JP2015136139A - チャネルアグリゲーションおよび媒体アクセス制御再送信を実行するための方法および装置 - Google Patents

チャネルアグリゲーションおよび媒体アクセス制御再送信を実行するための方法および装置 Download PDF

Info

Publication number
JP2015136139A
JP2015136139A JP2015033299A JP2015033299A JP2015136139A JP 2015136139 A JP2015136139 A JP 2015136139A JP 2015033299 A JP2015033299 A JP 2015033299A JP 2015033299 A JP2015033299 A JP 2015033299A JP 2015136139 A JP2015136139 A JP 2015136139A
Authority
JP
Japan
Prior art keywords
channel
buffer
channels
frame
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015033299A
Other languages
English (en)
Other versions
JP5986244B2 (ja
Inventor
ダイ ユーイン
Dai Yuying
ダイ ユーイン
チュンシュエン イエ
Chunxuan Ye
チュンシュエン イエ
ズーナン リン
Zinan Lin
ズーナン リン
ゴヴロー ジャン−ルイス
Gauvreau Jean-Louis
ゴヴロー ジャン−ルイス
アーマッド サード
Ahmad Saad
アーマッド サード
エム.フレダ マルティーノ
M Freda Martino
エム.フレダ マルティーノ
ムドガル パラル
Mudgal Parul
ムドガル パラル
バティストン ニック
Battiston Nick
バティストン ニック
デミール アルパスラン
Alpaslan Demir
デミール アルパスラン
リアンピン マー
Liangping Ma
リアンピン マー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Patent Holdings Inc
Original Assignee
InterDigital Patent Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by InterDigital Patent Holdings Inc filed Critical InterDigital Patent Holdings Inc
Publication of JP2015136139A publication Critical patent/JP2015136139A/ja
Application granted granted Critical
Publication of JP5986244B2 publication Critical patent/JP5986244B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0041Frequency-non-contiguous
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0062Avoidance of ingress interference, e.g. ham radio channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Abstract

【課題】プライマリーチャネル及び少なくとも1つの非プライマリーチャネルを含む複数の集約されたチャネルを使用して通信するためにチャネルアグリゲーションを実行する。【解決手段】プライマリーチャネルへのアクセスを得るためにCSMAを実行し、プライマリーチャネルのチャネルステータスを判定し、チャネルステータスがビジーではない場合に少なくとも1つの非プライマリーチャネル上でセンシングを実行し、チャネルステータスがビジーである場合に少なくとも1つの非プライマリーチャネルのチャネルステータスがビジーと想定する。これによって、プライマリーチャネルのチャネルステータス及び少なくとも1つの非プライマリーチャネル上でのセンシングに基づいて当該非プライマリーチャネルのチャネルステータスを判定し、プライマリーチャネル及び利用可能と判定された当該非プライマリーチャネルの何れかで集約された送信を実行する。【選択図】図3

