole positive electrode active material layer might be set to 60 micrometers by roll press. The basis weight of the first positive electrode active material layer and the second positive electrode active material layer, and the ratio of the charge capacity per unit length of the second positive electrode active material layer to the charge capacity per unit length of the first positive electrode active material layer are shown. It is shown in 1. The first positive electrode active material layer and the second positive electrode active material layer were formed on the back surface of the positive electrode current collector in the same manner. In this way, a positive electrode according to Example 1 was obtained.

<実施例2>
第1正極活物質をLiFeOとしたこと以外は実施例1と同様の手順で正極を作製した。第1正極活物質としてのLiFeOは、次のようにして作製した。まず、試薬のLiO粉末と試薬のFe粉末とを5:1のモル比で混合し、乳鉢で20分間粉砕混合した後、プレス成形により直径20mm×厚み5mmの円柱ペレットを作成した。このペレットを窒素雰囲気下900℃で12時間焼成した。焼成後のペレットを乳鉢で粉砕し、黄白色の粉末を得た。この粉末のX線回折パターンからLiFeOであることを確認した。
<Example 2>
A positive electrode was produced in the same procedure as in Example 1 except that the first positive electrode active material was Li 5 FeO 4 . Li 5 FeO 4 as the first positive electrode active material was produced as follows. First, the reagent LiO 2 powder and the reagent Fe 2 O 3 powder were mixed at a molar ratio of 5: 1, pulverized and mixed in a mortar for 20 minutes, and then a cylindrical pellet having a diameter of 20 mm and a thickness of 5 mm was formed by press molding. . The pellet was fired at 900 ° C. for 12 hours in a nitrogen atmosphere. The fired pellets were pulverized in a mortar to obtain a yellowish white powder. From the X-ray diffraction pattern of this powder, it was confirmed to be Li 5 FeO 4 .

<実施例3>
第1正極活物質をLiCoOとしたこと以外は実施例1と同様の手順で正極を作製した。第1正極活物質としてのLiCoOは、次のようにして作製した。まず、試薬のLiO粉末と試薬のCo(OH)粉末とを3:1のモル比で混合し、乳鉢で20分間粉砕混合した後、プレス成形により直径20mm×厚み5mmの円柱ペレットを作成した。このペレットを窒素雰囲気下850℃で12時間焼成した。焼成後のペレットを乳鉢で粉砕し、青色の粉末を得た。この粉末のX線回折パターンからLiCoOであることを確認した。
<Example 3>
A positive electrode was produced in the same procedure as in Example 1 except that the first positive electrode active material was Li 6 CoO 4 . Li 6 CoO 4 as the first positive electrode active material was produced as follows. First, a reagent LiO 2 powder and a reagent Co (OH) 2 powder are mixed at a molar ratio of 3: 1, pulverized and mixed in a mortar for 20 minutes, and then a cylindrical pellet having a diameter of 20 mm and a thickness of 5 mm is formed by press molding. did. The pellet was fired at 850 ° C. for 12 hours in a nitrogen atmosphere. The fired pellets were pulverized in a mortar to obtain a blue powder. From the X-ray diffraction pattern of this powder, it was confirmed to be Li 6 CoO 4 .

<実施例4>
第1正極活物質をLiCuOとしたこと以外は実施例1と同様の手順で正極を作製した。第1正極活物質としてのLiCuOは、次のようにして作製した。まず、試薬のLiO粉末と試薬のCuO粉末とを2:1のモル比で混合し、乳鉢で20分間粉砕混合した後、プレス成形により直径20mm×厚み5mmの円柱ペレットを作成した。このペレットを窒素雰囲気下750℃で12時間焼成した。焼成後のペレットを乳鉢で粉砕し、灰色の粉末を得た。この粉末のX線回折パターンからLiCuOであることを確認した。
<Example 4>
A positive electrode was produced in the same procedure as in Example 1 except that the first positive electrode active material was Li 2 CuO 2 . Li 2 CuO 2 as the first positive electrode active material was produced as follows. First, the reagent LiO 2 powder and the reagent CuO powder were mixed at a molar ratio of 2: 1, pulverized and mixed for 20 minutes in a mortar, and then a cylindrical pellet having a diameter of 20 mm and a thickness of 5 mm was formed by press molding. The pellet was fired at 750 ° C. for 12 hours in a nitrogen atmosphere. The fired pellets were pulverized in a mortar to obtain a gray powder. It was confirmed that the X-ray diffraction pattern of this powder is Li 2 CuO 2.

