JP2015176671A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2015176671A
JP2015176671A JP2014050522A JP2014050522A JP2015176671A JP 2015176671 A JP2015176671 A JP 2015176671A JP 2014050522 A JP2014050522 A JP 2014050522A JP 2014050522 A JP2014050522 A JP 2014050522A JP 2015176671 A JP2015176671 A JP 2015176671A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
negative electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014050522A
Other languages
Japanese (ja)
Inventor
平 齋藤
Taira Saito
平 齋藤
神谷 正人
Masato Kamiya
正人 神谷
悠史 近藤
Yuji Kondo
悠史 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2014050522A priority Critical patent/JP2015176671A/en
Publication of JP2015176671A publication Critical patent/JP2015176671A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous secondary battery in which a current interruption mechanism can be stably actuated.SOLUTION: A nonaqueous electrolyte secondary battery has an electrode body having a positive electrode in which a cathode active material layer containing cathode active material is held by a positive electrode collector, a negative electrode and a separator, a battery case in which the electrode body is accommodated together with nonaqueous electrolyte, an external terminal which is provided to the battery case and connected to the electrode body, and a current interruption mechanism for interrupting the electrical connection between the electrode body and the external terminal when the inner pressure of the battery case increases to a predetermined pressure or more. The nonaqueous electrolyte contains gas generating agent which is reacted with a predetermined voltage or more to generate gas, and the DBP absorption amount per 100 g of the cathode active material is not less than 23 mL to not more than 32 mL.

Description

本発明は、非水電解質二次電池に関し、特に非水電解液にガス発生剤を含む非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery containing a gas generating agent in a non-aqueous electrolyte.

リチウムイオン二次電池その他の二次電池は、車両搭載用電源あるいはパソコンや携帯端末等の電源として重要性が高まっている。特に、軽量で高エネルギー密度が得られるリチウムイオン二次電池は、車両搭載用高出力電源として好ましく用いられている。このような二次電池は、過充電状態になると、正極から電荷担体が過剰に放出され、負極では電荷担体が過剰に挿入される。このため、正極と負極の両極が熱的に不安定になる。正極と負極の両極が熱的に不安定になると、やがては電解液の有機溶媒が分解され、発熱反応が生じて電池の安定性が損なわれる。   Lithium ion secondary batteries and other secondary batteries are becoming increasingly important as on-vehicle power supplies or personal computers and portable terminals. In particular, a lithium ion secondary battery that is lightweight and obtains a high energy density is preferably used as a high-output power source mounted on a vehicle. When such a secondary battery is overcharged, excessive charge carriers are released from the positive electrode, and excessive charge carriers are inserted into the negative electrode. For this reason, both the positive electrode and the negative electrode are thermally unstable. When both the positive electrode and the negative electrode become thermally unstable, the organic solvent of the electrolytic solution is eventually decomposed, and an exothermic reaction occurs, thereby impairing the stability of the battery.

かかる問題に対して、例えば、電池内部のガス圧力が所定圧力以上になると充電を遮断する電流遮断機構を電池ケースに備え、非水電解質中に予め定められた過充電状態に達するとガスを発生させるガス発生剤を添加した非水電解質二次電池が開示されている。かかるガス発生剤としては、例えば、シクロヘキシルベンゼン(CHB)やビフェニル(BP)などが用いられている(例えば特許文献1)。CHBやBPは、過充電時において重合反応が活性化し、水素ガスを発生させる。これにより、電池ケース内の圧力が高くなり、電流遮断機構が作動して過充電電流を遮断する。   To deal with this problem, for example, the battery case is equipped with a current interruption mechanism that interrupts charging when the gas pressure inside the battery exceeds a predetermined pressure, and gas is generated when a predetermined overcharge state is reached in the nonaqueous electrolyte. A non-aqueous electrolyte secondary battery to which a gas generating agent to be added is added is disclosed. As such a gas generating agent, for example, cyclohexylbenzene (CHB) or biphenyl (BP) is used (for example, Patent Document 1). CHB and BP activate the polymerization reaction during overcharge and generate hydrogen gas. Thereby, the pressure in a battery case becomes high, an electric current interruption mechanism act | operates, and an overcharge electric current is interrupted | blocked.

特開2012−119183号公報JP 2012-119183 A

過充電状態では、特に、正極の電位が高くなるため、正極活物質層に染み渡った電解質中に含まれるガス発生剤が反応してガスを発生させる。そして、発生したガスによって電池ケースの内圧が予め定められた圧力よりも高くなると、電流遮断機構が作動して電流経路を遮断し、電池の反応を停止させる。しかし、本発明者の検討によると、正極活物質としてDBP吸収量が大きい物質を用いた場合に、さらに、上述した電流遮断機構を採用すると、ガスの発生が鈍化し、電流遮断機構の作動が遅れる事象が散見された。電流遮断機構は、予め定められた条件になると安定的に作動することが望ましい。   In the overcharged state, in particular, since the potential of the positive electrode becomes high, the gas generating agent contained in the electrolyte that permeates the positive electrode active material layer reacts to generate gas. When the internal pressure of the battery case becomes higher than a predetermined pressure due to the generated gas, the current interrupt mechanism is activated to interrupt the current path and stop the battery reaction. However, according to the study by the present inventor, when a material having a large DBP absorption amount is used as the positive electrode active material, further adopting the above-described current interruption mechanism slows down the gas generation, and the current interruption mechanism operates. There were some late events. It is desirable that the current interruption mechanism operates stably when a predetermined condition is met.