Description

本発明は、チャネルアグリゲーションおよび媒体アクセス制御再送信に関する。
LAN(local wireless network)は、ますます帯域幅を要求するワイヤレスアプリケーションが家庭においてまたはオフィスにおいて展開されるにつれて、制約を受ける帯域幅において動作する場合がある。これを解決するために、TVWS(television white space)などの新興のスペクトルにおけるWTRU(wireless transmit/receive unit)のオペレーションが必要となる場合がある。しかし、そのようなスペクトルにおいて動作するWTRUによって使用されうる許容可能なチャネルは、スペクトルの不連続なチャンクである場合が多い。現在のワイヤレス技術は、不連続なスペクトル割り当てにわたって、集約された方法では動作しない。
システムまたはユーザによって使用可能な帯域幅を最大にするために、スペクトルの不連続なチャンクを同時に使用することが、必要とされるQoS(quality of service)を達成する上で決定的に重要になる場合がある。複数の不連続なチャネルにわたって動作すること、および秩序立った堅牢な方式でチャネルにアクセスすることは、複雑なプロセスとなる場合がある。WTRUは、WTRUのうちの全てが、メディアにアクセスする際に公平な機会を得て、それによってコリジョンの可能性が最小になるように、機能しなければならない場合がある。
動的なスペクトル割り当てを容易にして、LANの堅牢性を確かなものにするために、様々なマネージメント/制御メッセージは、LAN内のアクセスポイント(AP)によって送信される必要がある。これらのメッセージは、全てのWTRU間におけるコーディネーションを保持し、およびそれらのWTRUが効率よく動作するのを補助することが可能である。加えて、複数のチャネルにわたるMAC(medium access control)層キャリアアグリゲーションを実行することにより、より多くのデータの送信が可能となり、それによってシステムスループットが高まる。
プライマリーチャネルおよび少なくとも1つの非プライマリーチャネル(例えば、セカンダリーチャネル、ターシャリーチャネル(tertiary channel)、またはクォータナリーチャネル(quaternary channel))を含む複数の集約されたチャネルを使用してTVWSなどの不連続なスペクトル上で通信するためのチャネルアグリゲーションを実行する方法および装置について記載する。CSMA(carrier sense multiple access)がプライマリーチャネル上で実行され、プライマリーチャネルへのアクセスを得ることができる。AIFS(arbitration interframe space)にわたって待機し、場合によってはプライマリーチャネル上でバックオフを実行した後に、集約されたチャネルが送信のために使用されることができる。バッファコントローラは、複数のAC(access class)のそれぞれごとに、チャネルのうちの各々のためのロジックバッファを生成するために使用されうる。フレームコントローラは、A−MPDU(aggregated MAC(medium access control) protocol data unit)フレーム情報をバッファコントローラに提供し、アグリゲーションプロセスおよびフラグメンテーションプロセスを制御するために使用されうる。
添付図面と共に例として与えられる以降の説明から詳細な理解を得ることができる。
1つまたは複数の開示される実施形態を実施することができる例示的な通信システムのシステム図である。 図1Aにおいて示される通信システム内で使用されうる例示的なWTRUのシステム図である。 図1Aにおいて示される通信システム内で使用されうる例示的な無線アクセスネットワークおよび例示的なコアネットワークのシステム図である。 IEEE802.11nシステムにおけるプライマリーチャネルの一例を示す図である。 IEEE802.11acシステムにおけるプライマリーチャネルの一例を示す図である。 DSMシステム動作チャネルにおける制御およびデータによる複数の集約されたチャネルのタイムシェアリングの一例を示す図である。 プライマリーチャネル上でのMAC層のCSMAの一例を示す図である。 延期5/10/15/20メカニズムの一例を示す図である。 プライマリーチャネル上でのRTS/CTSメッセージングの一例を示す図である。 マルチユーザシナリオにおけるRTS/CTSメッセージングの一例を示す図である。 修正されたRTSメッセージングフレームフォーマットの一例を示す図である。 専用の制御チャネルとしてのプライマリーチャネルの一例を示す図である。 NAV、およびAPへの送信の一例を示す図である。 RTSのフレームフォーマットの一例を示す図である。 CTSメッセージングのフレームフォーマットの一例を示す図である。 ANDロジックが結合されたCSMAの一例を示す図である。 CSAメッセージの一例を示す図である。 集約された制御チャネルの実施態様において使用される修正されたCSAメッセージの一例を示す図である。 IEEE802.11における測定レポートメッセージの一例を示す図である。 IEEE802.11における測定タイプフィールドの一例を示す図である。 測定タイプ4の一例を示す図である。 DSMシステムのCMFが、失敗したチャネルに取って代わるための他の利用可能なチャネルを既に有していた第1のシナリオの流れ図である。 DSMシステムのCMFが、失敗したチャネルに取って代わるための利用可能なチャネルを有していない第2のシナリオの流れ図である。 プライマリーチャネルの失敗の一例を示す図である。 非プライマリーチャネルの失敗の一例を示す図である。 制御メッセージおよびそれらの優先度の一例を提供するテーブルである。 基本的な要求に関するIEEE802.11測定要求フィールドフォーマットの一例を示す図である。 図25のIEEE802.11測定要求フィールド内の修正されたチャネル番号フィールドの一例を示す図である。 イベントトリガーを伴うノード(例えば、APまたはeNB)による高優先度制御メッセージの送信の一例を示す図である。 MAC層集約ユニットの一例を示す図である。 肯定ACKの同期化を伴わずにMAC集約において送信と受信とを同時に行うことを示す図である。 ACK手順の一例を示す図である。 フラグメント化されていないまたは単一のフラグメントパケット送信およびTXOPの最後の送信におけるデュレーションフィールドの例を示す図である。 フラグメント化されたパケット送信、またはTXOPの最後以外の送信におけるデュレーションフィールドの例を示す図である。 継続中のTXOPを継続中でないTXOPから区別するデュレーションフィールドの例を示す図である。 DSMシステムの例示的なアーキテクチャを示す図である。 DSMエンジンの例示的なアーキテクチャを示す図である。 プライマリーCSMAの例示的な図である。 拡張MACアーキテクチャの一例を示す図である。 拡張MACアーキテクチャの一例を示す図である。 空のバッファに起因するパケット並べ替えの例を示す図である。 空のバッファに起因するパケット並べ替えの例を示す図である。 利用不能なチャネルに起因するパケット並べ替えの例を示す図である。 利用不能なチャネルに起因するパケット並べ替えの例を示す図である。 QoS要件に起因するパケット並べ替えの例を示す図である。 QoS要件に起因するパケット並べ替えの例を示す図である。 BC(buffer controller)の例示的なコールフローを示す図である。 受信側における拡張MAC層アーキテクチャの一例を示す図である。 non−HT PPDUデータフォーマットを示す図である。 MACヘッダの一般的なフォーマットを示す図である。 HT−mixed PPDUデータフォーマットを示す図である。 HT−mixed PPDUまたはHT−Greenfield PPDUのMACヘッダの一般的なフォーマットを示す図である。 HT−Greenfield PPDUデータフォーマットを示す図である。 フレームコントローラのための例示的なコールフロー手順を示す図である。 non−HT PPDUに関するMCSパラメータを示す図である。 HT PPDUに関するMCSパラメータを示す図である。 A−MPDUの構成を示す図である。 簡略化されたバッファスキームに基づく送信側における拡張MACアーキテクチャの代替実施形態を示す図である。 簡略化されたバッファスキームに基づく送信側における拡張MACアーキテクチャの代替実施形態を示す図である。 バッファリング機能ブロック図である。 それぞれのACごとの別々のバッファを示すブロック図である。 それぞれのACごとの別々のバッファを示すブロック図である。 プライマリーチャネルにおいて送信が失敗した場合の再送信の例を示す図である。 クォータナリーチャネルにおいて送信が失敗した場合の再送信の例を示す図である。
本明細書では、「WTRU(wireless transmit/receive unit)」という用語は、UE(user equipment)、STA(station)、移動局、固定式または移動式のサブスクライバユニット、ページャー、セルラー電話、PDA(personal digital assistant)、非APステーション、コンピュータ、または、ワイヤレス環境において動作可能な他の任意のタイプのユーザデバイスを含むが、それらには限定されない。WTRUとは、非インフラストラクチャー型のノード(non-infrastructure node)であると言える。
また、「AP(access point)」という用語は、Node−B、サイトコントローラ、基地局、または、ワイヤレス環境において動作可能な他の任意のタイプのインターフェーシングデバイスを含むが、それらには限定されない。また、「ネットワークノード」、「ネットワーク要素」および「ネットワークコンポーネント」という用語は、通信ネットワークに接続されてデータを送信および/または受信することができる任意の電子デバイスを指すが、それらには限定されない。
図1Aは、1つまたは複数の開示される実施形態を実施することができる例示的な通信システム100を示す。通信システム100は、音声、データ、ビデオ、メッセージング、放送などのコンテンツを複数のワイヤレスユーザに提供する多重アクセスシステムとすることができる。通信システム100は、複数のワイヤレスユーザが、ワイヤレス帯域幅を含むシステムリソースの共有を通じてそのようなコンテンツにアクセスすることを可能にすることができる。通信システム100は、1つまたは複数のチャネルアクセス方法、例えば、CDMA(code division multiple access)、TDMA(time division multiple access)、FDMA(frequency division multiple access)、OFDMA(orthogonal FDMA)、SC−FDMA(single-carrier FDMA)などを採用することができる。
図1Aにおいて示されるように、通信システム100は、WTRU102a、102b、102c、102d、RAN(radio access network)104、コアネットワーク106、PSTN(public switched telephone network)108、インターネット110、および他のネットワーク112を含むことができるが、開示される実施形態では、任意の数のWTRU、基地局、ネットワーク、および/またはネットワーク要素が考えられるということが分かるであろう。WTRU102a、102b、102c、102dのそれぞれは、ワイヤレス環境において動作し、および/または通信するように構成される任意のタイプのデバイスとすることができる。例えば、WTRU102a、102b、102c、102dは、ワイヤレス信号を送信および/または受信するように構成されることができ、およびUE、移動局、固定式または移動式のサブスクライバユニット、ページャー、セルラー電話、PDA、スマートフォン、ラップトップ、ネットブック、パーソナルコンピュータ、ワイヤレスセンサ、家庭用電化製品などを含むことができる。
通信システム100は、基地局114aおよび基地局114bを含むこともできる。基地局114a、114bのそれぞれは、コアネットワーク106、インターネット110、および/または他のネットワーク112などの1つまたは複数の通信ネットワークへのアクセスを容易にするために、WTRU102a、102b、102c、102dの少なくとも1つとワイヤレスにインターフェースを取るように構成される任意のタイプのデバイスとすることができる。例えば、基地局114a、114bは、BTS(base transceiver station)、Node−B、eNB(evolved Node-B)、HNB(Home Node-B)、HeNB(Home eNB)、サイトコントローラ、AP、ワイヤレスルータなどとすることができる。基地局114a、114bは、それぞれ単一の要素として示されているが、基地局114a、114bは、任意の数の相互接続された基地局および/またはネットワーク要素を含みうるということが分かるであろう。
基地局114aは、RAN104の一部とすることができ、RAN104は、他の基地局および/またはネットワーク要素(図示せず)、例えば、BSC(base station controller)、RNC(radio network controller)、中継ノードなどを含むこともできる。基地局114aおよび/または基地局114bは、特定の地理的領域内でワイヤレス信号を送信および/または受信するように構成されることができ、この地理的領域は、セル(図示せず)と呼ばれることもある。セルは、複数のセルセクタへとさらに分割することができる。例えば、基地局114aに関連付けられるセルは、3つのセクタへと分割することができる。したがって一実施形態においては、基地局114aは、3つのトランシーバ、すなわち、セルのそれぞれのセクタごとに1つのトランシーバを含むことができる。別の実施形態においては、基地局114aは、MIMO(multiple-input multiple-output)技術を採用することができ、したがって、セルのそれぞれのセクタごとに複数のトランシーバを利用することができる。
基地局114a、114bは、エアインターフェース116上でWTRU102a、102b、102c、102dの1つまたは複数と通信することができ、エアインターフェース116は、任意の適切なワイヤレス通信リンク(例えば、RF(radio frequency)、マイクロ波、IR(infrared)、UV(ultraviolet)、可視光など)とすることができる。エアインターフェース116は、任意の適切なRAT(radio access technology)を使用して確立されうる。
具体的には上述したように、通信システム100は、多重アクセスシステムとすることができ、1つまたは複数のチャネルアクセス方式、例えば、CDMA、TDMA、FDMA、OFDMA、SC−FDMAなどを採用することができる。例えば、RAN104内の基地局114aおよびWTRU102a、102b、102cは、UTRA(UMTS(universal mobile telecommunications system)terrestrial radio access)などの無線技術を実施することができ、この無線技術は、W−CDMA(登録商標)(wideband CDMA)を使用してエアインターフェース116を確立することができる。W−CDMAは、HSPA(high-speed packet access)および/またはHSPA+(evolved HSPA)などの通信プロトコルを含むことができる。HSPAは、HSDPA(high-speed downlink packet access)および/またはHSUPA(high-speed uplink packet access)を含むことができる。
別の実施形態においては、基地局114aおよびWTRU102a、102b、102cは、E−UTRA(evolved UTRA)などの無線技術を実施することができ、この無線技術は、LTE(long term evolution)および/またはLTE−A(LTE-Advanced)を使用してエアインターフェース116を確立することができる。
他の実施形態においては、基地局114aおよびWTRU102a、102b、102cは、無線技術、例えば、IEEE 802.16(すなわち、WiMAX)、CDMA2000、CDMA2000 1X、CDMA2000 EV−DO、IS−2000(Interim Standard 2000)、IS−95(Interim Standard 95)、IS−856(Interim Standard 856)、GSM(登録商標)(global system for mobile communications)、EDGE(enhanced data rates for GSM evolution)、GERAN(GSM/EDGE RAN)などを実施することができる。
図1Aにおける基地局114bは、例えば、ワイヤレスルータ、HNB、HeNBまたはAPとすることができ、局所的なエリア、例えば、事業所、家庭、乗り物、キャンパスなどにおけるワイヤレス接続を容易にするために、任意の適切なRATを利用することができる。一実施形態においては、基地局114bおよびWTRU102c、102dは、WLAN(wireless local area network)を確立するために、IEEE802.11などの無線技術を実施することができる。別の実施形態においては、基地局114bおよびWTRU102c、102dは、WPAN(wireless personal area network)を確立するために、IEEE802.15などの無線技術を実施することができる。さらに別の実施形態においては、基地局114bおよびWTRU102c、102dは、ピコセルまたはフェムトセルを確立するために、セルラーベースのRAT(例えば、W−CDMA、CDMA2000、GSM、LTE、LTE−Aなど)を利用することができる。図1Aに示されるように、基地局114bは、インターネット110への直接接続を有しうる。したがって、基地局114bは、コアネットワーク106を介してインターネット110にアクセスすることを不要とすることができる。
RAN104は、コアネットワーク106と通信状態にあることが可能であり、コアネットワーク106は、音声、データ、アプリケーション、および/またはVoIP(voice over Internet protocol)サービスをWTRU102a、102b、102c、102dの1つまたは複数に提供するように構成される任意のタイプのネットワークとすることができる。例えば、コアネットワーク106は、コール制御、課金サービス、モバイル位置情報サービス、プリペイドコーリング、インターネット接続、ビデオ配信などを提供し、および/またはユーザ認証などのハイレベルセキュリティー機能を実行することができる。図1Aには示されていないが、RAN104および/またはコアネットワーク106は、RAN104と同じRATまたは異なるRATを採用する他のRANと直接または間接の通信状態にあることが可能であるということが分かるであろう。例えば、コアネットワーク106は、E−UTRA無線技術を利用している可能性があるRAN104に接続されていることに加えて、GSM無線技術を採用する別のRAN(図示せず)と通信状態にあることも可能である。
コアネットワーク106は、WTRU102a、102b、102c、102dがPSTN108、インターネット110、および/または他のネットワーク112にアクセスするためのゲートウェイとして機能することもできる。PSTN108は、POTS(plain old telephone service)を提供する回線交換電話ネットワークを含みうる。インターネット110は、TCP/IPスイートにおけるTCP、UDPおよびIPなど、共通の通信プロトコルを使用する相互接続されたコンピュータネットワークおよびデバイスからなるグローバルシステムを含むことができる。他のネットワーク112は、他のサービスプロバイダによって所有および/または運営されている有線または無線の通信ネットワークを含むことができる。例えば、ネットワーク112は、RAN104と同じRATまたは異なるRATを採用可能な1つまたは複数のRANに接続されている別のコアネットワークを含むことができる。
通信システム100内のWTRU102a、102b、102c、102dのいくつかまたは全ては、マルチモード機能を含むことができ、すなわち、WTRU102a、102b、102c、102dは、別々のワイヤレスリンク上で別々のワイヤレスネットワークと通信するために複数のトランシーバを含むことができる。例えば、図1Aに示されるWTRU102cは、セルラーベースの無線技術を採用しうる基地局114a、およびIEEE802無線技術を採用しうる基地局114bと通信するように構成されうる。
図1Bは、図1Aに示される通信システム100内で使用可能な例示的なWTRU102を示す。図1Bに示されるように、WTRU102は、プロセッサ118、トランシーバ120、送信/受信要素(例えば、アンテナ)122、スピーカ/マイクロフォン124、キーパッド126、ディスプレイ/タッチパッド128、非リムーバブルメモリ130、リムーバブルメモリ132、電源134、GPS(global positioning system)チップセット136および周辺機器138を含むことができる。WTRU102は、一実施形態との整合性を保持しながら、上述の要素どうしの任意のサブコンビネーションを含むことができるということが分かるであろう。
プロセッサ118は、汎用プロセッサ、専用プロセッサ、従来型プロセッサ、DSP(digital signal processor)、マイクロプロセッサ、DSPコアと関連付けられている1つまたは複数のマイクロプロセッサ、コントローラ、マイクロコントローラ、ASIC(application specific integrated circuit)、FPGA(field programmable gate array)回路、IC(integrated circuit)、状態マシンなどとすることができる。プロセッサ118は、信号コーディング、データ処理、電力制御、入力/出力処理、および/またはWTRU102を無線環境内で動作できるようにする他の任意の機能を実行することができる。プロセッサ118は、トランシーバ120に結合することができ、トランシーバ120は、送信/受信要素122に結合することができる。図1Bは、プロセッサ118とトランシーバ120を別々のコンポーネントとして示しているが、プロセッサ118とトランシーバ120は、1つの電子パッケージまたはチップ内に統合することができる。
送信/受信要素122は、エアインターフェース116上で、基地局(例えば、基地局114a)に信号を送信するように、または基地局(例えば、基地局114a)から信号を受信するように構成されることができる。例えば、一実施形態においては、送信/受信要素122は、RF信号を送信および/または受信するように構成されるアンテナとすることができる。別の実施形態においては、送信/受信要素122は、例えば、IR信号、UV信号、または可視光信号を送信および/または受信するように構成されるエミッタ/検知器とすることができる。さらに別の実施形態においては、送信/受信要素122は、RF信号と光信号の両方を送信および受信するように構成されることができる。送信/受信要素122は、ワイヤレス信号の任意の組合せを送信および/または受信するように構成されることができる。
また、送信/受信要素122は、図1Bにおいては単一の要素として示されているが、WTRU102は、任意の数の送信/受信要素122を含むことができる。具体的には、WTRU102はMIMO技術を採用することができる。従って、一実施形態においては、WTRU102は、エアインターフェース116上で無線信号を送信および受信するために、複数の送信/受信要素122(例えば、複数のアンテナ)を含むことができる。
トランシーバ120は、送信/受信要素122によって送信される信号を変調するように、また、送信/受信要素122によって受信される信号を復調するように構成されることができる。上述したように、WTRU102は、マルチモード機能を有することができる。したがってトランシーバ120は、WTRU102が、UTRAおよびIEEE802.11など、複数のRATを介して通信できるようにするために複数のトランシーバを含むことができる。
WTRU102のプロセッサ118は、スピーカ/マイクロフォン124、キーパッド126および/またはディスプレイ/タッチパッド128(例えば、LCD(liquid crystal display)ディスプレイユニットまたはOLED(organic light-emitting diode)ディスプレイユニット)に結合することができ、そこからユーザ入力データを受け取ることができる。プロセッサ118は、ユーザデータをスピーカ/マイクロフォン124、キーパッド126および/またはディスプレイ/タッチパッド128へ出力することもできる。また、プロセッサ118は、非リムーバブルメモリ130および/またはリムーバブルメモリ132など、任意のタイプの適切なメモリからの情報にアクセスし、およびそれらのメモリにデータを格納することができる。非リムーバブルメモリ130は、RAM、ROM、ハードディスク、または他の任意のタイプのメモリストレージデバイスを含むことができる。リムーバブルメモリ132は、SIM(subscriber identity module)カード、メモリスティック、SD(secure digital)メモリカードなどを含むことができる。他の実施形態においては、プロセッサ118は、サーバまたはホームコンピュータ(図示せず)上など、WTRU102上に物理的に配置されていないメモリからの情報にアクセスし、およびそのメモリにデータを格納することができる。
プロセッサ118は、電源134から電力を受け取ることができ、また、WTRU102内の他のコンポーネントへの電力を分配および/または制御するように構成されることができる。電源134は、WTRU102に電力供給するための任意の適切なデバイスとすることができる。例えば、電源134は、1つまたは複数の乾電池(例えば、NiCd(nickel-cadmium)、NiZn(nickel-zinc)、NiMH(nickel metal hydride)、Li−ion(lithium-ion)など)、太陽電池、燃料電池などを含むことができる。
プロセッサ118は、GPSチップセット136に結合することもでき、GPSチップセット136は、WTRU102の現在位置に関する位置情報(例えば、経度および緯度)を提供するように構成されることができる。GPSチップセット136からの情報に加えて、またはその情報の代わりに、WTRU102は、基地局(例えば、基地局114a、114b)からエアインターフェース116上で位置情報を受信すること、および/または複数の近隣の基地局から受信される信号のタイミングに基づいて自分の位置を特定することができる。WTRU102は、一実施形態との整合性を保持しながら、任意の適切な位置特定方法を通じて位置情報を得ることができる。
プロセッサ118は、他の周辺機器138にさらに結合することができ、他の周辺機器138は、さらなる特徴、機能、および/または有線接続若しくは無線接続を提供する1つまたは複数のソフトウェアモジュールおよび/またはハードウェアモジュールを含むことができる。例えば、周辺機器138は、加速度計、e−コンパス、衛星トランシーバ、デジタルカメラ(写真またはビデオ用)、USBポート、振動デバイス、テレビジョントランシーバ、ハンドフリーヘッドセット、Bluetooth(登録商標)モジュール、FM(frequency modulated)ラジオユニット、デジタルミュージックプレーヤ、メディアプレーヤ、ビデオゲームプレーヤモジュール、インターネットブラウザなどを含むことができる。
図1Cは、図1Aに示される通信システム100内で使用可能な例示的なRAN104およびコアネットワーク106を示す。RAN104は、エアインターフェース116上でWTRU102a、102b、102cと通信するためにIEEE802.16無線技術を採用するASN(access service network)とすることができる。
図1Cに示されるように、RAN104は、基地局140a、140b、140c、およびASNゲートウェイ142を含むことができるが、RAN104は、一実施形態との整合性を保持しながら、任意の数の基地局およびASNゲートウェイを含むことができるということが分かるであろう。基地局140a、140b、140cはそれぞれ、RAN104内の特定のセル(図示せず)に関連付けることができ、エアインターフェース116上でWTRU102a、102b、102cと通信するために1つまたは複数のトランシーバを含むことができる。一実施形態においては、基地局140a、140b、140cは、MIMO技術を実施することができる。したがって、基地局140aは、例えば、WTRU102aに無線信号を送信するために、およびWTRU102aから無線信号を受信するために、複数のアンテナを使用することができる。基地局140a、140b、140cは、モビリティーマネージメント機能、例えば、ハンドオフのトリガリング、トンネルの確立、無線リソースマネージメント、トラフィックの分類、QoSポリシーの実施などを提供することもできる。ASNゲートウェイ142は、トラフィック集約ポイントとして機能することができ、ページング、サブスクライバプロフィールのキャッシング、コアネットワーク106へのルーティングなどを担当することができる。
WTRU102a、102b、102cと、RAN104との間のエアインターフェース116は、IEEE802.16仕様を実施することができる。また、WTRU102a、102b、102cの各々は、コアネットワーク106との論理インターフェース(図示せず)を確立することができる。WTRU102a、102b、102cと、コアネットワーク106との間における論理インターフェースは、認証、許可、IPホスト構成マネージメント、および/またはモビリティーマネージメントのために使用されうる。
基地局140a、140b、140cの各々の間における通信リンクは、WTRUのハンドオーバ、および基地局同士の間におけるデータの転送を容易にするためのプロトコルを含むことができる。基地局140a、140b、140cと、ASNゲートウェイ142との間における通信リンクは、WTRU102a、102b、102cの各々に関連付けられているモビリティーイベントに基づいてモビリティーマネージメントを容易にするためのプロトコルを含むことができる。
図1Cに示されるように、RAN104は、コアネットワーク106に接続されうる。RAN104と、コアネットワーク106との間における通信リンクは、例えば、データ転送およびモビリティーマネージメント機能を容易にするためのプロトコルを含みうる。コアネットワーク106は、MIP−HA(mobile IP home agent)144、AAA(authentication, authorization, accounting)サーバ146およびゲートウェイ148を含みうる。上述の要素の各々は、コアネットワーク106の一部として示されているが、これらの要素のいずれかが、コアネットワークオペレータ以外のエンティティによって所有および/または運営されることも可能であるということが分かるであろう。
MIP−HAは、IPアドレスマネージメントを担当することができ、WTRU102a、102b、102cが、別々のASNおよび/または別々のコアネットワークの間でローミングすることを可能にすることができる。MIP−HA144は、WTRU102a、102b、102cと、IP対応デバイスとの間における通信を容易にするために、インターネット110などのパケット交換ネットワークへのアクセスをWTRU102a、102b、102cに提供することができる。AAAサーバ146は、ユーザ認証と、ユーザサービスをサポートすることとを担当することができる。ゲートウェイ148は、他のネットワークと相互作用することを容易にしうる。例えば、ゲートウェイ148は、WTRU102a、102b、102cと、従来の固定電話通信デバイスとの間における通信を容易にするために、PSTN108などの回線交換ネットワークへのアクセスをWTRU102a、102b、102cに提供することができる。また、ゲートウェイ148は、ネットワーク112へのアクセスをWTRU102a、102b、102cに提供することができ、ネットワーク112は、他のサービスプロバイダによって所有および/または運営されている他の有線または無線のネットワークを含むことができる。
図1Cには示されていないが、RAN104は他のASNに接続することができ、コアネットワーク106は他のコアネットワークに接続することができるということが分かるであろう。RAN104と、他のASNとの間における通信リンクは、RAN104と、他のASNとの間においてWTRU102a、102b、102cのモビリティーをコーオーディネートする(coordinate)ためのプロトコルを含むことができる。コアネットワーク106と、他のコアネットワークとの間における通信リンクは、ホームコアネットワークと、訪問先コアネットワークとの間における相互作用を容易にするためのプロトコルを含むことができる。
例えば、IEEE802.11システムなどのローカルワイヤレスネットワークシステムは、ISM(industrial, scientific and medical)帯域などの事前に定義されたスペクトルにおいて動作することができる。IEEE802.11システムは、連続したスペクトルチャネルにおいて動作することができる。
米国においては、54MHzから806MHzまでのスペクトルの408MHzが、TV(television)のために割り当てられている。現在、そのスペクトルのうちの108MHzが、オークションを通じた商業オペレーション向けに、および公安用途向けに再開発されている。この主要な電波スペクトルのうちの残りの300MHzは、引き続きOTA(over-the-air)TVオペレーション専用とすることができる。しかし、全米にわたって、その300MHzのリソースのうちの複数の部分が未使用のままである。未使用のスペクトルの量および厳密な周波数は、場所ごとに異なる場合がある。スペクトルのうちのこれらの未使用の部分は、TVWSと呼ばれている。FCC(Federal Communications Commission)は、これらの未使用のTVWS周波数を、ライセンス供与されていない様々な使用のために開放することを検討している。トップの大都市エリアの外側では、配置されているTV局が少なくなるため、占有されていないTVWSスペクトルのほとんどは、DSL(digital subscriber line)またはケーブルなど、他のブロードバンドオプションを十分に提供されていない傾向がある人口密度の低いまたは田舎のエリアにおいて利用可能である。
それぞれの利用可能なTVチャネルは、ブロードバンド接続のために使用可能なスペクトル容量のうちの6MHzを提供することができる。TVWSは、これらの周波数における長距離の信号伝搬に起因して、はるかに大きなカバレッジエリアを有することができる。例えば、TVWSにおいて動作するWLAN APロケーションは、2〜3平方マイルのエリアにわたるカバレッジを提供することができる。一方、例えば、現在IEEE802.11b/g/nシステムにおいて動作するワイヤレス機器は、150平方フィートの平均カバレッジエリアを有することができる。
図2は、IEEE802.11nシステムにおける20MHzのプライマリーチャネル205および20MHzのセカンダリーチャネル210の一例を示す。プライマリーチャネル205は、BSS(basic service set)のメンバーである全てのWTRU(すなわち、STA)のためのオペレーションの共通チャネルである。全てのマネージメントトラフィック(ビーコン)は、プライマリーチャネル205上で送信されることができる。セカンダリーチャネル210は、40MHzのチャネルを生成する目的で、プライマリーチャネル205と関連付けて、HT(high-throughput) WTRUによって使用することができる。送信側デバイスが送信の際にセカンダリーチャネル210の状態を考慮することは、まったく不要とすることができる。
図2に示されるように、40MHzのチャネルペア205/210へのアクセスは、PCSMA(primary carrier sensing multiple access)を実行すること(すなわち、プライマリーチャネル205上でのみCSMAを実行すること)によって制御されうる。WTRUが送信の前にセカンダリーチャネル210の搬送波感知状態を考慮する必要がないため、セカンダリーチャネル210上でのコリジョンの可能性が大幅に高まる。
図2に示されるように、CSMAバックオフ手順は、プライマリーチャネル205上で実行されうる。送信の前に、WTRUの全ては、プライマリーチャネル205が、AIFS時間にわたって、且つバックオフに入るために(AIFS+バックオフ期間215)アイドルであることを確実にすることができる。自分のバックオフが最初に期限切れになったWTRUが、コンテンションに勝ち、プライマリーチャネル205上で送信へのアクセスを得る。セカンダリーチャネル210は、PIFS(PCF(point coordination function)inter-frame space)期間220にわたって感知されることが可能であり、このPIFS期間は、AIFS+バックオフ期間215よりもはるかに短い。
IEEE802.11nシステムは、連続したスペクトルにおいて動作し、2つの異なる延期モードで動作することができる。延期/20/40モードにおいては、WTRUは、プライマリーチャネル205およびセカンダリーチャネル210の両方がアイドルである場合には40MHzで送信を行い、若しくはプライマリーチャネル205がアイドルである場合には20MHzで送信を行い、またはプライマリーチャネル205がビジーである場合には送信を延期する。延期/40モードにおいては、WTRUは、プライマリーチャネル205およびセカンダリーチャネル210の両方がアイドルである場合に40MHzで送信を行うか、または送信を延期する。しかし、実施態様の制約に起因して、WTRUのほとんどは、延期/40モードを使用することができる。
図3は、IEEE802.11acシステムにおけるプライマリーチャネル305の一例を示す。IEEE802.11acシステムは、80MHzまたは160MHzの帯域幅上で動作するHTシステムであるため、プライマリーチャネル305と、複数の非プライマリーチャネル(例えば、セカンダリーチャネル310、ターシャリーチャネル315、またはクォータナリーチャネル320)とを含む複数の連続した20MHzのチャネルを使用することができる。WTRUまたはノード(例えば、APまたはeNB)は、転送すべき制御/データを有するたびに、プライマリーチャネル305上でCSMA(AIFS+バックオフ)を実行することができ、その他の非プライマリーチャネル310、315および320は、プライマリーチャネル305と同じチャネルステータスを有すると想定することができる(すなわち、プライマリーチャネル305上のCSMAが、ビジーのステータスを返した場合には、チャネル305、310、315および320の全てがビジーであり、ひいてはビジーのステータスを返すように設定されていると想定することができる)。WTRUまたはノードは、プライマリーチャネル305へのアクセスを得ると、次いで、送信前のPIFS期間中に非プライマリーチャネル310、315、および320をチェックして、それらのチャネルの全てが実際に空いていることを確かめる上で役立つことができる。IEEE802.11acシステムは、80MHzの帯域幅のシナリオに関して延期/20/40/80モードを使用することができる。
上述のコンセプトは、「チャネルボンディング」として知られている。IEEE802.11nシステムにおける2つのチャネルを伴う40MHzの帯域幅と、IEEE802.11acシステムにおける80MHzのスペクトルとからなる大きなチャンクは、物理層の視点から1つの大きなチャネルとして使用されることができ、すなわち、この巨大な帯域幅上で送信される1つのPPDU(physical layer protocol data unit)または1つのA−PPDU(aggregated PPDU)だけが存在する。
図4は、DSM(dynamic spectrum management)システム動作チャネルにおける制御およびデータによる複数の集約されたチャネルのタイムシェアリングの一例を示す。これらのチャネルは、連続または不連続とすることができる。これらの集約されたチャネルは、DSMエンジンとDSMクライアントとの間においてデータパケットおよび制御/マネージメントパケットを送信するために使用されることができる。
ライセンス供与されていないスペクトルまたはオポチュニスティックな(opportunistic)スペクトル(すなわち、プライマリーユーザまたは高い優先度のユーザが、そのスペクトル上に存在しない限り、ライセンス供与されていないデバイスによって使用可能なスペクトル)における集約されたチャネルは、ライセンス供与されているユーザが優先権を有しているため、常に利用できるとは限らない場合がある。したがって、プライマリーユーザが現れると、当該チャネルは使用できなくなる場合がある。例えば、それぞれのチャネルが、5MHzの帯域幅を有する場合があり、したがって、それらのチャネルを集約すれば、合計で20MHzの帯域幅を提供することができる。
複数の集約されたチャネルに基づく集約されたチャネルアクセスの様々な例について、ここで説明する。任意の数(x)の集約されたチャネルを使用することができ、その場合には、いかなる周波数帯域においても、x>1であることを当業者なら理解するはずである。ここでは具体的にAPに言及するが、ここで説明する特徴は、LTEに関して使用されるeNBなど、他のタイプのノードに適用することもできるということを当業者なら理解するはずである。
MAC層のCSMAは、プライマリーチャネル上で実行されうる。プライマリーチャネルは、不連続なスペクトル上で複数のMPDU(MAC protocol data unit)を送信する目的でMAC層においてチャネルアグリゲーションを実行するために使用されうる。例えば、4つの集約されたチャネルを使用するシナリオにおいては、4つのチャネルのうちの1つは、APによってプライマリーチャネルとして割り当てられうる。WTRUまたはAPは、転送すべき制御/マネージメントパケットまたはデータを有するたびに、事前に割り当てられたプライマリーチャネル上でCSMAを実行することができ、他の3つのチャネルは、プライマリーチャネルと同じチャネルステータスを有すると想定することができる(すなわち、プライマリーチャネル上のCSMAが、ビジーのステータスを返した場合には、4つのチャネル全てがビジーであると想定することができる)。WTRUまたはAPは、プライマリーチャネルへのアクセスを得ると、集約されたチャネルのセット全体へのアクセスを得ることもできる。次いでWTRUおよびAPは、送信前のPIFS期間中に非プライマリー(すなわち、セカンダリー、ターシャリー、およびクォータナリー)チャネルをチェックして、4つのチャネル全てが実際に空いていることを確かめる上で役立つことができる。
集約されたチャネルは、PHYにおいて帯域幅の1つの結合されたチャンクとみなされることはできない。その代わりに、別々のPDUまたは(マネージメント/制御パケットのための)マネージメントPDUが、送信側デバイスによってそれぞれのチャネル上で送信される。それらのPDUは1つまたは複数のWTRUへ向けられうる。受信側のWTRUは、(必要な場合には、)自分が受信するそれぞれのPDUごとに別々に肯定ACK(acknowledgement)メッセージを送信することができる。例えば、WTRUは、集約されたチャネルの全ての上で同時のPDUを正しく受信した場合には、集約されたチャネルのそれぞれの上でACKを送信することができる。
図5は、プライマリーチャネル上のMAC層のCSMAの一例を示す。図5に示されるように、プライマリーチャネル上でのCSMAコンテンションに勝ったデバイスが、集約されたチャネルの全てへのアクセスを得る。PIFS期間中にCCA(clear channel assessment)インジケーションが受信され、非プライマリーチャネル上でビジーステータスが返された場合には、ビジーな非プライマリー(例えば、セカンダリー)チャネルは使用されることはできず、送信は、依然として残りのチャネル上で行うことができる。プライマリーチャネルがビジーである場合には、送信全体はその後の送信機会まで延期されることができる。
それぞれの動作チャネルが約5MHzの帯域幅であると想定すると、この手順は、可用性に応じて、集約されたチャネルの1つまたは複数の上で送信するオプションを可能にするため、延期5/10/15/20手順と呼ばれる場合がある。延期5/10/15/20手順は、チャネルの動的な選択を可能にし、全てのチャネルがアイドルである場合にはデバイスが全て20MHzを使用することを可能にするか、または、図6に示されるように、望ましくない干渉源によって1つまたは複数の非プライマリーチャネルが占有されている場合(すなわち、それらの非プライマリーチャネルが、非プライマリーチャネルに適用されるCCAによって、ビジーであると判明した場合)には、延期15/10/5手順を使用することができる。
さらに、別々の帯域幅を有するチャネル同士を集約することができる。例えば、チャネル1は、10MHzの帯域幅上で機能することができ(2つの連続したビデオチャネル上で機能し)、その一方で、残りのチャネル(2、3、および4)は、それぞれ5MHzの帯域幅上で機能することができる。プライマリーチャネルの選択は、このことを考慮に入れることができる。
加えて、MACバッファ内のデータの量に応じて、送信側デバイスは、送信するための別々のPDUを有する必要がない場合がある。このシナリオにおいては、デバイスは、下記のオペレーションのうちの1つまたは複数を実行することができる。
1)セグメント化:デバイスは、PDUをさらに小さなPDUへとセグメント化することができる。デバイスは、チャネルの浪費をもたらす非常に大きなMAC/PHYオーバーヘッドが生じるような形でPDUがセグメント化されることが決してないようにすることができる。
2)繰り返し:デバイスは、システムの堅牢性を高めるために、複数のチャネル上で同じPDUを同時に送信することができる。例えば、ターシャリーチャネルおよびクォータナリーチャネルが、より低いリンク品質を有しており、デバイスが、送信すべき3つのPDUを有している場合には、デバイスは、ターシャリーチャネルおよびクォータナリーチャネルの両方の上でPDUを3回繰り返すことができる。
3)ヌル送信:デバイスは、送信のために必要とされていないチャネルにおいてヌルフレームを送信することを選択することができる。例えば、デバイスは、3つのPDUを送信しなければならない場合には、PDU1、PDU2、およびPDU3をプライマリーチャネル、セカンダリーチャネル、およびターシャリーチャネル上で、並びにヌルフレームをクォータナリーチャネル上で送信することができる。ヌルの送信は、そのチャネルが引き続きビジーであることを確かにするために(すなわち、他の外部のAPまたはコーオーディネートされていないデバイスが自分の送信をそのチャネル上で開始することが決してないようにするために)必要とされる。
4)いくつかの非プライマリーチャネル上では送信を行わない:非プライマリーチャネル上ではCSMAが行われないため、1つまたは複数の非プライマリーチャネル上でPDUをまったく送信しないことが可能な場合がある。
デバイスは、チャネルにアクセスするためにRTS(request to send)メッセージおよびCTS(clear to send)メッセージを使用することもできる。しかし、RTS/CTS手順は、不連続なスペクトル上で動作する集約されたチャネル上で動作するように適合されなければならない。通常のRTS/CTS手順は、送信側デバイスが、意図されている受信側デバイスへRTSメッセージを送信したときに開始する。受信側デバイスは、応答可能である場合には、SIFS(short interframe space)期間にわたって待機した後に、CTSメッセージを用いて応答することができる。次いで送信側デバイスは、SIFS期間にわたって待機した後に、データパケットを送信することができる。そしてデータパケットの後には、やはりSIFS期間にわたる待機の後に、受信側デバイスからのACKが続くことができる。RTSメッセージは、MACヘッダ内にデュレーションフィールドを含むことができ、このフィールドは、このデータ送信のためにチャネルを確保することができる時間(ACKが受信されるまでの時間)について全てのデバイスに知らせる。これは、他のデバイスのNAV(network allocation vector)をしかるべく設定することによって、その他のデバイスが、この保護された期間中に送信を行うことが決してないようにする。
図7に示されるように、送信側デバイスは、集約されたチャネルを求めてプライマリーチャネル上で競合することができる(すなわち、プライマリーチャネル上でAIFSにわたって待機してバックオフを実行することができる)。送信側デバイスは、チャネルへのアクセスを得ると、RTSメッセージを送り出すことができる。このRTSメッセージを受信すると、受信側デバイスは、データ送信のための保護された期間を確立するためにCTSメッセージを用いて応答することができる。SIFS期間にわたる待機の後に、集約されたチャネルの全ての上でデータを送信することができ、その後には、集約されたチャネルの全ての上でACKが続く。