<比較例1>
本例では、第1正極活物質層を形成せずに、第2正極活物質層のみとしたこと以外は実施例1と同様の手順で正極を作製した。
<Comparative Example 1>
In this example, a positive electrode was produced in the same procedure as in Example 1 except that the first positive electrode active material layer was not formed and only the second positive electrode active material layer was used.

<比較例2〜5>
比較例2〜5では、第1正極活物質層を上層とし、第2正極活物質層を下層とした正極を作製した。具体的には、比較例2〜5では、第2正極活物質層を正極集電体の上に塗工幅17cmで形成した後、その上に第1正極活物質層を塗工幅17cmで形成した。それ以外は実施例1〜4と同じ条件とした(表1参照)。
<Comparative Examples 2-5>
In Comparative Examples 2 to 5, positive electrodes having the first positive electrode active material layer as an upper layer and the second positive electrode active material layer as a lower layer were produced. Specifically, in Comparative Examples 2 to 5, after the second positive electrode active material layer was formed on the positive electrode current collector with a coating width of 17 cm, the first positive electrode active material layer was applied thereon with a coating width of 17 cm. Formed. The other conditions were the same as in Examples 1 to 4 (see Table 1).

<比較例6>
第1正極活物質層の目付量を表1のように変更したこと以外は実施例1と同様の手順で正極を作製した。
<Comparative Example 6>
A positive electrode was produced in the same procedure as in Example 1 except that the basis weight of the first positive electrode active material layer was changed as shown in Table 1.

<耐湿性評価>
各例の正極を温度60℃、湿度90%の恒温槽に48時間保存する耐湿試験を実施した。また、上記耐湿試験前後の正極を用いてコインセルを構築し、耐湿試験前後における電池容量を測定した。そして、容量劣化率=[(耐湿試験前の電池容量−耐湿試験後の電池容量)/耐湿試験前の電池容量]×100を算出した。ここで、負極には、負極活物質としてのアモルファスコートグラファイトとCMCとSBRとを98:1:1の質量比で水と共に混練してペーストを調製し、このペーストを銅箔(負極集電体:厚み10μm)の両面に目付量14.7mg/cmで塗布、乾燥させることにより、負極集電体の両面に負極活物質層を形成したものを使用した。負極活物質層の密度は1.3g/cmとなるように調整した。結果を表2に示す。
<Moisture resistance evaluation>
A moisture resistance test was carried out in which the positive electrode of each example was stored in a thermostatic chamber at a temperature of 60 ° C. and a humidity of 90% for 48 hours. Moreover, the coin cell was constructed | assembled using the positive electrode before and behind the said moisture resistance test, and the battery capacity before and behind a moisture resistance test was measured. The capacity deterioration rate = [(battery capacity before the moisture resistance test−battery capacity after the moisture resistance test) / battery capacity before the moisture resistance test] × 100 was calculated. Here, for the negative electrode, an amorphous coated graphite, CMC, and SBR as a negative electrode active material were kneaded with water at a mass ratio of 98: 1: 1 to prepare a paste, and this paste was made into a copper foil (negative electrode current collector). : The thickness of 10 μm) was applied on both sides with a basis weight of 14.7 mg / cm 2 and dried to form a negative electrode active material layer on both sides of the negative electrode current collector. The density of the negative electrode active material layer was adjusted to 1.3 g / cm 3 . The results are shown in Table 2.

Figure 2015138730
Figure 2015138730

Figure 2015138730
Figure 2015138730

表1および表2に示すように、第2正極活物質層で第1正極活物質層を覆う形態とした実施例1〜4に係る電池は、第2正極活物質層を下層とし、第1正極活物質層を上層とした比較例1〜5に係る電池に比べて、耐湿試験後における容量劣化が少なく、耐湿性に優れたものであった。この結果から、より耐湿性に優れた正極活物質を含む第2正極活物質層で第1正極活物質層を覆うことにより、耐湿性が向上し得ることが確認された。   As shown in Table 1 and Table 2, in the batteries according to Examples 1 to 4 in which the first positive electrode active material layer is covered with the second positive electrode active material layer, the second positive electrode active material layer is used as the lower layer. Compared to the batteries according to Comparative Examples 1 to 5 having the positive electrode active material layer as an upper layer, the capacity deterioration after the moisture resistance test was small and the moisture resistance was excellent. From this result, it was confirmed that the moisture resistance can be improved by covering the first cathode active material layer with the second cathode active material layer containing the cathode active material having more excellent moisture resistance.