ここで提案される非水電解質二次電池は、正極活物質を含む正極活物質層が正極集電体に保持された正極と、負極活物質を含む負極活物質層が負極集電体に保持された負極と、前記正極と前記負極との間に介在するセパレータとを備える電極体と、前記電極体を非水電解質とともに収容する電池ケースと、前記電池ケースに設けられ、前記電極体に接続された外部端子と、前記電池ケースの内圧が予め定められた圧力以上に高くなると、前記電極体と前記外部端子との電気的な接続を遮断する電流遮断機構とを備える。前記非水電解質には、予め定められた電圧以上の電圧で反応し、ガスを発生させるガス発生剤が含まれている。そして、前記正極活物質の100g当たりのDBP吸収量が、23mL以上32mL以下である。かかる構成によると、正極活物質のDBP吸収量を23mL/100g以上とすることにより低温での出力を確保できる。また、正極活物質のDBP吸収量を32mL/100g以下とすることにより、ガス発生剤によるガス発生量をより適切に確保できる。そのため、出力特性を高く保ちつつ、ガス発生量を多くすることができ、電流遮断機構を適切に作動させうる。   The proposed non-aqueous electrolyte secondary battery includes a positive electrode in which a positive electrode active material layer containing a positive electrode active material is held by a positive electrode current collector, and a negative electrode active material layer containing a negative electrode active material held in a negative electrode current collector. An electrode body comprising a negative electrode, a separator interposed between the positive electrode and the negative electrode, a battery case containing the electrode body together with a nonaqueous electrolyte, and provided in the battery case and connected to the electrode body And an electric current interruption mechanism that interrupts electrical connection between the electrode body and the external terminal when the internal pressure of the battery case becomes higher than a predetermined pressure. The non-aqueous electrolyte contains a gas generating agent that reacts at a voltage equal to or higher than a predetermined voltage to generate gas. The DBP absorption amount per 100 g of the positive electrode active material is 23 mL or more and 32 mL or less. According to such a configuration, the output at a low temperature can be secured by setting the DBP absorption amount of the positive electrode active material to 23 mL / 100 g or more. Moreover, the gas generation amount by a gas generating agent is more appropriately securable by making DBP absorption amount of a positive electrode active material into 32 mL / 100g or less. Therefore, the amount of gas generation can be increased while keeping the output characteristics high, and the current interrupt mechanism can be operated appropriately.

図1は、二次電池の構造の一例を示す図である。FIG. 1 is a diagram illustrating an example of the structure of a secondary battery. DBP吸収量と低温放電抵抗および電流遮断機構作動SOCとの関係を示すグラフである。It is a graph which shows the relationship between DBP absorption amount, low temperature discharge resistance, and electric current interruption mechanism action | operation SOC.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、リチウムイオン二次電池等のいわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。また、「リチウムイオン二次電池」とは、電解質イオンとしてリチウムイオンを利用し、正負極間のリチウムイオンの移動により充放電する二次電池をいう。また、電極活物質とは、電荷担体となる化学種(リチウムイオン二次電池ではリチウムイオン)を可逆的に吸蔵および放出し得る材料をいう。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for the implementation of the present invention can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field. In the present specification, the “secondary battery” refers to a general power storage device that can be repeatedly charged and discharged, and is a term including a so-called storage battery such as a lithium ion secondary battery and a power storage element such as an electric double layer capacitor. The “lithium ion secondary battery” refers to a secondary battery that uses lithium ions as electrolyte ions and is charged and discharged by the movement of lithium ions between positive and negative electrodes. The electrode active material refers to a material capable of reversibly occluding and releasing chemical species (lithium ions in a lithium ion secondary battery) serving as a charge carrier.

以下、本発明の一実施形態に係る非水系二次電池を図面に基づいて説明する。なお、同じ作用を奏する部材、部位には適宜に同じ符号を付している。また、各図面は模式的に描かれており、必ずしも実物を反映していない。各図面は、一例を示すのみであり、特に言及されない限りにおいて本発明を限定しない。以下、リチウムイオン二次電池に本発明を適用する場合を例として、本発明の実施形態を説明するが、本発明の適用対象を限定する意図ではない。   Hereinafter, a non-aqueous secondary battery according to an embodiment of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected suitably to the member and site | part which show | play the same effect | action. Each drawing is schematically drawn and does not necessarily reflect the real thing. Each drawing shows an example only and does not limit the present invention unless otherwise specified. Hereinafter, embodiments of the present invention will be described by taking as an example the case where the present invention is applied to a lithium ion secondary battery, but it is not intended to limit the application target of the present invention.

図1は、本発明の一実施形態に係るリチウムイオン二次電池100を示している。このリチウムイオン二次電池100は、図1に示すように、捲回電極体20と電池ケース30とを備えている。本発明の一実施形態に係るリチウムイオン二次電池100は、図1に示すように、扁平形状の捲回電極体20が、図示しない液状電解質(電解液)とともに、扁平な角形の電池ケース(即ち外装容器)30に収容されている。   FIG. 1 shows a lithium ion secondary battery 100 according to an embodiment of the present invention. As shown in FIG. 1, the lithium ion secondary battery 100 includes a wound electrode body 20 and a battery case 30. As shown in FIG. 1, a lithium ion secondary battery 100 according to an embodiment of the present invention includes a flat rectangular battery case 20 having a flat wound electrode body 20 together with a liquid electrolyte (electrolytic solution) (not shown). That is, it is accommodated in the exterior container 30.