RTSメッセージ内のデュレーションフィールドは、SIFS+CTS送信時間+SIFS+集約されたチャネル上での最長のパケットの送信時間+SIFS+ACK送信時間に設定されうる。同様に、CTSパケット内のデュレーションフィールドは、SIFS+集約されたチャネル上での最長のパケットの送信時間+SIFS+ACKに設定されうる。最長のパケットの送信時間は、チャネルのいずれか1つの上に送信が存在する限り、チャネルの全てが引き続きビジーであるように使用されることができる。
あるいは、RTS/CTSメッセージは、堅牢性を高めるために、複数のチャネル上で、または集約されたチャネルの全ての上で送信することができる。このケースにおいては、非プライマリーチャネル上で送信されるRTSメッセージは、PIFS期間中にチャネルを感知した後に送信されることができる。
デバイス(例えば、AP)は、複数のユーザへ同時に送信を行うためのチャネルを確保するためにRTS/CTSメッセージを使用することもできる。ソースWTRUは、複数の宛先アドレスを用いてプライマリーチャネル上でRTSメッセージを送信することができる。宛先WTRUは、RTSメッセージ内で指定されるように複数のチャネル上でSIFS期間にわたって待機した後にCTSメッセージを用いて応答することができる。次いでソースWTRUは、別々のチャネル上で別々の宛先WTRUに宛てられている複数のPDUを同時に送信することができる。宛先WTRUは、自分がその送信を受信した同じチャネル上でACKメッセージを送信することができる。ACKの全ては、SIFS期間にわたって待機した後に、および集約されたチャネル上での最長のPDUの終わりの後に、宛先WTRUによって同時に送信されることができる。
図8に示されるように、最長のPDU送信がいつ終了するかをデバイスの全てが必ず分かるようにするために、最長の送信はプライマリーチャネルにおいて行われるように強制することができ、また、どのチャネルの送信が最も長く続くかを示すために、最長チャネルインジケータをMACヘッダ内に設定することができる。
図9は、フレーム制御フィールド905、デュレーションフィールド910、受信アドレスフィールド915、送信アドレスフィールド920、CTSチャネルフィールド925、送信チャネルフィールド930、およびFCS(frame check sequence)フィールド935を含むRTSメッセージ900のフレーム構造を示す。受信アドレス(1...N)フィールドは、RTSメッセージ900が導かれる先の意図されている宛先WTRUのアドレスを含む。フィールド915内のアドレスの最大数はNであり、これは、チャネルの数を超えることはできない(例えば、図8に示されるシナリオでは、N=4である)。CTSチャネル(1...N)フィールド925は、指定されたチャネル上でCTSメッセージを送信するようにそれぞれの宛先WTRUに指示する。例えば、図8に示されるシナリオにおいては、CTSチャネル1は、プライマリーチャネルに設定されており、CTSチャネル2は、ターシャリーチャネルに設定されている。送信チャネル(1...N)フィールド930は、データが送信されることになるチャネルについて宛先WTRUに知らせる。例えば、図8に示されるシナリオにおいては、送信チャネル1は、プライマリーチャネルおよびセカンダリーチャネルに設定されており、送信チャネル2は、ターシャリーチャネルおよびクォータナリーチャネルとして指定されている。
RTS/CTSメッセージは、システムの堅牢性を高めるために複数のチャネル上で送信されることができる。プライマリーチャネルは、専用の制御チャネルとして使用されることもできる。全てのWTRUは、プライマリーチャネル上で制御情報を受信および送信することができ、また、プライマリーチャネル上ではデータ送信を行うことができない。ビーコン、アソシエーション要求/応答、チャネル切り替えメッセージ、RTS/CTS、および他の全ての制御/マネージメントメッセージは、CSMAを使用してプライマリーチャネル上で送信されることができる。データ送信に関しては、他の全てのチャネルは、プライマリーチャネルを使用してAPによって使用され、およびコーオーディネートされることができる。
WTRUは、データチャネルへのアクセスを得るためにRTSメッセージを送信することができる。RTSメッセージは、APに宛てることができ、本質的には、データ送信のためにチャネルを割り当てるようAPに求める要求である。APは、使用すべきチャネルと、それらのチャネルがAPに割り当てられているデュレーションとをWTRUに知らせるCTSメッセージを用いて応答することができる。次いでAPは、それらのチャネル上でPDUを送信することができ、同じチャネル上で宛先WTRUからACKを受信することができる。WTRUは、プライマリーチャネルを求めて競合するためにCSMAを実行する必要があるため、プライマリーチャネルに関するNAVを保持することができ、その一方で、データチャネルに関しては、WTRUは、送信を行うことができるチャネルを示すCTSメッセージをAPから受信するまで、送信を行うことはできない。
図10は、専用の制御チャネルとして動作するプライマリーチャネルの一例を示す。図10に示されるように、第1のWTRU(WTRU1)は、第2のWTRU(WTRU2)へデータを転送するための帯域幅をAPに要求する。APは、SIFS期間にわたって待機した後にセカンダリーチャネルおよびターシャリーチャネルを使用することができることをWTRU1に知らせるCTSメッセージを用いて応答する。WTRU1が、セカンダリーチャネルおよびターシャリーチャネル上でパケットを送信している間に、第3のWTRU(WTRU3)が、プライマリーチャネル上でのコンテンションに勝ち、パケットを第4のWTRU(WTRU4)へ送信するためにRTSメッセージをAPへ送信する。APは、SIFS期間にわたって待機した後にクォータナリーチャネルを使用するようWTRU3に知らせるCTSメッセージを用いて応答する。
チャネルの全てがビジーであり、APが、割り当てるためのチャネルをまったく有していないケースにおいては、APは、割り当てられたチャネル上で送信を行う前に特定の時間にわたって待機するようWTRUに求めることができ、またはAPは、失敗フラグとともにCTSメッセージを送信することができる。後者のケースにおいては、WTRUは、しばらくしてから再びRTSを送信しなければならない場合がある。
図11に示されるように、WTRUがデータをAPへ送信しなければならないケースにおいては、そのデータをCTSメッセージ内に含めて送信するために、それらのWTRUにプライマリーチャネルを割り当てることができる。これは、APが、WTRUからデータを受信している間に、とにもかくにもビジーであり続ける場合があるためである。図11に示されるように、NAVは、プライマリーチャネルにのみ基づく。
集約されたチャネルの全てが、単一の無線機(例えば、DSMシステム内の無線機)に属する場合には、WTRUは、一方のチャネル上で受信を行っている間に、他方のチャネル上で同時に送信を行うことができない場合がある。これは、別々のチャネルの間における自己干渉をもたらす可能性がある。この問題を回避するために、WTRUは、他のチャネル上でデータを送信している間に、プライマリーチャネルをリッスンすることができない。WTRUが複数の無線機を有する場合には、WTRU内の無線機の1つが別のチャネル上でデータを送信している間に、プライマリーチャネル上で送信/受信を行うために、WTRU内の別の無線機を使用することができる。
図12は、専用の制御チャネル手順のためにプライマリーチャネルにおいて使用されるRTSメッセージ1200のフレームフォーマットを示す。RTSメッセージ1200は、フレーム制御フィールド1205、デュレーションフィールド1210、受信側アドレスフィールド1215、宛先アドレスフィールド1220、送信アドレスフィールド1225、要求チャネルフィールド(channel requested field)1230、およびFCSフィールド1235を含むことができる。宛先アドレスフィールド1220は、データパケットを受信することになるWTRUのアドレスを含むことができる。受信側アドレスフィールド1215は、RTSメッセージ1200を受信して、(通常は、APまたはネットワークコントローラによって送信される)CTSメッセージを用いて応答するWTRUのアドレスを含むことができる。データがAPへ宛てられている場合には、受信側アドレスフィールド1215および宛先アドレスフィールド1220は同じとすることができる。要求チャネルフィールド1230は、データを送信するためにソースWTRUによって必要とされるチャネルの数を示すことができる。
図13は、専用の制御チャネル手順のためにプライマリーチャネルにおいて使用されるCTSメッセージ1300のフレームフォーマットを示す。このCTSメッセージは、フレーム制御フィールド1305、デュレーションフィールド1310、受信側アドレスフィールド1315、待機時間フィールド1320、許可チャネルフィールド(channel granted field)1325、およびFCSフィールド1330を含むことができる。待機時間フィールド1320は、WTRUが、許可されたチャネル上でデータを送信できるようになる前に待機しなければならない場合がある(SIFS期間にわたって待機した後の)デュレーションを示すことができる。待機時間がゼロである場合には、WTRUは、SIFS期間にわたって待機した後にデータ転送を開始することができる。許可チャネルフィールド1325は、WTRUがデータを送信することを許可されているチャネルのチャネル番号または識別情報(ID)についてWTRUに知らせることができる。APは、その数の要求された利用可能なチャネルを有していない場合には、より少ないチャネルをソースWTRUに対して許可することができる。
結合されたCSMAは、集約されたチャネルにアクセスするための別の代替技術である。結合されたCSMAは、単にプライマリーチャネル上でのみCSMAを実行する代わりに、全てのチャネル上でCSMAを実行することができる。結合されたCSMAは、チャネルの全てにともにアクセスするために、全てのチャネル上で「AND」ロジックを使用することができる。したがって、結合されたCSMAは、延期5/10/15/20オプションの使用を許可することができないか、またはさもなければ、集約されたチャネルのうちのいずれかがビジーである場合には、メディアは完全にブロックされることになる。
図14は、ANDロジックの結合されたCSMAの一例を示す。結合されたCSMAは、どのチャネルがプライマリーチャネルであるかをトラッキングする必要性をなくすことができるが、全てのチャネル上でCSMAを実行すると、より多くの電力が消費され、より複雑になる場合がある。結合されたCSMAの利点は、最長の送信をプライマリーチャネル内に置いておく必要性がなくなることである。
チャネルアクセス手順を実施するDSMシステムの堅牢なオペレーションをサポートするための様々な制御/マネージメントメッセージおよび手順について、以下で説明する。
図15は、IE(information element)として、または別個のMACアクションフレームとしてビーコン内に含めて送信されうるCSA(channel switch announcement)メッセージ1500を示す。CSAメッセージ1500は、新たなチャネルに関する情報を含むこと、およびその新たなチャネルへ切り替えるための時間を示すことが可能である。CSAメッセージ1500は、要素IDフィールド1505、長さフィールド1510、チャネル切り替えモードフィールド1515、新たなチャネル番号フィールド1520およびチャネル切り替えカウントフィールド1525を含むことができる。
図16は、集約された制御チャネルの実施態様において使用される修正されたCSAメッセージ1600の一例を示す。CSAメッセージ1600は、複数の動作チャネルが存在すること、および複数のチャネルを新たな周波数へ同時に切り替えなければならない場合があることを考慮に入れることができる。図16に示されるように、CSAメッセージ1600のアクションフレームは、チャネルのうちのどれ(プライマリー、セカンダリー、ターシャリーまたはクォータナリー)が切り替えられているかを示す切り替えチャネルフィールド1605を含むことができる。切り替えチャネルフィールド1605は、複数のビットを含むことができ、当該ビットの各々は、集約されたチャネルの1つを表す。ビットは、1に設定されている場合には、その特定のチャネルが新たな周波数へ切り替えられていることを示すことができる。複数のチャネルが同時に切り替えられているケースにおいては、複数のビットを1に設定することができる(すなわち、0011という値は、ターシャリーチャネルおよびクォータナリーチャネルが切り替えられていることを示している)。CSAメッセージ1600は、新たなチャネルの周波数を示す新たなチャネル番号[1...N]フィールド1610を含むこともできる。新たなチャネル番号[1...N]フィールド1610は、N個までの新たなチャネル周波数を含むことができ、それらの新たなチャネル周波数は、切り替えられている(N個のうちの)各々のチャネルに対応し、例えば、N=4である。CSAメッセージ1600は、チャネル特徴フィールド1615をさらに含むことができ、チャネル特徴フィールド1615は、新たなチャネルの特性を示す。すなわち、そのチャネルが、モードIIデバイスによりデータのクエリーを行うことによって得られたものかどうか、または、そのチャネルが、感知専用デバイスにより、ライセンス供与されていないスペクトル若しくはオポチュニスティックなスペクトルを感知することによって得られたものかどうかを示す。チャネル特徴フィールド1615は、それぞれの新たなチャネルごとに3つの値(すなわち、値0:チャネルの特徴に関する利用可能な情報はない。値1:モードIIデバイスから得られたチャネル。値2:感知専用デバイスから得られたチャネル)を有することができる。
CSAメッセージ1600は、チャネル切り替えまでの送信上の全ての制約を示すチャネル切り替えモードフィールド1620をさらに含むことができる。1に設定されているチャネル切り替えモードは、その要素を含むフレームが宛てられている先のネットワーク内のWTRUが、スケジュールされたチャネル切り替えまでにさらなるフレームを送信することができないということを示すことができる。0に設定されているチャネル切り替えモードは、受信側クライアントにいかなる要件も課すことはできない。
CSAメッセージ1600は、WTRUがCSA要素切り替えを新たなチャネルへ送信するまでのTBTT(target beacon transmission time)の回数に設定可能なチャネル切り替えカウントフィールド1625をさらに含むことができる。値1は、次のTBTTの直前に切り替えを行うことができるということを示すことができる。値0は、その要素を含むフレームが送信された後の任意の時点で切り替えを行うことができるということを示すことができる。
CSAメッセージ1600は、要素IDフィールド1630および長さフィールド1635をさらに含むことができる。CSAメッセージ1600は、全てのチャネル上でアクションフレームとして送信されうる(すなわち、CSAメッセージ1600は、4つのチャネル全ての上で同時に繰り返されうる)。これによって、WTRUがこのメッセージを必ず受信できるようにすることができる。また、このメッセージは、ビーコンの一部として送信される場合には、同じ理由で複数のセグメント上で繰り返されうる。
プライマリーチャネルの失敗および非プライマリーチャネルの失敗に関する下記の手順は、パワーセーブモードで動作しているデバイスがなく、また、4つの集約されたチャネル全てをリッスンしているデバイスもないということを前提としている。加えて、チャネルの失敗後の回復を容易にするために、ビーコンは、プライマリーチャネルの失敗のケースにおいてどのチャネルがプライマリーチャネルを引き継ぐかを順序付けたリストと、集約されたチャネル全体の失敗のための、4つの集約されたチャネルのうちの1つではないバックアップチャネルとを含むことができるということが前提とされる。全てのWTRUは、この情報を格納することができ、情報を最新に保つことを担当することができる。
図17は、失敗を示す測定レポートメッセージ1700の一例を示す。測定レポートメッセージ1700は、測定トークンフィールド1705を含むことができる。測定トークンフィールド1705は、0に設定されている場合には、測定レポートメッセージ1700が、自律的な測定レポートであり、測定要求メッセージに応答したものではないということを示すことができる。測定レポートメッセージ1700は、測定タイプフィールド1710、測定レポートフィールド1715、要素IDフィールド1720、長さフィールド1725、および測定レポートモードフィールド1730を含むこともできる。
図18は、測定レポートメッセージ1700の測定タイプフィールド1710によって示されるIEEE802.11測定タイプの一例を示す。図18に示されるように、失敗のケースにおいては、予備タイプ4というインジケーションが使用されうる。測定レポートメッセージ1700は、いかなる測定値も報告せずにチャネルの失敗を示すだけであるため、測定レポートメッセージ1700内の測定レポートフィールド1715は、ゼロに等しいことが可能である。
図19は、予備の「測定タイプ4」のフォーマットを示す。図19に示されるように、「測定タイプ4」は、8ビットフィールドとすることができ、それぞれのビットは、失敗したチャネルを表す。ビットを1に設定すると、そのビットに関連付けられる特定のチャネルが使用可能ではないということを示すことができる。例えば、図19に示されるビット0および2を1に設定すると、プライマリーチャネルおよびターシャリーチャネルの失敗を示すことができる。全てのチャネルが失敗したケースにおいては、失敗表示メッセージを、利用可能な場合には、バックアッププライマリーチャネル上で、1に設定されている全てのビットとともに送信することができる。さもなければ、そのメッセージは、全てのチャネルの上で非常に低い変調およびコーディングレートで首尾よく送信されうる。
DSMエンジン内のSP(sensing processor)エンティティが、ネットワーク内のノードから感知結果を収集することによってプライマリーチャネルの失敗を検知した場合には、プライマリーチャネルにおける高い干渉の存在または(TVWSデータベースからの)プライマリーユーザの予定されたエントリが判定される。CMF(channel management function)は、そのチャネルを断念すべきか否かを判定することができる。この判定は、既に利用可能な感知結果に基づくことができ、またはCMFは、サイレント期間にわたってさらなる結果を必要とする場合がある。
WTRUは、CQI(channel quality indicator)が変動することがあるため、プライマリーチャネルが失敗したことを認識することができる。これらのCQIは、指定されたしきい値よりも上/下のレベルへと増大/低減させることによって、再送信の回数、エネルギーレベル、RSSI(received signal strength indication)、再送信、スループットなどに基づくことができる。WTRUは、チャネルにアクセスする連続した試みが失敗したこと(例えば、CSMAが所定の回数失敗したこと)、およびWTRUが周期的なメッセージ(すなわち、ビーコン)を受信していないことに基づいて、失敗を疑うこともできる。
いずれのWTRUも、高い干渉を示す、チャネル品質における何らかの変化を検知した場合には、失敗表示メッセージを送信することによって、DSMシステムに失敗を示すことができる。プライマリーチャネルの品質が、WTRUへのアクセスを不可能にするほどに劣化した場合には、WTRUは、「バックアップリスト」ビーコンIE内で指定されているようにプライマリーバックアップチャネルへ切り替えること、およびそのチャネル上でプライマリーCSMAを実行することが可能である。これによって、プライマリーチャネルプロトコルから逸脱することになるかもしれない。しかし、非プライマリーチャネル上で送信を行うと、結果として他のWTRUの送信とのコリジョンが生じる可能性があるが、これは、DSMシステムと通信するための唯一の方法であり、WTRUは、失敗表示が首尾よく送信されるまで、再送信を行うことができる。
図20は、DSMシステム2005のCMFが、失敗したチャネルに取って代わるための他の利用可能なチャネルを既に有していた第1のシナリオの流れ図を示す。DSMシステム2005は、CMF2010およびAP2015を含むことができる。WTRU2020は、DSMシステム2005と通信する。AP2015は、WTRU2020から失敗表示メッセージ2025を受信した場合には、このメッセージをBA(bandwidth allocation)再構成要求2030としてCMF2010へ転送することができる。CMF2010は、自身が、失敗したチャネルに取って代わるための他の利用可能なチャネルを既に有しているかどうかに応じて、この要求に応答することができる(2035)。CMF2010が、新たなチャネルを示すBA再構成応答2040を送信した場合には、AP2015は、自分のチャネルリストを更新し(2045)、およびCSAメッセージ2050をWTRUへ送信することができる。WTRU2020は、4つのチャネル全ての上で動作することができる(2055)。プライマリーチャネルの失敗のケースにおいては、新たなプライマリーチャネルは、上述のように「バックアップリスト」情報要素内の第1の利用可能なチャネルとすることができる。
図21は、DSMシステムのCMFが、失敗したチャネルに取って代わるための利用可能なチャネルを有していない第2のシナリオの流れ図を示す。AP2015は、WTRU2020から失敗表示メッセージ2025を受信した場合には、このメッセージをBA再構成要求2030としてCMF2010へ転送することができる。CMF2010は、利用可能なチャネルをまったく有していない場合には(2150)、AP2015が現在のチャネルから「退避する」(すなわち、現在のチャネルを断念する)ことができることを示すBA再構成応答を用いてすぐに応答することができ(2155)、その一方で、CMF2010は、新たな利用可能なチャネルを探す。AP2015は、このメッセージを、WTRU2020が残りのチャネル上で動作することができることを示すCSAメッセージ2160としてWTRU2020へ転送することができる(2165)。プライマリーチャネルの失敗が生じた場合には、新たなプライマリーチャネルを「バックアップリスト」IEから選ぶことができる。CMF2010は、新たなチャネルを見つけた場合には(2170)、別のBA再構成応答2175を新たなチャネルでAP2015へ送信することができ、この別のBA再構成応答2175は、別のCSAメッセージ2180としてWTRU2020へ転送され、WTRU2020は、CSAメッセージ2180内で指定されるように4つのチャネル全ての上で動作できるようになる(2185)。
加えて、プライマリーチャネルの失敗に関するチャネルタイムラインが、図22に示されており、非プライマリーチャネルの失敗に関するチャネルタイムラインが、図23に示されている。プライマリーチャネルの失敗のケースでは、新たなプライマリーチャネルが、図22に示されるように「バックアップリスト」IEから選択される(図22では、セカンダリーチャネルが、新たなプライマリーチャネルになっている)。非プライマリーチャネル上でチャネルの失敗が生じた場合には、プライマリーCSMAは、図23に示されるように、失敗が生じる前と同じプライマリーチャネルを引き続き使用する。
プライマリーCSMAアプローチのコンテキストにおいては、HP(high priority)制御メッセージが配信されうる。制御メッセージおよびデータは、同じチャネルにおいて送信される場合があり、そのため互いに競合する場合がある。したがって、高い堅牢性および最小限の遅延で制御メッセージを配信することが望ましい。参考のために、IEEE802.11nにおいては提供されない様々なタイプの制御メッセージ、およびそれらの優先度が、図24に提示されている。高優先度制御メッセージは、ビーコン(すなわち、WTRUからDSMシステムへの感知レポート)を伴う/伴わない周期的な配信、およびイベントトリガー(すなわち、CSAメッセージ)による独立した送信によって送信されることができる。
コリジョンを回避するために、いくつかの高優先度制御メッセージ(すなわち、周期的感知結果、直近のチャネルバックアップ)は、4つのチャネルにおいて周期的に配信されるビーコン情報内にアタッチされうる。しかし、高優先度制御メッセージの堅牢性を高めるために、このタイプの制御メッセージは、4つの物理チャネルにおいて、(図24に示されるような)4つのセグメント化されたビーコンの予備フィールド内に繰り返し埋め込まれる。ビーコン時間の直前に何らかのイベントが発生した場合には、関連メッセージがビーコンメッセージ内に埋め込まれうる。例えば、チャネルの切り替えが行われる場合には、そのアナウンスメントがビーコン内に含めて送信されうる。
何らかの緊急事態(すなわち、チャネルの失敗、チャネルの切り替え、輻輳レポートなど)が生じており、また、次なるビーコンがすぐには到来しない可能性がある(すなわち、直近のビーコン送信とイベントとの間における間隔が、新たに定義されたパラメータであるdoc11MinGapよりも大きい)か、または、制御メッセージを配信する送信側デバイスがAPではない場合には、そのメッセージはAPまたはWTRUによって最小限の遅延で配信される必要がある。これらのタイプのメッセージのうちの全ては、堅牢な変調モードおよびコーディングレート(すなわち、最も低い変調モードおよびコーディングレート)で配信されることができる。
4つのAC(access category)が、IEEE802.11において定義されている。図24に示されるように、WTRUは、最も高いACを有するメッセージをACバッファのフロントエンド内に置くための通知をバッファコントローラへ送信することができる。このタイプの制御メッセージは、データフレームとして配信されうる。例えば、WTRUからAPへの輻輳レポートまたはチャネル失敗レポートは、測定要求のフレームフォーマットを有することができる。
集約されたチャネルの実施態様においては、図25に示されるように、チャネル番号フィールド2505と、測定開始時間フィールド2510と、測定デュレーションフィールド2515とを含む測定要求メッセージ2500を使用することができる。チャネル番号フィールド2505において使用されるビットの数は、2ビットまで減らされうる。例えば、セカンダリーチャネルにおいて輻輳または高い干渉があるのではないかとWTRUが疑っている場合には、チャネル番号フィールド2505は、01として示されうる。
図26は、図25のIEEE802.11測定要求メッセージ2500内のチャネル番号フィールド2505の一例を示す。より低いAC内に埋め込まれていて、WTRUによって送信された高優先度制御メッセージがチャネルアクセスを勝ち取らない場合には、そのチャネルアクセスを勝ち取るのは、同じ送信機からの他のACである。(MPDUとしてパックされる)このタイプの制御メッセージを、コンテンションに勝つそのACのバッファ内に加えることができる。この制御メッセージは、高優先度メッセージがチャネルアクセスを勝ち取らないケースにおいては、他のメッセージとともに配信されうる。
APによって配信される高優先度メッセージは、よりシステマチックであることが可能である(すなわち、CSAメッセージなら、遅延を伴わずに配信する上で、より良好であろう)ため、このタイプのメッセージは、バックオフ、および最も堅牢なMCS(modulation and coding scheme)セット(すなわち、最も低い変調モードおよびコーディングレート)を伴わずに送信されうる。プライマリーチャネルがAIFSの間にアイドルであり、非プライマリーチャネルがPIFSの間にアイドルである限り、WTRUは、バックオフを実行せずに、すぐにこの制御メッセージを送信することができる。このタイプの送信に関するAIFSも、減らすことができる。例えば、(ACI(adjacent channel interference)/AIFSNフィールドにおいて)AIFSN=1であり、これは、AIFSの合計値=1スロット時間+SIFSであることを示している。図27に示されるように、堅牢性を高めるために、このタイプの制御メッセージは、4つの物理チャネルの上で繰り返されることができる。
ライセンス供与されていない帯域またはライセンス供与されている帯域(例えば、TVWS)において利用可能な複数のチャネルが存在する場合には、これらのチャネル上でMAC層アグリゲーションを実行することは、これらの利用可能なチャネルを活用するための効果的なソリューションを提供することができる。複数のチャネルを使用することは、より多くのデータが送信され、それによってシステムスループットが高まることを可能にすることができる。
図28は、MAC層アグリゲーションユニット2800の一例を示す。図28に示されるように、集約されたデータストリーム2805が、複数の利用可能なMAC層2810、および集約された物理チャネル2815に分割されることができ、これらのチャネル上で独立して送信されることができる。したがって、MAC層アグリゲーションは、MAC層アグリゲーションユニット2800が、これらのチャネル上で同時に、互いに干渉することなく、動作できることを必要とする場合がある。しかし、半二重デバイスは、別々のチャネル上であっても、送信と受信とを同時に行うことはできない。このことは、ワイヤレス通信、例えば、IEEE802.11通信において同期化の問題をもたらす可能性があり、それによって、パケットを首尾よく受信した際に肯定ACK(acknowledgement)が必要となる場合がある。IEEE802.11では、肯定応答を求めるフレームを首尾よく受信した後に、ACKフレームの送信を、SIFS期間の後に、メディアのビジー/アイドル状態にかかわらずに開始できることが必要とされる場合がある。
時間の経過に伴うチャネルの変動、および集約されたチャネル同士の別々の品質に起因して、これらのチャネル上のそれぞれの送信がまったく同じ時間に終了するのを保証することが困難になる場合がある。従って、別々のチャネル上でフレームを首尾よく受信したことによってトリガーされたACKの送信は、図29に示されるように、受信(1つのチャネルにおいてフレームを受信すること)と、送信(他のチャネルにおいてACKを送信すること)とを同時に行う結果になる場合がある。また、それぞれのチャネル上での送信における差が大きくなればなるほど、これらのチャネルのうちの1つまたは複数の上での全体的なアイドルタイムが増えるため、これらのチャネルを使用する効率は低くなる。
送信と受信とを同時に行うことは、自己干渉をもたらす可能性があるため、半二重デバイスにおいては実行不可能である場合がある。例えば、フレームの受信は、送信機からの帯域外の放射に起因して、干渉を受ける可能性がある。このことによって、集約されたチャネル上で受信機によって実行される肯定応答手順を同期化するためのアルゴリズムを使用することが必要となる場合がある。ACK同士を同期化すると、結果として、データの送信と、ACKの送信との間におけるSIFS期間よりも長いアイドルタイムが生じる場合がある。この問題に対処するために、それらのアルゴリズムはまた、この時間中に他のデバイスがそのチャネルにアクセスすることを防止しなければならない場合がある。
上述の同期化の問題を解決するために、MACアグリゲーションを使用した場合のチャネル送信に対して、様々なルール、例えば、集約されたチャネルにおける送信同士が同時に終了するよう強制することなどを適用することができる。しかし、1つまたは複数のチャネルにおいて失敗した送信に起因してパケットが再送信される必要があるケースにおいては、その再送信は、同期化を確実にするために実施されるルールを破ることができる。また、混合した送信(すなわち、初回の送信および再送信)に関するコンテンションウィンドウが、単一チャネルの送信においては、例えば、IEEE802.11においては対処する必要のない別の問題かもしれない。従って、MAC再送信ソリューションは、同期化の基準を満たすことができるようにMAC層アグリゲーションにおける再送信のために使用されることができる。
以降の説明では、不連続なスペクトル上で動作する4つの物理チャネルが使用されていると想定する。しかし、以降で説明するアルゴリズムは、任意の数の物理チャネル上でのMAC層アグリゲーションに適用されうるということが分かるであろう。MAC層アグリゲーションのためにプライマリーCSMAが実施されていると想定することもできる。
集約されたチャネル上で肯定応答の送信同士を同期化するために、プライマリーチャネル最終終了手順(primary channel ending last procedure)および共通仮想感知手順(common virtual sensing procedure)を実施することによって、集約されたチャネル同士の間におけるコーオーディネーションを取り扱うことができる。
プライマリーチャネル最終終了手順は、MAC層アグリゲーションにおいてプライマリーCSMAを実施する。このシナリオにおいては、肯定応答の同期化を確実にするための1つのアプローチは、プライマリーチャネル上での送信が常に、最後に、またはセカンダリーチャネル上での送信とほぼ同時に終了するよう強制することかもしれない。図30は、コリジョンを回避するためにACKの送信を同期化するための手順を示す。
コリジョンを回避する目的でACKの送信を同期化するために、下記のルール、またはそれらのルールの任意の組合せを使用することができる。第1に、別々のチャネル上での送信が同時に終了することは不要とすることができるが、プライマリーチャネル上でのデータ送信は最後に終了するものとすることができる。第2に、プライマリーチャネル上でデータ/マネージメントフレームが受信される場合のACK手順は、IEEE802.11において使用される手順と同じとすることができる。例えば、肯定応答を求めるフレームを首尾よく受信した後に、ACKフレームの送信を、SIFS期間の後に、メディアのビジー/アイドル状態にかかわらずに開始することができる。第3に、データ/マネージメントフレームが、セカンダリーチャネル、ターシャリーチャネル、およびクォータナリーチャネル上で受信された場合には、ACK手順は、肯定応答を求めるフレームを首尾よく受信した後に、ACKフレームの送信を、SIFS期間にわたってプライマリーチャネルがアイドルであった後に、開始することができるものとすることができる。第4に、プライマリーチャネル上で送信されたデータ/マネージメントフレームは、送信が終了してから「SIFS+ACK送信時間」内にACKがあると予期することができる。しかし、セカンダリーチャネル、ターシャリーチャネル、およびクォータナリーチャネル上で送信されたデータ/マネージメントフレームは、プライマリーチャネルが送信を終了してから「SIFS+ACK送信時間」内に各自のACKがあると予期することができる。
代替として、または追加として、集約されたチャネルにおける肯定応答の送信を同期化するために、プライマリーチャネルの送信が最後に終了しなくてもよいように、全てのチャネルにおいて共通仮想感知NAV値を使用することができる。下記の内容は、プライマリーCSMAに焦点を合わせているが、共通仮想感知は、他の任意のCSMAアルゴリズム、例えば、結合されたCSMAに関して実施することもでき、その場合には、プライマリーチャネルを定義することはできず、感知は、全ての集約されたチャネル上で実行されることができる。
これは、フレームヘッダ内のデュレーションフィールドがどのように設定されるかに影響を与える場合がある。IEEE802.11においては、メディアがアイドルであることを、物理的な搬送波感知メカニズムと、仮想の搬送波感知メカニズムとの両方が示す場合にのみ、そのメディアはアイドルであると判定されることができる。仮想の搬送波感知メカニズムは、NAVと呼ばれる場合がある。NAVは、メディアのビジーステータスのデュレーションを告知するMACヘッダのデュレーションフィールド内に含めて搬送することができる。
デュレーションフィールドを設定するための現在のルールは、チャネルのコンテンションアクセスに続いてCAP(controlled access phase)外でQoS(quality of service)WTRUによってCP(contention period)において送信された全てのデータまたはマネージメントフレーム内では、デュレーション/IDフィールドを下記の値のうちの1つに設定されうることを必要とする場合がある。第1に、QoSデータサブフィールドがゼロに設定されているマネージメントフレーム、およびACKポリシーサブフィールドが通常のACKに設定されているユニキャストデータフレームに関しては、そのフレームが、TXOP(transmission opportunity)の最後のフラグメントである場合には、1つのACKフレームの送信のために必要とされる時間(適切なIFS(interframe space)値を含む)、または、1つのACKフレームの送信のために必要とされる時間に、後続のMPDUと、必要な場合にはその応答との送信のために必要とされる時間をプラスした値(適切なIFS値を含む)。第2に、ACKポリシーサブフィールドが「no ACK」または「block ACK」に設定されているユニキャストデータフレームに関しては、およびマルチキャスト/ブロードキャストフレームに関しては、そのフレームが、TXOPの最後のフラグメントである場合には、または、後続のMPDUと、必要な場合にはその応答フレームとの送信のために必要とされる時間(適切なIFS値を含む)である場合には、デュレーション/IDフィールドをゼロに設定することができる。第3に、デュレーション/IDフィールドを、そのAC(access class)の保留中のMPDUと、存在する場合には、関連付けられているACKとの送信のために必要とされる時間の最小値、および適用可能なSIFS期間、並びに、そのACに関するMIB(management information base)によって課されている時間制限からTXOP内の既に使用された時間を差し引いた値に設定することができる。
WTRUおよびコーオーディネートされていないAPからのコリジョンを効果的に回避するために、最長の送信が終了する時間に基づいてデュレーションフィールドの値が得られる。送信タイプ(フラグメント化されたパケット送信、継続中のTXOPか否か、など)に応じて、それぞれのデュレーションフィールドは、SIFS+最長の送信を伴うチャネルに関連付けられているACK送信時間+差分に基づくことができる。差分は、最長の送信時間と、その特定のチャネルの送信時間との間における差とすることができる。
デュレーションフィールドは、フィールド内の値が32,768未満である場合には、マイクロ秒(μs)のデュレーションとして解釈されることができる。そうでない場合には、デュレーションフィールドは、フィールドが関連付け識別子として解釈されるべきであることを示すことができる。
送信機は、いかなるフレームを送信する前にも、どのフレームが送信に最も長い時間を要することになるかを判定することができる。これは、フレームのサイズの要因であるだけでなく、それぞれのチャネル上で使用される変調およびコーディングスキームでもある場合がある。ポリシーサブフィールドが通常のACKに設定されているユニキャストデータフレームに関しては、それぞれのフレームの送信時間を計算することができる。この計算は、下記のとおり実行することができる。
packet_xmit_time=80μs+(262+size_of_data)/data_rate 方程式(1)
ここでは、80μsは、PLCP(physical layer convergence protocol)ヘッダを占めており、262は、MACフレームの他のフィールド内のビットの数であり、size_of_dataは、データフィールド内に含まれることになるビットの数であり、data_rateは、チャネルの使用可能な送信スピードである。
別々の長さまたは変調スキームを有する4つのパケットの送信に関しては、それぞれのパケットは、次のような別々のデュレーションフィールド値を有することができる:DCF(distributed coordination function)を使用するフラグメント化されていないパケット送信、またはHCF(hybrid coordination function)EDCA(contention-based channel access)におけるTXOP内の最後のパケット送信、またはDCFにおける最後のフラグメント送信。最大送信時間(MAX_XMIT_TIME)を有するフレームに関しては、この値を、SIFS時間と、より低いMCS(modulation and coding scheme)を有するチャネル内のACKパケットの送信時間とをプラスした値に、次式のように設定することができる。
duration_field=SIFS_time+ACK_TX_TIME(pre-defined MCS) 方程式(2)
その他のフレームに関しては、デュレーションフィールドは、SIFS時間にACKパケットの送信時間をプラスして、パケットが送信されている時間と、最大送信時間との間における送信時間の差を加えた値を含むことができる。したがって、この値は、次のとおり設定することができる。
duration_field=(MAX_XMIT_TIME-packet_xmit_time)+SIFS_time+ACK_TX_TIME(pre-defined MCS) 方程式(3)
ここでは、packet_xmit_timeは、パケットが送信されている時間に相当する。失敗したパケットの再送信に関しては、そのパケットの保存されているコピーにおけるデュレーションフィールドの値を、そのパケットとともに送信されているその他のパケットに合うように更新することができる。
図31は、フラグメント化されていないまたは単一のフラグメントパケット送信およびTXOPの最後の送信におけるデュレーションフィールドの例を示す。図31は、最大送信時間(MAX_XMIT_TIME)がセカンダリーチャネル上で生じうることを示す。したがって、セカンダリーチャネルに関するデュレーションフィールドは、最も短くすることができる。デュレーションフィールドの長さは、その他のパケットに関しては異なることが可能であり、パケット送信の終わりからACKの終わりまでとすることができる。ターシャリーチャネルの送信が、上述の説明の好例かもしれない。
デュレーションフィールドの値は、フラグメンテーションのケースにおける最後以外のフラグメント送信、またはEDCAにおけるTXOP内の最後以外のパケット送信に従って求めることもできる。このケースにおいては、デュレーションフィールドは、もう1つのSIFS時間と、追加の別の(SIFS時間+ACK時間)と、次の送信における4つのパケットのうちの最長の送信時間(NEXT_MAX_XMIT_TIME)とを含むことができる。例えば、次式のようになる。
duration_field=(MAX_XMIT_TIME-packet_xmit_time)+SIFS_time+2×(ACK_TX_TIME(pre-defined MCS)+SIFS_time)+NEXT_MAX_XMIT_TIME 方程式(4)
ここでは、packet_xmit_timeは、そのチャネルにおいて現在のパケットが送信されている送信時間に相当することができ、MAX_XMIT_TIMEは、4つの物理チャネルのうちの最長の送信を表すことができ、NEXT_MAX_XMIT_TIMEは、4つの物理チャネルのうちの次の送信のために必要とされる最長の時間に相当することができる。図32は、フラグメント化されたパケット送信またはTXOPの最後以外の送信におけるデュレーションフィールドの例を示す。MAX_XMIT_TIMEおよびNEXT_MAX_XMIT_TIMEは、別々のチャネル内に存在しうる。
受信機の受信局ロジック(receiving station logic)は、送信機によって使用される共通仮想感知技術によって影響を受ける場合もある。対処すべき重要なケースは、受信機が、1つのチャネル上で1つのパケット全体を受信し終わっても、他のチャネル上で引き続きビジーである場合かもしれない。このケースにおいては、受信機は、全てのさらなるパケット送信が他のチャネル上で終了するのを待つか否か、または、それらの他の送信を断念する前にどれぐらい長く待つかを決めることができる。デュレーションフィールドと、PHY-RXSTART.インジケーションとを組み合わせて使用することは、他のチャネル上での受信をいつやめるかを決める上で役立つことができる。
RXSTART.インジケーションは、有効なスタートフレームデリミタおよびPLCPヘッダをMACが受信していることをMACに通知するためにPHY(physical layer)によって提供されることができる。MACは、自分がそれぞれのチャネル上でこのインジケーションを受信した時間を記録して、それらの時間を、自分がプライマリーチャネル上でこのインジケーションを受信した時間と比較することによって、これを使用することができる場合がある。これらが、他のチャネル同士に関して同時に生じた場合には、MACは、それらが干渉ではないこと、および、SIFS期間を開始する前にそれらが完了するのを待つべきであることを知ることができる。さもなければ、このインジケーションが、他のチャネル上で同時に受信されない場合には、MACは、このチャネル上での送信が完了するのを待たなくてもよい。このインジケーションが受信された後に干渉されるようになるパケットを待つことを防止するために、タイムアウトを初期設定することができる。これは、最も低いMCS上での最長の可能なMACデータフレームの送信時間に設定することができる。このタイムアウトは、第1のパケットが首尾よく受信されると、キャンセルまたは変更することができる。
送信セットのうちの第1のパケットが受信されると、WTRUは、フレームヘッダからデュレーションフィールドを抽出することができる。この値は、ゼロ(ブロードキャストパケット用)またはSIFSの最小値、およびACKパケットの送信時間を含むことができる。受信されたフレームがACKを必要とし、デュレーションフィールドが、SIFS時間+ACK送信時間に設定されている場合には、SIFS期間は、すぐに開始することができる。これは、受信されたフレームが、送信された最長のフレームであったこと、または他のフレームの送信も現時点で終了したことに起因して生じる場合がある。受信機は、SIFSがいつ開始することになるかが正確に分かるようになったため、RXSTART.インジケーションに起因して設定されたタイムアウトは、キャンセルすることができる。
そうでない場合には、時間の量は、送信機が現在、継続中のTXOP内にあるか否かに応じて、2つのことのうちの1つを表すことができる。第1に、送信機が現在、継続中のTXOP内にない場合、例えば、それがTXOP内の最後のパケットである場合には、デュレーションフィールドは、最長の継続中の送信内に残っている時間と、SIFSおよびACKパケットの送信時間とをプラスした値を表すことができる。第2に、TXOPが継続されることになる場合(TXOP内の最初のまたは真ん中のパケットの場合)には、デュレーションフィールドは、少なくとも、上述のような時間の量と、別のSIFSと、パケットのうちの次のセットにおける最長の送信時間と、別の(SIFS+ACKのために必要とされる送信時間)とをプラスした合計とすることができる。
デュレーションフィールドが、SIFS+ACK送信時間+SIFS+PLCPヘッダ未満である場合には、送信機は、TXOPを継続していない可能性がある。したがって、受信機は、受信されたパケットの終わりのtマイクロ秒(μs)後にSIFS期間が開始するようにスケジュールすることができる。
t=duration_field-SIFS_time-ACK_TX_TIME 方程式(5)
WTRUは、この時点で、自分の受信機が他のチャネル上で依然としてビジーであるかどうかにかかわらずに、自分のSIFSバックオフ期間を開始することができる。これは、これらの他のチャネルが干渉を経験しているであろうことに起因する場合がある。図33は、継続中のTXOPを継続中でないTXOPから区別するデュレーションフィールドの例の図を示す。
デュレーションフィールドが、時間のその量以上である場合には、TXOPは、継続する可能性があり、RXSTART.インジケーションの時間に設定されたタイムアウトは、受信パケットの終わりのtマイクロ秒(μs)後に調整することができる。受信機は、プライマリーチャネルと同じ時点でRXSTART.インジケーションを受信したチャネル上でパケットが完了するのを待つことができる。
図34は、例示的なDSM(dynamic spectrum management)システム3400を示しており、DSMシステム3400は、家庭または小規模オフィスなどの局所的なエリアにおいて動作することができる。DSMシステム3400は、DSMエンジン3405と、複数のDSMクライアント3410とを含むことができる。
DSMエンジン3405は、2.4GHzおよび5GHzのISM帯域、TVWS帯域、並びに60GHz帯域など、ライセンス供与されていないまたはオポチュニスティックな帯域において動作する局所的なエリアにおいて行われるワイヤレス通信を管理することができる。DSMエンジン3405は、ライセンス供与されている帯域およびライセンス供与されていない帯域にわたって帯域幅を集約することもできる。図34に示されるように、DSMエンジン3405は、WWAN(wireless wide area network)または有線リンクを通じて、DSMクライアント(すなわち、WTRU)3410に、並びに、セルラーコアネットワーク3415、TVWSデータベース3420、およびIPネットワーク3425などの外部ネットワークに相互接続することができる。