次に、各例の正極を5mのシート状にした正極シートと、上記耐湿性評価で用いた負極を5.3mのシート状にした負極シートとを、2枚のセパレータを介して捲回し、この捲回体を側面方向から押しつぶすことによって扁平状の捲回電極体を作製した。このようにして得られた捲回電極体を非水電解液とともに箱型の電池ケースに収容し、電池ケースの開口部を気密に封口した。セパレータとしては、PE基材の表面にアルミナ粒子を含む耐熱多孔層が形成されたものを使用した。また、非水電解液としてはECとDMCとEMCとを3:4:3の体積比で含む混合溶媒に支持塩としてのLiPFを約1mol/リットルの濃度で含有させた非水電解液を使用した。非水電解液には、CHB4質量%およびBP1質量%を添加した。このようにしてリチウムイオン二次電池(評価用セル)を組み立てた。かかる電池は、4.1VをSOC(State Of Charge)100%とし、3VをSOC0%とした。 Next, the positive electrode sheet in which the positive electrode of each example was formed into a 5 m sheet and the negative electrode sheet in which the negative electrode used in the moisture resistance evaluation was formed into a 5.3 m sheet were wound through two separators, By flattening the wound body from the side, a flat wound electrode body was produced. The wound electrode body thus obtained was housed in a box-type battery case together with the non-aqueous electrolyte, and the opening of the battery case was hermetically sealed. As the separator, one having a heat-resistant porous layer containing alumina particles formed on the surface of a PE substrate was used. Further, as the non-aqueous electrolyte, a non-aqueous electrolyte in which LiPF 6 as a supporting salt is contained at a concentration of about 1 mol / liter in a mixed solvent containing EC, DMC, and EMC in a volume ratio of 3: 4: 3. used. 4% by mass of CHB and 1% by mass of BP were added to the non-aqueous electrolyte. In this way, a lithium ion secondary battery (evaluation cell) was assembled. In this battery, 4.1V was set to 100% SOC (State Of Charge), and 3V was set to 0% SOC.

<過充電試験>
実施例1〜4および比較例1、6の正極を用いて構築された上記評価用セルを1Cの電流値で充電し、SOC160%に相当する容量まで充電を行った。この際、電池に内圧センサを取り付けることにより、電池内の内圧変化を測定した。図3に実施例1および比較例1の結果を示す。また、内圧が0.8MPaに到達するSOCを求めた。結果を表2に示す。
<Overcharge test>
The evaluation cells constructed using the positive electrodes of Examples 1 to 4 and Comparative Examples 1 and 6 were charged at a current value of 1 C, and charged to a capacity corresponding to SOC 160%. At this time, an internal pressure change in the battery was measured by attaching an internal pressure sensor to the battery. FIG. 3 shows the results of Example 1 and Comparative Example 1. Further, the SOC at which the internal pressure reached 0.8 MPa was determined. The results are shown in Table 2.

表1および表2に示すように、第1正極活物質層を設けた実施例1〜4に係る電池は、第1正極活物質層を設けなかった比較例1に係る電池に比べて、より低いSOC領域にて内圧が上昇することが確認された。また、充電容量比(第1正極活物質層/第2正極活物質層)が0.005を上回る比較例6に係る電池は、過充電試験時に短絡が発生した。これは、比較例6に係る電池は、正極内での充電容量の分布に偏り(幅)がありすぎるため、負極上で部分的にLiの析出が起こり、微小短絡が発生したものと推測される。この結果から、充電容量比(第1正極活物質層/第2正極活物質層)は0.005以下(特には0.045以下)にすることが好ましい。   As shown in Table 1 and Table 2, the batteries according to Examples 1 to 4 provided with the first positive electrode active material layer were more in comparison with the battery according to Comparative Example 1 that was not provided with the first positive electrode active material layer. It was confirmed that the internal pressure increased in the low SOC region. Further, the battery according to Comparative Example 6 in which the charge capacity ratio (first positive electrode active material layer / second positive electrode active material layer) exceeded 0.005 was short-circuited during the overcharge test. This is because the battery according to Comparative Example 6 is presumed that the deposition of Li partially occurred on the negative electrode and the micro short circuit occurred because the charge capacity distribution in the positive electrode was too uneven (width). The From this result, the charge capacity ratio (first positive electrode active material layer / second positive electrode active material layer) is preferably 0.005 or less (particularly 0.045 or less).