電池ケース30は、一端(電池の通常の使用状態における上端部に相当する。)に開口部を有する箱形(すなわち有底直方体状)のケース本体32と、その開口部に取り付けられて該開口部を塞ぐ矩形状プレート部材からなる蓋体34とから構成される。電池ケース30の材質は、例えばアルミニウムが例示される。図1に示すように、蓋体34には外部接続用の正極端子42および負極端子44が形成されている。蓋体34の両端子42、44の間には、安全弁36が形成されている。   The battery case 30 has a box-shaped (that is, bottomed rectangular parallelepiped) case body 32 having an opening at one end (corresponding to the upper end in a normal use state of the battery), and the opening attached to the opening. It is comprised from the cover body 34 which consists of a rectangular-shaped plate member which plugs up a part. The material of the battery case 30 is exemplified by aluminum, for example. As shown in FIG. 1, a positive electrode terminal 42 and a negative electrode terminal 44 for external connection are formed on the lid 34. A safety valve 36 is formed between both terminals 42 and 44 of the lid 34.

捲回電極体20は、長尺なシート状正極(正極シート50)と、該正極シート50と同様の長尺シート状負極(負極シート60)とを計二枚の長尺シート状セパレータ(セパレータ70)とを備えている。   The wound electrode body 20 includes a long sheet-like positive electrode (positive electrode sheet 50) and a long sheet-like negative electrode (negative electrode sheet 60) similar to the positive electrode sheet 50, in total, two long sheet-like separators (separators). 70).

正極シート50は、帯状の正極集電体52と正極活物質層54とを備えている。正極集電体52には、例えば、厚さが凡そ15μmの帯状のアルミニウム箔が用いられている。正極集電体52の幅方向片側の縁部に沿って正極活物質層非形成部52aが設定されている。図示例では、正極活物質層54は、正極集電体52に設定された正極活物質層非形成部52aを除いて、正極集電体52の両面に保持されている。正極活物質層54には、正極活物質や導電材やバインダが含まれている。   The positive electrode sheet 50 includes a strip-shaped positive electrode current collector 52 and a positive electrode active material layer 54. For the positive electrode current collector 52, for example, a strip-shaped aluminum foil having a thickness of about 15 μm is used. A positive electrode active material layer non-forming portion 52 a is set along an edge portion on one side in the width direction of the positive electrode current collector 52. In the illustrated example, the positive electrode active material layer 54 is held on both surfaces of the positive electrode current collector 52 except for the positive electrode active material layer non-forming portion 52 a set in the positive electrode current collector 52. The positive electrode active material layer 54 includes a positive electrode active material, a conductive material, and a binder.

正極活物質には、リチウムイオン二次電池の正極活物質として用いられる物質を使用することができる。正極活物質の例を挙げると、リチウムと一種または二種以上の遷移金属元素(特にNi、Co、Mnのうちの少なくとも一種の遷移金属元素)とを構成金属元素として含む酸化物(リチウム遷移金属酸化物)を主成分とする正極活物質が挙げられる。例えば、正極活物質に、アセチレンブラック(AB)等の導電材を混合することができる。また、正極活物質と導電材の他に、ポリフッ化ビニリデン(PVdF)、スチレンブタジエンラバー(SBR)、カルボキシメチルセルロース(CMC)等のバインダを添加することができる。これらを適当な分散媒体に分散させて混練することによって、正極合剤(ペースト)を調製することができる。正極活物質層54は、この正極合剤を正極集電体52に塗布し、乾燥させ、予め定められた厚さにプレスすることによって形成されている。   As the positive electrode active material, a material used as a positive electrode active material of a lithium ion secondary battery can be used. As an example of a positive electrode active material, an oxide (lithium transition metal) containing lithium and one or more transition metal elements (particularly at least one transition metal element of Ni, Co, and Mn) as constituent metal elements A positive electrode active material mainly composed of an oxide). For example, a conductive material such as acetylene black (AB) can be mixed with the positive electrode active material. In addition to the positive electrode active material and the conductive material, a binder such as polyvinylidene fluoride (PVdF), styrene butadiene rubber (SBR), or carboxymethyl cellulose (CMC) can be added. A positive electrode mixture (paste) can be prepared by dispersing these in a suitable dispersion medium and kneading. The positive electrode active material layer 54 is formed by applying this positive electrode mixture to the positive electrode current collector 52, drying it, and pressing it to a predetermined thickness.

負極シート60は、帯状の負極集電体62と負極活物質層64とを備えている。負極集電体62には、例えば、厚さが凡そ10μmの帯状の銅箔が用いられている。負極集電体62の幅方向片側には、縁部に沿って負極活物質層非形成部62aが設定されている。負極活物質層64は、負極集電体62に設定された負極活物質層非形成部62aを除いて、負極集電体62の両面に保持されている。負極活物質層64には、負極活物質や増粘剤やバインダなどが含まれている。   The negative electrode sheet 60 includes a strip-shaped negative electrode current collector 62 and a negative electrode active material layer 64. For the negative electrode current collector 62, for example, a strip-shaped copper foil having a thickness of about 10 μm is used. On one side in the width direction of the negative electrode current collector 62, a negative electrode active material layer non-formation part 62a is set along the edge. The negative electrode active material layer 64 is held on both surfaces of the negative electrode current collector 62 except for the negative electrode active material layer non-forming portion 62 a set in the negative electrode current collector 62. The negative electrode active material layer 64 includes a negative electrode active material, a thickener, a binder, and the like.