DSMエンジン3405は、TVWSデータベースへのアクセスを有することができ、ジオロケーション動作を有することができるため、TVWS帯域においてモードIIデバイスとして動作することができる。DSMエンジン3405は、感知専用モードで動作することもでき、それによって、DSMシステム3400は、TVWSデータベース3420が許可することができるよりも大きなチャネルサブセットにおいて動作できるようになることが可能である。
DSMクライアント3410は、直接DSMエンジン3405と通信リンクを確立することができるコグニティブ無線対応クライアントデバイスとすることができる。DSMエンジン3405と、DSMクライアント3410との間における通信リンクは、DSMリンク3430と呼ばれ、拡張制御プレーンおよびユーザプレーン動作を提供することができる。DSMリンク3430は、不連続なスペクトルを介して動作することができる拡張IEEE802.11RAT(radio access technology)に基づくことができる。
DSMリンク3430は、LTEなどの他のRATに基づくこともできる。DSMクライアント3410は、TVWSデータベース3420へのアクセスを有することができず、どのチャネルを使用することができるかを示すのにDSMエンジン3405に依存することができる。DSMクライアント3410は、感知専用モードで動作することもできる。感知専用モードにおいては、DSMクライアント3410は、DSMエンジン3405によって感知専用モードチャネルとして識別されたチャネルをプライマリーユーザが占有していないことを周期的に確認して、これらのチャネルにおける送信を可能にすることができる。DSMエンジン3405は、DSMクライアント3410においてこれらのチャネル上での適切なスペクトル感知を可能にするためにサイレント期間をスケジュールすることができる。感知専用動作を有するDSMクライアント3410は、モードIデバイスとしてチャネルのサブセット上で動作することができる。プライマリーユーザ検知のための手順は、感知専用チャネルとして識別されたチャネル上で実施することが必要になる場合がある。DSMクライアント3410同士は、ダイレクトリンク3435を通じて互いに直接通信することができる。ダイレクトリンク3435のために使用される無線リソースおよびRAT(radio access technology)は、DSMエンジン3405によって制御することができる。
図35は、DSMエンジン3405の例示的なアーキテクチャを示す。DSMエンジン3405は、CMF(channel management function)3505、MNC(multi-network connection)サーバ3510、DSMポリシーエンジン3515、AP機能3520、SP(sensing processor)3525、集中型WTRUデータベース3530、およびHNB(home Node-B)機能3535を含むことができる。
CMF3505は、中央のリソースコントローラであり、無線リソースを管理すること、並びに、それらの無線リソースをWTRUおよびAPのそれぞれに効率よく割り当てることを担当することができる。
AP機能3520は、ネットワークに加わるWTRU(すなわち、DSMクライアント)のための主要な接続機能を提供することができる。その主要な接続機能は、CMF3505によって選択されたチャネルに基づいて集約を管理するコーオーディネーション機能を含むことができる。AP機能3520の担当は、基本的なIEEE802.11MAC/PHY機能(または、LTEベースのDSMリンクのケースにおいては、LTE機能)を実行すること、新たな制御チャネルスキームをサポートすること、CMF3505によって判定されたチャネルの連続したおよび不連続なスペクトルの集約を実行すること、ネイバー/ノードディスカバリーおよびチャネルサウンディングをサポートすること、IEEE802.11ベースのDSMリンク3430に関する制御チャネルおよび共通データチャネルセットアップ手順をサポートすること、LTEベースのDSMリンクに関する制御チャネルの堅牢性およびチャネル切り替え手順をサポートすること、並びに、ダイレクトリンクの構成、セットアップ、ティアダウン、およびメンテナンスをサポートすることを含むことができる。
ライセンス供与されていないまたはオポチュニスティックな帯域のプライマリーユーザが、あるチャネル上で送信を開始した場合には、FCCルールによれば、図35に示されるDSMエンジン3405は、特定の時間内にそのチャネルを明け渡すことが必要になる場合がある。プライマリーユーザの検知は、SP(sensing processor)3525に依存することができる。SP3525は、プライマリーユーザを検知すると、DSMエンジン3405内のCMF3505に知らせることができる。
DSMエンジン3405および関連付けられているWTRUは、PCSMAを使用してコンテンションを通じて、集約されたチャネルへのアクセスを得ることができる。WTRUは、送信を行う必要がある場合は常に、チャネルの全てを使用することができ、従って、チャネルの全てが空いていることを確認することが必要となる場合がある。1つの方法は、1つのチャネルをプライマリーチャネルとして割り当てること、およびそのプライマリーチャネル上でCSMAを実行することを含む。WTRUまたはDSMエンジン3405は、転送すべき制御データまたは通信データを有している場合には、事前に割り当てられたプライマリーチャネル上でCSMAを実行することができる。他の3つのチャネルは、プライマリーチャネルと同じチャネルステータスを有していると想定することができる。例えば、プライマリーチャネル上でのCSMAがビジーのステータスを返した場合には、チャネルの全てがビジーであると想定することができる。WTRUまたはDSMエンジン3405は、プライマリーチャネルへのアクセスを得ると、プライマリーチャネルおよび非プライマリーチャネルへのアクセスを得たことになる。プライマリーチャネルへのアクセスを得るとすぐに、WTRUまたはDSMエンジン3405は、チャネルの全てが空いていることを確かめる上で役立つように、送信の前にPIFS(PCF(point coordination function)inter-frame space)のPIFS期間にわたって非プライマリーチャネルをチェックすることができる。図36は、プライマリーチャネル上でのCSMAの一例を示す。
デバイスは、別々のチャネル上であっても、送信と受信を同時に行うことはできない。したがって、受信機による肯定応答手順は、集約されたチャネルを介して、同期化された様式で行うことができる。例えば、デバイスは、所与のチャネル上で肯定応答を受信しながら別のチャネルを介して送信を行うことはできない。送信および受信のコーオーディネーションを取り扱うための2つの技術が、「プライマリーチャネル最終終了」および「共通仮想感知」である。プライマリーチャネル最終終了は、プライマリーチャネルが、最後に、またはセカンダリーチャネルを介した送信とほぼ同じ時間に終了することを確実にすることによって、肯定応答の同期化を実施することができる。共通仮想感知は、全てのチャネルにおいて共通仮想感知(NAV値)を使用することができ、これは、プライマリーチャネルの送信が最後に終了することを不要とすることができる。
FCCルールによれば、セカンダリーユーザは、プライマリーユーザがTVWSチャネル上で検知されると、そのTVWSチャネルを明け渡すよう求められる可能性がある。プライマリーユーザを検知するために、DSMエンジン3405は、TVWSデータベース3420に問合せを行うこと、またはスペクトル感知を実行することが可能である。スペクトル感知を使用してプライマリーユーザを検知するために、APおよびその関連付けられているWTRUは、特定の時間においてサイレントであることが必要となる場合がある。サイレント期間のデュレーションおよび頻度は、FCCルールに準拠しつつもスペクトル感知アルゴリズムに依存することができる。FCCルールによれば、インサービスモニタリングは、60秒未満であることが必要とされる場合がある。また、サイレント期間情報は、APに関連付けられているWTRUのうちの全てにブロードキャストすることができる。したがって、IEEE802.11MAC層アーキテクチャ(または、DSMシステムのためのLTE RATのケースにおいては、LTEアーキテクチャ)は、サイレント期間、サイレント期間の判定、およびAPとWTRUとの間におけるサイレント期間の同期化の最中には送信を停止することをサポートするように調整することができる。
セカンダリーユーザとして動作しているIEEE802.11 APまたはWTRUは、プライマリーユーザの存在に応じて、動作チャネルを切り替えることができる。WTRUを新たな動作チャネルへ導くために、APは、チャネル再割り当て情報をWTRUへブロードキャストすることができる。この情報は、高い優先度を有することができ、その送信は、通常のデータ送信に影響を与えることができる。したがって、IEEE802.11MAC層アーキテクチャは、チャネル再割り当て情報の送信を組み込むように修正することができる。
典型的なチャネル帯域幅は、6MHzとすることができ、典型的なWiFiチャネル帯域幅は、20MHzとすることができる。したがって、チャネル同士は、WiFiチャネルの帯域幅をサポートするように集約することができる。APまたはWTRUは、複数の連続したまたは不連続な並列のPHYチャネル上で動作することができる。したがって、IEEE802.11MAC層アーキテクチャは、これらのPHYチャネルにわたるフレームの分配をサポートするように修正することができる。そのようなフレームの分配は、PHYチャネルの信頼性の欠如に起因して動的であることが可能である。例えば、チャネルのうちの1つが、プライマリーユーザに起因して利用不能になった場合には、このチャネルに割り当てられているフレームは、別のチャネルに再割り当てすることができる。
チャネル再割り当て情報、およびPHYチャネルのうちの1つまたは複数の上でのスペクトル感知のためのサイレント期間同期化情報の送信は、フレームの並べ替えにつながる場合がある。その結果として、これらのチャネルに割り当てられているフレームは、他のチャネルに再割り当てすることができる。
帯域外の放射に起因して、APまたはWTRUは、別々のチャネル上で送信と受信とを同時に行うべきではない。なぜなら、自己混雑に陥る(self-jam)可能性があるためである。具体的には、APまたはWTRUが、1つのTVWSチャネル上で送信を行い、その一方で、別のTVWSチャネル上で受信を行った場合には、送信された信号が、後者のチャネルにおいて受信される可能性があり、それによって、受信エラーが生じる可能性がある。全てのチャネルを効率よく使用するために、APまたはWTRUは、それらのチャネルにわたって送信デュレーションを同期化することができる。したがって、1つのソリューションは、同時に開始する送信が、やはり同時に、またはほぼ同時に終了することができるように送信をアレンジすることかもしれない。この目的を達成するために、別々のPHYチャネル上で送信されることになるフレーム同士は、無線送信のデュレーションがほぼ同じになるように適切にサイズ設定することができる。MCS(modulation and coding scheme)は、別々の状況を経験しているPHYチャネルごとに異なるものとすることができる。したがって、別々のチャネル上で送信されることになるフレーム同士は、別々のサイズを有することができる。より良好なチャネル上で送信されることになるフレームは、より大きなサイズにすることができ、より劣悪なチャネル上で送信されることになるフレームは、より小さなサイズにすることができる。所望の長さのフレームを生成するために、IEEE802.11MACを修正することが必要となる場合がある。
図37Aおよび図37Bは、QoSをサポートする例示的なMAC層アーキテクチャ3700を示す。CMF3505を除いて、MAC層アーキテクチャ3700は、DSMエンジン3405のAP機能3520内に組み込むことができる。図37Aに示されるように、例示的なMAC層アーキテクチャ3700は、搬送波集約機能とともに、通常のMAC層アーキテクチャを、ライセンス供与されていないまたはオポチュニスティックな帯域上でのIEEE802.11オペレーションをサポートするように強化するために、バッファコントローラ3710と、フレームコントローラ3715と、QoSコントローラ3720と、サイレント期間スケジューラ3725と、チャネルモニタ3730とを含むMAC層コーディネータ3705を含む。
図37Bに示されるように、MAC層アーキテクチャ3700は、複数のAC37451〜3745Nのそれぞれの中に生成することができる複数のロジックバッファ37401〜37404を使用して、複数の並列のPHYチャネル3735にわたってフレームを分配することができる。それぞれのロジックバッファ3740は、特定のPHYチャネル3735を介して送信されることになるフレームを格納することができる。
図37Aおよび図37Bに示されるように、MAC層アーキテクチャ3700は、ACマッピングユニット3755と、複数のA−MSDU(aggregated MAC service data unit)集約ユニット37601〜3760Nと、フラグメンテーションユニット37651〜3765Nと、MPDUヘッダおよびCRCユニット37701〜3770Nと、複数のA−MPDU(aggregated MAC protocol data unit)集約ユニット37751〜3775Nと、複数のEDCAF(enhanced distributed channel access function)37801〜3780Nと、スイッチ3785と、デジタルトランシーバ3790とをさらに含むことができる。
上位層からのMSDU(MAC service data unit)フレームが受信されると、MAC層は、フレームのUP(user priority)を検査することができる。一例においては、8つのUPを4つのAC(access category)値にマップすることができる。それらの4つのACタイプとしては、優先度の高いものから低いものへと列挙すると、AC_VO(voice)、AC_VI(video)、AC_BE(best effort)およびAC_BK(background)を含むことができる。この例は、4つのACタイプを含むが、その他の実施形態は、任意の数のACタイプを含むことができる。マッピングは、ACマッピングユニット3755において実行することができる。ACマッピングユニット3755の後には、4つの分岐があり、それらの1つひとつは、それぞれのAC3745に対応している。A−MSDU集約ユニット3760は、複数のMSDUフレームを集約して、MAC層のオーバーヘッドを減らし、ひいては、データスループットを高めることができる。それぞれのA−MSDU(aggregated MSDU)フレームは、シーケンス番号を割り当てられることが可能であり、インテグリティー保護を有することができる。次いで、MSDUフレームは、フラグメンテーションユニット3765によってフラグメント化することができる。フラグメンテーションは、A−MSDUフレーム上では実行することができない。
次に、フラグメント化されたフレームは、ロジックバッファ3740内に保存することができ、それによって、メディアリソースのコンテンションをトリガーすることができる。コンテンションは、EDCAF3780によって実行することができる。それぞれのAC3745は、自分自身のEDCAF3780を有することができ、これらのEDCAF3780は、別々のパラメータを適用することができ、それによって、より高い優先度のAC3745に関連付けられているEDCAF3780は、より高い可能性でコンテンションに勝つことができる。EDCAF3780は、メディアリソースを得ると、自分のバッファ内のフレームを送信することを開始することができる。MPDUヘッダおよびCRCユニット3770を使用して、MPDUヘッダおよびCRC(cyclic redundancy check)を、セグメント化されたフレームに付加することによって、MPDUを構築することができる。複数のMPDUを集約して単一のA−MPDUフレームにして、PHY層へ送信することもできる。
フレームコントローラ3715は、A−MSDU集約ユニット3760、フラグメンテーションユニット3765、およびA−MPDU集約ユニット3775を制御するように構成することができ、それによって、それぞれのA−MPDU出力は、特定のPHYチャネル3735上で送信するように設計することができ、それぞれのPHYチャネル3735を介したA−MPDUの送信デュレーションは、ほぼ同じとすることができる。
フレームコントローラ3715は、はじめに4つのPHYチャネル3735全てに関するMCS情報を受信することができる。次いでフレームコントローラ3715は、4つのPHYチャネル3735のMCS値に基づいて無線デュレーションを事前に指定することができる。次いでフレームコントローラ3715は、同様の無線デュレーションを有するためにそれぞれのPHYチャネル3735用に設計されたA−MPDUを生成するように、A−MSDU集約ユニット3760、フラグメンテーションユニット3765、およびA−MPDU集約ユニット3775を制御することができる。フレームコントローラ3715は、任意のPHYチャネル3735のためのフレームの生成レートを制御することもできる。このオペレーションは、バッファバランスを、次いで4つのPHYチャネル3735の間におけるロードバランスを確かなものにすることができる。はじめに、フレームコントローラ3715は、全てのPHYチャネル3735のための等しい生成レートをラウンドロビン様式で適用することができる。バッファコントローラ3710からバッファステータス情報を受信すると、フレームコントローラ3715は、それに応じて、自分のフレーム生成スタイルを調整することができる。
ロジックバッファ3740の生成およびメンテナンスは、バッファコントローラ3710によって実行することができる。PHYチャネル3735を効率よく使用するために、バッファコントローラ3710は、ロジックバッファ3740同士の間においてフレームの分散および並べ替えを行って、ロジックバッファ3740のバランスを取ることができる。
帯域外の放射は、1つのPHYチャネル上で送信を行いながら同じWTRU上の別のPHYチャネル上で受信を行うことを防止することができる。その結果として、一実施形態においては、これらのチャネル上での送信は、ほぼ同じ時間に開始および終了する。これは、チャネル状況に従ってフレームサイズを調整することによって、達成することができる。例えば、より良好なチャネルを介して送信されることになるフレームは、より劣悪なチャネルを介して送信されることになるフレームよりも大きくすることができる。フレームサイズの正確な計算は、図37のMAC層アーキテクチャ3700内のフレームコントローラ3715によって実行することができる。フレームコントローラ3715は、所望のサイズを有するフレームを生成するように、A−MSDU集約ユニット3760、A−MPDU集約ユニット3775、およびフラグメンテーションユニット3765を制御することができる。
セカンダリーユーザは、チャネル上でのプライマリーユーザの検知に続いて、そのチャネル上での送信をやめることが必要となる場合がある。プライマリーユーザを検知するための1つの方法は、スペクトル感知を経ることである。スペクトル感知の一実施態様は、全てのセカンダリーユーザが感知デュレーションにわたってサイレントであることを必要とする場合がある。サイレント期間スケジューラブロックは、サイレント期間の頻度およびデュレーションを決定すること、およびそのサイレント期間の決定を、関連付けられているWTRUの全てとの間で同期化することが可能である。
あるいは、APまたはWTRUは、チャネル状況または送信状況が特定のしきい値未満に劣化したことを観測したときに、プライマリーユーザの検知をトリガーすることができる。これは、イベントによってトリガーされたプライマリーユーザの検知と呼ばれる。APまたはWTRUは、図37のMAC層アーキテクチャ3700内のCMF(channel management function)3505への報告を行うことを必要とする場合がある。チャネルモニタ3730は、それぞれのチャネル上でMCS情報などのPHYチャネル情報を収集することができる。チャネルモニタ3730は、そのような情報をバッファコントローラ3710またはフレームコントローラ3715に提供することができる。チャネルモニタ3730は、ロジックバッファ3740内のフレームフローに基づいてチャネルレポートをバッファコントローラ3710からCMF3505へ転送すること、およびチャネル更新情報をCMF3505からバッファコントローラ3710へ転送することも可能である。CMF3505は、プライマリーユーザに伴って、チャネルに対応するバッファを空にするようバッファコントローラ3710に知らせることもできる。
MACデータプレーンアーキテクチャにおいては、4つのACバッファ3745が存在すること(すなわち、N=4であること)が可能であり、それぞれのAC3745ごとに、そのカテゴリーのフレームが首尾よく配信される前に(すなわち、そのフレーム送信に関するACKを受信することができる前に)それらのフレームを格納しておくためのロジックバッファ3740が1つ存在することが可能である。また、それぞれのACは、メディアリソースコンテンションのためのバックオフ手順を保持するために、自分自身のEDCAF3780に関連付けられることが可能である。コンテンションに成功すると、ACのEDCAF3780には、このカテゴリーのフレームの送信のためのEDCA TXOP(transmission opportunity)を許可することができる。別々のACに関するコンテンションウィンドウサイズおよび最大TXOPデュレーションは、別々のものとすることができる。これによって、より高い優先度のACは、より高い可能性を伴ってメディアにアクセスすることができる。
PHYチャネル3735が1つしかないならば、EDCAF3780は、そのACのバッファ内にもはやフレームがない場合、送信の失敗がある場合、すなわち(予期されたACK(若しくはBlock ACK)フレームが受信されない場合)、または最大TXOPデュレーションに達した場合には、TXOPを断念して、バックオフ手順を呼び出すことができる。
AC内に保留中の複数のフレームがある場合には、1つのEDCA TXOPにおいて複数のフレームを送信することができる。しかし、他のAC内で保留中のフレームを、このEDCA TXOPにおいて送信することはできない。直前のフレーム交換シーケンスの完了後に、WTRUは、送信のデュレーションと、そのフレームに関する任意の予期されたACKとをプラスした値が、残りのメディア占有タイマー値未満である場合には、新たなフレームの送信を開始することができる。
送信の失敗がある場合には、対応するチャネルアクセス機能は、NAV設定が期限切れになる前に回復することができる。さらに、送信の失敗に伴って、WTRUは、事前に指定されたNAVタイマーが切れる前の境目でメディアがアイドルであることを搬送波感知メカニズムが示した後に、送信を継続することができる。
ACに関する最大TXOPデュレーションは、APによって決定して、ビーコンおよびプローブ応答フレームを通じてWTRUの全てにブロードキャストすることができる。
4つの並列のPHYチャネルを使用する場合には、送信レートは、単一のPHYチャネルの送信レートの約4倍になることが可能である。4つの並列のPHYチャネル内では、それらのPHYチャネルの1つをプライマリーチャネルとして選択することができる。送信の前に4つのPHYチャネル全てを感知する代わりに、WTRUは、AIFSのデュレーションと、バックオフ期間とをプラスした時間にわたってプライマリーチャネルを感知することができる。他の3つのチャネル上でのメディア感知は、PIFS期間のデュレーションに伴って実行することができる。プライマリーチャネルおよび他のチャネルの送信デュレーションにわたる2つの可能なスキームが、「プライマリーチャネル最終終了」および「共通仮想感知」である。前者のスキームにおいては、プライマリーチャネル上での送信は、常に最後に終了して、チャネルリソースの確保を確かなものにすることができる。後者のスキームは、チャネルリソースの確保のためにNAVを適用する。
EDCAF3780は、EDCA TXOPを許可されると、複数のフレームを送信することができる。EDCAF3780は、そのACのバッファ内にもはやフレームがない場合、プライマリーPHYチャネル上で送信の失敗がある場合、または最大TXOPデュレーションに達した場合には、TXOPを断念して、バックオフ手順を呼び出すことができる。
そのACのバッファ内にもはやフレームがない場合には、IEEE802.11n標準において指定されているのと同様の手順に従うことができる(すなわち、別々のACからの複数のフレームを1つのEDCA TXOP内で送信することはできない)。
単一のPHYチャネルのケースにおいては、送信の失敗は、潜在的なコリジョンを回避するためにTXOPを終了することができる。複数のPHYチャネルのケースにおいては、PHY非プライマリーチャネル上での送信の失敗は、現在のTXOPデュレーション中にこのチャネル上での送信を終了することができる。あるいは、送信は、このTXOPデュレーション中にその他の利用可能なPHYチャネル上で継続することができる。プライマリーPHYチャネル上で送信の失敗が生じない限り、対応するチャネルアクセス機能は、NAV設定が期限切れになる前に回復することができる。
最大TXOPデュレーションが同じままである場合には、それぞれのACのバッファサイズは、単一のPHYチャネル用のバッファのサイズのわずか1/4とすることができる。その一方で、バッファサイズを同じままにすることもでき、ただしAPは、最大TXOPデュレーションを減らすことができる。
図37のMAC層アーキテクチャ3700において示されているバッファコントローラ3710は、バッファの生成(すなわち、PHYチャネルのためのそれぞれのAC内のバッファを生成すること)、フレームの挿入(すなわち、入力フレーム(例えば、A−MPDUフレーム)を適切なバッファへ分配すること)、フレームの削除(すなわち、フレームをバッファから削除すること)、フレームの並べ替え(すなわち、バッファ同士の間においてフレームを置き換えること、またはバッファ内の別の場所へフレームを置き換えること)、バッファのバランスを取ること(すなわち、それぞれのAC内のバッファ同士の負荷が必ず均等になるようにすること)、チャネル状況を報告すること(すなわち、PHYチャネルが適切に機能していないケースを報告すること)、およびバッファの削除(すなわち、PHYチャネルが利用不能である場合にバッファを削除すること)を実施することができる。
バッファコントローラ3710は、図37のMAC層アーキテクチャ3700において示されているフレームコントローラ3715とともに、PHYチャネル3735を介して送信されるフレームが要するデュレーションを必ずほぼ同じにするよう試みることができる。PHYチャネル3735が準静的であることを1つの前提とすることができ、これは、それぞれのチャネルのMCS値が頻繁に変わることはできないということを意味する。
下記の例は全て、全てのフレームが単一の宛先へ送信されることになるケースに関するものである。しかし、図37のMAC層アーキテクチャ3700は、複数の宛先に適用することもできる。
4つの並列のPHYチャネル3735という前提のもとで、バッファコントローラ3710は、はじめにチャネルモニタ3730からチャネルMCS情報を受信することができる。次いで、バッファコントローラ3710は、それぞれのAC3745ごとに4つのロジックバッファ3740を割り当てることができる。それぞれのロジックバッファ3740は、PHYチャネル3735に対応することができる。このケースにおいては、同じロジックバッファ3740内のフレーム同士は、同じPHYチャネル3735上で送信されうる。それぞれのフレームごとにインジケータを使用して、どの論理バッファにフレームが割り当てられているかを示すことができる。
準静的なチャネルという前提によれば、共通のバッファ内のフレーム同士は、同様の長さを有することができ、それによって、無線でのこれらのフレームのデュレーションは、同様となる。しかし、別々のPHYチャネルは、別々のMCS値を有するため、1つのAC内の別々のバッファからのフレーム同士は、別々の長さであることが可能である。次いで、別々のPHYチャネルに対応するバッファ同士は、別々のサイズを有することができる。
A−MPDU集約ブロックの出力同士は、別々の長さのA−MPDUフレームであることが可能である。それぞれのA−MPDUは、特定のPHYチャネルに割り当てることができる。A−MPDUの長さは、そのA−MPDUがそのA−MPDUの割り当てられているPHYチャネルを介して送信される場合に、そのA−MPDUの無線デュレーションが他のフレームとほぼ同じになることが可能であるように、設計することができる。バッファコントローラ3710は、フレームの長さおよびPHYチャネルのMCS情報に基づいて、入力フレームを適切なバッファに割り当てることができる。フレーム同士は、その設計されたPHYチャネルを介したパケットの送信が必ずほぼ同じデュレーションにわたって続くように分配することができる。例えば、フレームが長い場合には、そのフレームは、良好なチャネル状況(これは、高いMCS値を意味する)を伴うPHYチャネルに対応するバッファに割り当てることができる。
別の実施形態は、どのPHYチャネルを介して入力フレームが送信されることになるかという情報を含んだ入力フレームを含む。フレームが送り出されてACKが受信された場合には、バッファコントローラ3710は、そのフレームをバッファから削除することができる。ACKが受信されない場合には、そのフレームは、再送信の最大回数に達するまで、またはフレームの有効期限が切れるまで、バッファ内に保持することができる。
送信に失敗するたびに、フレームに関する再送信の回数のカウンタを1ずつ増やすことができる。1つのフレームには、2つの有効期限が存在することができる。バッファが満杯である場合には、このバッファに割り当てられるいかなる入力フレームも削除することができる。
1つのAC内のバッファのうちのいずれも空でない場合には、ACに関連付けられているEDCAF3780が、EDCA TXOPを求めて競合することができる。これは、バックオフ手順を呼び出すことができる。TXOP中は、バッファ内のフレームを送信することができる。送信のACKが受信された場合には、フレームをバッファから削除することができる。ACKを必要としないマルチキャストフレームまたはブロードキャストフレームは、送信された時点で自動的にバッファから削除することができる。そうでない場合には、フレームは、再送信の最大回数に達するなど、いくつかの制約が破られるまで、再送信のためにバッファ内に保持することができる。
バッファコントローラ3710が、1つのバッファから別のバッファへ、またはバッファ内の1つの場所から別の場所へパケットを転送することができるいくつかの状況がある。TXOPにおいては、いくつかのバッファは空であり、その一方、他のバッファは空ではない。PHYチャネルは、プライマリーユーザまたは強い干渉の到来に起因して利用不能になる場合があり、これは、チャネルモニタ3730からのメッセージによってトリガーする場合がある。フレームは、そのフレームの最大の許容可能な配信時間よりも長くバッファ内に留まることができ、特定のPHYチャネル上でのスケジュールされたサイレント期間は、これらのチャネルに割り当てられるフレームの送信を延期することができる。
パケット転送は、同じAC内のバッファ同士の間において行うことができる。プライマリーチャネル上での送信が必ず最後に終了するようにするために、ブロックACKメカニズムを適用することができる。フレーム並べ替えプロセスは、論理バッファに起因して容易に実施することができる。
パケット並べ替えプロセスに関する下記の論考は、プライマリーCSMAの前提に基づいているが、通常のCSMAのケースに適用することもできる。
1つのバッファがTXOP中に空である場合には、少なくとも下記の3つのシナリオがある。
(1)複数のフレームを伴うバッファがちょうど1つある場合には、バッファコントローラ3710は、そのバッファから空のバッファへフレームを転送することができる。
(2)複数のフレームを伴う複数のバッファがある場合には、バッファコントローラ3710は、候補バッファのリストから1つのバッファを選択することができ、それによって、その選択されたバッファからのフレームを空のバッファへ転送することができる。バッファコントローラ3710は、候補バッファに対応するチャネルの状況をチェックすること、および空のバッファに対応するチャネルの状況に最も近いMCS値を有するチャネルを判定することが可能である。2つのMCS値の間における隔たりは、2つのコーディングおよび変調レートの間における差の絶対値とすることができる。例えば、QPSK(quadrature phase-shift keying)変調およびレート3/4チャネルのコードに関しては、全体的なレートは、2×3/4=3/2である。2つのMCS値の近似性を判定するための代替方法は、MCSインデックス同士の間における差による方法である。このバッファ選択スキームは、別々のチャネルを介したフレーム送信同士のデュレーションがほぼ同様になることを確実にすることができる。
バッファコントローラ3710は、適切な空のバッファを判定した後に、バッファの最前部から2番目のフレームをその空のバッファへ転送することができる。これは、そのバッファ内の第1のフレームが依然として同じチャネル上で送信されている可能性があるためである。
(3)複数のフレームを伴うバッファが他にないならば、フレーム並べ替えプロセスは、空のバッファがプライマリーチャネルに対応しない場合には実行することができない。あるいは、フレームを1つのバッファから空のバッファへコピーすることができる。コピーされるフレームは、空のバッファのMCS値に最も近い対応するMCS値を有するバッファからのフレームとすることができる。このコピーオペレーションの結果、送信が繰り返される場合がある。あるいは、空のバッファがプライマリーチャネルに対応する場合には、空でないバッファからフレームを転送することができる。これによって、プライマリーチャネル上での送信を確かなものにすることができる。あるいは、バッファの有するフレームの数が特定の数を下回ると、フレームの並べ替えを開始することができる。
図38および図39は、TXOP内の空のバッファに起因するパケット並べ替えの一例を示す。図38は、TXOP中に、ロジックバッファ37401が空であること、ロジックバッファ37402が1つのフレームを含んでいること、ロジックバッファ37403が3つのフレームを含んでいること、およびロジックバッファ37404が4つのフレームを含んでいることを示す。さらに、PHYチャネル37353は、PHYチャネル37351に最も近いMCS値を有している。上述のパケット並べ替えスキームによって、バッファコントローラ3710は、第2のフレームをロジックバッファ37403からロジックバッファ37401へ転送する。このケースにおいては、4つのPHYチャネル3735全てが利用されている。
図39は、ロジックバッファ37401および37402が空であること、ロジックバッファ37403が1つのフレームを有していること、およびロジックバッファ37404が3つのフレームを有していることを示す。上述のパケット並べ替えスキームによって、バッファコントローラ3710は、1つのフレームをロジックバッファ37404からロジックバッファ37401へ転送し、別のフレームをロジックバッファ37404からロジックバッファ37402へ転送する。これは、4つのPHYチャネル3735のうちのいずれも無駄にならないことを確実にし、その一方、4つのPHYチャネル3735上での送信同士は、別々の時間に終了することができる。
バッファコントローラ3710は、プライマリーユーザによって使用されるチャネルに対応するバッファから別のバッファへフレームを転送することができる。宛先バッファの選択は、やはり、対応するチャネルのMCS値の近似性に依存することができる。宛先バッファが決定されると、バッファコントローラ3710は、失われたチャネルに対応するバッファから宛先バッファへフレームを順に転送することができる。古いバッファの最前部にあるフレームは、やはり宛先バッファの最前部にあることが可能である。転送されたフレームは、プライマリーユーザの存在に起因していくらかの遅延を既に経験している可能性があるため、これらのフレームは、宛先バッファの最前部に挿入することができる。しかし、これらのフレームを宛先バッファ内の第1のフレームの前に挿入することはできない。なぜなら、第1のフレームは再送信中である可能性があるためである。フレームのシーケンス番号またはQoS要件に応じて、それらのフレームを宛先バッファ内の適切な場所へ転送するために、さらなる手順を適用することができる。
利用不能なチャネルに起因するパケット並べ替えは、バルクフレーム転送(bulk frame transfer)を含む場合がある。これは、宛先バッファにおけるオーバーフローにつながる可能性がある。このケースにおいては、バッファコントローラ3710は、残りのフレームを転送するために別のバッファを選択することができる。選択基準は、同じとすることができる。さらに、バッファコントローラ3710は、最新のバッファステータスをフレームコントローラ3715に知らせることができる。
図40および図41は、利用不能なチャネルに起因するパケット並べ替えの一例を示す。この例においては、いずれかの時点で、バッファコントローラ3710が、チャネルモニタ3730からメッセージを受信し、そのメッセージは、プライマリーユーザに起因してPHYチャネル37352が利用不能であるという情報を含む、と想定することができる。その結果として、バッファコントローラ3710は、ロジックバッファ37402を空にすることができる。MCSの比較の後に、バッファコントローラ3710は、ロジックバッファ37402からロジックバッファ37404へフレームを転送することを決定することができる。しかし、ロジックバッファ37404は、ロジックバッファ37402からのフレームの一部分を保持することしかできない。次いで、バッファコントローラ3710は、ロジックバッファ37402からの残りのフレームを格納するためにロジックバッファ37401を選択することができる。バッファコントローラ3710は、フレームコントローラ3715にバッファステータスについて知らせることもできる。
QoSコントローラ3720からのQoS要件、またはCMF3505からの制御メッセージQoS要件をバッファコントローラ3710へ送信して、フレームの最大遅延を知らせることができる。バッファコントローラ3710は、全てのAC3745におけるバッファ内のフレームをチェックして、いくつかのフレームが送信時間制限を潜在的に破る可能性があるかどうかを確認することができる。バッファコントローラ3710は、そのようなフレームを検知した場合には、それらのフレームをそれらのフレームの送信時間制限内に送信するために、パケット並べ替えプロセスを実行することができる。それらのフレームは、同様のMCS値に対応するバッファ同士の間において転送することができ、それらの転送されたフレームは、新たなバッファの最前部に挿入することができる。
図42および図43は、QoS要件に起因するパケット並べ替えの一例を示す。QoSコントローラ3720からQoS要件を受信すると、バッファコントローラ3710は、ロジックバッファ3740をチェックすることができる。この例においては、バッファコントローラ3710は、ロジックバッファ37402内の2つのフレームが自分のQoS要件を満たしていない可能性があるということを検知している。次に、バッファコントローラ3710は、それらのフレームを別のロジックバッファ3740へ転送することを試みることができる。チャネル37353およびチャネル37352は、同様のMCS値を有しているため、バッファコントローラ3710は、それらの2つのフレームをロジックバッファ37402からロジックバッファ37403の最前部へ転送することができる。
感知オペレーションは、プライマリーユーザの検知を実行することができるように、デバイスがサイレントであることを必要とする場合がある。動作チャネルのサブセットに関して、それぞれのサイレント期間がスケジュールされた場合には、それらのチャネルに割り当てられるフレームは、サイレント期間中には送信が許可されない場合があるため、遅延を経験する可能性がある。したがって、バッファコントローラ3710は、当初それらのチャネルに割り当てられたフレームを並べ替えることができる。詳細なフレーム並べ替えオペレーションは、利用不能なチャネルのケースと同様とすることができる。
送信の前に、フレーム同士を、4つのロジックバッファ3740にわたって均等に分配することができる。しかし、別々のチャネルからの別々のパケット送信レートに伴って、いくつかのバッファは重くなる可能性があり、その一方で、他のバッファは軽くなる可能性がある。PHYチャネル3735の効率的な使用のために、バッファコントローラ3710は、それぞれのロジックバッファ3740内のフレームの数を相対的に均等に保持することができる。これは、いくつかのバッファがほとんど満杯である一方でいくつかのバッファがほとんど空であり、それに続いて、特定のチャネルを介して送信されるフレームが皆無になる可能性が生じる一方で他のチャネルを介して送信されるフレームが多くなりすぎる可能性が生じる、という状況を回避する。複数のバッファにわたってフレームを均等に分配するために、バッファコントローラ3710は、あるPHYチャネルの対応するバッファが、より少ないフレームを有している場合には、そのPHYチャネルに関するフレームをより多く生成するようフレームコントローラ3715に知らせることができる。バッファコントローラ3710は、あるPHYチャネルの対応するバッファが、多くのフレームを有している場合には、そのPHYチャネルに関するフレームをより少なく生成するようフレームコントローラ3715に知らせることもできる。
ロジックバッファ3740が満杯であるか、または特定のしきい値を上回っている場合には、バッファコントローラ3710は、対応するPHYチャネル3735上での送信用に設計されたフレームをより少なく生成するようフレームコントローラ3715に知らせることができる。ロジックバッファ3740が空であるか、または特定のしきい値を下回っている場合には、バッファコントローラ3710は、対応するPHYチャネル3735上での送信用に設計されたフレームをより多く生成するようフレームコントローラ3715に知らせることができる。それらのしきい値は、フレーム生成レートまたはその他の要因に伴って変動することができ、また、固定することもできる。
バッファコントローラ3710からフレームコントローラ3715へ送信されるメッセージは、AC ID、チャネルID、およびフレーム生成レートの上昇または低下を示すインジケータを含むことができる。メッセージトリガーは、バッファ内のフレームの数が、しきい値よりも高くなること、または低くなることとすることができる。
バッファコントローラ3710は、バッファステータスの観点からチャネル状況をチャネルモニタ3730に報告することが必要となる場合がある。そのような報告は、プライマリーユーザを早く検知する上で役立つことができる。なぜなら、チャネルレポートは、非同期式のスペクトル感知をトリガーすることができるためである。バッファコントローラ3710は、チャネル状況を報告すべきかどうか、およびいつ報告すべきかを判定することができる。バッファコントローラ3710が適用することができるいくつかの基準は、チャネル上での再送信の回数が何らかのしきい値を上回る可能性があること、チャネル上での再送信レートが何らかのしきい値を上回る可能性があること、または、チャネル上でのフレームロスレートが何らかのしきい値を上回る可能性があることである。それらのしきい値は、別々のACごとに別々のものとすることができる。
いずれかのPHYチャネル3735が利用不能になっている旨のメッセージをチャネルモニタ3730から受信した場合には、バッファコントローラ3710は、対応するロジックバッファ3740を空にすることができる。新たなPHYチャネル3735が利用可能になっていることを示すメッセージをチャネルモニタ3730から受信した場合には、バッファコントローラ3710は、このPHYチャネル3735に対応するロジックバッファを生成することができる。
QoSコントローラ3720およびCMF3505は、QoS関連情報をバッファコントローラ3710に提供することができる。そのような情報は、関連メッセージの配信が特定の要件を満たすことを意味することができる。対応するメッセージは、フレームID、ソースアドレス、および宛先アドレスなどのフレーム情報、フレームの最大遅延、およびこのメッセージタイプのフレームの最小レートを含むことができる。
サイレント期間スケジューラ3725は、特定の期間にわたって特定のチャネル上での送信をやめるようにバッファコントローラ3710に知らせることができる。このサイレント期間は、プライマリーユーザを検知するためのスペクトル感知オペレーションのためのものとすることができる。メッセージコンテンツとしては、来たるべきサイレント期間のデュレーションと、サイレントにさせるPHYチャネル3735のリストと、サイレント期間の開始時間とを含むことができる。
チャネルモニタ3730からバッファコントローラ3710への少なくとも2つのタイプのメッセージが存在することができる。第1のメッセージタイプは、チャネルMCS情報を含むことができる。具体的には、第1のメッセージは、宛先アドレスと、4つまでのチャネルIDおよび/またはそれらのチャネルの周波数と、それらのチャネルのMCSインデックスとを含むことができる。第2のメッセージタイプは、チャネル構成情報を含むことができる。第2のメッセージは、古いチャネルIDと、古いチャネルの周波数レンジなどの古いチャネル定義と、新たなチャネルIDと、新たなチャネルの周波数レンジなどの新たなチャネル定義と、そのチャネルがプライマリーチャネルであるか否かを示すことができるプライマリーチャネルインジケータとを含むことができる。
図44は、バッファコントローラ3710によって実行される例示的なコールフロー手順4400を示す。この例においては、バッファコントローラ3710は、はじめにPHYチャネルの全てに関するMCS情報4405をチャネルモニタ3730から受信することができる。次いでバッファコントローラ3710は、それに従ってロジックバッファを生成することができる(4410)。バッファコントローラ3710は、フレームコントローラ3715からA−MPDUフレーム情報4415出力を受信すると、フレーム長さおよびチャネルMCS情報に基づいて適切なロジックバッファへのA−MPDUフレームの分配を監督する(4420)。コンテンションが成功すると、バッファコントローラ3710は、フレーム送信およびフレーム並べ替えプロセスをスケジュールする(4425)。バッファコントローラ3710はまた、バッファステータスをフレームコントローラ3715に知らせること(4430)、および、さらなるフレーム(A−MPDU)を受信すること(4435)(これは、バッファのバランスを取るために意図される場合がある)が可能である。バッファコントローラ3710は、QoSコントローラ3720からのQoS情報4440、またはCMF3505からの制御メッセージQoS情報4445、またはサイレント期間スケジューラ3725からのサイレント期間情報4450を受信すると、それに従ってフレーム並べ替えおよびフレーム送信をスケジュールすることができる(4455)。バッファコントローラ3710は、低いスループットを経験しているいくつかのチャネルを検知した場合には、チャネルモニタ3730にチャネル状況を報告すること(劣悪チャネルレポート)4460が可能である。チャネル更新情報4465を受信した後に、バッファコントローラ3710は、フレーム並べ替えオペレーション、バッファ削除オペレーション、およびバッファ生成オペレーション(バッファの再編成)を実行することができる(4470)。
上述のバッファリングスキームによれば、フレーム同士を、それらのフレームがMAC層において受信され処理される順に送信することはできない。これは、フレーム同士が同様の無線デュレーションを有するという設計要件を満たすためのものであると言える。図45に示されるように、フレームが順序どおりになっていない配信の主な影響によって、受信機側における大きなバッファという結果に至る可能性がある。なぜなら、受信機は、MSDUフラグメントを処理する前にそれらのMSDUフラグメントの全てを受信することが必要となる場合があるためである。
送信機側においては、フレームの再送信の最大回数に達した場合、MAC層におけるフレームの有効期限に達した場合、または第1の送信の後にフレームの有効期限に達した場合に、そのフレームをバッファから削除することができる。同様のオペレーションを受信機側において適用することもできる。これによって、受信機側におけるバッファ要件を軽減することができる。さらに、QoS要件に起因するフレーム並べ替えは、フレームが特定の時間内に必ず配信されるようにすることができ、受信機のバッファサイズの問題を緩和することができる。