以上、本発明の一実施形態に係るリチウムイオン二次電池を説明したが、本発明に係る二次電池は、上述した何れの実施形態にも限定されず、種々の変更が可能である。例えば、上記の実施形態は、非水電解液二次電池の典型例として、リチウムイオン二次電池について説明したが、この形態の非水電解液二次電池に限定されない。例えば、リチウムイオン以外の金属イオン(例えばナトリウムイオン)を電荷担体とする二次電池であってもよい。   Although the lithium ion secondary battery according to one embodiment of the present invention has been described above, the secondary battery according to the present invention is not limited to any of the above-described embodiments, and various modifications can be made. For example, in the above-described embodiment, a lithium ion secondary battery has been described as a typical example of a non-aqueous electrolyte secondary battery. However, the embodiment is not limited to the non-aqueous electrolyte secondary battery. For example, a secondary battery using a metal ion (for example, sodium ion) other than lithium ion as a charge carrier may be used.

本発明に係る二次電池は、上記のとおり良好な電池性能を示すことから、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。したがって本発明は、かかる二次電池(典型的には複数直列接続してなる組電池)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)を提供する。   Since the secondary battery according to the present invention exhibits good battery performance as described above, it can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Therefore, the present invention provides a vehicle (typically an automobile such as an automobile, particularly a hybrid automobile, an electric automobile, or a fuel cell automobile) provided with such a secondary battery (typically, a plurality of batteries connected in series) as a power source. Vehicle).

20 捲回電極体
50 正極シート
52 正極集電体
54 正極活物質層
54a 第1正極活物質層
54b 第2正極活物質層
60 負極シート
62 負極集電体
64 負極活物質層
70 セパレータ
90 電流遮断機構
100 リチウムイオン二次電池
20 wound electrode body 50 positive electrode sheet 52 positive electrode current collector 54 positive electrode active material layer 54a first positive electrode active material layer 54b second positive electrode active material layer 60 negative electrode sheet 62 negative electrode current collector 64 negative electrode active material layer 70 separator 90 current interruption Mechanism 100 Lithium ion secondary battery

Claims (1)

正極および負極を備える二次電池であって、
前記正極は、
正極集電体と、
前記正極集電体に保持された正極活物質層と
を備え、
前記正極活物質層は、
前記正極集電体の上に形成された第1正極活物質層と、
前記第1正極活物質層を覆うように、前記第1正極活物質層およびその周囲の前記正極集電体の上に形成された第2正極活物質層と
を有し、
前記第1正極活物質層は、過充電時に酸素を放出し得る第1正極活物質を含み、
前記第2正極活物質層は、前記第1正極活物質よりも耐湿性が高い第2正極活物質を含む、二次電池。
A secondary battery comprising a positive electrode and a negative electrode,
The positive electrode is
A positive electrode current collector;
A positive electrode active material layer held on the positive electrode current collector,
The positive electrode active material layer is
A first positive electrode active material layer formed on the positive electrode current collector;
A first positive electrode active material layer and a second positive electrode active material layer formed on the positive electrode current collector around the first positive electrode active material layer so as to cover the first positive electrode active material layer;
The first positive electrode active material layer includes a first positive electrode active material capable of releasing oxygen during overcharge,
The second positive electrode active material layer is a secondary battery including a second positive electrode active material having higher moisture resistance than the first positive electrode active material.
JP2014011073A 2014-01-24 2014-01-24 Secondary battery Pending JP2015138730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014011073A JP2015138730A (en) 2014-01-24 2014-01-24 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014011073A JP2015138730A (en) 2014-01-24 2014-01-24 Secondary battery

Publications (1)

Publication Number Publication Date
JP2015138730A true JP2015138730A (en) 2015-07-30

Family

ID=53769588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014011073A Pending JP2015138730A (en) 2014-01-24 2014-01-24 Secondary battery

Country Status (1)