負極活物質としては、従来からリチウムイオン二次電池に用いられる物質の一種または二種以上を特に限定なく使用することができる。好適例として、グラファイトカーボンなどの炭素系材料が挙げられる。そして正極と同様、かかる負極活物質を、PVDF、SBR、CMC(増粘剤としても機能し得る)等のバインダとともに適当な分散媒体に分散させて混練することによって、負極合剤(ペースト)を調製することができる。負極活物質層64は、この負極合剤を負極集電体62に塗布し、乾燥させ、予め定められた厚さにプレスすることによって形成されている。   As the negative electrode active material, one type or two or more types of materials conventionally used in lithium ion secondary batteries can be used without any particular limitation. Preferable examples include carbon-based materials such as graphite carbon. And like a positive electrode, this negative electrode active material is disperse | distributed to a suitable dispersion medium with binders, such as PVDF, SBR, and CMC (it can function also as a thickener), and knead | mixing a negative electrode mixture (paste). Can be prepared. The negative electrode active material layer 64 is formed by applying this negative electrode mixture to the negative electrode current collector 62, drying it, and pressing it to a predetermined thickness.

セパレータ70は、正極シート50と負極シート60とを隔てる部材である。この例では、セパレータ70は、微小な孔を複数有する所定幅の帯状の基材から構成されている。該基材には、例えば、多孔質ポリオレフィン系樹脂で構成された単層構造(例えばポリエチレンの単層構造)のシート材、或いは積層構造(例えばポリプロピレンとポリエチレンとポリプロピレンの3層構造)のシート材を用いることができる。   The separator 70 is a member that separates the positive electrode sheet 50 and the negative electrode sheet 60. In this example, the separator 70 is composed of a strip-shaped base material having a predetermined width and having a plurality of minute holes. Examples of the base material include a sheet material having a single layer structure (for example, a single layer structure of polyethylene) made of a porous polyolefin-based resin, or a sheet material having a laminated structure (for example, a three-layer structure of polypropylene, polyethylene, and polypropylene). Can be used.

捲回電極体20は、電池ケース30(この例では、蓋体34)に取り付けられた電極端子42、44に取り付けられている。捲回電極体20は、捲回軸に直交する一の方向において扁平に押し曲げられた状態で電池ケース30に収納されている。また、捲回電極体20は、捲回軸方向において、正極シート50の正極活物質層非形成部52aと負極シート60の負極活物質層非形成部62aとが互いに反対側にはみ出ている。このうち、一方の電極端子42は、正極集電体52の正極活物質層非形成部52aに正極集電タブ42aを介して固定されており、他方の電極端子44は、負極集電体62の負極活物質層非形成部62aに負極集電タブ44aを介して固定されている。かかる捲回電極体20は、ケース本体32の扁平な内部空間に収容される。ケース本体32は、捲回電極体20が収容された後、蓋体34によって塞がれる。   The wound electrode body 20 is attached to electrode terminals 42 and 44 attached to the battery case 30 (in this example, the lid body 34). The wound electrode body 20 is housed in the battery case 30 in a state where the wound electrode body 20 is flatly pushed and bent in one direction orthogonal to the winding axis. In the wound electrode body 20, the positive electrode active material layer non-formed portion 52 a of the positive electrode sheet 50 and the negative electrode active material layer non-formed portion 62 a of the negative electrode sheet 60 protrude on the opposite sides in the winding axis direction. Among these, one electrode terminal 42 is fixed to the positive electrode active material layer non-forming portion 52 a of the positive electrode current collector 52 via the positive electrode current collector tab 42 a, and the other electrode terminal 44 is the negative electrode current collector 62. The negative electrode active material layer non-forming portion 62a is fixed via a negative electrode current collecting tab 44a. The wound electrode body 20 is accommodated in the flat internal space of the case body 32. The case body 32 is closed by the lid 34 after the wound electrode body 20 is accommodated.

非水電解質(典型的には液状の非水電解質、以下、非水電解液という。)としては、従来からリチウムイオン二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる非水電解液は、適当な非水溶媒に支持塩を含有させた組成を有する。上記非水溶媒としては、例えば、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、等を用いることができる。また、上記支持塩としては、例えば、LiPF等のリチウム塩を用いることができる。 As the non-aqueous electrolyte (typically a liquid non-aqueous electrolyte, hereinafter referred to as a non-aqueous electrolyte), the same non-aqueous electrolyte as that conventionally used for lithium ion secondary batteries is used without any particular limitation. be able to. Such a nonaqueous electrolytic solution has a composition in which a supporting salt is contained in a suitable nonaqueous solvent. As the non-aqueous solvent, for example, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, or the like can be used. Moreover, as said support salt, lithium salts, such as LiPF 6 , can be used, for example.

非水電解液には、電池電圧が予め定められた電圧以上になると反応し、ガスを発生させるガス発生剤が含まれている。かかるガス発生剤としては、例えば、シクロヘキシルベンゼン(CHB)やビフェニル(BP)などを用いることができる。シクロヘキシルベンゼン(CHB)とビフェニル(BP)は、例えば、例えば、凡そ4.35Vから4.6V程度の過充電時において、重合反応が活性化し、ガス(ここでは、水素ガス)を発生させる。2種類以上のガス発生剤を併用することが好ましく、そのうちの一つがBPであることが好ましく、さらにはCHBとBPとを併用することが好ましい。非水電解液に対するガス発生剤の添加量は、例えば、凡そ0.05質量%以上4.0質量%以下、好ましくは0.1質量%以上3質量%以下にするとよい。なお、ガス発生剤の添加量は、これに限定されず、予め定めた条件で所定量のガスが生じるように調整するとよい。また、ガス発生剤は、シクロヘキシルベンゼン(CHB)とビフェニル(BP)に限定されない。   The non-aqueous electrolyte contains a gas generating agent that reacts and generates gas when the battery voltage becomes equal to or higher than a predetermined voltage. As such a gas generating agent, for example, cyclohexylbenzene (CHB) or biphenyl (BP) can be used. For example, when cyclohexylbenzene (CHB) and biphenyl (BP) are overcharged at about 4.35V to 4.6V, for example, the polymerization reaction is activated, and gas (here, hydrogen gas) is generated. Two or more kinds of gas generating agents are preferably used in combination, and one of them is preferably BP, and more preferably CHB and BP are used in combination. The amount of the gas generating agent added to the non-aqueous electrolyte is, for example, about 0.05% by mass to 4.0% by mass, preferably 0.1% by mass to 3% by mass. In addition, the addition amount of a gas generating agent is not limited to this, It is good to adjust so that a predetermined amount of gas may be generated on predetermined conditions. Further, the gas generating agent is not limited to cyclohexylbenzene (CHB) and biphenyl (BP).