受信機のバッファサイズの問題を緩和するためのさらなるスキームは、さらなるフレーム並べ替えトリガー(frame reordering trigger)を追加することを含む。バッファ内のフレームが1つまたは複数の所定の条件を満たす場合に、フレーム並べ替えオペレーションをトリガーすることができる。様々なパラメータを調整することによって、帯域幅の効率と、受信機のバッファサイズとの間におけるトレードオフを調整することができる。
IEEE802.11nにおいては、non−HT(high throughput)、HT−mixed、およびHT−greenfieldという3つのタイプのPPDU(physical layer protocol data unit)フレームがある。5MHzの帯域幅およびOFDM変調を前提とし、これは、それぞれのOFDMシンボルが16μsにわたって続くことを意味する。さらに、簡単にするために、3.2μsのガード間隔を前提とする。
図46は、PLCPヘッダ4602を含むnon−HT PPDUデータフォーマット4600を示す。PLCPヘッダは、L−STF(legacy short training field)4605、L−LTF(legacy long training field)4610、およびL−SIG(legacy signal)フィールド4615を含むことができる。L−STF4605のデュレーションは、32μsとすることができ、10個のショートプリアンブルを含むことができる。L−LTF4610は、2つのロングプリアンブルと、1つのガード間隔とを含むことができる。L−LTF4610のデュレーションも、32μsとすることができる。L−SIGフィールド4615は、レートおよびTXVECTORの長さフィールドを含むことができる。L−SIGフィールド4615のデュレーションは、16μsとすることができる。
non−HT PPDUデータフォーマット4600は、データフィールド4620をさらに含むことができ、データフィールド4620は、サービスビット4625、MPDU4630、テールビット4635、およびパッドビット4640を含むことができる。サービスビット4625は、16ビットの長さを有することができ、テールビット4635は、6ビットの長さを有することができる。パッドビット4640は、OFDMシンボルごとに0からデータビットの数まで変わることができる。これらのパッドビット4640は、データフィールド全体が必ずOFDMシンボルの整数倍になるようにするために適用することができる。MPDU4630は、MACヘッダ4645、MSDU4650、およびFCSフィールド4655を含むことができる。MSDUペイロードは、暗号化およびインテグリティーを伴わずに18432ビットを超えることはできない。MACヘッダ4645は、208ビットの長さを有することができ、FCSフィールド4655は、32ビットの長さを有することができる。
MACヘッダ4645の一般的なフォーマットが図47に示されている。MACヘッダ4645は、長さ16ビットのフレーム制御フィールド4705を含むことができ、フレーム制御フィールド4705は、プロトコルバージョン、タイプ、サブタイプ、DS(distribution stream)へ、DSから、さらなるフラグメント、再試行、パワーマネージメント、さらなるデータ、保護されたフレーム、および順序という各サブフィールドから構成することができる。
MACヘッダ4645は、デュレーション/IDフィールド4710を含むことができ、デュレーション/IDフィールド4710は、16ビットの長さとすることができる。そのコンテンツは、フレームのタイプおよびサブタイプに伴って、様々なものとすることができる。
MACヘッダ4645は、複数のアドレスフィールド4715を含むことができ、アドレスフィールド4715は、BSSID(basic service set identification)、SA(source address)、DA(destination address)、並びにTA(transmitting STA address)およびRA(receiving WTRU address)を示すために使用することができる。それぞれのアドレスフィールド4715は、48ビットの長さとすることができる。MACヘッダ4645は、シーケンス制御フィールド4720を含むことができ、シーケンス制御フィールド4720は、16ビットの長さとすることができ、シーケンス番号およびフラグメント番号という少なくとも2つのサブフィールドを含む。MACヘッダ4645は、QoS制御フィールド4725(16ビットのフィールドとすることができ、フレームが属するTC(traffic category)またはTS(traffic stream)を識別する)と、フレームに関する様々な他のQoS関連情報(フレームのタイプおよびサブタイプによって、様々なものとすることができる)とを含むことができる。
アドレスフィールド47154は、AP同士の通信のケースにおいて使用することしかできない。いくつかの実施形態においては、アドレスフィールド47154を使用することはできない。QoS制御フィールド4725は、データフレームに関して使用することができるが、マネージメントフレームに関して使用することはできない。従って、要約すると、MACヘッダ4645は、データフレームに関しては208ビットの長さとすることができ、マネージメントフレームに関しては192ビットの長さとすることができる。
図48は、PLCPヘッダ4802を含むHT−mixed PPDUデータフォーマット4800を示しており、PLCPヘッダ4802は、L−STF4805、L−LTF4810、およびL−SIGフィールド4815を含む。HT−mixed PPDUデータフォーマット4800のPLCPヘッダ4802は、HT−SIGフィールド4820、HT−STFフィールド4825、および複数のHT−LTF48301〜4830Nをさらに含むことができる。HT−SIGフィールド4820は、HTパケットフォーマットを解釈する上で必要とされる情報を搬送するために使用することができる。HT−SIGフィールド4820のデュレーションは、32μsとすることができる。HT−STF4825の1つの目的は、MIMOシステムにおけるオートマチックゲイン制御の推定を改善することであると言える。HT−STFフィールド4825のデュレーションは、16μsとすることができる。HT−LTFフィールド4830は、QAM(quadrature amplitude modulation)マッパ出力のセットと、受信チェーンとの間におけるMIMOチャネルを受信機が推定するための手段を提供することができる。HT−DLTF(データ HT−LTF)およびHT−ELTF(extension HT-LTF)という少なくとも2つのタイプのHT−LTFフィールド4830が存在することができる。HT−DLTFは、受信機がフレームのデータ部分を復調することを可能にするチャネル推定を受信機が形成するための必要な参照を提供するためにHT PPDU内に含めることができる。HT−DLTFの数は、フレーム内に含まれて送信されている空間/時間ストリーム(space-time streams)の数に応じて、1、2、または4とすることができる。HT−ELTFは、フレームのデータ部分によって使用される容量を超えるチャネルのさらなる容量の推定を受信機が形成することができるようにサウンディングPPDU内にさらなる参照を提供することができる。HT−ELTFの数は、0、1、2、または4とすることができる。一実施形態においては、HT−DLTFの数は、1とすることができ、HT−ELTFの数は、0とすることができる。
HT−mixed PPDUデータフォーマット4800は、データフィールド4835をさらに含むことができ、データフィールド4835は、サービスビット4840、A−MPDU4845、テールビット4850、およびパッドビット4855を含むことができる。A−MPDU4845は、MACヘッダ4860、A−MSDU4865、およびFCSフィールド4870を含むことができる。
MACヘッダ4860の一般的なフォーマットが図49に示されている。MACヘッダ4860は、長さ16ビットのフレーム制御フィールド4905を含むことができ、フレーム制御フィールド4905は、プロトコルバージョン、タイプ、サブタイプ、DS(distribution stream)へ、DSから、さらなるフラグメント、再試行、パワーマネージメント、さらなるデータ、保護されたフレーム、および順序という各サブフィールドから構成することができる。
MACヘッダ4860は、デュレーション/IDフィールド4910を含むことができ、デュレーション/IDフィールド4910は、16ビットの長さとすることができる。そのコンテンツは、フレームのタイプおよびサブタイプに伴って、様々なものとすることができる。
MACヘッダ4860は、複数のアドレスフィールド4915を含むことができ、アドレスフィールド4915は、BSSID(basic service set identification)、SA(source address)、DA(destination address)、並びにTA(transmitting STA address)およびRA(receiving WTRU address)を示すために使用されうる。それぞれのアドレスフィールド4915は、48ビットの長さとすることができる。MACヘッダ4860は、シーケンス制御フィールド4920を含むことができ、シーケンス制御フィールド4920は、16ビットの長さとすることができ、シーケンス番号およびフラグメント番号という少なくとも2つのサブフィールドを含む。MACヘッダ4860は、QoS制御フィールド4925(16ビットのフィールドとすることができ、フレームが属するTC(traffic category)またはTS(traffic stream)を識別する)と、フレームに関する様々な他のQoS関連情報(フレームのタイプおよびサブタイプによって、様々なものとすることができる)とを含むことができる。
アドレスフィールド49154は、AP同士の通信のケースにおいて使用することしかできない。ある実施形態においては、アドレスフィールド49154を使用することはできない。QoS制御フィールド4925は、データフレームに関して使用することができるが、マネージメントフレームに関して使用することはできない。したがって、要約すると、MACヘッダ4860は、データフレームに関しては208ビットの長さとすることができ、マネージメントフレームに関しては192ビットの長さとすることができる。
HT PPDUに関するMACヘッダ4860は、HT制御フィールド4930を有することができ、HT制御フィールド4930は、32ビットの長さとすることができ、特定のHT関連情報を指定するために使用することができる。要約すると、MACヘッダ4860は、データフレームに関しては240ビットの長さ、およびマネージメントフレームに関しては224ビットの長さとすることができる。
HT−greenfield PPDUデータフォーマット5000が、図50に示されている。HT−GF−STF(HT-greenfield short training field)5005は、non−HT PPDUフォーマット4600およびHT−mixed PPDUデータフォーマット4800におけるL−STFの代わりとして適用することができる。そのデュレーションは、32μsとすることができる。HT−LTF1(first HT long training)フィールド5010は、non−HT PPDUフォーマットおよびHT−mixed PPDUフォーマットにおけるL−LTFの代わりとして適用することができる。HT−greenfield PPDUデータフォーマットにおける他のフィールドは、HT−mixed PPDUデータフォーマットにおける対応するフィールドと同様とすることができる。
図51は、フレームコントローラ3715のための例示的なコールフロー手順5100を示す。この例では、フレームコントローラ3715は、はじめにチャネルモニタ3730からチャネルMCS情報5105を受信する。これらのMCS値に基づいて、フレームコントローラ3715は、全てのフレームの無線デュレーションを決定することができる(5110)。この無線デュレーションの決定は、アプリケーションの平均フレーム長さなど、アプリケーションに依存することもできる。より良好な状況を伴うチャネルは、より高いMCS値を、ひいては、より短い無線デュレーションを有することができる。
無線デュレーションの決定の後に、フレームコントローラ3715は、バッファコントローラ3710からバッファステータス情報5115を受信することができる。はじめは全てのバッファが空である可能性があるため、フレームコントローラ3715は、ラウンドロビン様式で別々のPHYチャネル3735のためのフレームを生成することを決定することができる。一例においては、フレームコントローラ3715は、PHYチャネル37351のためのフレームを生成することを決定することができる(5120)。PHYチャネル37351の無線デュレーションおよびMCS値に基づいて、フレームコントローラ3715は、結果として得られるPPDUフレームがPHYチャネル37351上で送信された場合に送信デュレーションが無線デュレーションと一致するようにペイロードの長さを計算することができる(5125)。ペイロードの長さを求めた後に、フレームコントローラ3715は、その長さのフレームを生成するためにA−MSDU集約ユニット3760、フラグメンテーションユニット3765、およびA−MPDU集約ユニット3775を制御することを試みることができる(5130)。一実施形態においては、しばらくたってから、フレームコントローラ3715が、A−MPDU情報をバッファコントローラへ送信したこと(5135)に応答して、更新されたバッファステータス情報をバッファコントローラ3710から受信した場合には(5140)、フレームコントローラ3715は再び、別々のPHYチャネル3735のためのフレームを生成することを決定し(5145)、ペイロードの長さを計算し(5150)、その長さのフレームを生成するためにA−MSDU集約ユニット3760、フラグメンテーションユニット3765、およびA−MPDU集約ユニット3775を制御することができる(5155)。
ペイロードとは、特定のPHYチャネル3735上での特定の無線デュレーションを達成するためのペイロードの長さの下記の計算におけるMSDUの長さを指す。事前に指定された無線デュレーションはTμsであると想定することができる。
MCS情報を用いて、フレームコントローラ3715は、はじめにOFDMシンボルごとの対応するデータビットを見つけ出すことができる。図52は、変調およびコーディングレートからOFDMシンボルごとのデータビットへのマッピング、並びにOFDMシンボルごとのコーディングされたビット、およびnon−HT PPDUフレームに関するデータレートを示している。
第1の例として、フレームコントローラ3715は、データフレームとともに動作しており、ある特定のチャネルが、QPSK変調および3/4のコーディングレートを適用すると想定することができる。図46に示されるように、PLCPヘッダ4602は、80μsを要し、サービスビット4625と、(データフレーム用の)MACヘッダ4645と、FCSフィールド4655と、テールビット4635との合計は、262ビットであるとさらに想定することができる。図52から、OFDMシンボルごとのデータビットは、72である。シンボルデュレーションが5MHzの帯域幅で16μsであると想定すると、無線デュレーションTは、下記のとおりとなる。
Figure 2015136139
ここでは、xは、ペイロードの長さである。
第2の例として、フレームコントローラ3715は、データフレームとともに動作しており、ある特定のチャネルが、16−QAM変調および1/2のコーディングレートを適用すると想定することができる。図52から、OFDMシンボルごとのデータビットは、96である。したがって、無線デュレーションTは、ペイロードの長さxを使用して、下記のとおり計算される。
Figure 2015136139
方程式(6)および(7)における計算は、non−HT PPDUフレームに関するものである。HT−mixed PPDUフレームおよびHT−greenfield PPDUフレームに関しては、変調およびコーディングレートからOFDMシンボルごとのデータビットへのマッピング、並びにOFDMシンボルごとのコーディングされたビット、およびnon−HT PPDUフレームに関するデータレートは、別のものとすることができる。マッピング案が、図53において提示されている。
第3の例として、フレームコントローラ3715は、データフレームとともに動作しており、ある特定のチャネルが、QPSK変調および3/4のコーディングレートを適用すると想定することができる。図48に示されるように、PLCPヘッダ4802は、144μsを要し、サービスビット4840と、(データフレーム用の)MACヘッダ4860と、FCSフィールド4870と、テールビット4850との合計は、294ビットであるとさらに想定することができる。図53から、OFDMシンボルごとのデータビットは、78である。シンボルデュレーションが5MHzの帯域幅で16μsであると想定すると、無線デュレーションTは、下記のとおりとなる。
Figure 2015136139
第4の例として、フレームコントローラ3715は、データフレームとともに動作しており、ある特定のチャネルが、64−QAM変調および3/4のコーディングレートを適用すると想定することができる。図53から、OFDMシンボルごとのデータビットは、234である。したがって、無線デュレーションTは、ペイロードの長さを使用して、下記のとおり計算することができる。
Figure 2015136139
IEEE802.11nは、MACオーバーヘッドを減らして生データレートを高めるためにMSDU集約およびMPDU集約をサポートする。PPDUのA−MPDU5400の構成が、図54に示されている。A−MPDU5400は、複数のA−MPDUサブフレーム54051、54052、...、5405nを含むことができる。それぞれのA−MPDUサブフレーム5405は、MPDUデリミタ5410、MPDU5415、およびパディングビット5420を含むことができる。MPDUデリミタ5410は、2バイトの長さとすることができ、パディングビット5420は、0から3バイトまでで変わることができる。
MPDU5415は、30バイトのMACヘッダ5425と、複数のA−MSDUサブフレーム54301〜5430mと、4バイトのFCSフィールド5435とを含むことができる。それぞれのA−MSDUサブフレーム5430は、6バイトのDA5440と、6バイトのSA5445と、2バイトの長さフィールド5450と、MSDU5455と、パディングバイト5460とを含むことができる。パディングバイト5460は、A−MSDUサブフレーム5430が4バイトの倍数になることができるようなものとすることができる。したがって、パディングバイト5460は、0バイトから3バイトまでで変わることができる。MSDU5455は、2304バイト未満とすることができるため、A−MSDUサブフレーム5430は、2320バイト未満とすることができる。MPDU5415は、暗号化およびインテグリティーを伴わずに4095バイト未満とすることができる。30バイトのMACヘッダ5425および4バイトのFCSフィールド5435を伴って、MPDU5415内のA−MSDUサブフレーム5430の全長は、4061バイト未満とすることができる。MPDU5415は、4095バイト未満とすることができるため、A−MPDUサブフレーム5405の最大の長さは、4100バイト未満とすることができる。その結果として、A−MPDU5400の全長は、65535バイト未満とすることができる。
第5の例として、フレームコントローラ3715は、データフレームとともに動作しており、ある特定のチャネルが、QPSK変調および3/4のコーディングレートを適用すると想定することができる。MSDU同士は、等しい長さであり、4バイトの倍数である。フレームコントローラ3715がMPDUを集約している間に、A−MSDUオペレーションを行うことはできない。
図54に示される例においては、MACヘッダ5425、MPDUデリミタ5410、およびFCSフィールド5435のビットの合計は、288ビットに等しい。この例においては、無線デュレーションTは、下記のとおりである。
Figure 2015136139
第6の例として、フレームコントローラ3715は、データフレームとともに動作しており、ある特定のチャネルが、64−QAM変調および3/4のコーディングレートを適用すると想定することができる。サービスビット+テールビットは、長さ22ビットであり、MACヘッダ5425、MPDUデリミタ5410、およびFCSフィールド5435のビットの合計は、288ビットに等しいと想定することができる。図53から、OFDMシンボルごとのデータビットは、234である。したがって、無線デュレーションTは、下記のとおりとなる。
Figure 2015136139
図55Aおよび図55Bに示される代替実施形態においては、アクセスカテゴリー内のそれぞれの物理チャネルと個別のバッファとの関連付けを取り除くことができる。代わりに、送信されることになるフレーム同士を別々の長さのグループへと分けるために、バッファのセットを使用することができる。記載の実施形態においては、アクセスカテゴリーごとに3つのバッファが使用されているが、異なる数のバッファを可能とすることもできる。
この実施形態では、機能ブロック図のうちの残りの部分は、図55Bに示されるように、スケジューラ5500が付加されること以外は、図37と同様のままとすることができる。この代替設計においては、バッファコントローラ3710は、ロジックバッファ3740内の送信されることになるフレームの数を前の設計の場合と相対的に同じに保持するために、アクセスカテゴリーのうちのそれぞれにおけるロジックバッファ3740を管理することができる。このケースにおいては、ロジックバッファ3740は、フレームの長さのサブセットに対応することができる。ロジックバッファ37401は、全てのショートフレームを含むことができ、ロジックバッファ37402は、全てのミディアムサイズフレームを含むことができ、ロジックバッファ37403は、全てのロングフレームを含むことができる。スケジューラ5500の役割は、それぞれの個々のTXOP中にそれぞれの物理チャネル上で送信するために、適切にサイズ設定されたフレームを選択することであると言える。この選択は、フレームが選択される元となるバッファ、および特定の時間におけるチャネル品質に基づくことができる。この方法においては、(限られた数のバッファの使用によって)チャネル使用の効率の損失を小さくしながら、ほぼ等しい長さの送信という前提を保持することができる。とはいえ、ほぼ等しい長さの送信は、送信チェーン内でスケジューラ5500の後に配置されるMPDU集約ブロックによって、確かなものにすることができる。例えば、スケジューラ5500は、基準のセットを使用して、それぞれの送信時間中に3つのバッファから4つのフレームを選択することができる。
特定の送信時間において、スケジューラ5500は、それぞれのバッファの最前部におけるフレームを検査することと、最短の「存続時間」を有するフレームを選択することによって開始することとが可能である。この選択は、QoSに関する考慮事項とともに実行することができ、当該考慮事項は、QoSコントローラ3720から受信することができる。より高い優先度のフレームを代わりに送信する必要があるケースにおいては、ロジックバッファ3740の最前部におけるフレームは、次の送信機会を待つことができる。
選択されたフレームは、そのフレームのための正しい送信の可能性を最大にするために、再送信および遅延の統計など、最近のチャネル品質情報に基づいて、チャネルにマップすることができる。
残りのチャネルには、全てのチャネル上でほぼ等しい送信時間を有するような方法でフレームを割り当てることができる。これは、チャネル状況のうちのそれぞれに合うように適切なロジックバッファ3740からフレームを選択することを通じて実行することができる。このフレーム割り当て中には、プライマリーCSMAルールを依然として考慮に入れることができる。
バッファコントローラ3710は、並べ替えを除いて、自分の上述のタスクの実行を継続することができ、並べ替えは、より高い優先度のフレームをそれぞれのバッファの最前部へ同じバッファ内で移動させることにのみ適用することができる。1つのバッファから別のバッファへフレームを並べ替える必要性をなくすことができる。加えて、PHYチャネルに明確に結び付けられていない可能性がある別の数のフレームの存在を考慮に入れるように、バッファの生成を修正することができる。
この実施形態は、1つのバッファから別のバッファへパケットを並べ替える必要性をなくすことができる。なぜなら、スケジューラ5500は、それぞれのTXOPにおいてそれぞれのPHYチャネルを介して送信されることになるパケットを動的に選択することができるためである。
この実施形態は、パケットの並べ替え中に生じるチャネルの非効率をなくすことができる。別のPHYチャネルに合わせられている可能性のある長さを伴って生成されたパケットは、結果として、並べ替える際の非効率につながる場合がある。図55Bにおけるスケジューラ5500は、ほぼ等しい長さの送信を達成するためにパケットを動的に選択することができるため、効率は、全てのTXOP上で同じとすることができる。
この実施形態は、特定のPHYチャネルに伴う問題に迅速に対応することができる。詳細には、あるPHYチャネルが、複数の再送信またはエラーなどの問題を有している場合に、スケジューラ5500は、問題のあるPHYチャネルに起因する遅延を既に被っているフレームのための送信時間を短縮するために、そのフレームを別のPHYチャネルへ送信できることを確実にすることができる。したがってスケジューラ5500は、TXOPベースでフレームのためのPHYチャネルを動的に変更することによって、ある形態のチャネルダイバーシティーを可能にすることができる。
上位層(例えば、IP)における受信機バッファのサイズは、小さくすることができる。なぜなら、スケジューラ5500は、IPフラグメントからのフレームが、全体的な遅延を最小限にした状態で送信されることを可能にすることができるためである。これによって、結果として、エンドツーエンドの遅延を低減することができる。さらに、所与の時点におけるチャネルから独立した長さを伴ってフレームが生成されるため、チャネル応答における変化に対処することができる。
送信エラーは、プライマリーCSMAアプローチを使用する集約されたチャネルのコンテキストにおいて取り扱うことができる。再送信は、例えば、次の3つの方法で実行することができる:1)単一のMPDU再送信、この場合には、MPDUは、1つのチャネルにおいて再送信することができる;2)複数のチャネル上でのMPDU、この場合には、MPDUは、全ての集約されたチャネル上で繰り返し送信することができる;および/または3)複数のチャネルにわたって再フラグメント化される。最後のオプションに関しては、失敗したMPDUを分割することができ、フラグメントの部分および失敗したMPDUを示すために、さらなるMACヘッダを付加することができる。受信機は、分断されたフラグメントの全てを再び組み立てることが必要となる場合がある。これらのオプションのそれぞれによって、余分な複雑さが持ち込まれる場合がある。加えて、これは、データメッセージとオーバーヘッドとの比率の観点から効率的ではない場合がある。以降の説明においては、ACKを要求することができる送信に焦点を合わせている。ACKが要求されない場合には、再送信が必要とされることもない。
4つの集約されたチャネル上で同時に送信された全てのパケットが、同じACに属していると想定することができる。したがって、以降で説明するアルゴリズムは、集約されたチャネル上で同時に送信された別々のACを伴う複数のパケットをサポートすることはできない。それぞれのACは、自分自身のバッファを有していると想定することができる。また、それぞれのACは、メディアの競合のためのバックオフ手順を保持するために、自分のEDCAFに関連付けられることが可能である。コンテンションが成功すると、ACのEDCAFには、このカテゴリーのMPDUの送信のためのEDCA TXOPを許可することができる。別々のACに関するコンテンションウィンドウサイズおよび最大TXOPデュレーションは、別々のものとすることができる。
2つの異なるバッファリングオプションが存在することができる。図56に示されるように、第1のバッファリングオプションは、それぞれのチャネルが、単一のインスタントバッファ(instant buffer)に関連付けられていると想定することができる。それぞれのACに、バッファは1つだけ存在することができる。チャネル使用の効率を高めるために、上述のプライマリーチャネル最終終了技術が、この実施態様において使用される場合には、非プライマリーチャネルにおけるフレーム同士の送信時間は、同様となることが可能である。プライマリーチャネルにおいて送信が終了する前に、非プライマリーチャネルにおいてアイドル期間が長くなりすぎないようにすることができる。非プライマリーチャネルにおける送信時間と、プライマリーチャネルにおける送信時間との間の最大のギャップは、特定の値よりも小さくすることができ、例えば、largest_gap<AIFS(AC)である。上述のように共通仮想感知技術が実施される場合には、フレームの割り当てが実行される際にプライマリーチャネルが最後に終了するのを保証することを不要とすることができる。
バッファは、対応するチャネル上で送信されるようにスケジュールされているフレームを、それらのフレームが首尾よく配信される前に格納しておくことができる。送信されることになるフレームは、物理チャネルに割り当てられる前に、完全なMPDUを生成するためにMACヘッダおよびCRCを付加されることが可能であり、また、インスタントバッファ内に留まることができ、インスタントバッファは、それぞれのチャネルにおいて次に送信するためのMPDUを格納しておくことしかできない。
図57Aおよび図57Bに示されるように、第2のバッファリングオプションを実施することができ、それによって、それぞれのACは、それぞれのチャネルに割り当てられた別々のフレームを伴う個別のバッファを有することができる。それぞれのACにおいては、4つのチャネルそれぞれに対応する4つのロジックバッファが存在することができる。両方のバッファ実施態様に関する再送信技術は、同様のものとすることができ、それらの再送信技術について、ここで説明する。
高優先度制御メッセージの再送信は、データメッセージまたは中〜低優先度の制御メッセージとは異なるものとすることができる。高優先度制御メッセージ、例えば、チャネル切り替えなどは、初回の送信においてはバッファ内のキューに入れることはできない。高優先度制御メッセージの送信は、堅牢性を高めるために、4つのチャネルを介して繰り返し行うことができる。したがって、高優先度制御メッセージの再送信の可能性は、低くすることができる。4つのチャネル上で受信されたACKがない場合には、高優先度制御メッセージを再送信することができる。そのようなケースにおいては、バックオフウィンドウを再送信のために増大させることができる。高優先度制御メッセージの配信のために使用される送信アプローチが異なれば、再送信スキームも異なることになる場合がある。例えば、WTRUによって配信されるメッセージに関しては:1)最も高いACにおいて送信されるメッセージの場合、失敗したMPDUは、バッファのフロントエンド内に留まることができ、再びTXOPを得ると、再送信されることが可能であり;IEEE802.11において示されるように、コンテンションウィンドウを倍にすることができ;および/または2)より低いACにおいて送信されるメッセージの場合、そのメッセージを最も高いACのフロントエンドに移動させて、再送信の際には最も高いACを通じて送信することができる。
別の例として、APによって配信されるメッセージに関しては、第1の再送信に関するコンテンションウィンドウCWをCWminとして設定することができ、第2の再送信に関するコンテンションウィンドウCWを倍にすることができる。それぞれの再送信のたびに、コンテンションウィンドウがCWmaxに達するまで、IEEE802.11におけるようにコンテンションウィンドウを倍にすることができる。例えば、CWminおよびCWmaxを、最も高いACのための値として設定することができ、この場合には、CWminを7(スロット時間)とすることができ、CWmaxを15(スロット時間)とすることができる。
中優先度および低優先度の制御メッセージの再送信に関しては、EDCAが呼び出された場合には、中優先度および低優先度の制御メッセージを1つのACにおいて送信することができる。プライマリーチャネルにおいてMPDUの送信に失敗した場合には、下記のように、様々なオプションを実施することができる。第1のオプションにおいては、TXOPの送信を終了することができ、バックオフ手順を呼び出すことができる。フレームのうちの全ては、元のフレームとして留まることができる。
代替として、または追加として、第2のオプションにおいては、第1のオプションが使用される場合に、その第1のオプションは、プライマリーチャネルのインスタントバッファ内に留まって、現在のTXOPが終了するまで、このパケットを宛先へ送信することを繰り返すことができる。次いで、受信機のプライマリーチャネルは、フレームの全てが非プライマリーチャネルに割り当てられていることを確認するために、この情報に関するフィードバックをバッファコントローラ3710に提供することが必要となる場合がある。プライマリーチャネル最終終了技術が実施される場合には、プライマリーチャネルにおける送信が最後に終了することを確認するために、失敗したMPDUを、より良好なチャネル状況を伴う非プライマリーチャネルのうちの1つへ移動させることができる。プライマリーチャネル最終終了技術が実施されない場合には、失敗したMPDUを、非プライマリーチャネルのうちの任意のチャネル、例えば、クォータナリーチャネルへ移動させることができる。新たなMPDUをプライマリーチャネルのためにパックすることはできない。この失敗した送信が、このTXOPにおける最後の送信である場合には、その失敗したMPDUは、プライマリーチャネルのインスタントバッファ内に留まることができ、次のTXOP中にこのEDCAFが再びチャネルを得たときに送信することができる。図58は、プライマリーチャネルにおいて送信が失敗した場合の再送信の例を示す。
非プライマリーチャネルにおいてMPDUの送信が失敗した場合には、2つのシナリオが生じる可能性がある。第1に、全てのチャネルに新たなフレームをいっさい割り当てることができない。一例においては、非プライマリーチャネルにおける1つの送信のみが失敗していることがある。TXOPが終了していない場合には、再送信MPDUをプライマリーチャネルのバッファへ移動させて、プライマリーチャネル上で送信することができる。このTXOPが終了している場合には、再送信パケットは、同じインスタントバッファ内に留まることができ、次のTXOPにおいて送信することができる。図59は、クォータナリーチャネルにおいて送信が失敗した場合の再送信の例を示している。
別の例においては、非プライマリーチャネルにおける少なくとも2つの送信が失敗している。TXOPが終了していない場合には、再送信MPDUのうちの1つをプライマリーチャネルへ移動させることができ、他の再送信MPDUは、同じバッファ内に残ることができる。プライマリーチャネルにおいて送信が終了している場合には、再送信されるMPDUを移動させることができる。これは、他のチャネルよりもプライマリーチャネルにおいて、より多くの送信時間を必要とする場合がある。あるいは、再送信MPDUのうちの全てをプライマリーチャネル内に置くこともできる。共通仮想感知技術が実施される場合には、失敗したMPDUのうちのいずれか1つをプライマリーチャネルへ移動させて、プライマリーチャネル上で再送信することができる。TXOPが終了している場合には、再送信MPDUのうちの全てが、インスタントバッファ内に残ることができ、次のTXOPまで同じチャネルにおいて送信することができる。
TXOPが終了しているプライマリーチャネルにフレームが割り当てられた場合には、再送信MPDUは、次のTXOPまで、自分の有効期限が切れるまで、または再試行回数の制限に達するまで、自分の元の位置(インスタントバッファ、または非プライマリーチャネルのロジックバッファ)に残ることができる。TXOPが終了していない場合には、同じチャネルにおいて送信を継続することができる。失敗したMPDUは、同じチャネル上で再送信することができる。上述のACK手順が実施される場合には、より長いフレームをプライマリーチャネル上で送信することが必要となることがあり、プライマリーチャネル上での送信が最後に終了するように保証することが必要となることがある。上述のACK手順が実施されない場合には、より長いフレームをプライマリーチャネルにおいて送信させることは不要とすることができる。
あるいは、失敗した(1つまたは複数の)チャネルにおける送信を終了することができる。このTXOP内で、再送信されるMPDUを別のインスタントバッファまたはロジックバッファへ移動させて、同様のチャネル状況を伴うチャネルにおいて送信することができる。
あるいは、再送信されるMPDUは、次のTXOPまで元のインスタントバッファまたはロジックバッファ内に留まることができる。このMPDUは、特定の時間よりも長くバッファ内に留まる場合には、同様のチャネル状況を伴う別のチャネルへ移動させることができる。
集約されたチャネルの送信においては、送信のためのコンテンションウィンドウは、次のように実施することができる:プライマリーチャネルが失敗した場合には、コンテンションウィンドウは、倍になることができる。非プライマリーチャネルが失敗した場合、および少なくとも1つのチャネル内に存在する少なくとも1つの再送信MPDUがある場合には、この送信のためのコンテンションウィンドウを倍にすることができる。非プライマリーチャネルのうちの全てが再送信である場合には、コンテンションウィンドウを倍にすることができる。複数のチャネル内に複数の再送信されるMPDUが存在する場合には、この送信のためのコンテンションウィンドウを倍にすることができる。
PHY-TXend.confirmにおいて開始する、SIFSTime+SlotTime+PHY-RX-START-Delayの値を伴って、STAがACKTimeout間隔にわたって待機することができるように、修正されたACKTimeOut間隔を使用することができる。集約されたチャネルの実施態様においては、ACKTimeOut間隔を修正することが必要となる場合がある。プライマリーチャネル最終終了技術が実施される場合には、それぞれのチャネルごとのACKTimeOut間隔の値を、(XMIT_TIME_PRIMARY-packet_xmit_time)+SIFSTime+SlotTime+PHY-RX-START-Delayとして修正することができ、ここでは、XMIT_TIME_PRIMARYは、プライマリーチャネルにおけるMPDU送信時間とすることができ、packet_xmit_timeは、そのチャネルにおけるMPDU送信時間である。
共通仮想感知技術が実施される場合には、それぞれのチャネルごとの修正されたACKTimeOut間隔の値は、(MAX_XMIT_TIME-packet_xmit_time)+SIFSTime+SlotTime+PHY-RX-START-Delayとすることができ、ここでは、MAX_XMIT_TIMEは、集約されたチャネルにおける最長の送信時間とすることができる。
実施形態
1.プライマリーチャネルおよび少なくとも1つの非プライマリーチャネルを含む複数の集約されたチャネルを使用して不連続なスペクトルを介して通信を行うためのチャネルアグリゲーションを実行するノードの方法であって、
プライマリーチャネル上でCSMAを実行し、プライマリーチャネルへのアクセスを得て、プライマリーチャネルのチャネルステータスを判定するステップと、
プライマリーチャネルのチャネルステータスに基づいて少なくとも1つの非プライマリーチャネルのチャネルステータスを設定するステップと
を含むことを特徴とする方法。
2.ノードは、APまたはeNBであることを特徴とする実施形態1に記載の方法。
3.ノード内の回路が、集約されたチャネルのそれぞれの上でPDUを少なくとも1つのWTRUへ送信するステップをさらに含み、PDUは、データPDUまたはマネージメントPDUであることを特徴とする実施形態1〜2のいずれか1つに記載の方法。
4.プライマリーチャネル上でのデータ送信は、少なくとも1つの非プライマリーチャネル上でのデータ送信の後に終了することを特徴とする実施形態1〜3のいずれか1つに記載の方法。
5.NAVが、集約されたチャネルを介して送信されるパケットのデュレーションフィールド内に含まれており、チャネル上での最長の送信時間、およびその最長の送信時間と、チャネルのうちの特定の1つのチャネル上での送信時間との間における差を示すことを特徴とする実施形態1〜4のいずれか1つに記載の方法。
6.ノード内の回路が、プライマリーチャネルにおける失敗したパケット送信を検知するステップと、
ノード内の回路が、現在の送信機会を終了するステップと、
ノード内の回路が、バックオフ手順を開始するステップと
をさらに含むことを特徴とする実施形態1〜5のいずれか1つに記載の方法。
7.ノード内の回路が、プライマリーチャネルにおける失敗したパケット送信を検知するステップと、
ノード内の回路が、失敗したパケットを、非プライマリーチャネルに関連付けられているバッファへ移動させるステップと
をさらに含むことを特徴とする実施形態1〜6のいずれか1つに記載の方法。
8.ノード内の回路が、非プライマリーチャネルにおける失敗したパケット送信を検知するステップと、
ノード内の回路が、失敗したパケットを、プライマリーチャネルに関連付けられているバッファへ移動させるステップと
をさらに含むことを特徴とする実施形態1〜7のいずれか1つに記載の方法。
9.プライマリーチャネルがビジーチャネルステータスを有している状況においては、少なくとも1つの非プライマリーチャネルは、ビジーチャネルステータスを有していると想定されることを特徴とする実施形態1〜8のいずれか1つに記載の方法。
10.プライマリーチャネルがビジーチャネルステータスを有している状況においては、送信は、その後のTXOPに延期されることを特徴とする実施形態1〜9のいずれか1つに記載の方法。
11.ノードは、プライマリーチャネルへのアクセスを得るとすぐに、少なくとも1つの非プライマリーチャネルへのアクセスを得ることを特徴とする実施形態1〜10のいずれか1つに記載の方法。
12.ノード内の回路が、AIFSにわたって待機してから、プライマリーチャネル上でバックオフを実行するステップと、
ノード内の回路が、PIFS(PCF(point coordination function) inter-frame space)期間にわたって少なくとも1つの非プライマリーチャネルのチャネルステータスをチェックするステップと、
ノード内の回路が、プライマリーチャネルおよび少なくとも1つの非プライマリーチャネルのそれぞれの上でPDUを送信したことに応答して、プライマリーチャネルおよび少なくとも1つの非プライマリーチャネルのそれぞれの上で肯定ACKメッセージを受信するステップと
をさらに含むことを特徴とする実施形態1〜11のいずれか1つに記載の方法。
13.プライマリーチャネルは、少なくとも1つの非プライマリーチャネルよりも大きな帯域幅にわたって動作するように構成されることを特徴とする実施形態1〜12のいずれか1つに記載の方法。
14.ノード内の回路が、AIFS時間にわたって待機した後にRTSメッセージを送信し、前記プライマリーチャネル上でバックオフを実行するステップと、
ノード内の回路が、SIFS期間にわたって待機した後にCTSメッセージを受信するステップと、
ノード内の回路が、プライマリーチャネルおよび少なくとも1つの非プライマリーチャネルのうちのそれぞれの上でPDUを送信するステップと、
ノード内の回路が、プライマリーチャネルおよび少なくとも1つの非プライマリーチャネルのうちのそれぞれの上で肯定ACKメッセージを受信するステップと
をさらに含むことを特徴とする実施形態1〜13のいずれか1つに記載の方法。
15.ノード内の回路が、プライマリーチャネルおよび少なくとも1つの非プライマリーチャネルのうちのどれが新たなチャネルへ切り替えられているかを示す切り替えチャネルフィールド、新たなチャネルの周波数を示す新たなチャネル番号フィールド、並びに新たなチャネルの特性を示すチャネル特徴フィールドを含むCSAメッセージを送信するステップをさらに含むことを特徴とする実施形態1〜14のいずれか1つに記載の方法。
16.ノード内のバッファコントローラが、集約されたチャネルに関するチャネルMCS情報を受信するステップと、
バッファコントローラが、複数のACのそれぞれに、集約されたチャネルのうちのそれぞれのためのロジックバッファを生成するステップと、
バッファコントローラが、ノード内のフレームコントローラからA−MPDUフレーム情報を受信するステップと、
フレームコントローラが、A−MPDUフレームの集約およびフラグメンテーションを制御するステップと
をさらに含むことを特徴とする実施形態1〜15のいずれか1つに記載の方法。
17.バッファコントローラが、QoS情報およびサイレント期間情報を受信するステップと、
バッファコントローラが、フレームの並べ替えおよびフレームの送信をスケジュールするステップと
をさらに含むことを特徴とする実施形態16に記載の方法。
18.ノード内のスケジューラが、それぞれのフレームが選択される元となるバッファ、および特定の時間におけるチャネル品質に基づいて、それぞれの送信機会の間に複数の物理チャネルのそれぞれの上で送信するためのフレームを選択するステップと、
スケジューラが、それぞれの選択されたフレームをそれぞれのチャネルにマップするステップと
をさらに含むことを特徴とする実施形態1〜17のいずれか1つに記載の方法。
19.マップするステップは最近のチャネル品質情報に基づいており、選択されたフレームのための正しい送信の可能性を最大にすることを特徴とする実施形態18に記載の方法。
20.プライマリーチャネルおよび少なくとも1つの非プライマリーチャネルを含む複数の集約されたチャネルに関するチャネルMCS情報を受信し、複数のACのそれぞれに、集約されたチャネルのうちのそれぞれのためのロジックバッファを生成するように構成されているバッファコントローラと、
A−MPDUフレーム情報を前記バッファコントローラに提供し、A−MSDUフレームの集約およびフラグメンテーションを制御するように構成されているフレームコントローラと
を含むことを特徴とするノード。
21.フレームコントローラは、A−MPDUの集約を制御するようにさらに構成されていることを特徴とする実施形態20に記載のノード。
22.ロジックバッファは、フラグメント化されたA−MSDUフレームを格納することを特徴とする実施形態20〜21のいずれか1つに記載のノード。
23.APまたはeNBであることを特徴とする実施形態20〜22のいずれか1つに記載のノード。
24.プライマリーチャネルおよび少なくとも1つの非プライマリーチャネルを含む複数の集約されたチャネルを使用して不連続なスペクトルを介して通信を行うように構成されているトランシーバと、
集約されたチャネルに関するチャネルMCS情報を受信し、複数のACのそれぞれに、集約されたチャネルのうちのそれぞれのためのロジックバッファを生成するように構成されているバッファコントローラと、
フレームを選択し、それぞれのフレームが選択される元となるバッファ、および特定の時間におけるチャネル品質に基づいて、それぞれの送信機会の間に複数の物理チャネルのそれぞれの上で送信し、それぞれの選択されたフレームをそれぞれのチャネルにマップするように構成されているスケジューラと
を含むことを特徴とするノード。
25.APまたはeNBであることを特徴とする実施形態24に記載のノード。
上記では特徴および要素について特定の組合せで説明しているが、それぞれの特徴または要素は、単独で、またはその他の特徴および要素のうちの任意のものとの組合せで使用することができるということを当業者なら理解するであろう。また、本明細書に記載されている実施形態は、コンピュータまたはプロセッサによって実行するためにコンピュータ可読メディア内に組み込まれているコンピュータプログラム、ソフトウェア、またはファームウェアで実装することができる。コンピュータ可読媒体の例としては、(有線接続または無線接続を介して伝送される)電子信号、およびコンピュータ可読ストレージメディアが含まれる。コンピュータ可読ストレージメディアの例としては、ROM(read only memory)、RAM(random access memory)、レジスタ、キャッシュメモリ、半導体メモリデバイス、磁気メディア(例えば、内蔵ハードディスクまたはリムーバブルディスク)、光磁気メディア、並びにCDまたはDVDなどの光メディアが含まれるが、それらには限定されない。ソフトウェアと関連付けられているプロセッサは、WTRU、UE、端末、基地局、Node−B、eNB、HNB、HeNB、AP、RNC、ワイヤレスルータ、または任意のホストコンピュータにおいて使用するための無線周波数トランシーバを実装するために使用することができる。