Country Link
JP (1) JP2015138730A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170142024A (en) * 2016-06-16 2017-12-27 주식회사 엘지화학 Positive electrode for lithium secondary battery having improved capacity and safety and lithium secondary battery comprising the same
JP2020521285A (en) * 2017-11-29 2020-07-16 エルジー・ケム・リミテッド Positive electrode additive, method for producing the same, positive electrode containing the same, and lithium secondary battery
JP2020123460A (en) * 2019-01-29 2020-08-13 株式会社Gsユアサ Pre-doping material, positive electrode including pre-doping material, and method for producing non-aqueous electrolyte secondary battery including positive electrode thereof, and method for producing metal oxide
WO2020218474A1 (en) * 2019-04-26 2020-10-29 パナソニックIpマネジメント株式会社 Positive electrode active material for secondary battery, and secondary battery
KR20210055591A (en) 2019-11-07 2021-05-17 주식회사 엘지화학 Positive electrode including double layered active material layer having different lno contents and secondary battery comprising the same
JP7432018B2 (en) 2021-06-02 2024-02-15 エルジー エナジー ソリューション リミテッド A positive electrode containing a positive electrode additive, a method for producing the same, and a lithium secondary battery containing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170142024A (en) * 2016-06-16 2017-12-27 주식회사 엘지화학 Positive electrode for lithium secondary battery having improved capacity and safety and lithium secondary battery comprising the same
KR102172153B1 (en) 2016-06-16 2020-10-30 주식회사 엘지화학 Positive electrode for lithium secondary battery having improved capacity and safety and lithium secondary battery comprising the same
JP2020521285A (en) * 2017-11-29 2020-07-16 エルジー・ケム・リミテッド Positive electrode additive, method for producing the same, positive electrode containing the same, and lithium secondary battery
JP7045578B2 (en) 2017-11-29 2022-04-01 エルジー エナジー ソリューション リミテッド Positive electrode additive, its manufacturing method, positive electrode including it and lithium secondary battery
US11621423B2 (en) 2017-11-29 2023-04-04 Lg Energy Solution, Ltd. Additive for cathode, method for preparing the same, cathode including the same, and lithium secondary battery including the same
JP2020123460A (en) * 2019-01-29 2020-08-13 株式会社Gsユアサ Pre-doping material, positive electrode including pre-doping material, and method for producing non-aqueous electrolyte secondary battery including positive electrode thereof, and method for producing metal oxide
WO2020218474A1 (en) * 2019-04-26 2020-10-29 パナソニックIpマネジメント株式会社 Positive electrode active material for secondary battery, and secondary battery
KR20210055591A (en) 2019-11-07 2021-05-17 주식회사 엘지화학 Positive electrode including double layered active material layer having different lno contents and secondary battery comprising the same
JP7432018B2 (en) 2021-06-02 2024-02-15 エルジー エナジー ソリューション リミテッド A positive electrode containing a positive electrode additive, a method for producing the same, and a lithium secondary battery containing the same

Similar Documents

Publication Publication Date Title
CN107078280B (en) Nonaqueous electrolyte secondary battery
US20110223492A1 (en) Nonaqueous electrolyte secondary battery
JP5259662B2 (en) Electrode assembly and secondary battery including the same
JPWO2015040747A1 (en) Non-aqueous electrolyte battery positive electrode, non-aqueous electrolyte battery, battery pack and vehicle
JP2015138730A (en) Secondary battery
US20150263334A1 (en) Non-aqueous electrolyte secondary battery
JP5807779B2 (en) Non-aqueous secondary battery
US9406924B2 (en) Nonaqueous electrolyte secondary battery
JPWO2016143123A1 (en) Nonaqueous electrolyte battery and battery pack
JP7228113B2 (en) Non-aqueous electrolyte secondary battery
US10910675B2 (en) Nonaqueous electrolyte secondary battery
JP2010015852A (en) Secondary battery
JP2013239374A (en) Lithium ion secondary battery and method for manufacturing the same
JP2013239375A (en) Lithium ion secondary battery and method for manufacturing the same
CN111725555B (en) Lithium ion secondary battery
JP2021182478A (en) Non-aqueous electrolyte secondary battery
JP2015176671A (en) Nonaqueous electrolyte secondary battery
JP6880488B2 (en) Lithium ion secondary battery
WO2015040685A1 (en) Lithium-ion secondary battery separator, lithium-ion secondary battery using lithium-ion secondary battery separator, and lithium-ion secondary battery module
JP2015060670A (en) Method for manufacturing nonaqueous electrolyte secondary battery
JP7296042B2 (en) Non-aqueous electrolyte secondary battery
JP2013143353A (en) Lithium ion secondary battery
JP2015060669A (en) Nonaqueous electrolyte secondary battery
JP7240640B2 (en) lithium ion secondary battery
JP5254722B2 (en) Lithium secondary battery