また、このリチウムイオン二次電池100は、電流遮断機構90を備えている。電流遮断機構90は、電池ケース内の圧力が異常に高くなった場合に、電流経路を遮断する機構である。この実施形態では、電流遮断機構90は、図1に示すように、正極における電池電流の導通経路が遮断されるように、正極端子42の内側に構築されている。電流遮断機構90は、電池ケースの内圧が予め定められた圧力以上に高くなると、電極体20と正極端子42との電気的な接続を遮断するように構成されている。   Further, the lithium ion secondary battery 100 includes a current interruption mechanism 90. The current interruption mechanism 90 is a mechanism that interrupts the current path when the pressure in the battery case becomes abnormally high. In this embodiment, as shown in FIG. 1, the current interruption mechanism 90 is constructed inside the positive electrode terminal 42 so that the conduction path of the battery current in the positive electrode is interrupted. The current interruption mechanism 90 is configured to interrupt the electrical connection between the electrode body 20 and the positive terminal 42 when the internal pressure of the battery case becomes higher than a predetermined pressure.

以下、リチウムイオン二次電池100について、より詳細に説明する。このリチウムイオン二次電池100は、前述のように、非水電解液には、予め定められた電圧以上の電圧で反応し、ガスを発生させるガス発生剤が含まれている。そして、正極活物質層54における正極活物質の100g当たりのDBP吸収量が、23(mL/100g)以上32(mL/100g)以下である。   Hereinafter, the lithium ion secondary battery 100 will be described in more detail. As described above, in the lithium ion secondary battery 100, the non-aqueous electrolyte contains a gas generating agent that reacts at a voltage equal to or higher than a predetermined voltage to generate gas. The DBP absorption amount per 100 g of the positive electrode active material in the positive electrode active material layer 54 is 23 (mL / 100 g) or more and 32 (mL / 100 g) or less.

ここで、DBP吸収量(mL/100g)は、JIS K6217−4「ゴム用カーボンブラック‐基本特性‐第4部:DBP吸収量の求め方」に準拠して求める。ここでは、試薬液体としてDBP(ジブチルフタレート)を用い、検査対象粉末に定速度ビュレットで滴定し、粘度特性の変化をトルク検出器によって測定する。そして、発生した最大トルクの70%のトルクに対応する、検査対象粉末の単位重量当りの試薬液体の添加量をDBP吸収量(mL/100g)とする。かかるDBP吸収量は、正極活物質層54に含浸した電解液がどの程度、正極活物質に吸収され得るかを示している。すなわち、DBP吸収量が高ければ高いほど、正極合剤層に含浸した電解液が、正極活物質に吸収され易いことを示している。   Here, the DBP absorption amount (mL / 100 g) is determined in accordance with JIS K6217-4 “Carbon black for rubber—Basic characteristics—Part 4: Determination of DBP absorption amount”. Here, DBP (dibutyl phthalate) is used as a reagent liquid, and the powder to be inspected is titrated with a constant speed burette, and a change in viscosity characteristics is measured with a torque detector. Then, the amount of reagent liquid added per unit weight of the inspection target powder corresponding to 70% of the generated maximum torque is defined as DBP absorption (mL / 100 g). The DBP absorption amount indicates how much the electrolytic solution impregnated in the positive electrode active material layer 54 can be absorbed by the positive electrode active material. That is, the higher the DBP absorption amount, the easier the electrolyte solution impregnated in the positive electrode mixture layer is absorbed by the positive electrode active material.

本実施形態に係るリチウムイオン二次電池100によれば、正極活物質層54における正極活物質のDBP吸収量が23(mL/100g)以上である。そのため、正極活物質層54に含浸した電解液が、正極活物質に吸収され易く、この正極活物質層54では電解液が不足する液枯れが生じ難い。そのため、出力特性(特に低温かつ10C以上でのハイレートにおける出力特性)が向上する。さらに、正極活物質層54における正極活物質のDBP吸収量が32(mL/100g)以下であるので、ガス発生剤によるガス発生量をより適切に確保できる。そのため、出力特性を高く保ちつつ、ガス発生量を多くすることができ、電流遮断機構90を適切に作動させうる。すなわち、本構成によれば、電解液にガス発生剤を含むリチウムイオン二次電池において、正極活物質のDBP吸収量を最適化することにより、過充電時のガス発生量と出力特性(特に低温かつ10C以上でのハイレートにおける出力特性)の双方を高いレベルで満足させた最適なリチウムイオン二次電池を得ることができる。   According to the lithium ion secondary battery 100 according to the present embodiment, the DBP absorption amount of the positive electrode active material in the positive electrode active material layer 54 is 23 (mL / 100 g) or more. For this reason, the electrolytic solution impregnated in the positive electrode active material layer 54 is easily absorbed by the positive electrode active material, and the positive electrode active material layer 54 is unlikely to wither due to insufficient electrolyte. Therefore, output characteristics (particularly, output characteristics at a low temperature and a high rate at 10 C or higher) are improved. Furthermore, since the DBP absorption amount of the positive electrode active material in the positive electrode active material layer 54 is 32 (mL / 100 g) or less, the amount of gas generated by the gas generating agent can be more appropriately ensured. Therefore, the gas generation amount can be increased while keeping the output characteristics high, and the current interrupt mechanism 90 can be appropriately operated. That is, according to this configuration, in a lithium ion secondary battery containing a gas generating agent in the electrolyte, the amount of gas generation and output characteristics (especially low temperature) during overcharging are optimized by optimizing the DBP absorption amount of the positive electrode active material. In addition, it is possible to obtain an optimal lithium ion secondary battery that satisfies both of the output characteristics at a high rate of 10 C or more at a high level.