Claims (3)

  1. プライマリーチャネルおよび少なくとも1つの非プライマリーチャネルを含む複数の集約されたチャネルを使用して不連続なスペクトルを通じて通信するためにチャネルアグリゲーションを実行するノードの方法であって、
    前記方法は、
    前記プライマリーチャネルへのアクセスを得るために前記プライマリーチャネル上でCSMA(carrier sense multiple access)を実行することと、
    前記プライマリーチャネル上で実行された前記CSMAに基づいて前記プライマリーチャネルのチャネルステータスを判定することと、
    前記プライマリーチャネルの前記チャネルステータスがビジーではないと判定されたことを条件として前記少なくとも1つの非プライマリーチャネル上でセンシングを実行することと、
    前記プライマリーチャネルの前記チャネルステータスがビジーである場合に前記少なくとも1つの非プライマリーチャネルの前記チャネルステータスがビジーであると少なくとも想定することによって前記プライマリーチャネルの前記チャネルステータス、および前記少なくとも1つの非プライマリーチャネル上での前記センシングに基づいて前記少なくとも1つの非プライマリーチャネルの前記チャネルステータスを判定することと、
    前記プライマリーチャネル、および利用可能なチャネルステータスが判定された前記非プライマリーチャネルのいずれか1つの上で、集約された送信を実行することと
    を備える方法。
  2. 前記ノードは、AP(access point)またはeNB(evolved Node-B)である、請求項1の方法。
  3. 前記ノード内の回路が、前記集約されたチャネルのそれぞれの上でPDU(protocol data unit)を少なくとも1つのWTRU(wireless transmit/receive unit)へ送信することであって、前記PDUは、データPDUまたはマネージメントPDUである、ことをさらに備える、請求項1の方法。
JP2015033299A 2010-11-12 2015-02-23 チャネルアグリゲーションおよび媒体アクセス制御再送信を実行するための方法および装置 Expired - Fee Related JP5986244B2 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US41322110P 2010-11-12 2010-11-12
US41311610P 2010-11-12 2010-11-12
US41312610P 2010-11-12 2010-11-12
US61/413,116 2010-11-12
US61/413,126 2010-11-12
US61/413,221 2010-11-12

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013538763A Division JP5703384B2 (ja) 2010-11-12 2011-10-25 チャネルアグリゲーションおよび媒体アクセス制御再送信を実行するための方法および装置

Publications (2)

Publication Number Publication Date
JP2015136139A true JP2015136139A (ja) 2015-07-27
JP5986244B2 JP5986244B2 (ja) 2016-09-06

Family

ID=44947206

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2013538763A Expired - Fee Related JP5703384B2 (ja) 2010-11-12 2011-10-25 チャネルアグリゲーションおよび媒体アクセス制御再送信を実行するための方法および装置
JP2015033299A Expired - Fee Related JP5986244B2 (ja) 2010-11-12 2015-02-23 チャネルアグリゲーションおよび媒体アクセス制御再送信を実行するための方法および装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2013538763A Expired - Fee Related JP5703384B2 (ja) 2010-11-12 2011-10-25 チャネルアグリゲーションおよび媒体アクセス制御再送信を実行するための方法および装置

Country Status (6)

Country Link
US (1) US20140079016A1 (ja)
EP (2) EP2638656B1 (ja)
JP (2) JP5703384B2 (ja)
KR (2) KR101764955B1 (ja)
CN (2) CN107104769A (ja)
WO (1) WO2012064502A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11882483B2 (en) 2019-07-10 2024-01-23 Sony Group Corporation Wireless communication device and method for multi band operations (MBO)