出力特性向上の観点からは、正極活物質層54における正極活物質のDBP吸収量は、23(mL/100g)以上であることが適当であり、好ましくは25(mL/100g)以上であり、特に好ましくは30(mL/100g)以上である。また、過充電時のガス発生量を確保する観点からは、正極活物質層54における正極活物質のDBP吸収量は、32(mL/100g)以下であることが適当であり、好ましくは30(mL/100g)以下であり、特に好ましくは28(mL/100g)以下である。例えば、DBP吸収量が25(mL/100g)以上30(mL/100g)以下である正極活物質が、過充電時のガス発生量と出力特性の双方を満足する観点からは好適である。   From the viewpoint of improving the output characteristics, the DBP absorption amount of the positive electrode active material in the positive electrode active material layer 54 is suitably 23 (mL / 100 g) or more, preferably 25 (mL / 100 g) or more, Particularly preferably, it is 30 (mL / 100 g) or more. In addition, from the viewpoint of securing the amount of gas generated during overcharge, the DBP absorption amount of the positive electrode active material in the positive electrode active material layer 54 is suitably 32 (mL / 100 g) or less, preferably 30 ( mL / 100 g) or less, and particularly preferably 28 (mL / 100 g) or less. For example, a positive electrode active material having a DBP absorption amount of 25 (mL / 100 g) or more and 30 (mL / 100 g) or less is preferable from the viewpoint of satisfying both the gas generation amount and output characteristics during overcharge.

本発明者は、以下のような評価試験を行った。そして、正極活物質のDBP吸収量がリチウムイオン二次電池の出力特性および過充電時のガス発生量にどのような影響を与えるかを調べた。評価用セルの作製は、以下のようにして行った。   The inventor conducted the following evaluation test. Then, the influence of the DBP absorption amount of the positive electrode active material on the output characteristics of the lithium ion secondary battery and the amount of gas generated during overcharge was examined. The evaluation cell was produced as follows.

評価用セルの正極は、次のようにして作製した。まず、正極活物質としてのLiNi1/3Co1/3Mn1/3粉末と導電材としてのABとバインダとしてのPVdFとを、これらの材料の質量比が93:4:3となるようにNMP中で混合して、正極合剤を調製した。この正極合剤を長尺シート状のアルミニウム箔(正極集電体)の両面に帯状に塗布して乾燥することにより、正極集電体の両面に正極活物質層が設けられた正極シートを作製した。 The positive electrode of the evaluation cell was produced as follows. First, LiNi 1/3 Co 1/3 Mn 1/3 O 2 powder as a positive electrode active material, AB as a conductive material and PVdF as a binder have a mass ratio of 93: 4: 3. In this way, the mixture was mixed in NMP to prepare a positive electrode mixture. A positive electrode sheet having a positive electrode active material layer provided on both sides of the positive electrode current collector is prepared by applying the positive electrode mixture in a strip shape on both sides of a long sheet-like aluminum foil (positive electrode current collector) and drying it. did.

評価用セルの負極は、次のようにして作製した。まず、負極活物質としてのグラファイトとバインダとしてのSBRと増粘剤としてのCMCとを、これらの材料の質量比が98:1:1となるように水に分散させて負極合剤を調製した。この負極合剤を長尺シート状の銅箔(負極集電体)の両面に塗布し、負極集電体の両面に負極活物質層が設けられた負極シートを作製した。   The negative electrode of the evaluation cell was produced as follows. First, a negative electrode mixture was prepared by dispersing graphite as a negative electrode active material, SBR as a binder, and CMC as a thickener in water so that the mass ratio of these materials was 98: 1: 1. . This negative electrode mixture was applied to both sides of a long sheet-like copper foil (negative electrode current collector) to prepare a negative electrode sheet in which a negative electrode active material layer was provided on both sides of the negative electrode current collector.

評価用セルのセパレータとしては、多孔質ポリエチレン(PE)シートを使用した。   A porous polyethylene (PE) sheet was used as a separator for the evaluation cell.

評価用セルの非水電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを3:3:4の体積比で含む混合溶媒に、支持塩としてのLiPFを約1mol/リットルの濃度で含有させたものを用いた。また、非水電解液には、CHB4質量%およびBP1質量%を添加した。 As the non-aqueous electrolyte of the evaluation cell, a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of 3: 3: 4, and LiPF as a supporting salt. 6 was used at a concentration of about 1 mol / liter. Further, 4% by mass of CHB and 1% by mass of BP were added to the nonaqueous electrolytic solution.

正極シートと負極シートとを2枚のセパレータを介して捲回し、この捲回体を側面方向から押しつぶすことによって扁平状の捲回電極体を作製した。このようにして得られた捲回電極体を非水電解液とともに箱型の電池ケースに収容し、電池ケースの開口部を気密に封口した。このようにして評価用リチウムイオン二次電池を構築した。このリチウムイオン二次電池は、電池ケース内の圧力が高くなった場合に、電流経路を遮断する電流遮断機構を備えている。   The positive electrode sheet and the negative electrode sheet were wound through two separators, and the wound body was crushed from the side surface to produce a flat wound electrode body. The wound electrode body thus obtained was housed in a box-type battery case together with the non-aqueous electrolyte, and the opening of the battery case was hermetically sealed. Thus, a lithium ion secondary battery for evaluation was constructed. This lithium ion secondary battery includes a current interrupting mechanism that interrupts the current path when the pressure in the battery case increases.

サンプル1〜8では、正極活物質について、DBP吸収量(mL/100g)がそれぞれ異なる。正極活物質のDBP吸収量(mL/100g)が異なること以外は同様の構成とした。各サンプルのDBP吸収量を表1に示す。   Samples 1 to 8 have different DBP absorption amounts (mL / 100 g) for the positive electrode active material. The configuration was the same except that the DBP absorption amount (mL / 100 g) of the positive electrode active material was different. Table 1 shows the DBP absorption of each sample.

<出力試験>
各サンプルの評価用セルを0℃に冷却した状態で10Cの定電流で10秒間放電した際の電圧降下量を放電電流値で除した値を低温放電抵抗として求めた。結果を表1および図2に示す。ここではサンプル1の低温放電抵抗を100%とした場合の放電抵抗の比で示している。低温放電抵抗が小さいほど、低温での出力特性が良好であることを示唆している。
<Output test>
A value obtained by dividing the voltage drop when the cell for evaluation of each sample was cooled at 0 ° C. for 10 seconds with a constant current of 10 C by the discharge current value was obtained as the low temperature discharge resistance. The results are shown in Table 1 and FIG. Here, the ratio is shown by the ratio of the discharge resistance when the low temperature discharge resistance of Sample 1 is 100%. This suggests that the lower the low-temperature discharge resistance, the better the output characteristics at low temperatures.

<過充電試験>
各サンプルの評価用セルを1Cの電流値で充電し、電流遮断機構が作動するSOC(State Of Charge)を測定した。結果を表1および図2に示す。ここではサンプル1の電流遮断機構作動SOCを0%とし、各サンプルの電流遮断機構作動SOCは、サンプル1の電流遮断機構作動SOCとの差で示している。電流遮断機構作動SOCが小さいほど、過充電時により多くのガスが発生することを示唆している。
<Overcharge test>
The evaluation cell of each sample was charged with a current value of 1 C, and SOC (State Of Charge) at which the current interrupting mechanism was activated was measured. The results are shown in Table 1 and FIG. Here, the current interruption mechanism operation SOC of sample 1 is set to 0%, and the current interruption mechanism operation SOC of each sample is indicated by a difference from the current interruption mechanism operation SOC of sample 1. This suggests that the smaller the current interruption mechanism operation SOC, the more gas is generated during overcharge.

Figure 2015176671
Figure 2015176671

表1および図2に示すように、正極活物質のDBP吸収量(mL/100g)を23以上としたサンプル1〜4、7、8は、他のサンプル1、2に比べて、低温放電抵抗がより低く、出力特性が大幅に向上した。このように、正極活物質のDBP吸収量(mL/100g)を23以上とすることにより、リチウムイオン二次電池の性能、特に低温でのハイレート出力特性が概ね向上するとの傾向がみられた。また、正極活物質のDBP吸収量(mL/100g)を32以下としたサンプル1〜6は、他のサンプル7、8に比べて、電流遮断機構作動SOCがより低く、過充電時のガス発生量が格段に増大した。この結果から、正極活物質のDBP吸収量(mL/100g)を23以上32以下とすることにより、過充電時のガス発生量と出力特性の双方を高いレベルで満足させた最適なリチウムイオン二次電池が得られることが確認された。   As shown in Table 1 and FIG. 2, samples 1-4, 7, and 8 in which the DBP absorption amount (mL / 100 g) of the positive electrode active material was 23 or more were low-temperature discharge resistance compared to other samples 1 and 2 Is lower and the output characteristics are greatly improved. Thus, the tendency that the performance of the lithium ion secondary battery, in particular, the high-rate output characteristics at a low temperature was generally improved by setting the DBP absorption amount (mL / 100 g) of the positive electrode active material to 23 or more. Samples 1-6, in which the DBP absorption amount (mL / 100 g) of the positive electrode active material is 32 or less, have a lower current interruption mechanism operating SOC than the other samples 7 and 8, and gas generation during overcharge The amount has increased dramatically. From this result, the optimal amount of lithium ion that satisfies both the gas generation amount and the output characteristics at the time of overcharge at a high level by setting the DBP absorption amount (mL / 100 g) of the positive electrode active material to 23 or more and 32 or less. It was confirmed that the secondary battery was obtained.

以上、本発明の一実施形態に係るリチウムイオン二次電池を説明したが、本発明に係る二次電池は、上述した何れの実施形態にも限定されず、種々の変更が可能である。例えば、上記の実施形態は、非水電解液二次電池の典型例として、リチウムイオン二次電池について説明したが、この形態の非水電解液二次電池に限定されない。例えば、リチウムイオン以外の金属イオン(例えばナトリウムイオン)を電荷担体とする二次電池であってもよい。   Although the lithium ion secondary battery according to one embodiment of the present invention has been described above, the secondary battery according to the present invention is not limited to any of the above-described embodiments, and various modifications can be made. For example, in the above-described embodiment, a lithium ion secondary battery has been described as a typical example of a non-aqueous electrolyte secondary battery. However, the embodiment is not limited to the non-aqueous electrolyte secondary battery. For example, a secondary battery using a metal ion (for example, sodium ion) other than lithium ion as a charge carrier may be used.

本発明に係る二次電池は、上記のとおり良好な電池性能を示すことから、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。したがって本発明は、かかる二次電池(典型的には複数直列接続してなる組電池)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)を提供する。   Since the secondary battery according to the present invention exhibits good battery performance as described above, it can be suitably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. Therefore, the present invention provides a vehicle (typically an automobile such as an automobile, particularly a hybrid automobile, an electric automobile, or a fuel cell automobile) provided with such a secondary battery (typically, a plurality of batteries connected in series) as a power source. Vehicle).

20 捲回電極体
30 電池ケース
42 正極端子
44 負極端子
50 正極シート
52 正極集電体
60 負極シート
62 負極集電体
64 負極活物質層
70 セパレータ
90 電流遮断機構
100 リチウムイオン二次電池


20 Winding electrode body 30 Battery case 42 Positive electrode terminal 44 Negative electrode terminal 50 Positive electrode sheet 52 Positive electrode current collector 60 Negative electrode sheet 62 Negative electrode current collector 64 Negative electrode active material layer 70 Separator 90 Current interruption mechanism 100 Lithium ion secondary battery


Claims (1)

正極活物質を含む正極活物質層が正極集電体に保持された正極と、負極活物質を含む負極活物質層が負極集電体に保持された負極と、前記正極と前記負極との間に介在するセパレータとを備える電極体と、
前記電極体を非水電解質とともに収容する電池ケースと、
前記電池ケースに設けられ、前記電極体に接続された外部端子と、
前記電池ケースの内圧が予め定められた圧力以上に高くなると、前記電極体と前記外部端子との電気的な接続を遮断する電流遮断機構と
を備え、
前記非水電解質には、予め定められた電圧以上の電圧で反応し、ガスを発生させるガス発生剤が含まれており、
前記正極活物質の100g当たりのDBP吸収量が、23mL以上32mL以下である、非水電解液二次電池。
A positive electrode in which a positive electrode active material layer containing a positive electrode active material is held in a positive electrode current collector, a negative electrode in which a negative electrode active material layer containing a negative electrode active material is held in a negative electrode current collector, and between the positive electrode and the negative electrode An electrode body comprising a separator interposed between,
A battery case containing the electrode body together with a non-aqueous electrolyte;
An external terminal provided in the battery case and connected to the electrode body;
When the internal pressure of the battery case becomes higher than a predetermined pressure, a current interruption mechanism that interrupts electrical connection between the electrode body and the external terminal,
The non-aqueous electrolyte includes a gas generating agent that reacts at a voltage equal to or higher than a predetermined voltage to generate a gas,
The non-aqueous electrolyte secondary battery, wherein the DBP absorption amount per 100 g of the positive electrode active material is 23 mL or more and 32 mL or less.
JP2014050522A 2014-03-13 2014-03-13 Nonaqueous electrolyte secondary battery Withdrawn JP2015176671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014050522A JP2015176671A (en) 2014-03-13 2014-03-13 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014050522A JP2015176671A (en) 2014-03-13 2014-03-13 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2015176671A true JP2015176671A (en) 2015-10-05

Family

ID=54255716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014050522A Withdrawn JP2015176671A (en) 2014-03-13 2014-03-13 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2015176671A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019050153A (en) * 2017-09-11 2019-03-28 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN114586215A (en) * 2020-03-06 2022-06-03 株式会社Lg新能源 Method for preparing secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019050153A (en) * 2017-09-11 2019-03-28 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
CN114586215A (en) * 2020-03-06 2022-06-03 株式会社Lg新能源 Method for preparing secondary battery
CN114586215B (en) * 2020-03-06 2023-12-12 株式会社Lg新能源 Novel method for manufacturing secondary battery

Similar Documents

Publication Publication Date Title
JP5822089B2 (en) Sealed lithium secondary battery
JP6044842B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5668993B2 (en) Sealed nonaqueous electrolyte secondary battery and method for manufacturing the same
JP4240078B2 (en) Lithium secondary battery
US10236537B2 (en) Non-aqueous electrolyte secondary battery
JP5888167B2 (en) Lithium ion secondary battery
JP2014053174A (en) Method of manufacturing lithium ion secondary battery
JP2015138730A (en) Secondary battery
US9406924B2 (en) Nonaqueous electrolyte secondary battery
JP6128392B2 (en) Non-aqueous electrolyte secondary battery
JP2015176671A (en) Nonaqueous electrolyte secondary battery
JP2020080255A (en) Non-aqueous electrolyte secondary battery
WO2014115403A1 (en) Nonaqueous-electrolyte secondary battery and manufacturing method therefor
JP7096981B2 (en) Lithium ion secondary battery
JP2016062778A (en) Sealed type nonaqueous electrolyte secondary battery
JP2015060670A (en) Method for manufacturing nonaqueous electrolyte secondary battery
WO2013179807A1 (en) Metal-air secondary battery
JP6132158B2 (en) Non-aqueous electrolyte secondary battery
JP2020047481A (en) Nonaqueous liquid electrolyte for lithium ion secondary battery
JP2015060669A (en) Nonaqueous electrolyte secondary battery
JP5963010B2 (en) Non-aqueous electrolyte secondary battery
JP2018147644A (en) Power storage element
JP2015097163A (en) Nonaqueous electrolyte secondary battery
JP6944651B2 (en) Non-aqueous lithium secondary battery
JP5254722B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160419

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20160908