Families Citing this family (202)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120099575A1 (en) * 2010-10-26 2012-04-26 Electronics And Telecommunications Research Institute Apparatus and method for complex communication
WO2012061484A2 (en) 2010-11-05 2012-05-10 Interdigital Patent Holdings, Inc. Silent period method and apparatus for dynamic spectrum management
CN103283270B (zh) 2010-11-15 2017-05-31 交互数字专利控股公司 用于在机会频带中进行频谱感测的方法和设备
CN103370896B (zh) * 2010-12-06 2016-05-11 交互数字专利控股公司 用于在免许可频谱中使能无线操作的方法
US20140050203A1 (en) * 2011-01-26 2014-02-20 Nokia Corporation Apparatus and Method for Radio Systems Co-Existence on Secondary Carriers
US10123351B2 (en) * 2011-04-15 2018-11-06 Intel Corporation Methods and arrangements for channel access in wireless networks
KR101670561B1 (ko) * 2011-07-14 2016-10-28 엘지전자 주식회사 무선랜 시스템에서 파워 세이브 모드 기반 통신 방법 및 이를 지원하는 장치
US9100177B2 (en) * 2011-09-02 2015-08-04 Qualcomm Incorporated Systems and methods for acknowledging communications from a plurality of devices
WO2013059996A1 (en) * 2011-10-26 2013-05-02 Nokia Corporation Spectrum sensing
US9241335B2 (en) * 2011-10-31 2016-01-19 Qualcomm Incorporated Channel selection rules for sub-1-GHz basic service sets
CN103124199B (zh) * 2011-11-21 2015-01-28 华为技术有限公司 用于感知频谱的方法、设备和数据帧
US9363122B2 (en) * 2011-11-28 2016-06-07 Lg Electronics Inc. Method and apparatus for transmitting training field
US9320019B2 (en) * 2011-12-23 2016-04-19 Maxlinear, Inc. Method and system for channel allocation and bandwidth management in a WiFi device that utilizes full spectrum capture
WO2013130793A1 (en) * 2012-03-01 2013-09-06 Interdigital Patent Holdings, Inc. Multi-user parallel channel access in wlan systems
KR20140136433A (ko) * 2012-03-07 2014-11-28 엘지전자 주식회사 상호공존 네트워크 내에서 마스터 cm 선출 방법
US20130235884A1 (en) * 2012-03-11 2013-09-12 Broadcom Corporation Mixed serial and parallel stream channel bonding architecture
KR101907465B1 (ko) * 2012-05-02 2018-10-12 삼성전자주식회사 무선통신시스템에서 데이터를 재전송하기 위한 장치 및 방법
US8767862B2 (en) 2012-05-29 2014-07-01 Magnolia Broadband Inc. Beamformer phase optimization for a multi-layer MIMO system augmented by radio distribution network
US8811291B2 (en) 2012-05-30 2014-08-19 Qualcomm Incorporated Methods and devices for optimized cell acquisitions
US9154204B2 (en) 2012-06-11 2015-10-06 Magnolia Broadband Inc. Implementing transmit RDN architectures in uplink MIMO systems
MY156138A (en) * 2012-06-13 2016-01-15 Mimos Berhad System and method for dynamic spectrum access with coordinated primary user management
KR101724977B1 (ko) * 2012-09-24 2017-04-07 인터디지탈 패튼 홀딩스, 인크 동적 스펙트럼 관리 시스템에서의 채널 품질 측정 및 송신 전력 할당
US9025446B2 (en) * 2012-10-10 2015-05-05 Empire Technology Development Llc Carrier selection policy for joint scheduling for carrier aggregation in an LTE-advanced system
US9350515B2 (en) 2012-10-15 2016-05-24 Headwater Partners LLC Enhanced relay node with additional backhaul alternative and selection
US9413502B2 (en) 2012-10-15 2016-08-09 Headwater Partners LLC Backhaul assisted by user equipment
US9332455B2 (en) 2012-10-15 2016-05-03 Headwater Partners Ii Llc Scheduling a user equipment transmission mode to assist uplink interference characterization
US9351190B2 (en) * 2012-10-15 2016-05-24 Headwater Partners LLC Interference characterization based on scheduling a transmission mode
US9467895B2 (en) 2012-10-19 2016-10-11 Fortinet, Inc. Increasing access point throughput by exceeding A-MPDU buffer size limitation in a 802.11 compliant station
EP2907253B1 (en) * 2012-10-24 2016-09-21 Huawei Technologies Co., Ltd. System and method for carrier aggregation for wireless local area networks
JP5898331B2 (ja) * 2012-10-26 2016-04-06 株式会社日立国際電気 マルチチャネル無線通信システム、基地局、チャネル利用方法
US9300602B2 (en) * 2012-11-02 2016-03-29 Qualcomm Incorporated Method, device, and apparatus for error detection and correction in wireless communications
US10014979B2 (en) * 2012-11-13 2018-07-03 Qualcomm Incorporated Methods and apparatus for avoiding collisions due to hidden wireless nodes
US9191097B2 (en) * 2012-12-20 2015-11-17 Intel Corporation Techniques for transmitting data via relay communication links
CN103974447B (zh) 2013-02-06 2018-05-01 华为技术有限公司 数据传输方法、装置和系统
US8797969B1 (en) 2013-02-08 2014-08-05 Magnolia Broadband Inc. Implementing multi user multiple input multiple output (MU MIMO) base station using single-user (SU) MIMO co-located base stations
US9343808B2 (en) 2013-02-08 2016-05-17 Magnotod Llc Multi-beam MIMO time division duplex base station using subset of radios
CN104995982B (zh) * 2013-02-15 2018-12-04 Lg电子株式会社 在wlan系统中根据带宽发送/接收帧的方法和装置
US9191469B2 (en) 2013-02-20 2015-11-17 Qualcomm Incorporated Acknowledgement (ACK) type indication and deferral time determination
US9853794B2 (en) * 2013-02-20 2017-12-26 Qualcomm, Incorporated Acknowledgement (ACK) type indication and deferral time determination
TWI556598B (zh) * 2013-02-26 2016-11-01 高通公司 確認(ack)類型指示和推遲時間決定(二)
CN104039016B (zh) * 2013-03-08 2019-08-13 中兴通讯股份有限公司 业务数据的传输处理、传输方法及装置
US9350673B2 (en) * 2013-03-14 2016-05-24 Vivint, Inc. Dynamic adjustment of quality of service parameters
US9125089B2 (en) 2013-03-15 2015-09-01 Hewlett-Packard Development Company, L.P. Method and apparatus for packet aggregation in a network controller
US9306866B2 (en) * 2013-03-15 2016-04-05 Aruba Networks, Inc. Apparatus and method aggregation at one or more layers
CN105075323B (zh) * 2013-03-29 2019-02-05 Vid拓展公司 早期分组丢失检测和反馈
US20160073268A1 (en) * 2013-04-16 2016-03-10 The Arizona Board Of Regents On Behalf Of The University Of Arizona A method for improving spectrum sensing and efficiency in cognitive wireless systems
JP6082163B2 (ja) * 2013-05-02 2017-02-15 エルジー エレクトロニクス インコーポレイティド 無線lanシステムにおいて動的チャネルセンシング方法及び装置
US9577811B2 (en) 2013-05-03 2017-02-21 Qualcomm Incorporated Methods and systems for frequency multiplexed communication in dense wireless environments
US9398579B2 (en) * 2013-05-03 2016-07-19 Qualcomm Incorporated Systems and methods for downlink frequency domain multiplexing transmissions
TWI669021B (zh) * 2013-06-06 2019-08-11 內數位專利控股公司 用於WiFi頻道選擇及子頻道選擇性傳輸的裝置及方法
US9326122B2 (en) 2013-08-08 2016-04-26 Intel IP Corporation User equipment and method for packet based device-to-device (D2D) discovery in an LTE network
CN105393470B (zh) 2013-08-08 2018-11-02 英特尔Ip公司 用于多输入多输出系统中的电子下倾角调节的方法、装置和系统
US9497781B2 (en) * 2013-08-13 2016-11-15 Magnolia Broadband Inc. System and method for co-located and co-channel Wi-Fi access points
WO2015026070A1 (ko) * 2013-08-20 2015-02-26 엘지전자 주식회사 무선랜 시스템에서 짧은 프레임 프래그먼트 송수신 방법 및 장치
US10004109B2 (en) 2013-09-06 2018-06-19 Lg Electronics Inc. Method and apparatus for recovering data unit in wireless communication system
US9949292B2 (en) 2013-09-11 2018-04-17 Qualcomm Incorporated Coupling uplink and downlink CCA in LTE-U
WO2015042896A1 (zh) 2013-09-29 2015-04-02 华为技术有限公司 一种数据传输的方法及设备
CN105794136A (zh) 2013-10-01 2016-07-20 交互数字专利控股公司 用于wlan系统中基于协作正交块的资源分配(cobra)的增强
US9474073B2 (en) * 2013-10-31 2016-10-18 Qualcomm Incorporated Methods and apparatus for multiple user uplink bandwidth allocation
US9172454B2 (en) 2013-11-01 2015-10-27 Magnolia Broadband Inc. Method and system for calibrating a transceiver array
US10257806B2 (en) * 2013-11-11 2019-04-09 Marvell World Trade Ltd. Medium access control for multi-channel OFDM in a wireless local area network
US8891598B1 (en) 2013-11-19 2014-11-18 Magnolia Broadband Inc. Transmitter and receiver calibration for obtaining the channel reciprocity for time division duplex MIMO systems
US9294177B2 (en) 2013-11-26 2016-03-22 Magnolia Broadband Inc. System and method for transmit and receive antenna patterns calibration for time division duplex (TDD) systems
US9661657B2 (en) * 2013-11-27 2017-05-23 Intel Corporation TCP traffic adaptation in wireless systems
WO2015096065A1 (zh) * 2013-12-25 2015-07-02 华为技术有限公司 信息发送方法及装置
CN103891336B (zh) * 2013-12-31 2018-06-05 华为技术有限公司 一种网络控制器、站点、以及建立保护期的方法
US9876614B1 (en) 2014-01-20 2018-01-23 Marvell International Ltd. Hybrid automatic repeat request for wireless local area network
WO2015137591A1 (ko) * 2014-03-10 2015-09-17 엘지전자 주식회사 무선랜에서 재전송 방법 및 장치
WO2015135105A1 (zh) * 2014-03-10 2015-09-17 华为技术有限公司 数据传输方法、发送方设备及接收方设备
KR20150106582A (ko) * 2014-03-12 2015-09-22 삼성전기주식회사 무선 통신 단말 장치, 무선 통신 시스템 및 그 방법
CN106464434B (zh) * 2014-03-17 2020-03-27 交互数字专利控股公司 Ieee 802.11站sta及在其内使用的方法
US20150264689A1 (en) * 2014-03-17 2015-09-17 Qualcomm Incorporated Methods and apparatus for multiplexing peer-to-peer traffic and/or access point traffic
EP3101985B1 (en) * 2014-03-19 2018-10-24 Huawei Technologies Co., Ltd. Multichannel access method and apparatus
US9172446B2 (en) 2014-03-19 2015-10-27 Magnolia Broadband Inc. Method and system for supporting sparse explicit sounding by implicit data
GB2538678B (en) * 2014-03-26 2020-12-09 Qualcomm Inc System and method for optimizing channel characteristics when initializing links between cognitive radios in a shared spectrum environment
KR101838840B1 (ko) * 2014-05-09 2018-03-14 후지쯔 가부시끼가이샤 무선 통신 시스템, 기지국 및 단말기
EP3468139B1 (en) 2014-05-13 2020-12-30 Huawei Technologies Co., Ltd. Multi-channel contention method, communications device, and wireless network system
US9485715B2 (en) * 2014-05-13 2016-11-01 Qualcomm Incorporated Systems and methods for coordinating power save operations in an ad hoc network
US9584195B2 (en) * 2014-06-02 2017-02-28 Intel IP Corporation MIMO and bandwidth signaling in millimeter-wave systems
US10212706B2 (en) * 2014-06-05 2019-02-19 Qualcomm Incorporated Shared spectrum access
CN111294193B (zh) * 2014-06-13 2022-09-13 夏普株式会社 基站装置、终端装置以及通信方法
JP6516265B2 (ja) * 2014-06-13 2019-05-22 シャープ株式会社 基地局装置、端末装置、および通信方法
US9681335B2 (en) * 2014-06-19 2017-06-13 Samsung Electronics Co., Ltd. Methods for bandwidth efficient operations in wireless local area networks
US9743363B2 (en) 2014-06-24 2017-08-22 Qualcomm Incorporated CCA clearance in unlicensed spectrum
KR20160004950A (ko) * 2014-07-04 2016-01-13 뉴라컴 인코포레이티드 프레임 송신 방법 및 프레임 수신 방법
JP6298213B2 (ja) 2014-07-10 2018-03-20 エルジー エレクトロニクス インコーポレイティド 無線lanシステムにおける広帯域チャネル接続方法及びそのための装置
CA2953541C (en) * 2014-07-11 2023-01-31 Sony Corporation Information processing device, information processing method, and program
JP6234890B2 (ja) * 2014-07-14 2017-11-22 日本電信電話株式会社 無線lanシステム、無線lan基地局装置および無線lan制御方法
CN104080093B (zh) * 2014-07-15 2018-05-04 北京邮电大学 一种频谱感知及动态信道绑定方法、装置及系统
US10476615B2 (en) 2014-07-16 2019-11-12 Qualcomm Incorporated Techniques for scaling bandwidth of an unlicensed radio frequency spectrum band
CN105684488B (zh) * 2014-07-31 2019-10-15 华为技术有限公司 一种数据传输方法和通信设备
CN104158645B (zh) * 2014-08-28 2017-08-25 上海交通大学 一种无线局域网中基于全双工接入点的介质访问控制方法
EP3197231B1 (en) * 2014-09-18 2019-11-06 LG Electronics Inc. Methods and devices for transmitting and receiving signal to and from enb by user equipment in wireless communication system that supports carrier aggregation
JP2016072701A (ja) * 2014-09-26 2016-05-09 富士通株式会社 送信制御方法及び無線通信装置
US20160095114A1 (en) 2014-09-26 2016-03-31 Electronics And Telecommunications Research Institute Method and apparatus for managing allocation and usage of radio resource, method and apparatus for transmitting data through unlicensed band channel, and method and apparatus for managing access of radio resource
US10327250B2 (en) 2014-09-28 2019-06-18 Lg Electronics Inc. Method for supporting flexible resource allocation in wireless communication system, and apparatus therefor
WO2016049874A1 (zh) 2014-09-30 2016-04-07 华为技术有限公司 一种多信道的接入方法和装置
CN107079381B (zh) * 2014-10-27 2020-03-20 瑞典爱立信有限公司 无线区域网(wlan)节点、无线设备以及其中的方法
US20160119811A1 (en) * 2014-10-28 2016-04-28 Qualcomm Incorporated A-mpdu in the legacy physical layer
CA2964707A1 (en) * 2014-10-31 2016-05-06 Sony Corporation Communication apparatus and communication method
JP2017533671A (ja) * 2014-10-31 2017-11-09 ソニー株式会社 複数チャネル動作のための送信機および受信機
CN107079409B (zh) * 2014-11-06 2020-02-21 富士通株式会社 无线通信系统、基站、终端和处理方法
US10374760B2 (en) * 2014-11-06 2019-08-06 Lg Electronics Inc. Method for transmitting data in unlicensed band-secondary carrier and device for same
CN107113268B (zh) * 2014-11-24 2020-08-14 瑞典爱立信有限公司 用于信号的传输的方法、通信节点以及计算机可读存储介质
US9706534B2 (en) 2014-12-03 2017-07-11 Intel IP Corporation Apparatus, method, and computer readable media for uplink transmission opportunity in a high-efficiency wireless local-area network
US9775170B2 (en) 2014-12-04 2017-09-26 Intel Corporation Apparatus, system and method of allocation using a frame
WO2016089059A1 (ko) * 2014-12-05 2016-06-09 엘지전자(주) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
US9451627B1 (en) 2014-12-16 2016-09-20 Silvus Technologies, Inc. Single transceiver-DSA via MAC-underlay sensing and signaling
US9992127B2 (en) * 2014-12-30 2018-06-05 Fortinet, Inc Dynamically resizing aggregation windows based on network congestion feedback from mixed types of traffic in a wireless network
US10278208B2 (en) 2014-12-30 2019-04-30 Lg Electronics Inc. Method and device for performing uplink transmission after receiving trigger frame in wireless LAN system
US9736855B2 (en) * 2015-02-19 2017-08-15 Qualcomm Incorporated System and method for multiple station camping channels in a wireless communication network
WO2016141156A1 (en) * 2015-03-04 2016-09-09 Intel IP Corporation Sensing and deferral for orthogonal frequency divisional multiple access in a wireless network
US10917795B2 (en) 2015-04-02 2021-02-09 Qualcomm Incorporated Enhanced preamble waveform for coexistence
US10225795B2 (en) 2015-04-07 2019-03-05 At&T Intellectual Property I, L.P. Resource-sensitive token-based access point selection
US9769737B2 (en) * 2015-04-10 2017-09-19 Telefonaktiebolaget Lm Ericsson (Publ) System and method to support inter-wireless local area network communication by a radio access network
WO2016187830A1 (zh) * 2015-05-27 2016-12-01 华为技术有限公司 一种数据通信方法及站点
US9606836B2 (en) * 2015-06-09 2017-03-28 Microsoft Technology Licensing, Llc Independently networkable hardware accelerators for increased workflow optimization
GB2539693B (en) * 2015-06-24 2019-06-19 Canon Kk Emission of a signal in unused resource units to increase energy detection of an 802.11 channel
US9942366B2 (en) * 2015-06-24 2018-04-10 Intel Corporation Method of utilizing echo cancellation for enhancing wide-bandwidth opportunity for wi-fi
WO2017023005A1 (ko) * 2015-07-31 2017-02-09 엘지전자 주식회사 채널 본딩 기반 신호 전송 방법 및 이를 위한 장치
US10568015B2 (en) * 2015-08-05 2020-02-18 Lg Electronics Inc. Method for performing channel access in wireless LAN system and apparatus therefor
US9407585B1 (en) 2015-08-07 2016-08-02 Machine Zone, Inc. Scalable, real-time messaging system
US9602455B2 (en) 2015-08-07 2017-03-21 Machine Zone, Inc. Scalable, real-time messaging system
US10439767B2 (en) 2015-08-13 2019-10-08 Electronics And Telecommunications Research Institute Apparatus for transmitting and receiving data through unlicensed band
JP6474904B2 (ja) 2015-08-21 2019-02-27 日本電信電話株式会社 無線通信システムおよび無線通信方法
TWI575922B (zh) * 2015-08-27 2017-03-21 瑞昱半導體股份有限公司 能應用於堆疊通訊系統之通訊裝置與方法
CN112511267B (zh) * 2015-09-01 2022-04-22 华为技术有限公司 A-mpdu的接收状态指示方法及接收端设备
TWI710272B (zh) * 2015-09-11 2020-11-11 美商內數位專利控股公司 無線區域網路(wlan)多使用者同時隨機存取方法及裝置
WO2017043911A1 (ko) * 2015-09-11 2017-03-16 엘지전자 주식회사 무선랜 시스템에서의 동작 방법 및 이를 위한 장치
US10602510B2 (en) 2015-09-11 2020-03-24 Lg Electronics Inc. Operation method in wireless LAN system and apparatus therefor
US10225828B2 (en) * 2015-11-02 2019-03-05 Intel IP Corporation Apparatus, system and method of communicating control information in a physical layer protocol data unit (PPDU)
WO2017099546A2 (ko) * 2015-12-11 2017-06-15 엘지전자 주식회사 무선랜 시스템에서 프레임을 송수신하는 방법 및 이를 위한 장치
CN107018573B (zh) * 2016-01-28 2022-01-28 中兴通讯股份有限公司 主信息块mib信息的通知方法及装置
CN107046731A (zh) * 2016-02-05 2017-08-15 索尼公司 无线通信系统中的电子设备和无线通信方法
KR102566115B1 (ko) 2016-03-10 2023-08-14 주식회사 윌러스표준기술연구소 다중 사용자 무선 통신 방법 및 이를 사용하는 무선 통신 단말
JP7297400B2 (ja) * 2016-03-18 2023-06-26 キヤノン株式会社 通信装置、情報処理装置、制御方法、および、プログラム
KR102597254B1 (ko) 2016-04-04 2023-11-02 주식회사 윌러스표준기술연구소 프래그멘테이션을 이용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
US9602450B1 (en) * 2016-05-16 2017-03-21 Machine Zone, Inc. Maintaining persistence of a messaging system
US10743210B2 (en) * 2016-06-01 2020-08-11 Intel Corporation Using uplink buffer status to improve video stream adaptation control
CN107484243B (zh) 2016-06-07 2021-02-23 华为技术有限公司 资源分配通知方法、装置
KR102567626B1 (ko) * 2016-06-14 2023-08-17 주식회사 윌러스표준기술연구소 집합 mpdu를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
US9608928B1 (en) 2016-07-06 2017-03-28 Machine Zone, Inc. Multiple-speed message channel of messaging system
WO2018031056A1 (en) * 2016-08-11 2018-02-15 Intel IP Corporation Denial to send frame for multiple channel access
US10305981B2 (en) 2016-08-31 2019-05-28 Satori Worldwide, Llc Data replication in scalable messaging system
RU2707742C1 (ru) * 2016-09-01 2019-11-29 Панасоник Интеллекчуал Проперти Корпорэйшн оф Америка Устройство передачи и способ передачи
US9667681B1 (en) 2016-09-23 2017-05-30 Machine Zone, Inc. Systems and methods for providing messages to multiple subscribers
JP6299024B1 (ja) * 2016-10-21 2018-03-28 株式会社国際電気通信基礎技術研究所 無線通信装置および無線通信方法
WO2018128642A1 (en) * 2017-01-04 2018-07-12 Intel IP Corporation Apparatus, system and method of modifying a channel bandwidth during a transmit opportunity (txop)
WO2018131323A1 (ja) * 2017-01-13 2018-07-19 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 無線通信装置及び無線通信方法
JP6921721B2 (ja) * 2017-01-13 2021-08-18 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 無線通信装置及び無線通信方法
WO2018145248A1 (zh) 2017-02-07 2018-08-16 华为技术有限公司 一种数据传输方法、终端和接入网网元
CN108696921A (zh) * 2017-02-21 2018-10-23 中国科学院沈阳自动化研究所 基于广播前导侦听的认知传感器网络介质访问控制方法
CN108540380B (zh) * 2017-03-02 2021-08-20 华为技术有限公司 多子流网络传输方法及装置
US10659540B2 (en) * 2017-03-27 2020-05-19 Intel IP Corporation [5G next generation Wi-Fi] on the fly traffic steering for collocated multi-band aggregation
US10257742B2 (en) 2017-04-05 2019-04-09 Cisco Technology, Inc. Spoofing a service identifier when performing statefull switchover of wireless stations
KR101958086B1 (ko) * 2017-05-15 2019-03-13 성균관대학교산학협력단 경쟁 방식 데이터 전송을 스케줄링하는 방법 및 장치
KR102130020B1 (ko) 2017-07-26 2020-07-03 엘지전자 주식회사 무선랜 시스템에서 신호의 송수신 방법 및 이를 위한 장치
KR20200033845A (ko) 2017-07-27 2020-03-30 소니 주식회사 무선 lan 통신 장치 및 무선 lan 통신 방법
US10862565B2 (en) 2017-09-01 2020-12-08 Lg Electronics Inc. Method for supporting beamforming in wireless LAN system and apparatus therefor
US10772110B2 (en) * 2017-11-07 2020-09-08 Qualcomm Incorporated Universal channel reservation signal for medium sharing
EP3703461A4 (en) 2017-11-24 2020-11-18 Sony Corporation COMMUNICATION DEVICE, PROGRAM AND COMMUNICATION METHOD
US20190182010A1 (en) * 2017-12-08 2019-06-13 Qualcomm Incorporated Link adaptation enhancements
CN108306713B (zh) * 2018-01-19 2021-01-29 京信通信系统(中国)有限公司 一种无线通信系统的信息传输方法及装置
WO2019189597A1 (ja) 2018-03-29 2019-10-03 日本電気株式会社 サーバ、通信システム、通信方法及びプログラム
JP6838177B2 (ja) * 2018-06-27 2021-03-03 エルジー エレクトロニクス インコーポレイティド 無線lanシステムにおける信号送受信方法及びこのための装置
CN110677871B (zh) * 2018-07-03 2022-07-12 华为技术有限公司 数据发送方法及发送设备、数据接收方法及接收设备
JP2021166321A (ja) 2018-07-06 2021-10-14 ソニーグループ株式会社 通信装置、及び通信方法
US11102780B2 (en) 2018-07-30 2021-08-24 Nxp Usa, Inc. Media access control for punctured/aggregated communication channels in WLAN
WO2020027634A1 (ko) * 2018-08-03 2020-02-06 엘지전자 주식회사 무선랜 시스템에서 트래픽을 전송하는 방법 및 장치
KR102584500B1 (ko) * 2018-08-08 2023-10-04 삼성전자주식회사 무선 통신 시스템에서 비면허대역의 채널을 점유하는 방법 및 장치
CN110830175B (zh) * 2018-08-14 2023-03-28 华为技术有限公司 数据包的确认方法、装置、设备及计算机可读存储介质
CN109343469B (zh) * 2018-10-25 2021-08-17 中电望辰科技有限公司 基于物联网的智能铣床控制方法及系统
US11082155B2 (en) 2018-10-30 2021-08-03 Nxp Usa, Inc. Physical layer (PHY) data unit format for hybrid automatic repeat request (HARQ)
US11387936B2 (en) 2018-12-14 2022-07-12 Nxp Usa, Inc. Hybrid automatic repeat request (HARQ) retransmission schemes for a wireless local area network (WLAN)
CN109587052B (zh) * 2019-01-30 2022-03-15 展讯通信(上海)有限公司 一种多链路数据传输方法及装置
CN113455046A (zh) * 2019-02-20 2021-09-28 Abb电网瑞士股份公司 用于在无线通信系统中分配资源的方法
EP3932138A1 (en) * 2019-02-27 2022-01-05 Sony Group Corporation Communication devices and methods
US11374698B2 (en) 2019-06-05 2022-06-28 Marvell Asia Pte Ltd Physical layer (PHY) data unit format for hybrid automatic repeat request (HARQ)
WO2020252741A1 (zh) * 2019-06-20 2020-12-24 北京小米移动软件有限公司 接收状态反馈方法和装置
JP7180779B2 (ja) * 2019-06-25 2022-11-30 日本電信電話株式会社 下りフレームの転送装置、転送方法および転送プログラム
US11290223B1 (en) 2019-06-25 2022-03-29 Marvell Asia Pte Ltd Physical layer (PHY) data unit encoding for hybrid automatic repeat request (HARQ) transmission
US20220232417A1 (en) * 2019-06-28 2022-07-21 Lg Electronics Inc. Device for transmitting data in wireless av system and device for receiving data in wireless av system
EP3994826A4 (en) * 2019-07-04 2022-07-06 Huawei Technologies Co., Ltd. DEVICE AND METHOD FOR A WIRELESS NETWORK
CN112188640A (zh) * 2019-07-05 2021-01-05 华为技术有限公司 通信保护方法及装置
US11184919B2 (en) * 2019-07-30 2021-11-23 Continental Teves Ag & Co. Ohg Communication device and methods for synchronizing communication channels and using the device
JPWO2021033555A1 (ja) * 2019-08-19 2021-02-25
US20220338051A1 (en) * 2019-09-25 2022-10-20 Beijing Xiaomi Mobile Software Co., Ltd. Method, apparatus, communication device and storage medium for configuring transmission of receipt feedback information
KR20210045108A (ko) * 2019-10-16 2021-04-26 현대자동차주식회사 차량 및 차량의 제어방법
US11202292B1 (en) 2020-01-28 2021-12-14 T-Mobile Innovations Llc Systems and methods for dynamic buffer modification
US11284305B1 (en) * 2020-03-19 2022-03-22 T-Mobile Innovations Llc Systems and methods for dynamic buffer modification based on application category
KR102276239B1 (ko) * 2020-04-16 2021-07-12 한화시스템 주식회사 시분할다중접속 기반 노드의 메시지 송수신 방법
JP2024016296A (ja) * 2020-12-01 2024-02-07 シャープ株式会社 無線通信装置および無線通信方法
US11621798B2 (en) * 2021-02-02 2023-04-04 Cisco Technology, Inc. Signaling of preamble puncturing configuration in a non-high throughput RTS/CTS exchange
CN115243325A (zh) * 2021-04-22 2022-10-25 华为技术有限公司 信息传输的方法、装置、计算机可读存储介质和芯片
CN115333908B (zh) * 2021-05-10 2024-03-08 苏州速通半导体科技有限公司 无线局域网中的发射器及由其执行的方法
WO2023054992A1 (ko) * 2021-09-29 2023-04-06 현대자동차주식회사 통신 시스템에 신속 데이터의 전송을 위한 채널 접근 방법
CN113885361B (zh) * 2021-10-18 2023-06-27 上海交通大学医学院附属瑞金医院 一种对延时不敏感的康复装备远程力控系统
WO2023199291A1 (en) * 2022-04-15 2023-10-19 Lenovo (Singapore) Pte. Ltd. Quality of service determination for video frame transmission
CN115022345B (zh) * 2022-06-29 2023-08-08 苏州浪潮智能科技有限公司 一种交换机数据同步的方法、装置、设备及可读介质
WO2024031687A1 (zh) * 2022-08-12 2024-02-15 Oppo广东移动通信有限公司 一种信道使用方法及装置、设备、存储介质
CN116303806B (zh) * 2023-05-25 2023-10-13 国网福建省电力有限公司管理培训中心 共享方法、价值共创共享系统、介质及电子设备
CN116707685B (zh) * 2023-08-09 2023-10-24 新华三技术有限公司 信道调整方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522422A (ja) * 2009-03-23 2012-09-20 クゥアルコム・インコーポレイテッド アクセス・ポイントからレガシ局への通信のためのsdmaプロトコル
US9338789B2 (en) * 2012-03-01 2016-05-10 Interdigital Patent Holdings, Inc. Multi-user parallel channel access in WLAN systems

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4195716B2 (ja) * 2003-06-27 2008-12-10 ノキア コーポレイション 無線通信ネットワークでのパケット集約のための方法及び装置
US20040264475A1 (en) * 2003-06-30 2004-12-30 The Nature Of The Conveyance Class of high throughput MAC architectures for multi-channel CSMA systems
KR20060031867A (ko) * 2003-07-15 2006-04-13 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 고속 능동 스캐닝 방법, 고속 능동 스캐닝에 의한 핸드오프제공 방법, 액세스 포인트, 고속 능동 스캐닝 시스템 및제 1 무선국
US8233462B2 (en) * 2003-10-15 2012-07-31 Qualcomm Incorporated High speed media access control and direct link protocol
US7620028B2 (en) * 2003-11-06 2009-11-17 Atheros Communications, Inc. Multi-channel binding in data transmission
US20050286446A1 (en) * 2004-04-01 2005-12-29 Devicescape Software Inc. Multi channel throughput enhancement
EP1751921A1 (en) * 2004-05-13 2007-02-14 Koninklijke Philips Electronics N.V. Superframe protocol packet data unit format having multirate packet aggregation for wireless systems
US7474676B2 (en) * 2004-09-10 2009-01-06 Mitsubishi Electric Research Laboratories, Inc. Frame aggregation in wireless communications networks
WO2006083021A1 (en) * 2005-02-04 2006-08-10 Kabushiki Kaisha Toshiba Optimal channel assignment for multi-class, multi-channel wireless lans and the like
TW200828898A (en) * 2006-09-26 2008-07-01 Koninkl Philips Electronics Nv Physical layer superframe, frame, preamble and control header for IEEE 802.22 WRAN communication systems
WO2008093338A1 (en) * 2007-01-29 2008-08-07 Mainnet Communications Ltd. Apparatus, network and method for implementing tdm channels over a csma shared media network
US8264953B2 (en) * 2007-09-06 2012-09-11 Harris Stratex Networks, Inc. Resilient data communications with physical layer link aggregation, extended failure detection and load balancing
US8462743B2 (en) * 2008-01-25 2013-06-11 Nokia Siemens Networks Oy Method, apparatus and computer program for signaling channel quality information in a network that employs relay nodes
US8089884B2 (en) * 2008-04-07 2012-01-03 Itt Manufacturing Enterprises, Inc. Method and apparatus for early warning of congestion in Ad-Hoc wireless networks
US20100046485A1 (en) * 2008-08-20 2010-02-25 Qualcomm Incorporated Method and apparatus for multiple channel access and nav recovery
CN101739583B (zh) * 2008-11-26 2013-04-10 国民技术股份有限公司 射频sim卡、射频读卡器及射频通信的磁感应控制方法
JP2010135909A (ja) * 2008-12-02 2010-06-17 Toshiba Corp 無線通信装置および無線通信方法
CN101771462A (zh) * 2008-12-31 2010-07-07 华为技术有限公司 一种多载波系统中下行控制信道资源分配方法及设备
WO2010123893A1 (en) * 2009-04-22 2010-10-28 Interdigital Patent Holdings, Inc. Method and apparatus for transmitting uplink control information for carrier aggregated spectrums

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012522422A (ja) * 2009-03-23 2012-09-20 クゥアルコム・インコーポレイテッド アクセス・ポイントからレガシ局への通信のためのsdmaプロトコル
US9338789B2 (en) * 2012-03-01 2016-05-10 Interdigital Patent Holdings, Inc. Multi-user parallel channel access in WLAN systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6016021101; Gang Xie (BUPT): 'Joint Multichannel CSMA' IEEE 802.11-10/0780r2 , 20100714, IEEE, インターネット<URL:https://mentor.ieee.org *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11882483B2 (en) 2019-07-10 2024-01-23 Sony Group Corporation Wireless communication device and method for multi band operations (MBO)

Also Published As

Publication number Publication date
JP5703384B2 (ja) 2015-04-15
CN103416017A (zh) 2013-11-27
EP2638656B1 (en) 2016-12-07
KR20130122000A (ko) 2013-11-06
KR101584873B1 (ko) 2016-01-13
CN107104769A (zh) 2017-08-29
US20140079016A1 (en) 2014-03-20
EP3125637A1 (en) 2017-02-01
WO2012064502A1 (en) 2012-05-18
KR101764955B1 (ko) 2017-08-03
JP2014502453A (ja) 2014-01-30
JP5986244B2 (ja) 2016-09-06
EP2638656A1 (en) 2013-09-18
CN103416017B (zh) 2016-11-16
KR20130087561A (ko) 2013-08-06

Similar Documents

Publication Publication Date Title
JP5986244B2 (ja) チャネルアグリゲーションおよび媒体アクセス制御再送信を実行するための方法および装置
JP5731714B2 (ja) 帯域間キャリアアグリゲーション
US10111258B2 (en) Methods and systems for receiver initiated protection of a wireless communication exchange
RU2676878C2 (ru) Способы и аппарат для многопользовательской восходящей линии связи
JP2022543188A (ja) マルチリンクwlanを有効にする方法
JP5683715B2 (ja) 無線ダイレクトリンクオペレーションに関する方法および装置
KR101735031B1 (ko) 전체 링크 품질에 기초하여 엔티티를 선택하기 위한 방법
JP6387132B2 (ja) 同時送受信ネットワークモードのための装置および方法
CN114208388A (zh) 无线网络的多链路通信
TW201349897A (zh) 機會式無線電存取技術選擇及聚合
US20230262803A1 (en) Method and apparatus for wireless communication of low latency data between multilink devices
WO2012130021A1 (zh) 业务流删除方法及装置
WO2015171759A1 (en) Spectrum management for priority access in a tiered network
WO2013126666A2 (en) Architecture of multi-anchor systems
WO2016011337A1 (en) Methods and procedures for wifi sticky client and peer-to-peer client interference mitigation (wispim)
CN114424671A (zh) 聚合多个无线通信信道实现灵活全双工通信的方法和装置
CN115280840A (zh) 具有动态链路配置的无线网络的多链路通信

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20160707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160804

R150 Certificate of patent or registration of utility model

Ref document number: 5986244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees