WO2016187830A1 - 一种数据通信方法及站点 - Google Patents

一种数据通信方法及站点 Download PDF

Info

Publication number
WO2016187830A1
WO2016187830A1 PCT/CN2015/079886 CN2015079886W WO2016187830A1 WO 2016187830 A1 WO2016187830 A1 WO 2016187830A1 CN 2015079886 W CN2015079886 W CN 2015079886W WO 2016187830 A1 WO2016187830 A1 WO 2016187830A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
channel
channels
frame
antenna
Prior art date
Application number
PCT/CN2015/079886
Other languages
English (en)
French (fr)
Inventor
赵牧
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/079886 priority Critical patent/WO2016187830A1/zh
Publication of WO2016187830A1 publication Critical patent/WO2016187830A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to the field of wireless network technologies, and in particular, to a data communication method and a station.
  • IEEE 802.11ad is a technical protocol for standardizing Wireless Local Area Network (WLAN) devices operating in the 60 GHz band.
  • WLAN Wireless Local Area Network
  • Networks that use the 802.11ad protocol for communication are often referred to as Directional Multi Gigabit (DMG).
  • DMG Directional Multi Gigabit
  • a network usually consists of multiple sites in a DMG network, wherein the multiple sites include one access site and multiple terminal sites. Since the DMG network supports a single channel working mode, that is, between the access site and the terminal site. There is only one channel, so the access site can only communicate data with any one of the multiple terminal sites.
  • the specific data communication process is: all the sites in the DMG network that need to send data in the contention-based access period (CBAP) in the beacon interval (BI) of the 802.11ad protocol (including Both the access site and the terminal site) follow the Enhanced Distributed Channel Access (EDCA) rule to contend for the access channel.
  • CBAP contention-based access period
  • BI beacon interval
  • EDCA Enhanced Distributed Channel Access
  • a station that successfully accesses a channel in a CBAP can establish a time period, called a transmission opportunity (TXOP), which can perform data communication with another station based on the established TXOP, and only the two sites are allowed in the TXOP. Communicate.
  • TXOP transmission opportunity
  • the enhanced Directional Multi-Gigabit (EDMG) network will support multi-channel operation, that is, there are multiple channels between the access site and the terminal site.
  • the single channel transmission opportunity establishment method in the DMG network has not been applied to the establishment of multi-channel transmission opportunities in the EDMG network, and the newly added channel resources cannot be fully utilized.
  • Embodiments of the present invention provide a data communication method and a station, which can establish transmission opportunities between stations in a network supporting multiple channels, and fully utilize idle channel resources.
  • a first aspect of the present invention provides a data communication method, including:
  • the first station selects at least one target channel from channels in the idle state among the multiple channels;
  • the first station performs data communication with the second site based on the first transmission opportunity.
  • the target channel includes all channels of the multiple channels supported by the network
  • the first station establishes a first transmission opportunity for data communication with the second station on an aggregated channel formed by the aggregation of the plurality of channels.
  • the first station establishes, on the aggregation channel formed by the multiple channel aggregation, data for performing with the second station.
  • the first transmission opportunity for communication including:
  • the first station and the second station include an access station, and the access station supports multiple antennas.
  • the target channel includes a part of the plurality of channels supported by the network; and the target channel includes An adjacent channel, the non-adjacent channel and other channels in the target channel are not adjacent to each other;
  • the first station transmits a first frame in the first transmission opportunity on the non-adjacent channel, the first frame including the established first transmission opportunity for data communication with the second station a duration and an access station in the first site and the second site for use in the first transmitter
  • the antenna identifier of the data to be transmitted and the antenna identifier of the received data are used in the first transmitter.
  • the target channel includes a part of the plurality of channels supported by the network; and the target channel includes at least Two adjacent channels;
  • the first frame includes a duration of a first transmission opportunity established for data communication with the second station and an access station in the first station and the second station for The antenna identifier of the data transmitted in the first transmission opportunity and the antenna identifier of the received data.
  • the access sites in the first site and the second site are The end time of the second transmission between the third channel and the third station established on the channel other than the target channel is not later than the end time of the first transmission opportunity.
  • a second aspect of the present invention provides an antenna notification method, including:
  • the access station When the access station performs beamforming training with the terminal station, the access station selects a receiving antenna corresponding to the terminal station;
  • the access station notifies the terminal station of the selected identifier of the receiving antenna.
  • the access station selects the receiving antenna in a sector-level scanning phase in the beamforming training
  • Notifying the access station of the selected identifier of the receiving antenna to the terminal station including:
  • the access station encapsulates the identity of the receive antenna in a sector scan feedback frame and returns the sector scan feedback frame to the terminal station.
  • the access station selects the receiving antenna in a beam thinning protocol phase in the beamforming training
  • Notifying the access station of the selected identifier of the receiving antenna to the terminal station including:
  • the access station replies to the command frame that includes the identifier of the receiving antenna according to the request frame sent by the terminal station for requesting the identifier of the receiving antenna.
  • a third aspect of the present invention provides a station deployed in a wireless local area network, including:
  • a monitoring module configured to monitor a busy state of each channel of the multiple channels supported by the network when the station needs to send data to the first target station through the network;
  • a selecting module configured to select at least one target channel from channels in the idle state of the multiple channels
  • a data communication module configured to perform data communication with the first target site based on the first transmission opportunity.
  • the target channel includes all channels of the multiple channels supported by the network
  • the establishing module is specifically configured to establish, on an aggregation channel formed by the aggregation of the multiple channels, a first transmission opportunity for performing data communication with the first target station.
  • the establishing module is specifically configured to send, in the first transmission opportunity, an aggregation channel formed by the aggregation of the multiple channels a first frame, the first frame including a duration of the established first transmission opportunity for data communication with the first target site.
  • the site and the first target site include an access site, and the access site supports multiple antennas.
  • the target channel includes a part of the plurality of channels supported by the network; and the target channel includes An adjacent channel, the non-adjacent channel and other channels in the target channel are not adjacent to each other;
  • the establishing module is specifically configured to send, in the non-adjacent channel, the first one of the first transmission opportunities a frame, the first frame including a duration of the first transmission opportunity established for data communication with the first target site, and an access site in the site and the first target site for An antenna identifier for transmitting data and an antenna identifier for receiving data in the first transmission opportunity.
  • the target channel includes a part of the plurality of channels supported by the network; and the target channel includes at least Two adjacent channels;
  • the establishing module is specifically configured to send, in an aggregate channel formed by the aggregation of the at least two adjacent channels, a first frame in the first transmission opportunity;
  • the establishing module is specifically configured to send, in each of the at least two adjacent channels, a first frame in the first transmission opportunity;
  • the first frame includes a duration of a first transmission opportunity established for data communication with the first target station, and an access station in the site and the first target site is used in the The antenna identifier of the data transmitted in the first transmission opportunity and the antenna identifier of the received data.
  • the access site in the site and the first target site is in the The end time of the second transmission meeting with the second target station established on the channel other than the target channel among the plurality of channels is no later than the end time of the first transmission opportunity.
  • a fourth aspect of the present invention provides an access site, including:
  • a selecting unit configured to: when the access station and the terminal station perform beamforming training, select a receiving antenna corresponding to the terminal station;
  • a notification unit configured to notify the terminal station of the selected identifier of the receiving antenna.
  • the access station selects the receiving antenna in a sector-level scanning phase in the beamforming training
  • the notification unit is specifically configured to encapsulate the identifier of the receiving antenna in a sector scan feedback frame, and return the sector scan feedback frame to the terminal station.
  • the access station selects the receiving antenna in a beam thinning protocol phase in the beamforming training
  • the notification unit is specifically configured to send, to the terminal station, a command frame that includes an identifier of the receiving antenna; or
  • the notification unit is specifically configured to reply, according to the request frame sent by the terminal station for requesting the identifier of the receiving antenna, a command frame that includes the identifier of the receiving antenna.
  • the busy state of each channel of the multiple channels supported by the network is monitored, and the channel in the idle state among the plurality of channels is selected.
  • at least one target channel establishes, on the selected target channel, a first transmission opportunity for data communication with the second station, and performs data communication with the second station based on the first transmission opportunity.
  • the access station when the access station and the terminal station perform beamforming training, the access station selects a receiving antenna corresponding to the terminal station, and notifies the terminal station of the selected receiving antenna.
  • the receiving antenna selected by the access station is notified to the terminal station, so that the terminal station knows that the access station corresponds to its own receiving antenna, and when the terminal station initiates data communication, the terminal station may notify the other station in the coverage of the terminal station of the terminal station.
  • the receiving antenna is occupied to avoid receiving antenna collisions.
  • FIG. 1 is a schematic diagram of a system for deploying a WLAN according to an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a data communication method according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of another data communication method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of still another data communication method according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart diagram of an antenna notification method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of an actual application scenario of establishing a TXOP according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an actual application scenario of another TXOP setup according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of antenna allocation of an access station according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a station according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of an access site according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of another station according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of another access site according to an embodiment of the present invention.
  • the data communication method of the embodiment of the present invention can be applied to the next generation 60 GHz WLAN technology, that is, applied to an EDMG network supporting multiple channels.
  • a schematic diagram of a typical WLAN deployment scenario includes an access site and a plurality of terminal STAs in the network, where the access sites communicate with STA1, STA2, and STA3, respectively.
  • the access site may be a personal basic service set (BSS) control point (PCP) or an access point (AP), and the PCP coordinates other terminal sites to access the wireless medium in the PBSS.
  • the AP provides access services to terminal sites in the WLAN, as well as management and coordination of terminal sites.
  • a PCP/AP is usually a device that supports multiple antennas, and different antennas can perform independent data communication with different terminal sites on different channels, but the same antenna can only communicate with one terminal site at the same time.
  • beamforming training is required to find the transmitting antenna and the receiving antenna suitable for each other, and then the transmitting antenna and the receiving antenna selected in the beamforming training are used for data communication.
  • the data communication between the PCP/AP and the terminal station is still performed by establishing a TXOP.
  • the specific TXOP establishment process is that the station (including the PCP/AP or the terminal station) that needs to send data follows the EDCA rule competing access channel in the CBAP.
  • the site that successfully accesses the channel establishes a TXOP to communicate data with another site. Since the EDMG network supports multiple channels, when the terminal station contends for the access channel at a certain moment, there may be one idle channel or multiple idle channels in multiple channels. In order to fully utilize the idle channel resources, the station successfully accesses the channel.
  • the TXOP may be established on at least one idle channel to communicate data with another station based on the established TXOP. If the terminal station only establishes a TXOP on a part of the idle channel, the remaining idle channels can also be contending for access by other stations (including PCP/AP and terminal stations).
  • the site that needs to send data in the embodiment of the present invention is the first site, and the first site may be an access site (PCP/AP) or a terminal site.
  • the first site is an access site
  • the second site is a terminal site
  • the first site is a terminal site
  • the second site is an access site.
  • the first station contends for the access channel by listening to the idle state of each of the plurality of channels supported by the network, and establishes a TXOP for data communication with the second station on the at least one idle target channel.
  • FIG. 2 is a schematic flowchart of a data communication method according to an embodiment of the present invention. As shown in the figure, the data communication method in this embodiment includes steps S100-S103;
  • the base station system in the next generation 60 GHz technology, includes a PCP/AP supporting multiple antennas and multiple terminal stations, and the BSS supports multiple channels, and the PCP/AP is different.
  • the antenna can communicate with each other independently on different channels, but at the same time, one antenna can only communicate with one terminal station.
  • the first station is a station that needs to send data, and may be a PCP/AP or a terminal station, and data communication between the first station and the second station is based on the established TXOP.
  • the method for establishing a TXOP between the first station and the second station may be: in the CBAP access period, the first station contends to access the channel according to the EDCA rule, that is, each of the multiple channels supported by the monitoring network. The busy state of the channel.
  • the terminal stations in the network may include a multi-channel support terminal station (EDMG STA), that is, a WLAN device supporting the next generation 60 GHz technology. Further, the terminal station may also include an existing single channel supporting terminal station (DMG STA), that is, an existing WLAN device operating in the 60 GHz band.
  • EDMG STA multi-channel support terminal station
  • DMG STA single channel supporting terminal station
  • the PCP/AP can use the Reserved bit of the Allocation Control field in the beacon frame to identify which type of terminal station contends for the access channel. For example, if the identifier bit is a DMG STA-only CBAP, only the DMG STA is allowed to compete in the CBAP phase. In.
  • the EDMG STA is mainly built in multiple channels.
  • the establishment of the TXOP is described.
  • the establishment of the TXOP by the DMG STA can refer to the prior art.
  • the first station selects at least one target channel from channels in an idle state among the multiple channels.
  • the number of idle channels in the multiple channels may be one, or there may be Multiple, the first station may select at least one target channel from the channels in the idle state of the plurality of channels to establish a TXOP.
  • the specific selection manner may be that the first station selects a part of the channels in the idle state from the plurality of channels as the target channel, and all the channels in the idle state of the plurality of channels are used as the target channel.
  • the first station may use channel 1 and channel 3 as target channels to establish a transmission opportunity, or may only use channel 1 as a transmission opportunity.
  • the target channel establishes a transmission opportunity, while channel 3 is contending for access by other stations (including PCP/AP or end stations).
  • each of the idle channels in the target channel may or may not be adjacent.
  • the first station may have different transmission opportunity establishment manners depending on whether adjacent channels in the target channel are adjacent to each other.
  • the first station establishes, on the target channel, a first transmission opportunity for performing data communication with the second station.
  • the first station establishes, on the selected target channel, a first transmission opportunity for performing data communication with the second station, specifically, according to the number of idle channels in the target channel and each idle channel in the target channel. Whether or not they are adjacent, the first site has different ways of establishing transmission opportunities.
  • the first station establishes a TXOP for data communication with the second station on the aggregated channel formed by all channel aggregations.
  • the first station (including the PCP/AP or the terminal station) transmits the first frame of the TXOP on the aggregation channel, and the first frame includes but is not limited to the data frame and the Request To Send (RTS) frame, and the second station replies and clears the transmission (Clear To Send, CTS) frame.
  • the other stations do not allow data to be transmitted on the aggregated channel except for the first station (TXOP holder) that transmits the first frame on the aggregated channel and the second station (TXOP responder) that receives the frame transmitted by the TXOP holder.
  • the target channel is part of a plurality of channels supported by the network, and part of the channels
  • the non-adjacent channel is included, and the non-adjacent channel is not adjacent to other channels in the target channel.
  • the network supports channel 1, channel 2, and channel 3, and the three channels are sequentially arranged.
  • the target channel is channel 1 and channel 3. If channel 1 is not adjacent to channel 3 in the target channel, then channel 1 and channel 3 can be referred to as non-adjacent channels.
  • the first transmission opportunity for data communication between the channel 1 and the channel 3 and the second station may be established respectively, that is, the first station is respectively on the channel 1
  • transmitting the first frame of the TXOP on the channel 3 the first frame includes but is not limited to the data frame and the RTS frame, and the second station replies to the CTS frame. Except for the first station and the second station in the TXOP, other stations are not allowed to transmit data on channel 1 and channel 3.
  • the target channel is part of a plurality of channels supported by the network, and the partial channel includes at least two adjacent channels, for example, the network supports channel 1, channel 2, and channel 3, the three channels are sequentially arranged.
  • the target channel is channel 1 and channel 2.
  • the first frame of the TXOP may be sent on the aggregate channel formed by the aggregation of channel 1 and channel 2.
  • the first frame includes but is not limited to data.
  • the frame and the RTS frame, the second station replies to the CTS frame on the aggregated channel.
  • the first station may also be the first frame of the TXOP sent by the channel 1 and the channel 2 in the target channel respectively, the first frame includes but is not limited to the data frame and the RTS frame, and the second station replies on the channel 1 and the channel 2 respectively. CTS frame. Except for the first station and the second station in the TXOP, other stations are not allowed to transmit data on channel 1 and channel 2.
  • the first station performs data communication with the second station based on the first transmission opportunity.
  • the first station performs data communication with the second station based on the established first transmission opportunity with the second station.
  • the process of data communication may be that video data, audio data, picture data, and the like are transmitted between the first station and the second station.
  • the busy state of each channel of the multiple channels supported by the network is monitored, and at least one of the plurality of channels in the idle state is selected.
  • a target channel establishes a first transmission opportunity for data communication with the second station on the selected target channel, and performs data communication with the second station based on the first transmission opportunity. In this way, transmission opportunities between stations can be established in a network supporting multiple channels, and the idle channel resources are fully utilized.
  • FIG. 3 is a schematic flowchart of another data communication method according to an embodiment of the present invention. As shown in the figure, the data communication method in this embodiment includes steps S200-S203;
  • the first station selects at least one target channel from channels in an idle state among the multiple channels.
  • steps S200-S201 of the embodiment of the present invention please refer to the steps S100-S101 of the embodiment of FIG. 2, and details are not described herein again.
  • the first station establishes, on an aggregation channel formed by the aggregation of the multiple channels, a first transmission opportunity for performing data communication with the second station.
  • the first station if the target channel includes all channels of the plurality of channels supported by the network, the first station establishes a first transmission opportunity for data communication with the second station on the aggregated channel formed by the aggregation of the plurality of channels. .
  • the establishing manner of establishing the first transmission opportunity for performing data communication with the second station on the aggregation channel may include:
  • the first station sends the first frame of the first transmission opportunity on the aggregation channel, that is, the first frame of the TXOP, and the first frame includes but is not limited to the data frame and the RTS frame.
  • the value of the Duration field of the Media Access Control (MAC) frame header of the first frame indicates the length of the TXOP, that is, the duration of the TXOP.
  • the other terminal stations in the network may receive the first frame and parse the frame structure of the first frame to obtain the duration of the TXOP in which the other terminal sites do not contend for the access channel during the duration of the TXOP.
  • the PCP/AP is included in the first site and the second site, and the PCP/AP supports multiple antennas, and different antennas can perform independent data communication with each other on different channels and different terminal sites. Since all the channels in the embodiment of the present invention are occupied by the first station and the second station, other terminal stations do not compete for access, and the PCP/AP does not use the antenna to receive data of other stations, so when the target channel includes network support When all channels are used, the antenna of the PCP/AP will not conflict, and it is not necessary to include in the first frame.
  • the antenna identifier of the transmitted data and the antenna identifier of the received data used by the PCP/AP in this transmission opportunity since all the channels in the embodiment of the present invention are occupied by the first station and the second station, other terminal stations do not compete for access, and the PCP/AP does not use the antenna to receive data of other stations, so when the target channel includes network support When all channels are used, the antenna of the PCP/AP will not conflict, and it is not necessary to include in the first frame
  • the first station performs data communication with the second station based on the first transmission opportunity.
  • step S203 of the embodiment of the present invention refer to step S103 of the embodiment of FIG. 2, and details are not described herein again.
  • the busy state of each channel of the multiple channels supported by the network is monitored, and at least one of the plurality of channels in the idle state is selected.
  • a target channel establishes a first transmission opportunity for data communication with the second station on the selected target channel, and performs data communication with the second station based on the first transmission opportunity. In this way, transmission opportunities between stations can be established in a network supporting multiple channels, and the idle channel resources are fully utilized.
  • FIG. 4 is a schematic flowchart of still another data communication method according to an embodiment of the present invention. As shown in the figure, the data communication method in this embodiment includes steps S300-S304.
  • the first station selects at least one target channel from channels in an idle state among the multiple channels.
  • steps S300-S301 of the embodiment of the present invention refer to the steps S100-S101 of the embodiment of FIG. 2, and details are not described herein again.
  • the establishment manner of establishing the transmission opportunity may have the following two alternative implementation manners:
  • the target channel includes a part of the plurality of channels supported by the network; and the target channel includes a non-adjacent channel, the non-adjacent channel and The other channels in the target channel are not adjacent to each other;
  • the first station sends a first frame of the first transmission opportunity on the non-adjacent channel, where the first frame includes a continuation of a first transmission opportunity established for data communication with the second station.
  • the time and the access station in the first station and the second station are used to transmit an antenna identifier of the data and an antenna identifier of the received data in the transmission opportunity.
  • the target channel includes some channels of the plurality of channels supported by the network, that is, other channels are contending for access by other terminal stations, if they are competing for access by other terminal sites, and during beamforming training.
  • the receiving station and/or transmitting antenna corresponding to the PCP/AP of the terminal station is the same as the antenna currently being used, and an antenna collision of the PCP/AP is generated.
  • the PCP/AP has 4 antennas and supports 3 channels.
  • the four terminal stations STA 1, STA 2, STA 3 and STA 4 respectively perform with the PCP/AP.
  • the transmitting antenna of the PCP/AP corresponding to the STA 1 is the antenna 1
  • the receiving antenna is the antenna 2
  • the transmitting antenna of the PCP/AP corresponding to the STA 2 is the antenna 2
  • the receiving antenna is the antenna 3
  • the PCP/AP corresponds to the STA 3
  • the transmitting antenna is the antenna 3
  • the receiving antenna is the antenna 4
  • the transmitting antenna of the PCP/AP corresponding to the STA 4 is the antenna 3
  • the receiving antenna is the antenna 3.
  • the PCP/AP When the PCP/AP has data to be sent to STA 1, the PCP/AP starts to contend for the channel (ie, listens to 3 channels), and as a result, channel 1 and channel 2 are in idle state, channel 3 is busy, and PCP/AP competes for successful channel 1 and Channel 2.
  • the PCP/AP establishes a TXOP on Channel 1 and Channel 2 for data communication.
  • the PCP/AP corresponds to the transmitting antenna (antenna 2) of the STA 2 and the receiving antenna (that is, the receiving antenna corresponding to the STA 1) used by the PCP/AP in the above TXOP, it is the antenna 2, at this time
  • STA 2 does not know the antenna that the PCP/AP is using, so if the STA 2 sends the data PCP/AP, it cannot be received because there is an antenna collision.
  • the first station sends a first frame of the first transmission opportunity in the non-adjacent channel in the target channel, where the first frame includes data established for performing data with the second station.
  • the duration of the transmission opportunity of the communication and the antenna identification (transmit antenna identification) used by the access station in the first station and the second station to transmit data in the first transmission opportunity and the antenna identification (receiving antenna identification) of the received data ).
  • the first station is a terminal station, because the terminal station also obtains the identifier of the receiving antenna and the identifier of the transmitting antenna corresponding to the terminal station of the PCP/AP in the foregoing beamforming training, the first station may also be the terminal station.
  • the identifier of the transmitting antenna and the identifier of the receiving antenna are added in the first frame.
  • Other terminal stations in the network may also receive the first frame. After receiving the other terminal stations in the first frame, the following information may be obtained: the channel occupied by the TXOP (ie, the channel receiving the first frame), the duration of the TXOP, and The transmit and receive antennas used by the PCP/AP in the TXOP. If a terminal site (ie, the third site) wants to establish a new TXOP with the access sites in the first site and the second site (that is, the second transmission opportunity), then the terminal site and the new TXOP need to meet the following requirements:
  • the terminal station competes for access to part or all of the channels that are not occupied to establish a TXOP.
  • the end time of the new TXOP is no later than the end time of the TXOP being used.
  • the transmit and receive antennas used by the PCP/AP in the new TXOP ie, the transmit and receive antennas selected by the PCP/AP and the STA after beamforming training
  • the transmitting antenna and the receiving antenna are completely different. As shown in Figure 8, the antennas of the first three new TXOPs are used correctly, and the fourth error is due to the collision of the antenna 2.
  • the second condition of the above three conditions is mainly to use more idle channels in the next round of TXOP establishment.
  • the four terminal stations STA 1, STA 2, STA 3 and STA 4 are further described as an example, that is, after STA 2 receives the first frame, the duration of the TXOP (for example, the TXOP duration is 5 seconds) Will compete for the access channel, but STA 3 and STA 4 can contend for access to the remaining channel 3, when the above TXOP is established for 1 second, channel 3 changes from busy to idle state, STA 3 and STA 3 in STA 4 compete for, Then, a new TXOP is established between the STA 3 and the PCP/AP for communication, but the duration of the new TXOP should be less than 4 seconds, mainly for occupying more idle channels for the establishment of the next round of TXOP.
  • the duration of the TXOP for example, the TXOP duration is 5 seconds
  • the duration of the new TXOP should be less than 4 seconds, mainly for occupying more idle channels for the establishment of the next round of TXOP.
  • the target channel includes a part of the plurality of channels supported by the network; and the target channel includes at least two adjacent channels;
  • the first station sends a first frame of the first transmission opportunity on an aggregation channel formed by the aggregation of the at least two adjacent channels;
  • the first frame includes a duration of a transmission opportunity established for data communication with the second station and an access station in the first site and the second site for use in the transmission opportunity
  • the antenna identifier of the transmitted data and the antenna identifier of the received data are included in the first frame.
  • the target channel includes a part of the plurality of channels supported by the network; and the target channel includes at least two adjacent channels. Since the target channel includes multiple letters supported by the network Part of the channel in the channel, so there may still be antenna collisions of the PCP/AP when other terminal sites compete for access channels.
  • the first frame of the first transmission opportunity is sent on the aggregated channel formed by the aggregation of at least two adjacent channels in the target channel, or at least The first frame of the first transmission opportunity is transmitted on each of the two adjacent channels.
  • the first frame includes an established duration of a transmission opportunity for data communication with the second station and an access station in the first station and the second station for transmitting in the transmission opportunity.
  • the antenna identification of the data and the antenna identification of the received data includes but is not limited to RTS frames and data frames.
  • the first station ie, the TXOP holder
  • the second station TXOP responder
  • the RTS frame and the CTS frame are added.
  • the selected "PCP/AP TX antenna field (2bits)" and "PCP/AP RX antenna field (2bits)” are respectively used to identify the antenna of the antenna for transmitting data in the TXOP and the antenna for receiving data.
  • the first station and the second station (ie, PCP/AP and STA1 in the figure) establish a TXOP on the aggregation channel formed by the aggregation of channel 1 and channel 2, and the first station sends on the aggregation channel.
  • the second station replies to the CTS frame on the aggregated channel, and the subsequent first station and the second station perform data communication in the established TXOP.
  • the other terminal stations STA2 can contend for access channel 0 and establish a new TXOP with the PCP/AP.
  • the receiving antenna and the transmitting antenna selected by the PCP/AP in the beamforming training are the antennas that are currently being used (ie, It is completely different between the transmitting antenna and the receiving antenna of the PC1/AP corresponding to STA1.
  • the new TXOP end time cannot be later than the end time of the TXOP established between the PCP/AP and STA1.
  • the first station and the second station (ie, PCP/AP and STA1 in the figure) establish TXOPs on channel 1 and channel 2, respectively, and the first station transmits RTS frames on channel 1 and channel 2, respectively.
  • the second station replies to the CTS frame on channel 1 and channel 2, respectively, and the subsequent second station performs data communication in the established TXOP.
  • Other terminal stations STA2 can contend for access channel 0, and Create a new TXOP with the PCP/AP.
  • the first station that is, the TXOP holder transmits a data frame on each channel of the aggregate channel or the target channel as the first frame of the TXOP
  • (2bits) and "PCP/AP RX antenna field (2bits)" are used to identify the antenna identifier of the PCP/AP used to transmit data in the TXOP and the antenna identifier of the received data.
  • Other terminal stations in the network can receive the data frame and parse out the transmitting antenna and the receiving antenna.
  • the antenna for transmitting data and the antenna for receiving data in the TXOP in the TXOP refers to a transmitting antenna and a receiving antenna for the terminal station selected by the other terminal station of the PCP/AP and the TXOP in the previous beamforming training. .
  • the value of the Duration field of the MAC frame header of the above RTS/CTS frame or data frame indicates the length of the TXOP, that is, the duration of the TXOP.
  • the TXOP except for the TXOP holder and the TXOP responder, other terminal stations are not allowed to transmit data on the channel occupied by the TXOP.
  • the target channel may include only non-adjacent channels, or may include only adjacent channels, or may include a combination of non-adjacent channels and adjacent channels.
  • the establishment of the transmission opportunity is established in the same manner as the transmission opportunity of the non-adjacent channel.
  • the first station performs data communication with the second station based on the first transmission opportunity.
  • step S305 of the embodiment of the present invention refer to step S103 of the embodiment of FIG. 2, and details are not described herein again.
  • the busy state of each channel of the multiple channels supported by the network is monitored, and at least one of the plurality of channels in the idle state is selected.
  • a target channel establishes a first transmission opportunity for data communication with the second station on the selected target channel, and performs data communication with the second station based on the first transmission opportunity. In this way, transmission opportunities between stations can be established in a network supporting multiple channels, and the idle channel resources are fully utilized.
  • the antenna notification method in this embodiment includes steps S400-S401;
  • the access station when the access station performs beamforming training with the terminal station, the access station selects a receiving antenna corresponding to the terminal station;
  • the access station supports multiple antennas. Different antennas can communicate with each other independently of different end stations on different channels. Which one of the transmitting and receiving antennas of the PCP/AP corresponds to a PCP/AP (that is, which transmitting antenna and receiving antenna are used by the PCP/AP to transmit and receive data to the terminal station), when the terminal station accesses the network, The beamforming training is performed between the PCP and the AP. In addition, in the beamforming training, the terminal station can also obtain the transmitting antenna and the receiving antenna for receiving data, which are selected by the terminal station to transmit data to the other PCP/AP.
  • the beamforming training includes two phases, that is, a sector-level sweep (SLS) phase and a beam refinement protocol (BRP) phase.
  • the access station may select a receiving antenna corresponding to the terminal station in the SLS phase, or may select a receiving antenna corresponding to the terminal station in the BRP phase.
  • the access station notifies the terminal station of the selected identifier of the receiving antenna.
  • the access station selects the receiving antenna in a sector-level scanning phase in the beamforming training
  • the access station encapsulates the identity of the receive antenna in a sector scan feedback frame and returns the sector scan feedback frame to the terminal station.
  • the PCP/AP if the PCP/AP selects its own receiving antenna for the terminal station in the SLS phase, the PCP/AP sends the information in the sector sweep feedback frame (SSW-Feedback frame) of the first station.
  • the directional multi-gigabit antenna select field (DMG Antenna select field) is set as the receive antenna selected by the PCP/AP.
  • the access station selects the receiving antenna in a beam thinning protocol phase in the beamforming training
  • the access station replies to the command frame that includes the identifier of the receiving antenna according to the request frame sent by the terminal station for requesting the identifier of the receiving antenna.
  • the PCP/AP may actively notify the terminal station of the receiving antenna selected by the terminal station, for example, the PCP/AP to the terminal station.
  • the command frame of the domain containing the identifier of the selected receiving antenna is sent, and the terminal station replies to the response frame after receiving the command frame.
  • the terminal station can also actively request the receiving antenna selected by the PCP/AP. For example, the terminal station sends a request frame for requesting the receiving antenna selected by the PCP/AP to the PCP/AP, and the PCP/AP receives the request.
  • a frame of the command containing the field of the selected receive antenna is replied to after the frame.
  • the terminal station obtains the receiving antenna corresponding to the PCP/AP, and notifies the receiving antenna that is being used by other stations in the coverage of the terminal station in order to facilitate the establishment of the TXOP between the subsequent terminal station and the PCP/AP. To avoid antenna collisions of PCP/AP.
  • the PCP/AP may have the same receiving antenna selected by different terminal stations in the beamforming training.
  • the receiving antenna selected by the PCP/AP for STA 1 and STA 2 is the antenna 2.
  • subsequent STA 1 and STA 2 cannot establish a TXOP for data communication with the PCP/AP at the same time because an antenna collision occurs.
  • the access station when the access station and the terminal station perform beamforming training, the access station selects a receiving antenna corresponding to the terminal station, and notifies the terminal station of the selected receiving antenna.
  • the receiving antenna selected by the access station is notified to the terminal station, so that the terminal station knows that the access station corresponds to its own receiving antenna, and when the terminal station initiates data communication, the terminal station may notify the other station in the coverage of the terminal station of the terminal station.
  • the receiving antenna is occupied to avoid receiving antenna collisions.
  • FIG. 9 is a schematic structural diagram of a site deployed in a wireless local area network according to an embodiment of the present invention. As shown in the figure, the site includes:
  • the monitoring module 100 is configured to monitor a busy state of each channel of the multiple channels supported by the network when the station needs to send data to the first target station through the network;
  • the base station system in the next generation 60 GHz technology, includes a PCP/AP supporting multiple antennas and multiple terminal stations, and the BSS supports multiple channels, and the PCP/AP is different.
  • the antenna can communicate with each other independently on different channels, but at the same time, one antenna can only communicate with one terminal station.
  • the first station is a station that needs to send data, and may be a PCP/AP or a terminal station, and data communication between the first station and the second station is based on the established TXOP.
  • the method for establishing a TXOP between the first station and the second station may be: in the CBAP access period, the first station contends to access the access channel according to the EDCA rule, that is, the monitoring module 100 monitors multiple channels supported by the network. The busy state of each channel.
  • the terminal stations in the network may include a multi-channel support terminal station (EDMG STA), that is, a WLAN device supporting the next generation 60 GHz technology. Further, the terminal station may also include an existing single channel supporting terminal station (DMG STA), that is, an existing WLAN device operating in the 60 GHz band.
  • EDMG STA multi-channel support terminal station
  • DMG STA single channel supporting terminal station
  • the PCP/AP can use the Reserved bit of the Allocation Control field in the beacon frame to identify which type of terminal station contends for the access channel. For example, if the identifier bit is a DMG STA-only CBAP, only the DMG STA is allowed to compete in the CBAP phase. In.
  • the EDMG STA-only CBAP is used, the EDMG STA is allowed to contend for access in the CBAP phase.
  • the establishment manner of the EDMG STA establishing the TXOP in multiple channels is mainly described, and the DMG STA establishes the TXOP establishment manner. Reference can be made to the prior art.
  • the selecting module 101 is configured to select at least one target channel from the channels in the idle state among the multiple channels;
  • the number of idle channels in the multiple channels may be one, or there may be
  • the plurality of first site selection modules 101 may select at least one target channel from the channels in the idle state among the plurality of channels to establish a TXOP.
  • the specific selection manner may be that the first station selects a part of the channels in the idle state from the plurality of channels as the target channel, and all the channels in the idle state of the plurality of channels are used as the target channel.
  • the first site can Channel 1 and channel 3 are used as target channels to establish transmission opportunities, and channel 1 can only be used as a target channel to establish transmission opportunities, while channel 3 is contending for access by other stations (including PCP/AP or terminal stations).
  • each of the idle channels in the target channel may or may not be adjacent.
  • the first station may have different transmission opportunity establishment manners depending on whether adjacent channels in the target channel are adjacent to each other.
  • An establishing module 102 configured to establish, on the target channel, a first transmission opportunity for performing data communication with the first target station
  • the first station establishing module 102 establishes, on the selected target channel, a first transmission opportunity for performing data communication with the second station, specifically, according to the number of idle channels in the target channel and each of the target channels. Whether the idle channels are adjacent or not, the first station has different transmission opportunity establishment manners.
  • the first station establishes a TXOP for data communication with the second station on the aggregated channel formed by all channel aggregations.
  • the first station (including the PCP/AP or the terminal station) transmits the first frame of the TXOP on the aggregation channel, and the first frame includes but is not limited to the data frame and the Request To Send (RTS) frame, and the second station replies and clears the transmission (Clear To Send, CTS) frame.
  • the other stations do not allow data to be transmitted on the aggregated channel except for the first station (TXOP holder) that transmits the first frame on the aggregated channel and the second station (TXOP responder) that receives the frame transmitted by the TXOP holder.
  • the target channel is part of a plurality of channels supported by the network, and the partial channels include non-adjacent channels
  • the non-adjacent channels are not adjacent to other channels in the target channel, for example,
  • the network supports channel 1, channel 2, and channel 3, and the three channels are sequentially arranged.
  • the target channel is channel 1 and channel 3. If channel 1 is not adjacent to channel 3 in the target channel, then channel 1 and channel 3 can be referred to as non-adjacent channels.
  • the first transmission opportunity for data communication between the channel 1 and the channel 3 and the second station may be established respectively, that is, the first station is respectively on the channel 1
  • transmitting the first frame of the TXOP on the channel 3 the first frame includes but is not limited to the data frame and the RTS frame, and the second station replies to the CTS frame. Except for the first station and the second station in the TXOP, other stations are not allowed to transmit data on channel 1 and channel 3.
  • the target channel is part of a plurality of channels supported by the network, and part of the channels At least two adjacent channels are included, for example, the network supports channel 1, channel 2, and channel 3, and the three channels are sequentially arranged.
  • the target channel is channel 1 and channel 2.
  • the first frame of the TXOP may be sent on the aggregate channel formed by the aggregation of channel 1 and channel 2.
  • the first frame includes but is not limited to data.
  • the frame and the RTS frame, the second station replies to the CTS frame on the aggregated channel.
  • the first station may also be the first frame of the TXOP sent by the channel 1 and the channel 2 in the target channel respectively, the first frame includes but is not limited to the data frame and the RTS frame, and the second station replies on the channel 1 and the channel 2 respectively. CTS frame. Except for the first station and the second station in the TXOP, other stations are not allowed to transmit data on channel 1 and channel 2.
  • the target channel includes all channels of the multiple channels supported by the network
  • the establishing module 102 is specifically configured to establish, on an aggregation channel formed by the aggregation of the multiple channels, a first transmission opportunity for performing data communication with the first target station.
  • the first station if the target channel includes all channels of the plurality of channels supported by the network, the first station establishes a first transmission opportunity for data communication with the second station on the aggregated channel formed by the aggregation of the plurality of channels. .
  • the establishing module 102 is specifically configured to send, in an aggregate channel formed by the aggregation of the multiple channels, a first frame in the first transmission opportunity, where the first frame includes an established target for the first target The duration of the first transmission opportunity for the station to perform data communication.
  • the first station (PCP/AP or terminal station) establishing module 102 sends the first frame of the first transmission opportunity on the aggregation channel, that is, the first frame of the TXOP, and the first frame includes but is not limited to the data frame and The RTS frame, the value of the Duration field of the Media Access Control (MAC) frame header of the first frame indicates the length of the TXOP, that is, the duration of the TXOP.
  • the other terminal stations in the network may receive the first frame and parse the frame structure of the first frame to obtain the duration of the TXOP in which the other terminal sites do not contend for the access channel during the duration of the TXOP.
  • the PCP/AP is included in the first site and the second site, and the PCP/AP supports multiple antennas, and different antennas can perform independent data communication with each other on different channels and different terminal sites. Since all the channels in the embodiment of the present invention are occupied by the first station and the second station, other terminal stations do not compete for access, and the PCP/AP does not use the antenna to receive data of other stations, so when the target channel includes network support When all channels are used, the antenna of the PCP/AP will not conflict, and it is not necessary to include in the first frame.
  • the antenna identifier of the transmitted data and the antenna identifier of the received data used by the PCP/AP in this transmission opportunity since all the channels in the embodiment of the present invention are occupied by the first station and the second station, other terminal stations do not compete for access, and the PCP/AP does not use the antenna to receive data of other stations, so when the target channel includes network support When all channels are used, the antenna of the PCP/AP will not conflict, and it is not necessary to include in the first frame
  • the target channel includes a part of the plurality of channels supported by the network; and the target channel includes a non-adjacent channel, the non-adjacent channel and other ones of the target channels Channels are not adjacent to each other;
  • the establishing module is specifically configured to send, in the non-adjacent channel, a first frame in the first transmission opportunity, where the first frame includes the first one established for data communication with the first target station The duration of the transmission opportunity and the antenna identification used by the station and the first target station to transmit data in the first transmission opportunity and the antenna identification of the received data.
  • the target channel includes some channels of the plurality of channels supported by the network, that is, other channels are contending for access by other terminal stations, if they are competing for access by other terminal sites, and during beamforming training.
  • the receiving station and/or transmitting antenna corresponding to the PCP/AP of the terminal station is the same as the antenna currently being used, and an antenna collision of the PCP/AP is generated.
  • the PCP/AP has 4 antennas and supports 3 channels.
  • the four terminal stations STA 1, STA 2, STA 3 and STA 4 respectively perform with the PCP/AP.
  • the transmitting antenna of the PCP/AP corresponding to the STA 1 is the antenna 1
  • the receiving antenna is the antenna 2
  • the transmitting antenna of the PCP/AP corresponding to the STA 2 is the antenna 2
  • the receiving antenna is the antenna 3
  • the PCP/AP corresponds to the STA 3
  • the transmitting antenna is the antenna 3
  • the receiving antenna is the antenna 4
  • the transmitting antenna of the PCP/AP corresponding to the STA 4 is the antenna 3
  • the receiving antenna is the antenna 3.
  • the PCP/AP When the PCP/AP has data to be sent to STA 1, the PCP/AP starts to contend for the channel (ie, listens to 3 channels), and as a result, channel 1 and channel 2 are in idle state, channel 3 is busy, and PCP/AP competes for successful channel 1 and Channel 2.
  • the PCP/AP establishes a TXOP on Channel 1 and Channel 2 for data communication.
  • the PCP/AP corresponds to the transmitting antenna (antenna 2) of the STA 2 and the receiving antenna (that is, the receiving antenna corresponding to the STA 1) used by the PCP/AP in the above TXOP, it is the antenna 2, at this time
  • STA 2 does not know the antenna that the PCP/AP is using, so if the STA 2 sends the data PCP/AP, it cannot be received because there is an antenna collision.
  • the first station sends a first frame of the first transmission opportunity in the non-adjacent channel in the target channel, where the first frame includes data established for performing data with the second station.
  • the duration of the transmission opportunity of the communication and the access site in the first site and the second site An antenna identifier (transmit antenna identifier) for transmitting data in the first transmission opportunity and an antenna identifier (receiving antenna identifier) for receiving data.
  • the first station is a terminal station, because the terminal station also obtains the identifier of the receiving antenna and the identifier of the transmitting antenna corresponding to the terminal station of the PCP/AP in the foregoing beamforming training, the first station may also be the terminal station.
  • the identifier of the transmitting antenna and the identifier of the receiving antenna are added in the first frame.
  • Other terminal stations in the network may also receive the first frame. After receiving the other terminal stations in the first frame, the following information may be obtained: the channel occupied by the TXOP (ie, the channel receiving the first frame), the duration of the TXOP, and The transmit and receive antennas used by the PCP/AP in the TXOP. If a terminal station (ie, the third station) wants to establish a new TXOP (ie, a second transmission opportunity) with the access station in the first station and the second station, the terminal station and the new TXOP need to satisfy the following Claim:
  • the terminal station competes for access to part or all of the channels that are not occupied to establish a TXOP.
  • the end time of the new TXOP is no later than the end time of the TXOP being used.
  • the transmit and receive antennas used by the PCP/AP in the new TXOP ie, the transmit and receive antennas selected by the PCP/AP and the STA after beamforming training
  • the transmitting antenna and the receiving antenna are completely different. As shown in Figure 8, the antennas of the first three new TXOPs are used correctly, and the fourth error is due to the collision of the antenna 2.
  • the second condition of the above three conditions is mainly to use more idle channels in the next round of TXOP establishment.
  • the four terminal stations STA 1, STA 2, STA 3 and STA 4 are further described as an example, that is, after STA 2 receives the first frame, the duration of the TXOP (for example, the TXOP duration is 5 seconds) Will compete for the access channel, but STA 3 and STA 4 can contend for access to the remaining channel 3, when the above TXOP is established for 1 second, channel 3 changes from busy to idle state, STA 3 and STA 3 in STA 4 compete for, Then, a new TXOP is established between the STA 3 and the PCP/AP for communication, but the duration of the new TXOP should be less than 4 seconds, mainly for occupying more idle channels for the establishment of the next round of TXOP.
  • the duration of the TXOP for example, the TXOP duration is 5 seconds
  • the duration of the new TXOP should be less than 4 seconds, mainly for occupying more idle channels for the establishment of the next round of TXOP.
  • the target channel includes a part of the plurality of channels supported by the network; and the target channel includes at least two adjacent channels;
  • the establishing module is specifically configured to send, in an aggregate channel formed by the aggregation of the at least two adjacent channels, a first frame in the first transmission opportunity;
  • the establishing module is specifically configured to send, in each of the at least two adjacent channels, a first frame in the first transmission opportunity;
  • the first frame includes a duration of a first transmission opportunity established for data communication with the first target station, and an access station in the site and the first target site is used in the The antenna identifier of the data transmitted in the first transmission opportunity and the antenna identifier of the received data.
  • the target channel includes a part of the plurality of channels supported by the network; and the target channel includes at least two adjacent channels. Since the target channel includes some of the plurality of channels supported by the network, there may still be antenna collisions of the PCP/AP when other terminal sites compete for the access channel.
  • the first frame of the first transmission opportunity is sent on the aggregated channel formed by the aggregation of at least two adjacent channels in the target channel, or at least The first frame of the first transmission opportunity is transmitted on each of the two adjacent channels.
  • the first frame includes an established duration of a transmission opportunity for data communication with the second station and an access station in the first station and the second station for transmitting in the transmission opportunity.
  • the antenna identification of the data and the antenna identification of the received data includes but is not limited to RTS frames and data frames.
  • the first station ie, the TXOP holder
  • the second station TXOP responder
  • the RTS frame and the CTS frame are added.
  • the selected "PCP/AP TX antenna field (2bits)" and "PCP/AP RX antenna field (2bits)” are respectively used to identify the antenna of the antenna for transmitting data in the TXOP and the antenna for receiving data.
  • the first station and the second station (ie, PCP/AP and STA1 in the figure) establish a TXOP on the aggregation channel formed by the aggregation of channel 1 and channel 2, and the first station sends on the aggregation channel.
  • the second station replies to the CTS frame on the aggregated channel, and the subsequent first station and the second station perform data communication in the established TXOP.
  • the first station and the second station (ie, PCP/AP and STA1 in the figure) establish TXOPs on channel 1 and channel 2, respectively, and the first station transmits RTS frames on channel 1 and channel 2, respectively.
  • the second station replies to the CTS frame on channel 1 and channel 2, respectively, and the subsequent second station performs data communication in the established TXOP.
  • the other terminal station STA2 can contend for access channel 0 and establish a new TXOP with the PCP/AP.
  • the first station that is, the TXOP holder transmits a data frame on each channel of the aggregate channel or the target channel as the first frame of the TXOP
  • (2bits) and "PCP/AP RX antenna field (2bits)" are used to identify the antenna identifier of the PCP/AP used to transmit data in the TXOP and the antenna identifier of the received data.
  • Other terminal stations in the network can receive the data frame and parse out the transmitting antenna and the receiving antenna.
  • the antenna for transmitting data and the antenna for receiving data in the TXOP in the TXOP refers to a transmitting antenna and a receiving antenna for the terminal station selected by the other terminal station of the PCP/AP and the TXOP in the previous beamforming training. .
  • the value of the Duration field of the MAC frame header of the above RTS/CTS frame or data frame indicates the length of the TXOP, that is, the duration of the TXOP.
  • the TXOP except for the TXOP holder and the TXOP responder, other terminal stations are not allowed to transmit data on the channel occupied by the TXOP.
  • the target channel may include only non-adjacent channels, or may include only adjacent channels, or may include a combination of non-adjacent channels and adjacent channels.
  • the establishment of the transmission opportunity is established in the same manner as the transmission opportunity of the non-adjacent channel.
  • a data communication module 103 configured to perform, according to the first transmission opportunity, with the first target station data communication.
  • the first site data communication module 103 performs data communication with the second site based on the established first transmission opportunity with the second site.
  • the process of data communication may be that video data, audio data, picture data, and the like are transmitted between the first station and the second station.
  • the busy state of each channel of the multiple channels supported by the network is monitored, and at least one of the plurality of channels in the idle state is selected.
  • a target channel establishes a first transmission opportunity for data communication with the second station on the selected target channel, and performs data communication with the second station based on the first transmission opportunity. In this way, transmission opportunities between stations can be established in a network supporting multiple channels, and the idle channel resources are fully utilized.
  • FIG. 10 is a schematic structural diagram of an access site according to an embodiment of the present invention. As shown in the figure, the access site includes:
  • the selecting module 200 is configured to select a receiving antenna corresponding to the terminal station when the access station performs beamforming training with the terminal station;
  • the access station supports multiple antennas. Different antennas can communicate with each other independently of different end stations on different channels. Which one of the transmitting and receiving antennas of the PCP/AP corresponds to a PCP/AP (that is, which transmitting antenna and receiving antenna are used by the PCP/AP to transmit and receive data to the terminal station), when the terminal station accesses the network, The beamforming training is performed between the PCP and the AP. In addition, in the beamforming training, the terminal station can also obtain the transmitting antenna and the receiving antenna for receiving data, which are selected by the terminal station to transmit data to the other PCP/AP.
  • the beamforming training includes two phases, that is, a sector-level sweep (SLS) phase and a beam refinement protocol (BRP) phase.
  • the access site selection module 200 may select a receiving antenna corresponding to the terminal station in the SLS phase, or may select a receiving antenna corresponding to the terminal site in the BRP phase.
  • the notification module 201 is configured to notify the terminal station of the selected identifier of the receiving antenna.
  • the access station selects the receiving antenna in a sector-level scanning phase in the beamforming training
  • the notification module 201 is specifically configured to encapsulate the identifier of the receiving antenna in a sector scan feedback frame, and return the sector scan feedback frame to the terminal station.
  • the PCP/AP notification module 201 sends a sector sweep feedback frame (SSW-Feedback frame) to the first station.
  • the directional multi-gigabit antenna select field (DMG Antenna select field) is set as the receive antenna selected by the PCP/AP.
  • the access station selects the receiving antenna in a beam thinning protocol phase in the beamforming training
  • the notification module 201 is specifically configured to send, to the terminal station, a command frame that includes an identifier of the receiving antenna;
  • the notification module 201 is specifically configured to reply, according to the request frame sent by the terminal station for requesting the identifier of the receiving antenna, a command frame that includes the identifier of the receiving antenna.
  • the PCP/AP notification module 201 can actively notify the terminal station of the receiving antenna selected by the terminal station, for example, the PCP/AP.
  • the command frame of the domain containing the identifier of the selected receiving antenna is sent to the terminal station, and the terminal station returns the response frame after receiving the command frame.
  • the terminal station can also actively request the receiving antenna selected by the PCP/AP. For example, the terminal station sends a request frame for requesting the receiving antenna selected by the PCP/AP to the PCP/AP, and the PCP/AP receives the request.
  • a frame of the command containing the field of the selected receive antenna is replied to after the frame.
  • the terminal station obtains the receiving antenna corresponding to the PCP/AP, and notifies the receiving antenna that is being used by other stations in the coverage of the terminal station in order to facilitate the establishment of the TXOP between the subsequent terminal station and the PCP/AP. To avoid antenna collisions of PCP/AP.
  • the PCP/AP may have the same receiving antenna selected by different terminal stations in the beamforming training.
  • the receiving antenna selected by the PCP/AP for STA 1 and STA 2 is the antenna 2.
  • subsequent STA 1 and STA 2 cannot establish a TXOP for data communication with the PCP/AP at the same time because an antenna collision occurs.
  • the access station when the access station and the terminal station perform beamforming training, the access station selects a receiving antenna corresponding to the terminal station, and notifies the terminal station of the selected receiving antenna. In this way, the receiving antenna selected by the access station can be notified to the terminal station, so that the terminal station knows that the access station corresponds to its own receiving antenna, and when the terminal station initiates data communication, the terminal station can be notified of the coverage.
  • the receiving antenna occupied by the terminal station at other stations in the other station avoids the receiving antenna collision.
  • FIG. 11 is a schematic structural diagram of another station according to an embodiment of the present invention.
  • the station in FIG. 11 can be used to implement the steps and methods in the foregoing method embodiments.
  • station 30 includes an antenna 300, a transmitter 301, a receiver 302, a processor 303, and a memory 304.
  • the processor 303 controls the operation of the station 30 and can be used to process signals.
  • Memory 304 can include read only memory and random access memory and provides instructions and data to processor 303.
  • Transmitter 301 and receiver 302 can be coupled to antenna 300, and various components of station 30 are coupled together by bus system 305, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. However, for clarity of description, various buses are labeled as bus system 305 in the figure.
  • the memory 304 can store instructions to perform the following process:
  • the first station selects at least one target channel from channels in the idle state among the multiple channels;
  • the first station performs data communication with the second site based on the first transmission opportunity.
  • the base station system includes a PCP/AP supporting multiple antennas and multiple terminal stations, the BSS supports multiple channels, and different antennas of the PCP/AP can be used. Independent communication with different terminal sites on different channels, but at the same time, one antenna can only communicate with one terminal site.
  • the first site is a site that needs to send data, and may be a PCP/AP or a terminal site, and data communication between the first site and the second site is based on the established TXOP.
  • the method for establishing a TXOP between the first station and the second station may be: in the CBAP access period, the first station complies with the EDCA rule to contend for the access channel, that is, multiple monitoring network support The busy state of each channel in the channel.
  • the terminal stations in the network may include a multi-channel support terminal station (EDMG STA), that is, a WLAN device supporting the next generation 60 GHz technology. Further, the terminal station may also include an existing single channel supporting terminal station (DMG STA), that is, an existing WLAN device operating in the 60 GHz band.
  • EDMG STA multi-channel support terminal station
  • DMG STA single channel supporting terminal station
  • the PCP/AP can use the Reserved bit of the Allocation Control field in the beacon frame to identify which type of terminal station contends for the access channel. For example, if the identifier bit is a DMG STA-only CBAP, only the DMG STA is allowed to compete in the CBAP phase. In.
  • the EDMG STA-only CBAP is used, the EDMG STA is allowed to contend for access in the CBAP phase.
  • the establishment manner of the EDMG STA establishing the TXOP in multiple channels is mainly described, and the DMG STA establishes the TXOP establishment manner. Reference can be made to the prior art.
  • the number of idle channels in the multiple channels may be one or multiple.
  • the first station may select at least one target channel from the channels in the idle state of the plurality of channels to establish a TXOP.
  • the specific selection manner may be that the first station selects a part of the channels in the idle state from the plurality of channels as the target channel, and all the channels in the idle state of the plurality of channels are used as the target channel.
  • the first station may use channel 1 and channel 3 as target channels to establish a transmission opportunity, or may only use channel 1 as a transmission opportunity.
  • the target channel establishes a transmission opportunity, while channel 3 is contending for access by other stations (including PCP/AP or end stations).
  • each of the idle channels in the target channel may or may not be adjacent.
  • the first station may have different transmission opportunity establishment manners depending on whether adjacent channels in the target channel are adjacent to each other.
  • the first station establishes, on the selected target channel, a first transmission opportunity for performing data communication with the second station, specifically, according to the number of idle channels in the target channel and whether each idle channel in the target channel is between Adjacent, the first site has different ways of establishing the transmission opportunity.
  • the first station establishes a TXOP for data communication with the second station on the aggregated channel formed by all channel aggregations.
  • the first station (including the PCP/AP or the end station) sends the first TXOP on the aggregated channel
  • the first frame includes, but is not limited to, a data frame and a Request To Send (RTS) frame, and a second site sends a Clear To Send (CTS) frame.
  • RTS Request To Send
  • CTS Clear To Send
  • the other stations do not allow data to be transmitted on the aggregated channel except for the first station (TXOP holder) that transmits the first frame on the aggregated channel and the second station (TXOP responder) that receives the frame transmitted by the TXOP holder.
  • the target channel is part of a plurality of channels supported by the network, and the partial channels include non-adjacent channels
  • the non-adjacent channels are not adjacent to other channels in the target channel, for example,
  • the network supports channel 1, channel 2, and channel 3, and the three channels are sequentially arranged.
  • the target channel is channel 1 and channel 3. If channel 1 is not adjacent to channel 3 in the target channel, then channel 1 and channel 3 can be referred to as non-adjacent channels.
  • the first transmission opportunity for data communication between the channel 1 and the channel 3 and the second station may be established respectively, that is, the first station is respectively on the channel 1
  • transmitting the first frame of the TXOP on the channel 3 the first frame includes but is not limited to the data frame and the RTS frame, and the second station replies to the CTS frame. Except for the first station and the second station in the TXOP, other stations are not allowed to transmit data on channel 1 and channel 3.
  • the target channel is part of a plurality of channels supported by the network, and the partial channel includes at least two adjacent channels, for example, the network supports channel 1, channel 2, and channel 3, the three channels are sequentially arranged.
  • the target channel is channel 1 and channel 2.
  • the first frame of the TXOP may be sent on the aggregate channel formed by the aggregation of channel 1 and channel 2.
  • the first frame includes but is not limited to data.
  • the frame and the RTS frame, the second station replies to the CTS frame on the aggregated channel.
  • the first station may also be the first frame of the TXOP sent by the channel 1 and the channel 2 in the target channel respectively, the first frame includes but is not limited to the data frame and the RTS frame, and the second station replies on the channel 1 and the channel 2 respectively. CTS frame. Except for the first station and the second station in the TXOP, other stations are not allowed to transmit data on channel 1 and channel 2.
  • the first station performs data communication with the second site based on the established first transmission opportunity with the second site.
  • the process of data communication may be that video data, audio data, picture data, and the like are transmitted between the first station and the second station.
  • the target channel includes all of the plurality of channels supported by the network
  • the first station establishes a first transmission opportunity for data communication with the second station on an aggregated channel formed by the aggregation of the plurality of channels.
  • the first station establishes a first transmission opportunity for data communication with the second station on the aggregated channel formed by the aggregation of the multiple channels.
  • the first station establishes, on the aggregation channel formed by the aggregation of the multiple channels, a first transmission opportunity for performing data communication with the second station, including:
  • the first station sends the first frame of the first transmission opportunity on the aggregation channel, that is, the first frame of the TXOP, and the first frame includes but is not limited to the data frame and the RTS frame.
  • the value of the Duration field of the Media Access Control (MAC) frame header of the frame indicates the length of the TXOP, that is, the duration of the TXOP.
  • the other terminal stations in the network may receive the first frame and parse the frame structure of the first frame to obtain the duration of the TXOP in which the other terminal sites do not contend for the access channel during the duration of the TXOP.
  • the PCP/AP is included in the first site and the second site, and the PCP/AP supports multiple antennas, and different antennas can perform independent data communication with each other on different channels and different terminal sites. Since all the channels in the embodiment of the present invention are occupied by the first station and the second station, other terminal stations do not compete for access, and the PCP/AP does not use the antenna to receive data of other stations, so when the target channel includes network support The antenna of the PCP/AP does not collide with all the channels.
  • the first frame does not need to include the antenna identifier of the transmitted data used by the PCP/AP in this transmission opportunity and the antenna identifier of the received data.
  • the target channel includes a part of the plurality of channels supported by the network; and the target channel includes a non-adjacent channel, the non-adjacent channel and The other channels in the target channel are not adjacent to each other;
  • the frame includes a duration of the established first transmission opportunity for data communication with the second station and an access station in the first station and the second station for use in the first transmission.
  • the target channel includes some channels of the multiple channels supported by the network, that is, other channels are contending for access by other terminal sites, if the other terminal sites compete for access, and the beamforming training is performed, the terminal The receiving antenna and/or transmitting antenna of the station corresponding to the PCP/AP is the same as the antenna currently being used, and an antenna collision of the PCP/AP is generated.
  • the PCP/AP has 4 antennas and supports 3 channels.
  • the four terminal stations STA 1, STA 2, STA 3 and STA 4 respectively perform with the PCP/AP.
  • the transmitting antenna of the PCP/AP corresponding to the STA 1 is the antenna 1
  • the receiving antenna is the antenna 2
  • the transmitting antenna of the PCP/AP corresponding to the STA 2 is the antenna 2
  • the receiving antenna is the antenna 3
  • the PCP/AP corresponds to the STA 3
  • the transmitting antenna is the antenna 3
  • the receiving antenna is the antenna 4
  • the transmitting antenna of the PCP/AP corresponding to the STA 4 is the antenna 3
  • the receiving antenna is the antenna 3.
  • the PCP/AP When the PCP/AP has data to be sent to STA 1, the PCP/AP starts to contend for the channel (ie, listens to 3 channels), and as a result, channel 1 and channel 2 are in idle state, channel 3 is busy, and PCP/AP competes for successful channel 1 and Channel 2.
  • the PCP/AP establishes a TXOP on Channel 1 and Channel 2 for data communication.
  • the PCP/AP corresponds to the transmitting antenna (antenna 2) of the STA 2 and the receiving antenna (that is, the receiving antenna corresponding to the STA 1) used by the PCP/AP in the above TXOP, it is the antenna 2, at this time
  • STA 2 does not know the antenna that the PCP/AP is using, so if the STA 2 sends the data PCP/AP, it cannot be received because there is an antenna collision.
  • the first station sends a first frame of the first transmission opportunity in the non-adjacent channel in the target channel, where the first frame includes data established for performing data with the second station.
  • the duration of the transmission opportunity of the communication and the antenna identification (transmit antenna identification) used by the access station in the first station and the second station to transmit data in the first transmission opportunity and the antenna identification (receiving antenna identification) of the received data ).
  • the first station is a terminal station, because the terminal station also obtains the identifier of the receiving antenna and the identifier of the transmitting antenna corresponding to the terminal station of the PCP/AP in the foregoing beamforming training, the first station may also be the terminal station.
  • the identifier of the transmitting antenna and the identifier of the receiving antenna are added in the first frame.
  • Other terminal stations in the network may also receive the first frame, and receive the other terminal sites in the first frame.
  • the following information can be obtained: the channel occupied by the TXOP (ie, the channel receiving the first frame), the duration of the TXOP, and the transmit and receive antennas used by the PCP/AP in the TXOP.
  • a terminal station ie, the third station
  • the terminal station and the new TXOP need to satisfy the following Claim:
  • the terminal station competes for access to part or all of the channels that are not occupied to establish a TXOP.
  • the end time of the new TXOP is no later than the end time of the TXOP being used.
  • the transmit and receive antennas used by the PCP/AP in the new TXOP ie, the transmit and receive antennas selected by the PCP/AP and the STA after beamforming training
  • the transmitting antenna and the receiving antenna are completely different. As shown in Figure 8, the antennas of the first three new TXOPs are used correctly, and the fourth error is due to the collision of the antenna 2.
  • the second condition of the above three conditions is mainly to use more idle channels in the next round of TXOP establishment.
  • the four terminal stations STA 1, STA 2, STA 3 and STA 4 are further described as an example, that is, after STA 2 receives the first frame, the duration of the TXOP (for example, the TXOP duration is 5 seconds) Will compete for the access channel, but STA 3 and STA 4 can contend for access to the remaining channel 3, when the above TXOP is established for 1 second, channel 3 changes from busy to idle state, STA 3 and STA 3 in STA 4 compete for, Then, a new TXOP is established between the STA 3 and the PCP/AP for communication, but the duration of the new TXOP should be less than 4 seconds, mainly for occupying more idle channels for the establishment of the next round of TXOP.
  • the duration of the TXOP for example, the TXOP duration is 5 seconds
  • the duration of the new TXOP should be less than 4 seconds, mainly for occupying more idle channels for the establishment of the next round of TXOP.
  • the target channel includes a part of the plurality of channels supported by the network; and the target channel includes at least two adjacent channels;
  • the first frame includes a duration of a first transmission opportunity established for data communication with the second station and an access station in the first station and the second station for The antenna identifier of the data transmitted in the first transmission opportunity and the antenna identifier of the received data.
  • the target channel includes a part of the plurality of channels supported by the network; and the target channel includes at least two adjacent channels. Since the target channel includes some of the plurality of channels supported by the network, there may still be antenna collisions of the PCP/AP when other terminal sites compete for the access channel.
  • the first frame of the first transmission opportunity is sent on the aggregated channel formed by the aggregation of at least two adjacent channels in the target channel, or at least The first frame of the first transmission opportunity is transmitted on each of the two adjacent channels.
  • the first frame includes an established duration of a transmission opportunity for data communication with the second station and an access station in the first station and the second station for transmitting in the transmission opportunity.
  • the antenna identification of the data and the antenna identification of the received data includes but is not limited to RTS frames and data frames.
  • the first station ie, the TXOP holder
  • the second station TXOP responder
  • the RTS frame and the CTS frame are added.
  • the selected "PCP/AP TX antenna field (2bits)" and "PCP/AP RX antenna field (2bits)” are respectively used to identify the antenna of the antenna for transmitting data in the TXOP and the antenna for receiving data.
  • the first station and the second station (ie, PCP/AP and STA1 in the figure) establish a TXOP on the aggregation channel formed by the aggregation of channel 1 and channel 2, and the first station sends on the aggregation channel.
  • the second station replies to the CTS frame on the aggregated channel, and the subsequent first station and the second station perform data communication in the established TXOP.
  • the other terminal stations STA2 can contend for access channel 0 and establish a new TXOP with the PCP/AP.
  • the receiving antenna and the transmitting antenna selected by the PCP/AP in the beamforming training are the antennas that are currently being used (ie, It is completely different between the transmitting antenna and the receiving antenna of the PC1/AP corresponding to STA1. In order to make the number of idle channels in the next round more, the new TXOP end time cannot be later than the end of the TXOP established between the PCP/AP and STA1. between.
  • the first station and the second station (ie, PCP/AP and STA1 in the figure) establish TXOPs on channel 1 and channel 2, respectively, and the first station transmits RTS frames on channel 1 and channel 2, respectively.
  • the second station replies to the CTS frame on channel 1 and channel 2, respectively, and the subsequent second station performs data communication in the established TXOP.
  • the other terminal station STA2 can contend for access channel 0 and establish a new TXOP with the PCP/AP.
  • the first station that is, the TXOP holder transmits a data frame on each channel of the aggregate channel or the target channel as the first frame of the TXOP
  • (2bits) and "PCP/AP RX antenna field (2bits)" are used to identify the antenna identifier of the PCP/AP used to transmit data in the TXOP and the antenna identifier of the received data.
  • Other terminal stations in the network can receive the data frame and parse out the transmitting antenna and the receiving antenna.
  • the antenna for transmitting data and the antenna for receiving data in the TXOP in the TXOP refers to a transmitting antenna and a receiving antenna for the terminal station selected by the other terminal station of the PCP/AP and the TXOP in the previous beamforming training. .
  • the value of the Duration field of the MAC frame header of the above RTS/CTS frame or data frame indicates the length of the TXOP, that is, the duration of the TXOP.
  • the TXOP except for the TXOP holder and the TXOP responder, other terminal stations are not allowed to transmit data on the channel occupied by the TXOP.
  • the target channel may include only non-adjacent channels, or may include only adjacent channels, or may include a combination of non-adjacent channels and adjacent channels.
  • the establishment of the transmission opportunity is established in the same manner as the transmission opportunity of the non-adjacent channel.
  • the busy state of each channel of the multiple channels supported by the network is monitored, and at least one of the plurality of channels in the idle state is selected.
  • a target channel establishes a first transmission opportunity for data communication with the second station on the selected target channel, and performs data communication with the second station based on the first transmission opportunity. This way, you can establish transmission opportunities between sites in a network that supports multiple channels, making full use of idle letters. Road resources.
  • FIG. 12 is a schematic structural diagram of another access site according to an embodiment of the present invention.
  • the access site of FIG. 12 can be used to implement various steps and methods in the foregoing method embodiments.
  • access site 40 includes antenna 400, transmitter 401, receiver 402, processor 404, and memory 404.
  • Processor 404 controls the operation of station 40 and can be used to process signals.
  • Memory 404 can include read only memory and random access memory and provides instructions and data to processor 403.
  • Transmitter 401 and receiver 402 can be coupled to antenna 400, and various components of access station 40 are coupled together by bus system 405, which in addition to the data bus includes a power bus, a control bus, and a status signal bus. .
  • bus system 405 in the figure.
  • memory 404 can store instructions that perform the following processes:
  • the access station When the access station performs beamforming training with the terminal station, the access station selects a receiving antenna corresponding to the terminal station;
  • the access station notifies the terminal station of the selected identifier of the receiving antenna.
  • the access site supports multiple antennas. Different antennas can communicate with each other independently of different end stations on different channels. Which one of the transmitting and receiving antennas of the PCP/AP corresponds to a PCP/AP (that is, which transmitting antenna and receiving antenna are used by the PCP/AP to transmit and receive data to the terminal station), when the terminal station accesses the network, The beamforming training is performed between the PCP and the AP. In addition, in the beamforming training, the terminal station can also obtain the transmitting antenna and the receiving antenna for receiving data, which are selected by the terminal station to transmit data to the other PCP/AP.
  • the beamforming training includes two phases, that is, a sector-level sweep (SLS) phase and a beam refinement protocol (BRP) phase.
  • the access station may select a receiving antenna corresponding to the terminal station in the SLS phase, or may select a receiving antenna corresponding to the terminal station in the BRP phase.
  • the access station selects the receiving antenna in a sector-level scanning phase in the beamforming training
  • Notifying the access station of the selected identifier of the receiving antenna to the terminal station including:
  • the access station encapsulates the identity of the receive antenna in a sector scan feedback frame and returns the sector scan feedback frame to the terminal station.
  • the PCP/AP selects its own receiving antenna for the terminal station in the SLS phase
  • the directionality in the sector sweep feedback frame (SSW-Feedback frame) sent by the PCP/AP to the first station is selected.
  • the directional multi-gigabit antenna select field (DMG Antenna select field) is set as the receive antenna selected by the PCP/AP.
  • the access station selects the receiving antenna in a beam thinning protocol phase in the beamforming training
  • Notifying the access station of the selected identifier of the receiving antenna to the terminal station including:
  • the access station replies to the command frame that includes the identifier of the receiving antenna according to the request frame sent by the terminal station for requesting the identifier of the receiving antenna.
  • the PCP/AP may actively notify the terminal station of the receiving antenna selected by the terminal station, for example, the PCP/AP sends the receiving antenna to the terminal station.
  • the command frame of the domain of the selected receiving antenna is selected, and the terminal station replies to the response frame after receiving the command frame.
  • the terminal station can also actively request the receiving antenna selected by the PCP/AP. For example, the terminal station sends a request frame for requesting the receiving antenna selected by the PCP/AP to the PCP/AP, and the PCP/AP receives the request.
  • a frame of the command containing the field of the selected receive antenna is replied to after the frame.
  • the terminal station obtains the receiving antenna corresponding to the PCP/AP, and notifies the receiving antenna that is being used by other stations in the coverage of the terminal station in order to facilitate the establishment of the TXOP between the subsequent terminal station and the PCP/AP. To avoid antenna collisions of PCP/AP.
  • the PCP/AP may have the same receiving antenna selected by different terminal stations in the beamforming training.
  • the receiving antenna selected by the PCP/AP for STA 1 and STA 2 is the antenna 2.
  • subsequent STA 1 and STA 2 cannot establish a TXOP for data communication with the PCP/AP at the same time because an antenna collision occurs.
  • the access station when the access station and the terminal station perform beamforming training, the access station selects a receiving antenna corresponding to the terminal station, and notifies the terminal station of the selected receiving antenna.
  • the receiving antenna selected by the access station is notified to the terminal station, so that the terminal station knows that the access station corresponds to its own receiving antenna, and when the terminal station initiates data communication, the terminal station may notify the other station in the coverage of the terminal station of the terminal station.
  • the receiving antenna is occupied to avoid receiving antenna collisions.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Abstract

一种数据通信方法,该数据通信方法包括:当第一站点需要通过网络向第二站点发送数据时,监听所述网络支持的多个信道中每个信道的忙闲状态;所述第一站点从所述多个信道中处于空闲状态的信道中选取至少一个目标信道;所述第一站点在所述目标信道上建立用于与所述第二站点进行数据通信的第一传输机会;所述第一站点基于所述第一传输机会与所述第二站点进行数据通信。本发明实施例还公开了一种部署在无线局域网中的站点,采用本发明可以在支持多信道的网络中建立站点之间的传输机会,充分利用空闲信道资源。

Description

一种数据通信方法及站点 技术领域
本发明涉及无线网络技术领域,尤其涉及一种数据通信方法及站点。
背景技术
IEEE 802.11ad是规范工作在60GHz频带上的无线局域网(Wireless Local Area Network,WLAN)设备的技术协议,采用802.11ad协议进行通信的网络通常被称为定向多千兆比特(Directional Multi Gigabit,DMG)网络,在DMG网络中通常由多个站点构成,其中,该多个站点中包括一个接入站点和多个终端站点,由于DMG网络支持单信道工作方式,即是接入站点与终端站点之间只有一个信道,因此接入站点只可以与多个终端站点中的任意一个终端站点进行数据通信。
具体的数据通信过程为,在802.11ad协议的信标间隔(beacon interval,BI)中的访问期间接入时段(contention-based access period,CBAP)内,DMG网络内需要发送数据的所有站点(包括接入站点和终端站点)都遵循增强分布式信道访问(Enhanced Distributed Channel Access,EDCA)规则竞争接入信道。在CBAP中成功接入信道的站点可建立一个时段,称为传输机会(transmission opportunity,TXOP),该站点可基于所建立的TXOP与另一个站点进行数据通信,且TXOP内只允许这两个站点进行通信。
在下一代的60GHz WLAN技术中,增强的定向多千兆比特(Enhanced Directional Multi Gigabit,EDMG)网络将会支持多信道工作方式,即是接入站点与终端站点之间有多个信道,现有的DMG网络中单信道的传输机会建立方式已不适用于EDMG网络中多信道的传输机会建立,不能充分利用新增的信道资源。
发明内容
本发明实施例提供了一种数据通信方法及站点,可以在支持多信道的网络中建立站点之间的传输机会,充分利用空闲信道资源。
本发明第一方面提供一种数据通信方法,包括:
当第一站点需要通过网络向第二站点发送数据时,监听所述网络支持的多个信道中每个信道的忙闲状态;
所述第一站点从所述多个信道中处于空闲状态的信道中选取至少一个目标信道;
所述第一站点在所述目标信道上建立用于与所述第二站点进行数据通信的第一传输机会;
所述第一站点基于所述第一传输机会与所述第二站点进行数据通信。
基于第一方面,在第一种可行的实施方式中,若所述目标信道包括所述网络支持的所述多个信道中的全部信道;
所述第一站点在所述目标信道上建立用于与所述第二站点进行数据通信的第一传输机会,包括:
所述第一站点在所述多个信道聚合形成的聚合信道上建立用于与所述第二站点进行数据通信的第一传输机会。
基于第一方面第一种可行的实施方式,在第二种可行的实施方式中,所述第一站点在所述多个信道聚合形成的聚合信道上建立用于与所述第二站点进行数据通信的第一传输机会,包括:
所述第一站点在所述多个信道聚合形成的聚合信道上发送所述第一传输机会中的首帧,所述首帧包括建立的用于与所述第二站点进行数据通信的所述第一传输机会的持续时间。
基于第一方面,在第三种可行的实施方式中,所述第一站点和所述第二站点中包括接入站点,所述接入站点支持多个天线。
基于第一方面第三种可行的实施方式,在第四种可行的实施方式中,若所述目标信道包括所述网络支持的所述多个信道中的部分信道;且所述目标信道包括不相邻信道,所述不相邻信道与所述目标信道中的其它信道互不相邻;
所述第一站点在所述目标信道上建立用于与所述第二站点进行数据通信的第一传输机会,包括:
所述第一站点在所述不相邻信道发送所述第一传输机会中的首帧,所述首帧包括建立的用于与所述第二站点进行数据通信的所述第一传输机会的持续时间以及所述第一站点和所述第二站点中的接入站点用于在所述第一传输机 会中发送数据的天线标识和接收数据的天线标识。
基于第一方面第三种可行的实施方式,在第五种可行的实施方式中,若所述目标信道包括所述网络支持的所述多个信道中的部分信道;且所述目标信道包括至少两个相邻信道;
所述第一站点在所述目标信道上建立用于与所述第二站点进行数据通信的第一传输机会,包括:
所述第一站点在所述至少两个相邻信道聚合形成的聚合信道上发送所述第一传输机会中的首帧;或者,
所述第一站点在所述至少两个相邻信道中的每个信道上发送所述第一传输机会中的首帧;
其中,所述首帧包括建立的用于与所述第二站点进行数据通信的第一传输机会的持续时间以及所述第一站点和所述第二站点中的接入站点用于在所述第一传输机会中发送数据的天线标识和接收数据的天线标识。
基于第一方面第四种可行的实施方式或第一方面第五种可行的实施方式,在第六种可行的实施方式中,所述第一站点和所述第二站点中的接入站点在所述多个信道中除所述目标信道外的信道上建立的与第三站点之间的第二传输会的结束时间不晚于所述第一传输机会的结束时间。
本发明第二方面提供一种天线通知方法,包括:
当接入站点与终端站点进行波束成形训练时,所述接入站点选择对应于所述终端站点的接收天线;
所述接入站点将所选择的所述接收天线的标识通知给所述终端站点。
基于第二方面,在第一种可行的实施方式中,若所述接入站点在所述波束成形训练中的扇区级扫描阶段选择所述接收天线;
所述接入站点将所选择的所述接收天线的标识通知给所述终端站点,包括:
所述接入站点将所述接收天线的标识封装于扇区扫描反馈帧中,并将所述扇区扫描反馈帧返回至所述终端站点。
基于第二方面,在第二种可行的实施方式中,若所述接入站点在所述波束成形训练中的波束细化协议阶段选择所述接收天线;
所述接入站点将所选择的所述接收天线的标识通知给所述终端站点,包括:
所述接入站点向所述终端站点发送包含所述接收天线的标识的命令帧;或者,
所述接入站点根据所述终端站点发送的用于请求接收天线的标识的请求帧回复包含所述接收天线的标识的命令帧。
本发明第三方面提供一种部署在无线局域网中的站点,包括:
监听模块,用于当所述站点需要通过网络向第一目标站点发送数据时,监听所述网络支持的多个信道中每个信道的忙闲状态;
选取模块,用于从所述多个信道中处于空闲状态的信道中选取至少一个目标信道;
建立模块,用于在所述目标信道上建立用于与所述第一目标站点进行数据通信的第一传输机会;
数据通信模块,用于基于所述第一传输机会与所述第一目标站点进行数据通信。
基于第三方面,在第一种可行的实施方式中,若所述目标信道包括所述网络支持的所述多个信道中的全部信道;
所述建立模块具体用于在所述多个信道聚合形成的聚合信道上建立用于与所述第一目标站点进行数据通信的第一传输机会。
基于第三方面第一种可行的实施方式,在第二种可行的实施方式中,所述建立模块具体用于在所述多个信道聚合形成的聚合信道上发送所述第一传输机会中的首帧,所述首帧包括建立的用于与所述第一目标站点进行数据通信的所述第一传输机会的持续时间。
基于第三方面,在第三种可行的实施方式中,所述站点和所述第一目标站点中包括接入站点,所述接入站点支持多个天线。
基于第三方面第三种可行的实施方式,在第四种可行的实施方式中,若所述目标信道包括所述网络支持的所述多个信道中的部分信道;且所述目标信道包括不相邻信道,所述不相邻信道与所述目标信道中的其它信道互不相邻;
所述建立模块具体用于在所述不相邻信道发送所述第一传输机会中的首 帧,所述首帧包括建立的用于与所述第一目标站点进行数据通信的所述第一传输机会的持续时间以及所述站点和所述第一目标站点中的接入站点用于在所述第一传输机会中发送数据的天线标识和接收数据的天线标识。
基于第三方面第三种可行的实施方式,在第五种可行的实施方式中,若所述目标信道包括所述网络支持的所述多个信道中的部分信道;且所述目标信道包括至少两个相邻信道;
所述建立模块具体用于在所述至少两个相邻信道聚合形成的聚合信道上发送所述第一传输机会中的首帧;或者,
所述建立模块具体用于在所述至少两个相邻信道中的每个信道上发送所述第一传输机会中的首帧;
其中,所述首帧包括建立的用于与所述第一目标站点进行数据通信的第一传输机会的持续时间以及所述站点和所述第一目标站点中的接入站点用于在所述第一传输机会中发送数据的天线标识和接收数据的天线标识。
基于第三方面第四种可行的实施方式或者第三方面第五种可行的实施方式,在第六种可行的实施方式中,所述站点和所述第一目标站点中的接入站点在所述多个信道中除所述目标信道外的信道上建立的与第二目标站点之间的第二传输会的结束时间不晚于所述第一传输机会的结束时间。
本发明第四方面提供一种接入站点,包括:
选择单元,用于当所述接入站点与终端站点进行波束成形训练时,选择对应于所述终端站点的接收天线;
通知单元,用于将所选择的所述接收天线的标识通知给所述终端站点。
基于第四方面,在第一种可行的实施方式中,若所述接入站点在所述波束成形训练中的扇区级扫描阶段选择所述接收天线;
所述通知单元具体用于将所述接收天线的标识封装于扇区扫描反馈帧中,并将所述扇区扫描反馈帧返回至所述终端站点。
基于第四方面,在第二种可行的实施方式中,若所述接入站点在所述波束成形训练中的波束细化协议阶段选择所述接收天线;
所述通知单元具体用于向所述终端站点发送包含所述接收天线的标识的命令帧;或者,
所述通知单元具体用于根据所述终端站点发送的用于请求接收天线的标识的请求帧回复包含所述接收天线的标识的命令帧。
本发明实施例中,当第一站点需要通过网络向第二站点发送数据时,监听网络支持的多个信道中每个信道的忙闲状态,从多个信道中中处于空闲状态的信道中选取至少一个目标信道,在所选取的目标信道上建立用于与第二站点进行数据通信的第一传输机会,基于该第一传输机会与第二站点进行数据通信。这种方式可以在支持多信道的网络中建立站点之间的传输机会,充分利用空闲信道资源。
本发明实施例中,当接入站点与终端站点进行波束成形训练时,接入站点选择对应于终端站点的接收天线,并将所选择的接收天线的标识通知给终端站点,这种方式可以将接入站点所选择的接收天线通知至终端站点,以使终端站点知悉接入站点对应于自身的接收天线,后续当终端站点发起数据通信时,可以通知终端站点覆盖范围内其它站点该终端站点所占用的接收天线,避免接收天线冲突。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的WLAN部署场景的系统示意图
图2为本发明实施例提供的一种数据通信方法的流程示意图;
图3为本发明实施例提供的另一种数据通信方法的流程示意图;
图4为本发明实施例提供的又一种数据通信方法的流程示意图;
图5为本发明实施例提供的一种天线通知方法的流程示意图;
图6为本发明实施例提供的一种TXOP建立的实际应用场景图;
图7为本发明实施例提供的另一种TXOP建立的实际应用场景图;
图8为本发明实施例提供的一种接入站点的天线分配示意图;
图9为本发明实施例提供的一种站点的结构示意图;
图10为本发明实施例提供的一种接入站点的结构示意图;
图11为本发明实施例提供的另一种站点的结构示意图;
图12为本发明实施例提供的另一种接入站点的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明实施例的数据通信方法可以应用于下一代的60GHz WLAN技术中,即是应用于支持多信道的EDMG网络中。如图1所示,为一个典型的WLAN部署场景的系统示意图,在网络中包括一个接入站点和多个终端站点STA,接入站点分别与STA1、STA2以及STA3进行通信。接入站点可以为个人基本服务集(BSS)控制点(personal basic service set(PBSS)control point,PCP)或者接入点(Access Point,AP),PCP在PBSS中协调其他终端站点接入无线媒介。AP对WLAN中的终端站点提供接入服务,以及进行管理和协调终端站点等。PCP/AP通常是支持多天线的设备,其不同的天线可在不同的信道上与不同的终端站点进行彼此独立的数据通信,但是同一时刻同一个天线只能与一个终端站点进行数据通信。
PCP/AP在与终端站点之间进行数据通信之前,需要进行波束成形训练,以找到适合彼此的发送天线和接收天线,后续再使用波束成形训练中所选择的发送天线和接收天线进行数据通信。
PCP/AP与终端站点之间的数据通信仍然是通过建立TXOP进行的,具体的TXOP建立过程是,需要发送数据的站点(包括PCP/AP或终端站点)在CBAP中遵循EDCA规则竞争接入信道,成功接入信道的站点建立TXOP以与另一个站点进行数据通信。由于EDMG网络支持多个信道,因此终端站点在某一时刻竞争接入信道时,多个信道中可能存在一个空闲信道或者多个空闲信道,为了能够充分利用空闲信道资源,成功接入信道的站点可以在至少一个空闲信道上建立TXOP,以与另一个站点基于所建立的TXOP进行数据通信。 若该终端站点只在部分空闲信道上建立TXOP,剩余空闲信道还可以被其它站点(包括PCP/AP和终端站点)竞争接入。
本发明实施例中需要发送数据的站点为第一站点,第一站点可以是接入站点(PCP/AP),也可以是终端站点。当第一站点为接入站点时,则第二站点为终端站点,当第一站点为终端站点时,第二站点为接入站点。第一站点通过监听网络支持的多个信道中各个信道的空闲状态竞争接入信道,并在至少一个空闲的目标信道上建立用于与第二站点进行数据通信的TXOP。
请参照图2,为本发明实施例提供的一种数据通信方法的流程示意图,如图所示,本实施例的数据通信方法包括步骤S100-S103;
S100,当第一站点需要通过网络向第二站点发送数据时,监听所述网络支持的多个信道中每个信道的忙闲状态;
本发明实施例中,在下一代的60GHZ WLAN技术中,基站系统(Base Station System,BSS)包括一个支持多天线的PCP/AP和多个终端站点,BSS支持多个信道,PCP/AP不同的天线可在不同的信道上与不同的终端站点进行彼此独立的通信,但是同一个时刻某一个天线只能与一个终端站点进行数据通信。
本发明实施例中,第一站点为需要发送数据的站点,可以是PCP/AP,也可以是终端站点,第一站点与第二站点之间的数据通信是基于所建立的TXOP进行通信的。具体的,第一站点与第二站点之间建立TXOP的建立方法可以是,在CBAP接入时段内,第一站点遵循EDCA规则竞争接入信道,即是监听网络支持的多个信道中每个信道的忙闲状态。
需要说明的是,为了后向兼容性,网络中的终端站点可以包括支持多信道的终端站点(EDMG STA),即是支持下一代的60GHZ WLAN技术的WLAN设备。进一步,终端站点中还可以包括现有的支持单信道的终端站点(DMG STA),即是现有的工作在60GHZ频带上的WLAN设备。PCP/AP可以利用信标帧中的Allocation Control field的Reserved位标识出哪一类型的终端站点竞争接入信道,例如若标识位为DMG STA-only CBAP,则在CBAP阶段只允许DMG STA竞争接入。若标识位为EDMG STA-only CBAP,则在CBAP阶段只允许EDMG STA竞争接入,本发明实施例中主要对EDMG STA在多信道中建 立TXOP的建立方式进行阐述,DMG STA建立TXOP的建立方式可以参照现有技术。
S101,所述第一站点从所述多个信道中处于空闲状态的信道中选取至少一个目标信道;
本发明实施例中,由于网络支持多个信道,因此在第一站点竞争接入信道,监听网络中每个信道的忙闲状态时,多个信道中空闲信道的数量可能有一个,也可能有多个,第一站点可以从多个信道中处于空闲状态的信道中选取至少一个目标信道,用以建立TXOP。具体的选取方式可以是第一站点从多个信道中所有处于空闲状态的信道中选取部分信道作为目标信道,也可以将多个信道中所有处于空闲状态的信道作为目标信道。例如,若网络支持信道1、信道2以及信道3,其中信道1和信道3均处于空闲状态,第一站点可以将信道1和信道3作为目标信道以建立传输机会,也可以仅仅将信道1作为目标信道以建立传输机会,而信道3被其它站点(包括PCP/AP或者终端站点)竞争接入。
当目标信道中包括多个空闲信道时,则目标信道中的各个空闲信道之间可能相邻,也可能不相邻。根据目标信道中各个空闲信道之间是否相邻,第一站点可以有不同的传输机会建立方式。
S102,所述第一站点在所述目标信道上建立用于与所述第二站点进行数据通信的第一传输机会;
本发明实施例中,第一站点在所选取的目标信道上建立用于与第二站点进行数据通信的第一传输机会,具体的,根据目标信道中空闲信道数量以及目标信道中各个空闲信道之间是否相邻,第一站点具有不同的传输机会建立方式。
可选的,若目标信道包括网络所支持的多个信道中的全部信道,则第一站点在所有信道聚合形成的聚合信道上建立用于与第二站点进行数据通信的TXOP。第一站点(包括PCP/AP或终端站点)在聚合信道上发送TXOP的首帧,首帧包括但不限于数据帧和请求发送(Request To Send,RTS)帧,第二站点回复清除发送(Clear To Send,CTS)帧。在TXOP内除在聚合信道上发送首帧的第一站点(TXOP holder)和接收TXOP holder发送的帧的第二站点(TXOP responder)外,其它站点不允许在聚合信道上发送数据。
可选的,若目标信道为网络所支持的多个信道中的部分信道,且部分信道 中包括不相邻信道,不相邻信道即是与目标信道中的其它信道互不相邻,例如,网络支持信道1、信道2和信道3,三个信道依次排列。目标信道为信道1和信道3,则信道1与目标信道中的信道3不相邻,则信道1和信道3均可称为不相邻信道。第一站点在目标信道上建立第一传输机会时,可以是分别在信道1和信道3建立与第二站点之间用于进行数据通信的第一传输机会,即是第一站点分别在信道1和信道3上发送TXOP的首帧,首帧包括但不限于数据帧和RTS帧,第二站点回复CTS帧。在TXOP内除第一站点和第二站点外,其它站点不允许在信道1和信道3上发送数据。
可选的,若目标信道为网络所支持的多个信道中的部分信道,且部分信道中包括至少两个相邻信道,例如,网络支持信道1、信道2和信道3,三个信道依次排列。目标信道为信道1和信道2,第一站点在目标信道上建立第一传输机会时,可以是在信道1和信道2聚合形成的聚合信道上发送TXOP的首帧,首帧包括但不限于数据帧和RTS帧,第二站点在聚合信道上回复CTS帧。可选的,第一站点也可以是分别在目标信道中的信道1和信道2发送TXOP的首帧,首帧包括但不限于数据帧和RTS帧,第二站点分别在信道1和信道2回复CTS帧。在TXOP内除第一站点和第二站点外,其它站点不允许在信道1和信道2上发送数据。
S103,所述第一站点基于所述第一传输机会与所述第二站点进行数据通信。
本发明实施例中,第一站点基于所建立的与第二站点之间的第一传输机会,与第二站点进行数据通信。数据通信的过程可以是,第一站点与第二站点之间传输视频数据、音频数据、图片数据等等。
本发明实施例中,当第一站点需要通过网络向第二站点发送数据时,监听网络支持的多个信道中每个信道的忙闲状态,从多个信道中处于空闲状态的信道中选取至少一个目标信道,在所选取的目标信道上建立用于与第二站点进行数据通信的第一传输机会,基于该第一传输机会与第二站点进行数据通信。这种方式可以在支持多信道的网络中建立站点之间的传输机会,充分利用空闲信道资源。
请参照图3,为本发明实施例提供的另一种数据通信方法的流程示意图,如图所示,本实施例的数据通信方法包括步骤S200-S203;
S200,当第一站点需要通过网络向第二站点发送数据时,监听所述网络支持的多个信道中每个信道的忙闲状态;
S201,所述第一站点从所述多个信道中处于空闲状态的信道中选取至少一个目标信道;
本发明实施例步骤S200-S201,请参照图2的实施例步骤S100-S101,在此不再赘述。
S202,所述第一站点在所述多个信道聚合形成的聚合信道上建立用于与所述第二站点进行数据通信的第一传输机会。
本发明实施例中,若目标信道包括网络支持的多个信道中的全部信道,则第一站点在多个信道聚合形成的聚合信道上建立用于与第二站点进行数据通信的第一传输机会。
进一步的,在聚合信道上建立用于与第二站点进行数据通信的第一传输机会的建立方式可以包括:
所述第一站点在所述多个信道聚合形成的聚合信道上发送所述第一传输机会的首帧,所述首帧包括建立的用于与所述第二站点进行数据通信的传输机会的持续时间。
本发明实施例中,第一站点(PCP/AP或终端站点)在聚合信道上发送第一传输机会的首帧,即是TXOP的第一帧,首帧包括但不限于数据帧和RTS帧,在首帧的媒体访问控制(Media Access Control,MAC)帧头的Duration域的值指示TXOP的长度,即是TXOP的持续时间。在网络内的其它终端站点可以收到该首帧,并且解析该首帧的帧结构,获得其中TXOP的持续时间,在该TXOP持续时间内,其它终端站点不会竞争接入信道。
在第一站点和第二站点中包括PCP/AP,PCP/AP支持多天线,不同的天线可在不同的信道与不同的终端站点进行彼此独立的数据通信。由于本发明实施例中所有的信道均被第一站点和第二站点占据,其它终端站点不会竞争接入,PCP/AP也不会使用天线接收其它站点的数据,因此当目标信道包括网络支持的所有信道时,PCP/AP的天线也不会产生冲突,首帧中也不需要包括 PCP/AP在此次传输机会中所使用的发送数据的天线标识和接收数据的天线标识。
S203,所述第一站点基于所述第一传输机会与所述第二站点进行数据通信。
本发明实施例步骤S203请参照图2的实施例步骤S103,在此不再赘述。
本发明实施例中,当第一站点需要通过网络向第二站点发送数据时,监听网络支持的多个信道中每个信道的忙闲状态,从多个信道中处于空闲状态的信道中选取至少一个目标信道,在所选取的目标信道上建立用于与第二站点进行数据通信的第一传输机会,基于该第一传输机会与第二站点进行数据通信。这种方式可以在支持多信道的网络中建立站点之间的传输机会,充分利用空闲信道资源。
请参照图4,为本发明实施例提供的又一种数据通信方法的流程示意图,如图所示,本实施例的数据通信方法包括步骤S300-S304;
S300,当第一站点需要通过网络向第二站点发送数据时,监听所述网络支持的多个信道中每个信道的忙闲状态;
S301,所述第一站点从所述多个信道中处于空闲状态的信道中选取至少一个目标信道;
本发明实施例步骤S300-S301,请参照图2的实施例步骤S100-S101,在此不再赘述。
根据目标信道中所包含的信道之间是否相邻,建立传输机会的建立方式可以有以下两种可选的实施方式:
在第一种可选的实施方式中,若所述目标信道包括所述网络支持的所述多个信道中的部分信道;且所述目标信道包括不相邻信道,所述不相邻信道与所述目标信道中的其它信道互不相邻;
S302,所述第一站点在所述不相邻信道发送所述第一传输机会的首帧,所述首帧包括建立的用于与所述第二站点进行数据通信的第一传输机会的持续时间以及所述第一站点和所述第二站点中的接入站点用于在所述传输机会中发送数据的天线标识和接收数据的天线标识。
本发明实施例中,由于目标信道包括网络支持的多个信道中的部分信道,即是有其它信道被其它终端站点竞争接入,若被其它终端站点竞争接入,且在波束成形训练时,该终端站点对应于PCP/AP的接收天线和/或发送天线与现在正在使用的天线相同,则会产生PCP/AP的天线冲突。
这里以一个例子来对PCP/AP的天线冲突进行阐述,假设PCP/AP有4个天线,支持3个信道,四个终端站点STA 1、STA 2、STA 3和STA 4分别和PCP/AP进行波束成形训练后,PCP/AP对应STA 1的发送天线是天线1,接收天线是天线2;PCP/AP对应STA 2的发送天线是天线2,接收天线是天线3;PCP/AP对应STA 3的发送天线是天线3,接收天线是天线4;PCP/AP对应STA 4的发送天线是天线3,接收天线是天线3。
当PCP/AP有数据要发给STA 1时,PCP/AP开始竞争信道(即监听3个信道),结果是信道1和信道2处于空闲状态、信道3繁忙,PCP/AP竞争成功信道1和信道2。PCP/AP在信道1和信道2上建立TXOP进行数据通信。此时由于PCP/AP对应于STA 2的发送天线(天线2)和PCP/AP在上述TXOP中使用的接收天线(即对应于STA 1的接收天线)冲突,都是天线2,此时由于在现有技术中STA 2不知道PCP/AP正在使用的天线,因此若STA 2发送数据PCP/AP也无法收到,因为存在天线冲突。
为了解决这个天线冲突问题,本发明实施例中,第一站点在目标信道中的不相邻信道发送第一传输机会的首帧,该首帧包括建立的用于与所述第二站点进行数据通信的传输机会的持续时间以及第一站点和第二站点中的接入站点用于在所述第一传输机会中发送数据的天线标识(发送天线标识)和接收数据的天线标识(接收天线标识)。若第一站点为终端站点,由于在前述波束成形训练中,终端站点也获得了PCP/AP对应于该终端站点的接收天线的标识和发送天线的标识,因此第一站点为终端站点也可以在首帧中添加发送天线的标识和接收天线的标识。
网络内的其它终端站点也可以收到该首帧,收到上述首帧其他终端站点,可获得如下信息:该TXOP所占用的信道(即接收到首帧的信道)、该TXOP的持续时间和该TXOP中PCP/AP所使用的发送天线和接收天线。若某终端站点(即是第三站点)想要与第一站点和第二站点中的接入站点建立新的TXOP (即是第二传输机会),则该终端站点和新的TXOP需要满足以下要求:
1、该终端站点在未被占用的部分或全部信道上竞争接入以建立TXOP,
2、新TXOP的结束时间不晚于正在使用的TXOP的结束时间,
3、PCP/AP在新的TXOP中使用的发送天线和接收天线(即PCP/AP与该STA进行波束成形训练后选择的发送天线和接收天线)和PCP/AP在正在使用的TXOP中使用的发送天线和接收天线完全不同,具体的图8所示,前面三个新TXOP的天线使用正确,第四个错误,由于天线2冲突。
上述三个条件中条件二主要是为了在下一轮TXOP的建立时,可以使用更多的空闲信道。
继续以上述四个终端站点STA 1、STA 2、STA 3和STA 4为例进行进一步说明,即是STA 2收到首帧后,在TXOP的持续时间内(例如TXOP持续时间为5秒)不会竞争接入信道,但是STA 3和STA 4可以竞争接入剩余信道3,当上述TXOP建立后持续1秒,信道3由繁忙变为空闲状态,STA 3和STA 4中的STA 3竞争到,则STA 3与PCP/AP之间建立新的TXOP进行通信,但是新的TXOP持续时间应该小于4秒,主要是为了下一轮TXOP的建立可以占用更多的空闲信道。
需要说明的是,若其它信道被PCP/AP竞争接入,则不会产生天线冲突,即是PCP/AP不会使用正在使用的天线竞争接入信道。
在第二种可选的实施方式中,若所述目标信道包括所述网络支持的所述多个信道中的部分信道;且所述目标信道包括至少两个相邻信道;
S304,所述第一站点在所述至少两个相邻信道聚合形成的聚合信道上发送所述第一传输机会的首帧;或者,
所述第一站点在所述至少两个相邻信道中的每个信道上发送所述第一传输机会的首帧;
其中,所述首帧包括建立的用于与所述第二站点进行数据通信的传输机会的持续时间以及所述第一站点和所述第二站点中的接入站点用于在所述传输机会中发送数据的天线标识和接收数据的天线标识。
本发明实施例中,目标信道包括所述网络支持的所述多个信道中的部分信道;且目标信道包括至少两个相邻信道。由于目标信道包括网络支持的多个信 道中的部分信道,因此在其它终端站点竞争接入信道时仍然可能存在PCP/AP的天线冲突。
为了解决这个天线冲突问题,本发明实施例中,第一站点在建立TXOP时,在目标信道中至少两个相邻信道聚合形成的聚合信道上发送第一传输机会的首帧,或者分别在至少两个相邻信道中的每个信道上发送第一传输机会的首帧。所述首帧包括建立的用于与所述第二站点进行数据通信的传输机会的持续时间以及所述第一站点和所述第二站点中的接入站点用于在所述传输机会中发送数据的天线标识和接收数据的天线标识。首帧包括但不限于RTS帧和数据帧。
在具体实现时,该第一站点(即TXOP holder)在聚合信道上或聚合信道中的每个信道上发送RTS帧作为TXOP的首帧,第二站点(TXOP responder)回复CTS帧。由于第一站点和第二站点的覆盖范围不同,为了使得更多的站点获知此次PCP/AP在所建立的TXOP中所使用的发送天线和接收天线,在该RTS帧和CTS帧中增加可选的“PCP/AP TX antenna field(2bits)”和“PCP/AP RX antenna field(2bits)”,分别用于标识PCP/AP在TXOP中用于发送数据的天线的标识和接收数据的天线的标识。
具体的,如图6所示,第一站点和第二站点(即图中的PCP/AP和STA1)在信道1和信道2聚合形成的聚合信道上建立TXOP,第一站点在聚合信道上发送RTS帧,第二站点在聚合信道上回复CTS帧,后续第一站点和第二站点在所建立的TXOP中进行数据通信。其它终端站点STA2可以竞争接入信道0,并与PCP/AP建立新的TXOP,需要说明的是STA2在波束成形训练中PCP/AP所选择的接收天线和发送天线与现在正在使用的天线(即是PCP/AP对应于STA1的发送天线和接收天线)完全不同。为了使得下一轮空闲信道数量更多,新的TXOP结束时间不能晚于PCP/AP与STA1之间所建立的TXOP的结束时间。
如图7所示,第一站点和第二站点(即图中的PCP/AP和STA1)分别在信道1和信道2建立TXOP,第一站点分别在信道1和信道2上发送RTS帧,第二站点分别在信道1和信道2上回复CTS帧,后续第一站点第二站点在所建立的TXOP中进行数据通信。其它终端站点STA2可以竞争接入信道0,并 与PCP/AP建立新的TXOP。
若该第一站点,即TXOP holder在聚合信道上或目标信道中每个信道发送数据帧作为TXOP的首帧,则在该数据帧的MAC帧头中增加可选的“PCP/AP TX antenna field(2bits)”和“PCP/AP RX antenna field(2bits)”,用于标识PCP/AP在TXOP中用于发送数据的天线标识和接收数据的天线标识。网络内的其它终端站点可以收到该数据帧,并解析出其中的发送天线和接收天线。当其它终端站点发现PCP/AP正在使用的发送天线和接收天线与自身波束成形训练中PCP/AP所选择的发送天线和接收天线相同,则不会竞争接入信道,以免造成PCP/AP的天线冲突。
上述PCP/AP在TXOP中用于发送数据的天线和接收数据的天线,是指PCP/AP与TXOP的另一方终端站点在之前的波束成形训练中选择的针对该终端站点的发送天线和接收天线。
上述RTS/CTS帧或数据帧的MAC帧头的Duration域的值指示TXOP的长度,即是TXOP的持续时间。在TXOP内,除TXOP holder和TXOP responder外,其他终端站点在TXOP占用的信道上不允许发送数据。
需要说明的是,目标信道中可以是仅仅包括不相邻信道,也可以是仅仅包括相邻信道,也可以是包括不相邻信道和相邻信道的组合。当目标信道中只包括一个信道时,则建立传输机会的建立方式与不相邻信道的传输机会建立方式相同。
S305,所述第一站点基于所述第一传输机会与所述第二站点进行数据通信。
本发明实施例步骤S305请参照图2的实施例步骤S103,在此不再赘述。
本发明实施例中,当第一站点需要通过网络向第二站点发送数据时,监听网络支持的多个信道中每个信道的忙闲状态,从多个信道中处于空闲状态的信道中选取至少一个目标信道,在所选取的目标信道上建立用于与第二站点进行数据通信的第一传输机会,基于该第一传输机会与第二站点进行数据通信。这种方式可以在支持多信道的网络中建立站点之间的传输机会,充分利用空闲信道资源。
请参照图5,为本发明实施例提供的一种天线通知方法的流程示意图,如图所示,本实施例的天线通知方法包括步骤S400-S401;
S400,当接入站点与终端站点进行波束成形训练时,所述接入站点选择对应于所述终端站点的接收天线;
本发明实施例中,接入站点支持多个天线。不同的天线可在不同的信道上与不同的终端站点进行彼此独立的通信。某一个终端站点具体对应于PCP/AP的哪一个发送天线和接收天线(即是PCP/AP具体使用哪一个发送天线和接收天线向该终端站点收发数据)需要在该终端站点接入网络时,与PCP/AP之间进行波束成形训练得到,此外,波束成形训练时,终端站点也可以获得自身选择的向对方PCP/AP发送数据的发送天线和接收数据的接收天线。
本发明实施例中,波束成形训练包括两个阶段,即是扇区级扫描(sector-level sweep,SLS)阶段以及波束细化协议(beam refinement protocol,BRP)阶段。接入站点可以在SLS阶段选择对应于该终端站点的接收天线,也可以在BRP阶段选择对应于该终端站点的接收天线。
S401,所述接入站点将所选择的所述接收天线的标识通知给所述终端站点。
接入站点将所选择的接收天线的标识通知给终端站点的方式可以有以下两种可选的实施方式:
在第一种可选的实施方式中,若所述接入站点在所述波束成形训练中的扇区级扫描阶段选择所述接收天线;
所述接入站点将所述接收天线的标识封装于扇区扫描反馈帧中,并将所述扇区扫描反馈帧返回至所述终端站点。
本发明实施例中,若PCP/AP在SLS阶段选择自身对于终端站点的接收天线,则PCP/AP发送给第一站点的扇区扫描反馈帧(sector sweep feedback frame,SSW-Feedback frame)中的方向性多千兆比特天线选择域(directional multi-gigabit antenna select field,DMG Antenna select field)设置为PCP/AP选择的接收天线。
在第二种可选的实施方式中,若所述接入站点在所述波束成形训练中的波束细化协议阶段选择所述接收天线;
所述接入站点向所述终端站点发送包含所述接收天线的标识的命令帧;或者,
所述接入站点根据所述终端站点发送的用于请求接收天线的标识的请求帧回复包含所述接收天线的标识的命令帧。
本发明实施例中,若PCP/AP在BRP阶段选择自身对于该终端站点的接收天线,则BRP完成后,PCP/AP可以主动通知终端站点自己选择的接收天线,例如,PCP/AP向终端站点发送包含有所选接收天线的标识的域的命令帧,终端站点收到该命令帧后回复应答帧。BRP完成后,终端站点也可以主动请求PCP/AP所选的接收天线,例如,终端站点向PCP/AP发送用于请求PCP/AP所选的接收天线的请求帧,PCP/AP收到该请求帧后回复包含有所选接收天线的标识的域的命令帧。
本发明实施例中,终端站点获得自身对应于PCP/AP的接收天线,为了便于在后续终端站点与PCP/AP之间建立TXOP进行数据通信时通知终端站点覆盖范围内其他站点正在使用的接收天线,以避免PCP/AP的天线冲突。
需要说明的是,在波束成形训练中PCP/AP对于不同终端站点所选择的接收天线可能相同,例如,PCP/AP对STA 1和STA 2所选择的接收天线均为天线2。但是后续STA 1和STA 2不能在同一时刻与PCP/AP之间建立TXOP进行数据通信,因为会产生天线冲突。
本发明实施例中,当接入站点与终端站点进行波束成形训练时,接入站点选择对应于终端站点的接收天线,并将所选择的接收天线的标识通知给终端站点,这种方式可以将接入站点所选择的接收天线通知至终端站点,以使终端站点知悉接入站点对应于自身的接收天线,后续当终端站点发起数据通信时,可以通知终端站点覆盖范围内其它站点该终端站点所占用的接收天线,避免接收天线冲突。
请参照图9,为本发明实施例提供的一种部署在无线局域网中的站点的结构示意图,如图所示,所述站点包括:
监听模块100,用于当所述站点需要通过网络向第一目标站点发送数据时,监听所述网络支持的多个信道中每个信道的忙闲状态;
本发明实施例中,在下一代的60GHZ WLAN技术中,基站系统(Base Station System,BSS)包括一个支持多天线的PCP/AP和多个终端站点,BSS支持多个信道,PCP/AP不同的天线可在不同的信道上与不同的终端站点进行彼此独立的通信,但是同一个时刻某一个天线只能与一个终端站点进行数据通信。
本发明实施例中,第一站点为需要发送数据的站点,可以是PCP/AP,也可以是终端站点,第一站点与第二站点之间的数据通信是基于所建立的TXOP进行通信的。具体的,第一站点与第二站点之间建立TXOP的建立方法可以是,在CBAP接入时段内,第一站点遵循EDCA规则竞争接入信道,即是监听模块100监听网络支持的多个信道中每个信道的忙闲状态。
需要说明的是,为了后向兼容性,网络中的终端站点可以包括支持多信道的终端站点(EDMG STA),即是支持下一代的60GHZ WLAN技术的WLAN设备。进一步,终端站点中还可以包括现有的支持单信道的终端站点(DMG STA),即是现有的工作在60GHZ频带上的WLAN设备。PCP/AP可以利用信标帧中的Allocation Control field的Reserved位标识出哪一类型的终端站点竞争接入信道,例如若标识位为DMG STA-only CBAP,则在CBAP阶段只允许DMG STA竞争接入。若标识位为EDMG STA-only CBAP,则在CBAP阶段只允许EDMG STA竞争接入,本发明实施例中主要对EDMG STA在多信道中建立TXOP的建立方式进行阐述,DMG STA建立TXOP的建立方式可以参照现有技术。
选取模块101,用于从所述多个信道中处于空闲状态的信道中选取至少一个目标信道;
本发明实施例中,由于网络支持多个信道,因此在第一站点竞争接入信道,监听网络中每个信道的忙闲状态时,多个信道中空闲信道的数量可能有一个,也可能有多个,第一站点选取模块101可以从多个信道中处于空闲状态的信道中选取至少一个目标信道,用以建立TXOP。具体的选取方式可以是第一站点从多个信道中所有处于空闲状态的信道中选取部分信道作为目标信道,也可以将多个信道中所有处于空闲状态的信道作为目标信道。例如,若网络支持信道1、信道2以及信道3,其中信道1和信道3均处于空闲状态,第一站点可以 将信道1和信道3作为目标信道以建立传输机会,也可以仅仅将信道1作为目标信道以建立传输机会,而信道3被其它站点(包括PCP/AP或者终端站点)竞争接入。
当目标信道中包括多个空闲信道时,则目标信道中的各个空闲信道之间可能相邻,也可能不相邻。根据目标信道中各个空闲信道之间是否相邻,第一站点可以有不同的传输机会建立方式。
建立模块102,用于在所述目标信道上建立用于与所述第一目标站点进行数据通信的第一传输机会;
本发明实施例中,第一站点建立模块102在所选取的目标信道上建立用于与第二站点进行数据通信的第一传输机会,具体的,根据目标信道中空闲信道数量以及目标信道中各个空闲信道之间是否相邻,第一站点具有不同的传输机会建立方式。
可选的,若目标信道包括网络所支持的多个信道中的全部信道,则第一站点在所有信道聚合形成的聚合信道上建立用于与第二站点进行数据通信的TXOP。第一站点(包括PCP/AP或终端站点)在聚合信道上发送TXOP的首帧,首帧包括但不限于数据帧和请求发送(Request To Send,RTS)帧,第二站点回复清除发送(Clear To Send,CTS)帧。在TXOP内除在聚合信道上发送首帧的第一站点(TXOP holder)和接收TXOP holder发送的帧的第二站点(TXOP responder)外,其它站点不允许在聚合信道上发送数据。
可选的,若目标信道为网络所支持的多个信道中的部分信道,且部分信道中包括不相邻信道,不相邻信道即是与目标信道中的其它信道互不相邻,例如,网络支持信道1、信道2和信道3,三个信道依次排列。目标信道为信道1和信道3,则信道1与目标信道中的信道3不相邻,则信道1和信道3均可称为不相邻信道。第一站点在目标信道上建立第一传输机会时,可以是分别在信道1和信道3建立与第二站点之间用于进行数据通信的第一传输机会,即是第一站点分别在信道1和信道3上发送TXOP的首帧,首帧包括但不限于数据帧和RTS帧,第二站点回复CTS帧。在TXOP内除第一站点和第二站点外,其它站点不允许在信道1和信道3上发送数据。
可选的,若目标信道为网络所支持的多个信道中的部分信道,且部分信道 中包括至少两个相邻信道,例如,网络支持信道1、信道2和信道3,三个信道依次排列。目标信道为信道1和信道2,第一站点在目标信道上建立第一传输机会时,可以是在信道1和信道2聚合形成的聚合信道上发送TXOP的首帧,首帧包括但不限于数据帧和RTS帧,第二站点在聚合信道上回复CTS帧。可选的,第一站点也可以是分别在目标信道中的信道1和信道2发送TXOP的首帧,首帧包括但不限于数据帧和RTS帧,第二站点分别在信道1和信道2回复CTS帧。在TXOP内除第一站点和第二站点外,其它站点不允许在信道1和信道2上发送数据。
可选的,若所述目标信道包括所述网络支持的所述多个信道中的全部信道;
所述建立模块102具体用于在所述多个信道聚合形成的聚合信道上建立用于与所述第一目标站点进行数据通信的第一传输机会。
本发明实施例中,若目标信道包括网络支持的多个信道中的全部信道,则第一站点在多个信道聚合形成的聚合信道上建立用于与第二站点进行数据通信的第一传输机会。
具体的,所述建立模块102具体用于在所述多个信道聚合形成的聚合信道上发送所述第一传输机会中的首帧,所述首帧包括建立的用于与所述第一目标站点进行数据通信的所述第一传输机会的持续时间。
本发明实施例中,第一站点(PCP/AP或终端站点)建立模块102在聚合信道上发送第一传输机会的首帧,即是TXOP的第一帧,首帧包括但不限于数据帧和RTS帧,在首帧的媒体访问控制(Media Access Control,MAC)帧头的Duration域的值指示TXOP的长度,即是TXOP的持续时间。在网络内的其它终端站点可以收到该首帧,并且解析该首帧的帧结构,获得其中TXOP的持续时间,在该TXOP持续时间内,其它终端站点不会竞争接入信道。
在第一站点和第二站点中包括PCP/AP,PCP/AP支持多天线,不同的天线可在不同的信道与不同的终端站点进行彼此独立的数据通信。由于本发明实施例中所有的信道均被第一站点和第二站点占据,其它终端站点不会竞争接入,PCP/AP也不会使用天线接收其它站点的数据,因此当目标信道包括网络支持的所有信道时,PCP/AP的天线也不会产生冲突,首帧中也不需要包括 PCP/AP在此次传输机会中所使用的发送数据的天线标识和接收数据的天线标识。
可选的,若所述目标信道包括所述网络支持的所述多个信道中的部分信道;且所述目标信道包括不相邻信道,所述不相邻信道与所述目标信道中的其它信道互不相邻;
所述建立模块具体用于在所述不相邻信道发送所述第一传输机会中的首帧,所述首帧包括建立的用于与所述第一目标站点进行数据通信的所述第一传输机会的持续时间以及所述站点和所述第一目标站点中的接入站点用于在所述第一传输机会中发送数据的天线标识和接收数据的天线标识。
本发明实施例中,由于目标信道包括网络支持的多个信道中的部分信道,即是有其它信道被其它终端站点竞争接入,若被其它终端站点竞争接入,且在波束成形训练时,该终端站点对应于PCP/AP的接收天线和/或发送天线与现在正在使用的天线相同,则会产生PCP/AP的天线冲突。
这里以一个例子来对PCP/AP的天线冲突进行阐述,假设PCP/AP有4个天线,支持3个信道,四个终端站点STA 1、STA 2、STA 3和STA 4分别和PCP/AP进行波束成形训练后,PCP/AP对应STA 1的发送天线是天线1,接收天线是天线2;PCP/AP对应STA 2的发送天线是天线2,接收天线是天线3;PCP/AP对应STA 3的发送天线是天线3,接收天线是天线4;PCP/AP对应STA 4的发送天线是天线3,接收天线是天线3。
当PCP/AP有数据要发给STA 1时,PCP/AP开始竞争信道(即监听3个信道),结果是信道1和信道2处于空闲状态、信道3繁忙,PCP/AP竞争成功信道1和信道2。PCP/AP在信道1和信道2上建立TXOP进行数据通信。此时由于PCP/AP对应于STA 2的发送天线(天线2)和PCP/AP在上述TXOP中使用的接收天线(即对应于STA 1的接收天线)冲突,都是天线2,此时由于在现有技术中STA 2不知道PCP/AP正在使用的天线,因此若STA 2发送数据PCP/AP也无法收到,因为存在天线冲突。
为了解决这个天线冲突问题,本发明实施例中,第一站点在目标信道中的不相邻信道发送第一传输机会的首帧,该首帧包括建立的用于与所述第二站点进行数据通信的传输机会的持续时间以及第一站点和第二站点中的接入站点 用于在所述第一传输机会中发送数据的天线标识(发送天线标识)和接收数据的天线标识(接收天线标识)。若第一站点为终端站点,由于在前述波束成形训练中,终端站点也获得了PCP/AP对应于该终端站点的接收天线的标识和发送天线的标识,因此第一站点为终端站点也可以在首帧中添加发送天线的标识和接收天线的标识。
网络内的其它终端站点也可以收到该首帧,收到上述首帧其他终端站点,可获得如下信息:该TXOP所占用的信道(即接收到首帧的信道)、该TXOP的持续时间和该TXOP中PCP/AP所使用的发送天线和接收天线。若某终端站点(即是第三站点)想要与第一站点和第二站点中的接入站点建立新的TXOP(即是第二传输机会),则该终端站点和新的TXOP需要满足以下要求:
1、该终端站点在未被占用的部分或全部信道上竞争接入以建立TXOP,
2、新TXOP的结束时间不晚于正在使用的TXOP的结束时间,
3、PCP/AP在新的TXOP中使用的发送天线和接收天线(即PCP/AP与该STA进行波束成形训练后选择的发送天线和接收天线)和PCP/AP在正在使用的TXOP中使用的发送天线和接收天线完全不同,具体的图8所示,前面三个新TXOP的天线使用正确,第四个错误,由于天线2冲突。
上述三个条件中条件二主要是为了在下一轮TXOP的建立时,可以使用更多的空闲信道。
继续以上述四个终端站点STA 1、STA 2、STA 3和STA 4为例进行进一步说明,即是STA 2收到首帧后,在TXOP的持续时间内(例如TXOP持续时间为5秒)不会竞争接入信道,但是STA 3和STA 4可以竞争接入剩余信道3,当上述TXOP建立后持续1秒,信道3由繁忙变为空闲状态,STA 3和STA 4中的STA 3竞争到,则STA 3与PCP/AP之间建立新的TXOP进行通信,但是新的TXOP持续时间应该小于4秒,主要是为了下一轮TXOP的建立可以占用更多的空闲信道。
需要说明的是,若其它信道被PCP/AP竞争接入,则不会产生天线冲突,即是PCP/AP不会使用正在使用的天线竞争接入信道。
可选的,若所述目标信道包括所述网络支持的所述多个信道中的部分信道;且所述目标信道包括至少两个相邻信道;
所述建立模块具体用于在所述至少两个相邻信道聚合形成的聚合信道上发送所述第一传输机会中的首帧;或者,
所述建立模块具体用于在所述至少两个相邻信道中的每个信道上发送所述第一传输机会中的首帧;
其中,所述首帧包括建立的用于与所述第一目标站点进行数据通信的第一传输机会的持续时间以及所述站点和所述第一目标站点中的接入站点用于在所述第一传输机会中发送数据的天线标识和接收数据的天线标识。
本发明实施例中,目标信道包括所述网络支持的所述多个信道中的部分信道;且目标信道包括至少两个相邻信道。由于目标信道包括网络支持的多个信道中的部分信道,因此在其它终端站点竞争接入信道时仍然可能存在PCP/AP的天线冲突。
为了解决这个天线冲突问题,本发明实施例中,第一站点在建立TXOP时,在目标信道中至少两个相邻信道聚合形成的聚合信道上发送第一传输机会的首帧,或者分别在至少两个相邻信道中的每个信道上发送第一传输机会的首帧。所述首帧包括建立的用于与所述第二站点进行数据通信的传输机会的持续时间以及所述第一站点和所述第二站点中的接入站点用于在所述传输机会中发送数据的天线标识和接收数据的天线标识。首帧包括但不限于RTS帧和数据帧。
在具体实现时,该第一站点(即TXOP holder)在聚合信道上或聚合信道中的每个信道上发送RTS帧作为TXOP的首帧,第二站点(TXOP responder)回复CTS帧。由于第一站点和第二站点的覆盖范围不同,为了使得更多的站点获知此次PCP/AP在所建立的TXOP中所使用的发送天线和接收天线,在该RTS帧和CTS帧中增加可选的“PCP/AP TX antenna field(2bits)”和“PCP/AP RX antenna field(2bits)”,分别用于标识PCP/AP在TXOP中用于发送数据的天线的标识和接收数据的天线的标识。
具体的,如图6所示,第一站点和第二站点(即图中的PCP/AP和STA1)在信道1和信道2聚合形成的聚合信道上建立TXOP,第一站点在聚合信道上发送RTS帧,第二站点在聚合信道上回复CTS帧,后续第一站点和第二站点在所建立的TXOP中进行数据通信。其它终端站点STA2可以竞争接入信道0, 并与PCP/AP建立新的TXOP,需要说明的是STA2在波束成形训练中PCP/AP所选择的接收天线和发送天线与现在正在使用的天线(即是PCP/AP对应于STA1的发送天线和接收天线)完全不同。为了使得下一轮空闲信道数量更多,新的TXOP结束时间不能晚于PCP/AP与STA1之间所建立的TXOP的结束时间。
如图7所示,第一站点和第二站点(即图中的PCP/AP和STA1)分别在信道1和信道2建立TXOP,第一站点分别在信道1和信道2上发送RTS帧,第二站点分别在信道1和信道2上回复CTS帧,后续第一站点第二站点在所建立的TXOP中进行数据通信。其它终端站点STA2可以竞争接入信道0,并与PCP/AP建立新的TXOP。
若该第一站点,即TXOP holder在聚合信道上或目标信道中每个信道发送数据帧作为TXOP的首帧,则在该数据帧的MAC帧头中增加可选的“PCP/AP TX antenna field(2bits)”和“PCP/AP RX antenna field(2bits)”,用于标识PCP/AP在TXOP中用于发送数据的天线标识和接收数据的天线标识。网络内的其它终端站点可以收到该数据帧,并解析出其中的发送天线和接收天线。当其它终端站点发现PCP/AP正在使用的发送天线和接收天线与自身波束成形训练中PCP/AP所选择的发送天线和接收天线相同,则不会竞争接入信道,以免造成PCP/AP的天线冲突。
上述PCP/AP在TXOP中用于发送数据的天线和接收数据的天线,是指PCP/AP与TXOP的另一方终端站点在之前的波束成形训练中选择的针对该终端站点的发送天线和接收天线。
上述RTS/CTS帧或数据帧的MAC帧头的Duration域的值指示TXOP的长度,即是TXOP的持续时间。在TXOP内,除TXOP holder和TXOP responder外,其他终端站点在TXOP占用的信道上不允许发送数据。
需要说明的是,目标信道中可以是仅仅包括不相邻信道,也可以是仅仅包括相邻信道,也可以是包括不相邻信道和相邻信道的组合。当目标信道中只包括一个信道时,则建立传输机会的建立方式与不相邻信道的传输机会建立方式相同。
数据通信模块103,用于基于所述第一传输机会与所述第一目标站点进行 数据通信。
本发明实施例中,第一站点数据通信模块103基于所建立的与第二站点之间的第一传输机会,与第二站点进行数据通信。数据通信的过程可以是,第一站点与第二站点之间传输视频数据、音频数据、图片数据等等。
本发明实施例中,当第一站点需要通过网络向第二站点发送数据时,监听网络支持的多个信道中每个信道的忙闲状态,从多个信道中处于空闲状态的信道中选取至少一个目标信道,在所选取的目标信道上建立用于与第二站点进行数据通信的第一传输机会,基于该第一传输机会与第二站点进行数据通信。这种方式可以在支持多信道的网络中建立站点之间的传输机会,充分利用空闲信道资源。
请参照图10,为本发明实施例提供的一种接入站点的结构示意图,如图所示,所述接入站点包括:
选择模块200,用于当所述接入站点与终端站点进行波束成形训练时,选择对应于所述终端站点的接收天线;
本发明实施例中,接入站点支持多个天线。不同的天线可在不同的信道上与不同的终端站点进行彼此独立的通信。某一个终端站点具体对应于PCP/AP的哪一个发送天线和接收天线(即是PCP/AP具体使用哪一个发送天线和接收天线向该终端站点收发数据)需要在该终端站点接入网络时,与PCP/AP之间进行波束成形训练得到,此外,波束成形训练时,终端站点也可以获得自身选择的向对方PCP/AP发送数据的发送天线和接收数据的接收天线。
本发明实施例中,波束成形训练包括两个阶段,即是扇区级扫描(sector-level sweep,SLS)阶段以及波束细化协议(beam refinement protocol,BRP)阶段。接入站点选择模块200可以在SLS阶段选择对应于该终端站点的接收天线,也可以在BRP阶段选择对应于该终端站点的接收天线。
通知模块201,用于将所选择的所述接收天线的标识通知给所述终端站点。
可选的,若所述接入站点在所述波束成形训练中的扇区级扫描阶段选择所述接收天线;
所述通知模块201具体用于将所述接收天线的标识封装于扇区扫描反馈帧中,并将所述扇区扫描反馈帧返回至所述终端站点。
本发明实施例中,若PCP/AP在SLS阶段选择自身对于终端站点的接收天线,则PCP/AP通知模块201发送给第一站点的扇区扫描反馈帧(sector sweep feedback frame,SSW-Feedback frame)中的方向性多千兆比特天线选择域(directional multi-gigabit antenna select field,DMG Antenna select field)设置为PCP/AP选择的接收天线。
可选的,若所述接入站点在所述波束成形训练中的波束细化协议阶段选择所述接收天线;
所述通知模块201具体用于向所述终端站点发送包含所述接收天线的标识的命令帧;或者,
所述通知模块201具体用于根据所述终端站点发送的用于请求接收天线的标识的请求帧回复包含所述接收天线的标识的命令帧。
本发明实施例中,若PCP/AP在BRP阶段选择自身对于该终端站点的接收天线,则BRP完成后,PCP/AP通知模块201可以主动通知终端站点自己选择的接收天线,例如,PCP/AP向终端站点发送包含有所选接收天线的标识的域的命令帧,终端站点收到该命令帧后回复应答帧。BRP完成后,终端站点也可以主动请求PCP/AP所选的接收天线,例如,终端站点向PCP/AP发送用于请求PCP/AP所选的接收天线的请求帧,PCP/AP收到该请求帧后回复包含有所选接收天线的标识的域的命令帧。
本发明实施例中,终端站点获得自身对应于PCP/AP的接收天线,为了便于在后续终端站点与PCP/AP之间建立TXOP进行数据通信时通知终端站点覆盖范围内其他站点正在使用的接收天线,以避免PCP/AP的天线冲突。
需要说明的是,在波束成形训练中PCP/AP对于不同终端站点所选择的接收天线可能相同,例如,PCP/AP对STA 1和STA 2所选择的接收天线均为天线2。但是后续STA 1和STA 2不能在同一时刻与PCP/AP之间建立TXOP进行数据通信,因为会产生天线冲突。
本发明实施例中,当接入站点与终端站点进行波束成形训练时,接入站点选择对应于终端站点的接收天线,并将所选择的接收天线的标识通知给终端站 点,这种方式可以将接入站点所选择的接收天线通知至终端站点,以使终端站点知悉接入站点对应于自身的接收天线,后续当终端站点发起数据通信时,可以通知终端站点覆盖范围内其它站点该终端站点所占用的接收天线,避免接收天线冲突。
请参照图11,为本发明实施例提供的另一种站点的结构示意图,图11的站点可用于实现上述方法实施例中各步骤及方法。图11的实施例中,站点30包括天线300、发射机301、接收机302、处理器303和存储器304。处理器303控制站点30的操作,并可用于处理信号。存储器304可以包括只读存储器和随机存取存储器,并向处理器303提供指令和数据。发射机301和接收机302可以耦合到天线300,站点30的各个组件通过总线系统305耦合在一起,其中总线系统305除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统305。
具体地,存储器304可存储执行以下过程的指令:
当第一站点需要通过网络向第二站点发送数据时,监听所述网络支持的多个信道中每个信道的忙闲状态;
所述第一站点从所述多个信道中处于空闲状态的信道中选取至少一个目标信道;
所述第一站点在所述目标信道上建立用于与所述第二站点进行数据通信的第一传输机会;
所述第一站点基于所述第一传输机会与所述第二站点进行数据通信。
可选的,在下一代的60GHZ WLAN技术中,基站系统(Base Station System,BSS)包括一个支持多天线的PCP/AP和多个终端站点,BSS支持多个信道,PCP/AP不同的天线可在不同的信道上与不同的终端站点进行彼此独立的通信,但是同一个时刻某一个天线只能与一个终端站点进行数据通信。
第一站点为需要发送数据的站点,可以是PCP/AP,也可以是终端站点,第一站点与第二站点之间的数据通信是基于所建立的TXOP进行通信的。具体的,第一站点与第二站点之间建立TXOP的建立方法可以是,在CBAP接入时段内,第一站点遵循EDCA规则竞争接入信道,即是监听网络支持的多个 信道中每个信道的忙闲状态。
需要说明的是,为了后向兼容性,网络中的终端站点可以包括支持多信道的终端站点(EDMG STA),即是支持下一代的60GHZ WLAN技术的WLAN设备。进一步,终端站点中还可以包括现有的支持单信道的终端站点(DMG STA),即是现有的工作在60GHZ频带上的WLAN设备。PCP/AP可以利用信标帧中的Allocation Control field的Reserved位标识出哪一类型的终端站点竞争接入信道,例如若标识位为DMG STA-only CBAP,则在CBAP阶段只允许DMG STA竞争接入。若标识位为EDMG STA-only CBAP,则在CBAP阶段只允许EDMG STA竞争接入,本发明实施例中主要对EDMG STA在多信道中建立TXOP的建立方式进行阐述,DMG STA建立TXOP的建立方式可以参照现有技术。
可选的,由于网络支持多个信道,因此在第一站点竞争接入信道,监听网络中每个信道的忙闲状态时,多个信道中空闲信道的数量可能有一个,也可能有多个,第一站点可以从多个信道中处于空闲状态的信道中选取至少一个目标信道,用以建立TXOP。具体的选取方式可以是第一站点从多个信道中所有处于空闲状态的信道中选取部分信道作为目标信道,也可以将多个信道中所有处于空闲状态的信道作为目标信道。例如,若网络支持信道1、信道2以及信道3,其中信道1和信道3均处于空闲状态,第一站点可以将信道1和信道3作为目标信道以建立传输机会,也可以仅仅将信道1作为目标信道以建立传输机会,而信道3被其它站点(包括PCP/AP或者终端站点)竞争接入。
当目标信道中包括多个空闲信道时,则目标信道中的各个空闲信道之间可能相邻,也可能不相邻。根据目标信道中各个空闲信道之间是否相邻,第一站点可以有不同的传输机会建立方式。
可选的,第一站点在所选取的目标信道上建立用于与第二站点进行数据通信的第一传输机会,具体的,根据目标信道中空闲信道数量以及目标信道中各个空闲信道之间是否相邻,第一站点具有不同的传输机会建立方式。
可选的,若目标信道包括网络所支持的多个信道中的全部信道,则第一站点在所有信道聚合形成的聚合信道上建立用于与第二站点进行数据通信的TXOP。第一站点(包括PCP/AP或终端站点)在聚合信道上发送TXOP的首 帧,首帧包括但不限于数据帧和请求发送(Request To Send,RTS)帧,第二站点回复清除发送(Clear To Send,CTS)帧。在TXOP内除在聚合信道上发送首帧的第一站点(TXOP holder)和接收TXOP holder发送的帧的第二站点(TXOP responder)外,其它站点不允许在聚合信道上发送数据。
可选的,若目标信道为网络所支持的多个信道中的部分信道,且部分信道中包括不相邻信道,不相邻信道即是与目标信道中的其它信道互不相邻,例如,网络支持信道1、信道2和信道3,三个信道依次排列。目标信道为信道1和信道3,则信道1与目标信道中的信道3不相邻,则信道1和信道3均可称为不相邻信道。第一站点在目标信道上建立第一传输机会时,可以是分别在信道1和信道3建立与第二站点之间用于进行数据通信的第一传输机会,即是第一站点分别在信道1和信道3上发送TXOP的首帧,首帧包括但不限于数据帧和RTS帧,第二站点回复CTS帧。在TXOP内除第一站点和第二站点外,其它站点不允许在信道1和信道3上发送数据。
可选的,若目标信道为网络所支持的多个信道中的部分信道,且部分信道中包括至少两个相邻信道,例如,网络支持信道1、信道2和信道3,三个信道依次排列。目标信道为信道1和信道2,第一站点在目标信道上建立第一传输机会时,可以是在信道1和信道2聚合形成的聚合信道上发送TXOP的首帧,首帧包括但不限于数据帧和RTS帧,第二站点在聚合信道上回复CTS帧。可选的,第一站点也可以是分别在目标信道中的信道1和信道2发送TXOP的首帧,首帧包括但不限于数据帧和RTS帧,第二站点分别在信道1和信道2回复CTS帧。在TXOP内除第一站点和第二站点外,其它站点不允许在信道1和信道2上发送数据。
可选的,第一站点基于所建立的与第二站点之间的第一传输机会,与第二站点进行数据通信。数据通信的过程可以是,第一站点与第二站点之间传输视频数据、音频数据、图片数据等等。
进一步的,若所述目标信道包括所述网络支持的所述多个信道中的全部信道;
所述第一站点在所述目标信道上建立用于与所述第二站点进行数据通信的第一传输机会,包括:
所述第一站点在所述多个信道聚合形成的聚合信道上建立用于与所述第二站点进行数据通信的第一传输机会。
可选的,若目标信道包括网络支持的多个信道中的全部信道,则第一站点在多个信道聚合形成的聚合信道上建立用于与第二站点进行数据通信的第一传输机会。
进一步的,所述第一站点在所述多个信道聚合形成的聚合信道上建立用于与所述第二站点进行数据通信的第一传输机会,包括:
所述第一站点在所述多个信道聚合形成的聚合信道上发送所述第一传输机会中的首帧,所述首帧包括建立的用于与所述第二站点进行数据通信的所述第一传输机会的持续时间。
可选的,第一站点(PCP/AP或终端站点)在聚合信道上发送第一传输机会的首帧,即是TXOP的第一帧,首帧包括但不限于数据帧和RTS帧,在首帧的媒体访问控制(Media Access Control,MAC)帧头的Duration域的值指示TXOP的长度,即是TXOP的持续时间。在网络内的其它终端站点可以收到该首帧,并且解析该首帧的帧结构,获得其中TXOP的持续时间,在该TXOP持续时间内,其它终端站点不会竞争接入信道。
在第一站点和第二站点中包括PCP/AP,PCP/AP支持多天线,不同的天线可在不同的信道与不同的终端站点进行彼此独立的数据通信。由于本发明实施例中所有的信道均被第一站点和第二站点占据,其它终端站点不会竞争接入,PCP/AP也不会使用天线接收其它站点的数据,因此当目标信道包括网络支持的所有信道时,PCP/AP的天线也不会产生冲突,首帧中也不需要包括PCP/AP在此次传输机会中所使用的发送数据的天线标识和接收数据的天线标识。
可选的,作为另一种实施例,若所述目标信道包括所述网络支持的所述多个信道中的部分信道;且所述目标信道包括不相邻信道,所述不相邻信道与所述目标信道中的其它信道互不相邻;
所述第一站点在所述目标信道上建立用于与所述第二站点进行数据通信的第一传输机会,包括:
所述第一站点在所述不相邻信道发送所述第一传输机会中的首帧,所述首 帧包括建立的用于与所述第二站点进行数据通信的所述第一传输机会的持续时间以及所述第一站点和所述第二站点中的接入站点用于在所述第一传输机会中发送数据的天线标识和接收数据的天线标识。
可选的,由于目标信道包括网络支持的多个信道中的部分信道,即是有其它信道被其它终端站点竞争接入,若被其它终端站点竞争接入,且在波束成形训练时,该终端站点对应于PCP/AP的接收天线和/或发送天线与现在正在使用的天线相同,则会产生PCP/AP的天线冲突。
这里以一个例子来对PCP/AP的天线冲突进行阐述,假设PCP/AP有4个天线,支持3个信道,四个终端站点STA 1、STA 2、STA 3和STA 4分别和PCP/AP进行波束成形训练后,PCP/AP对应STA 1的发送天线是天线1,接收天线是天线2;PCP/AP对应STA 2的发送天线是天线2,接收天线是天线3;PCP/AP对应STA 3的发送天线是天线3,接收天线是天线4;PCP/AP对应STA 4的发送天线是天线3,接收天线是天线3。
当PCP/AP有数据要发给STA 1时,PCP/AP开始竞争信道(即监听3个信道),结果是信道1和信道2处于空闲状态、信道3繁忙,PCP/AP竞争成功信道1和信道2。PCP/AP在信道1和信道2上建立TXOP进行数据通信。此时由于PCP/AP对应于STA 2的发送天线(天线2)和PCP/AP在上述TXOP中使用的接收天线(即对应于STA 1的接收天线)冲突,都是天线2,此时由于在现有技术中STA 2不知道PCP/AP正在使用的天线,因此若STA 2发送数据PCP/AP也无法收到,因为存在天线冲突。
为了解决这个天线冲突问题,本发明实施例中,第一站点在目标信道中的不相邻信道发送第一传输机会的首帧,该首帧包括建立的用于与所述第二站点进行数据通信的传输机会的持续时间以及第一站点和第二站点中的接入站点用于在所述第一传输机会中发送数据的天线标识(发送天线标识)和接收数据的天线标识(接收天线标识)。若第一站点为终端站点,由于在前述波束成形训练中,终端站点也获得了PCP/AP对应于该终端站点的接收天线的标识和发送天线的标识,因此第一站点为终端站点也可以在首帧中添加发送天线的标识和接收天线的标识。
网络内的其它终端站点也可以收到该首帧,收到上述首帧其他终端站点, 可获得如下信息:该TXOP所占用的信道(即接收到首帧的信道)、该TXOP的持续时间和该TXOP中PCP/AP所使用的发送天线和接收天线。若某终端站点(即是第三站点)想要与第一站点和第二站点中的接入站点建立新的TXOP(即是第二传输机会),则该终端站点和新的TXOP需要满足以下要求:
1、该终端站点在未被占用的部分或全部信道上竞争接入以建立TXOP,
2、新TXOP的结束时间不晚于正在使用的TXOP的结束时间,
3、PCP/AP在新的TXOP中使用的发送天线和接收天线(即PCP/AP与该STA进行波束成形训练后选择的发送天线和接收天线)和PCP/AP在正在使用的TXOP中使用的发送天线和接收天线完全不同,具体的图8所示,前面三个新TXOP的天线使用正确,第四个错误,由于天线2冲突。
上述三个条件中条件二主要是为了在下一轮TXOP的建立时,可以使用更多的空闲信道。
继续以上述四个终端站点STA 1、STA 2、STA 3和STA 4为例进行进一步说明,即是STA 2收到首帧后,在TXOP的持续时间内(例如TXOP持续时间为5秒)不会竞争接入信道,但是STA 3和STA 4可以竞争接入剩余信道3,当上述TXOP建立后持续1秒,信道3由繁忙变为空闲状态,STA 3和STA 4中的STA 3竞争到,则STA 3与PCP/AP之间建立新的TXOP进行通信,但是新的TXOP持续时间应该小于4秒,主要是为了下一轮TXOP的建立可以占用更多的空闲信道。
需要说明的是,若其它信道被PCP/AP竞争接入,则不会产生天线冲突,即是PCP/AP不会使用正在使用的天线竞争接入信道。
可选的,作为另一实施例,若所述目标信道包括所述网络支持的所述多个信道中的部分信道;且所述目标信道包括至少两个相邻信道;
所述第一站点在所述目标信道上建立用于与所述第二站点进行数据通信的第一传输机会,包括:
所述第一站点在所述至少两个相邻信道聚合形成的聚合信道上发送所述第一传输机会中的首帧;或者,
所述第一站点在所述至少两个相邻信道中的每个信道上发送所述第一传输机会中的首帧;
其中,所述首帧包括建立的用于与所述第二站点进行数据通信的第一传输机会的持续时间以及所述第一站点和所述第二站点中的接入站点用于在所述第一传输机会中发送数据的天线标识和接收数据的天线标识。
可选的,目标信道包括所述网络支持的所述多个信道中的部分信道;且目标信道包括至少两个相邻信道。由于目标信道包括网络支持的多个信道中的部分信道,因此在其它终端站点竞争接入信道时仍然可能存在PCP/AP的天线冲突。
为了解决这个天线冲突问题,本发明实施例中,第一站点在建立TXOP时,在目标信道中至少两个相邻信道聚合形成的聚合信道上发送第一传输机会的首帧,或者分别在至少两个相邻信道中的每个信道上发送第一传输机会的首帧。所述首帧包括建立的用于与所述第二站点进行数据通信的传输机会的持续时间以及所述第一站点和所述第二站点中的接入站点用于在所述传输机会中发送数据的天线标识和接收数据的天线标识。首帧包括但不限于RTS帧和数据帧。
在具体实现时,该第一站点(即TXOP holder)在聚合信道上或聚合信道中的每个信道上发送RTS帧作为TXOP的首帧,第二站点(TXOP responder)回复CTS帧。由于第一站点和第二站点的覆盖范围不同,为了使得更多的站点获知此次PCP/AP在所建立的TXOP中所使用的发送天线和接收天线,在该RTS帧和CTS帧中增加可选的“PCP/AP TX antenna field(2bits)”和“PCP/AP RX antenna field(2bits)”,分别用于标识PCP/AP在TXOP中用于发送数据的天线的标识和接收数据的天线的标识。
具体的,如图6所示,第一站点和第二站点(即图中的PCP/AP和STA1)在信道1和信道2聚合形成的聚合信道上建立TXOP,第一站点在聚合信道上发送RTS帧,第二站点在聚合信道上回复CTS帧,后续第一站点和第二站点在所建立的TXOP中进行数据通信。其它终端站点STA2可以竞争接入信道0,并与PCP/AP建立新的TXOP,需要说明的是STA2在波束成形训练中PCP/AP所选择的接收天线和发送天线与现在正在使用的天线(即是PCP/AP对应于STA1的发送天线和接收天线)完全不同。为了使得下一轮空闲信道数量更多,新的TXOP结束时间不能晚于PCP/AP与STA1之间所建立的TXOP的结束时 间。
如图7所示,第一站点和第二站点(即图中的PCP/AP和STA1)分别在信道1和信道2建立TXOP,第一站点分别在信道1和信道2上发送RTS帧,第二站点分别在信道1和信道2上回复CTS帧,后续第一站点第二站点在所建立的TXOP中进行数据通信。其它终端站点STA2可以竞争接入信道0,并与PCP/AP建立新的TXOP。
若该第一站点,即TXOP holder在聚合信道上或目标信道中每个信道发送数据帧作为TXOP的首帧,则在该数据帧的MAC帧头中增加可选的“PCP/AP TX antenna field(2bits)”和“PCP/AP RX antenna field(2bits)”,用于标识PCP/AP在TXOP中用于发送数据的天线标识和接收数据的天线标识。网络内的其它终端站点可以收到该数据帧,并解析出其中的发送天线和接收天线。当其它终端站点发现PCP/AP正在使用的发送天线和接收天线与自身波束成形训练中PCP/AP所选择的发送天线和接收天线相同,则不会竞争接入信道,以免造成PCP/AP的天线冲突。
上述PCP/AP在TXOP中用于发送数据的天线和接收数据的天线,是指PCP/AP与TXOP的另一方终端站点在之前的波束成形训练中选择的针对该终端站点的发送天线和接收天线。
上述RTS/CTS帧或数据帧的MAC帧头的Duration域的值指示TXOP的长度,即是TXOP的持续时间。在TXOP内,除TXOP holder和TXOP responder外,其他终端站点在TXOP占用的信道上不允许发送数据。
需要说明的是,目标信道中可以是仅仅包括不相邻信道,也可以是仅仅包括相邻信道,也可以是包括不相邻信道和相邻信道的组合。当目标信道中只包括一个信道时,则建立传输机会的建立方式与不相邻信道的传输机会建立方式相同。
本发明实施例中,当第一站点需要通过网络向第二站点发送数据时,监听网络支持的多个信道中每个信道的忙闲状态,从多个信道中处于空闲状态的信道中选取至少一个目标信道,在所选取的目标信道上建立用于与第二站点进行数据通信的第一传输机会,基于该第一传输机会与第二站点进行数据通信。这种方式可以在支持多信道的网络中建立站点之间的传输机会,充分利用空闲信 道资源。
请参照图12,为本发明实施例提供的另一种接入站点的结构示意图,图12的接入站点可用于实现上述方法实施例中各步骤及方法。图12的实施例中,接入站点40包括天线400、发射机401、接收机402、处理器404和存储器404。处理器404控制站点40的操作,并可用于处理信号。存储器404可以包括只读存储器和随机存取存储器,并向处理器403提供指令和数据。发射机401和接收机402可以耦合到天线400,接入站点40的各个组件通过总线系统405耦合在一起,其中总线系统405除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图中将各种总线都标为总线系统405。
具体地,存储器404可存储执行以下过程的指令:
当接入站点与终端站点进行波束成形训练时,所述接入站点选择对应于所述终端站点的接收天线;
所述接入站点将所选择的所述接收天线的标识通知给所述终端站点。
可选的,接入站点支持多个天线。不同的天线可在不同的信道上与不同的终端站点进行彼此独立的通信。某一个终端站点具体对应于PCP/AP的哪一个发送天线和接收天线(即是PCP/AP具体使用哪一个发送天线和接收天线向该终端站点收发数据)需要在该终端站点接入网络时,与PCP/AP之间进行波束成形训练得到,此外,波束成形训练时,终端站点也可以获得自身选择的向对方PCP/AP发送数据的发送天线和接收数据的接收天线。
本发明实施例中,波束成形训练包括两个阶段,即是扇区级扫描(sector-level sweep,SLS)阶段以及波束细化协议(beam refinement protocol,BRP)阶段。接入站点可以在SLS阶段选择对应于该终端站点的接收天线,也可以在BRP阶段选择对应于该终端站点的接收天线。
进一步的,作为一种实施例,若所述接入站点在所述波束成形训练中的扇区级扫描阶段选择所述接收天线;
所述接入站点将所选择的所述接收天线的标识通知给所述终端站点,包括:
所述接入站点将所述接收天线的标识封装于扇区扫描反馈帧中,并将所述扇区扫描反馈帧返回至所述终端站点。
可选的,若PCP/AP在SLS阶段选择自身对于终端站点的接收天线,则PCP/AP发送给第一站点的扇区扫描反馈帧(sector sweep feedback frame,SSW-Feedback frame)中的方向性多千兆比特天线选择域(directional multi-gigabit antenna select field,DMG Antenna select field)设置为PCP/AP选择的接收天线。
进一步的,作为另一种实施例,若所述接入站点在所述波束成形训练中的波束细化协议阶段选择所述接收天线;
所述接入站点将所选择的所述接收天线的标识通知给所述终端站点,包括:
所述接入站点向所述终端站点发送包含所述接收天线的标识的命令帧;或者,
所述接入站点根据所述终端站点发送的用于请求接收天线的标识的请求帧回复包含所述接收天线的标识的命令帧。
可选的,若PCP/AP在BRP阶段选择自身对于该终端站点的接收天线,则BRP完成后,PCP/AP可以主动通知终端站点自己选择的接收天线,例如,PCP/AP向终端站点发送包含有所选接收天线的标识的域的命令帧,终端站点收到该命令帧后回复应答帧。BRP完成后,终端站点也可以主动请求PCP/AP所选的接收天线,例如,终端站点向PCP/AP发送用于请求PCP/AP所选的接收天线的请求帧,PCP/AP收到该请求帧后回复包含有所选接收天线的标识的域的命令帧。
本发明实施例中,终端站点获得自身对应于PCP/AP的接收天线,为了便于在后续终端站点与PCP/AP之间建立TXOP进行数据通信时通知终端站点覆盖范围内其他站点正在使用的接收天线,以避免PCP/AP的天线冲突。
需要说明的是,在波束成形训练中PCP/AP对于不同终端站点所选择的接收天线可能相同,例如,PCP/AP对STA 1和STA 2所选择的接收天线均为天线2。但是后续STA 1和STA 2不能在同一时刻与PCP/AP之间建立TXOP进行数据通信,因为会产生天线冲突。
本发明实施例中,当接入站点与终端站点进行波束成形训练时,接入站点选择对应于终端站点的接收天线,并将所选择的接收天线的标识通知给终端站点,这种方式可以将接入站点所选择的接收天线通知至终端站点,以使终端站点知悉接入站点对应于自身的接收天线,后续当终端站点发起数据通信时,可以通知终端站点覆盖范围内其它站点该终端站点所占用的接收天线,避免接收天线冲突。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (20)

  1. 一种数据通信方法,其特征在于,包括:
    当第一站点需要通过网络向第二站点发送数据时,监听所述网络支持的多个信道中每个信道的忙闲状态;
    所述第一站点从所述多个信道中处于空闲状态的信道中选取至少一个目标信道;
    所述第一站点在所述目标信道上建立用于与所述第二站点进行数据通信的第一传输机会;
    所述第一站点基于所述第一传输机会与所述第二站点进行数据通信。
  2. 如权利要求1所述的方法,其特征在于,若所述目标信道包括所述网络支持的所述多个信道中的全部信道;
    所述第一站点在所述目标信道上建立用于与所述第二站点进行数据通信的第一传输机会,包括:
    所述第一站点在所述多个信道聚合形成的聚合信道上建立用于与所述第二站点进行数据通信的第一传输机会。
  3. 如权利要求2所述的方法,其特征在于,所述第一站点在所述多个信道聚合形成的聚合信道上建立用于与所述第二站点进行数据通信的第一传输机会,包括:
    所述第一站点在所述多个信道聚合形成的聚合信道上发送所述第一传输机会中的首帧,所述首帧包括建立的用于与所述第二站点进行数据通信的所述第一传输机会的持续时间。
  4. 如权利要求1所述的方法,其特征在于,所述第一站点和所述第二站点中包括接入站点,所述接入站点支持多个天线。
  5. 如权利要求4所述的方法,其特征在于,若所述目标信道包括所述网 络支持的所述多个信道中的部分信道;且所述目标信道包括不相邻信道,所述不相邻信道与所述目标信道中的其它信道互不相邻;
    所述第一站点在所述目标信道上建立用于与所述第二站点进行数据通信的第一传输机会,包括:
    所述第一站点在所述不相邻信道发送所述第一传输机会中的首帧,所述首帧包括建立的用于与所述第二站点进行数据通信的所述第一传输机会的持续时间以及所述第一站点和所述第二站点中的接入站点用于在所述第一传输机会中发送数据的天线标识和接收数据的天线标识。
  6. 如权利要求4所述的方法,其特征在于,若所述目标信道包括所述网络支持的所述多个信道中的部分信道;且所述目标信道包括至少两个相邻信道;
    所述第一站点在所述目标信道上建立用于与所述第二站点进行数据通信的第一传输机会,包括:
    所述第一站点在所述至少两个相邻信道聚合形成的聚合信道上发送所述第一传输机会中的首帧;或者,
    所述第一站点在所述至少两个相邻信道中的每个信道上发送所述第一传输机会中的首帧;
    其中,所述首帧包括建立的用于与所述第二站点进行数据通信的第一传输机会的持续时间以及所述第一站点和所述第二站点中的接入站点用于在所述第一传输机会中发送数据的天线标识和接收数据的天线标识。
  7. 如权利要求5或6所述的方法,其特征在于,
    所述第一站点和所述第二站点中的接入站点在所述多个信道中除所述目标信道外的信道上建立的与第三站点之间的第二传输会的结束时间不晚于所述第一传输机会的结束时间。
  8. 一种天线通知方法,其特征在于,包括:
    当接入站点与终端站点进行波束成形训练时,所述接入站点选择对应于所 述终端站点的接收天线;
    所述接入站点将所选择的所述接收天线的标识通知给所述终端站点。
  9. 如权利要求8所述的方法,其特征在于,若所述接入站点在所述波束成形训练中的扇区级扫描阶段选择所述接收天线;
    所述接入站点将所选择的所述接收天线的标识通知给所述终端站点,包括:
    所述接入站点将所述接收天线的标识封装于扇区扫描反馈帧中,并将所述扇区扫描反馈帧返回至所述终端站点。
  10. 如权利要求8所述的方法,其特征在于,若所述接入站点在所述波束成形训练中的波束细化协议阶段选择所述接收天线;
    所述接入站点将所选择的所述接收天线的标识通知给所述终端站点,包括:
    所述接入站点向所述终端站点发送包含所述接收天线的标识的命令帧;或者,
    所述接入站点根据所述终端站点发送的用于请求接收天线的标识的请求帧回复包含所述接收天线的标识的命令帧。
  11. 一种部署在无线局域网络中的站点,其特征在于,包括:
    监听模块,用于当所述站点需要通过网络向第一目标站点发送数据时,监听所述网络支持的多个信道中每个信道的忙闲状态;
    选取模块,用于从所述多个信道中处于空闲状态的信道中选取至少一个目标信道;
    建立模块,用于在所述目标信道上建立用于与所述第一目标站点进行数据通信的第一传输机会;
    数据通信模块,用于基于所述第一传输机会与所述第一目标站点进行数据通信。
  12. 如权利要求11所述的站点,其特征在于,若所述目标信道包括所述网络支持的所述多个信道中的全部信道;
    所述建立模块具体用于在所述多个信道聚合形成的聚合信道上建立用于与所述第一目标站点进行数据通信的第一传输机会。
  13. 如权利要求12所述的站点,其特征在于,
    所述建立模块具体用于在所述多个信道聚合形成的聚合信道上发送所述第一传输机会中的首帧,所述首帧包括建立的用于与所述第一目标站点进行数据通信的所述第一传输机会的持续时间。
  14. 如权利要求11所述的站点,其特征在于,所述站点和所述第一目标站点中包括接入站点,所述接入站点支持多个天线。
  15. 如权利要求14所述的站点,其特征在于,若所述目标信道包括所述网络支持的所述多个信道中的部分信道;且所述目标信道包括不相邻信道,所述不相邻信道与所述目标信道中的其它信道互不相邻;
    所述建立模块具体用于在所述不相邻信道发送所述第一传输机会中的首帧,所述首帧包括建立的用于与所述第一目标站点进行数据通信的所述第一传输机会的持续时间以及所述站点和所述第一目标站点中的接入站点用于在所述第一传输机会中发送数据的天线标识和接收数据的天线标识。
  16. 如权利要求14所述的站点,其特征在于,若所述目标信道包括所述网络支持的所述多个信道中的部分信道;且所述目标信道包括至少两个相邻信道;
    所述建立模块具体用于在所述至少两个相邻信道聚合形成的聚合信道上发送所述第一传输机会中的首帧;或者,
    所述建立模块具体用于在所述至少两个相邻信道中的每个信道上发送所述第一传输机会中的首帧;
    其中,所述首帧包括建立的用于与所述第一目标站点进行数据通信的第一 传输机会的持续时间以及所述站点和所述第一目标站点中的接入站点用于在所述第一传输机会中发送数据的天线标识和接收数据的天线标识。
  17. 如权利要求15或16所述的站点,其特征在于,
    所述站点和所述第一目标站点中的接入站点在所述多个信道中除所述目标信道外的信道上建立的与第二目标站点之间的第二传输会的结束时间不晚于所述第一传输机会的结束时间。
  18. 一种接入站点,其特征在于,包括:
    选择模块,用于当所述接入站点与终端站点进行波束成形训练时,选择对应于所述终端站点的接收天线;
    通知模块,用于将所选择的所述接收天线的标识通知给所述终端站点。
  19. 如权利要求18所述的接入站点,其特征在于,若所述接入站点在所述波束成形训练中的扇区级扫描阶段选择所述接收天线;
    所述通知模块具体用于将所述接收天线的标识封装于扇区扫描反馈帧中,并将所述扇区扫描反馈帧返回至所述终端站点。
  20. 如权利要求18所述的接入站点,其特征在于,若所述接入站点在所述波束成形训练中的波束细化协议阶段选择所述接收天线;
    所述通知模块具体用于向所述终端站点发送包含所述接收天线的标识的命令帧;或者,
    所述通知模块具体用于根据所述终端站点发送的用于请求接收天线的标识的请求帧回复包含所述接收天线的标识的命令帧。
PCT/CN2015/079886 2015-05-27 2015-05-27 一种数据通信方法及站点 WO2016187830A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/079886 WO2016187830A1 (zh) 2015-05-27 2015-05-27 一种数据通信方法及站点

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/079886 WO2016187830A1 (zh) 2015-05-27 2015-05-27 一种数据通信方法及站点

Publications (1)

Publication Number Publication Date
WO2016187830A1 true WO2016187830A1 (zh) 2016-12-01

Family

ID=57393804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079886 WO2016187830A1 (zh) 2015-05-27 2015-05-27 一种数据通信方法及站点

Country Status (1)

Country Link
WO (1) WO2016187830A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195917A (zh) * 2010-03-09 2011-09-21 华为技术有限公司 协作通信中站点共用和确定站点小区标识的方法及装置
CN103222311A (zh) * 2010-11-16 2013-07-24 交互数字专利控股公司 用于无线直接链路操作的方法和设备
US20140079016A1 (en) * 2010-11-12 2014-03-20 Yuying Dai Method and apparatus for performing channel aggregation and medium access control retransmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102195917A (zh) * 2010-03-09 2011-09-21 华为技术有限公司 协作通信中站点共用和确定站点小区标识的方法及装置
US20140079016A1 (en) * 2010-11-12 2014-03-20 Yuying Dai Method and apparatus for performing channel aggregation and medium access control retransmission
CN103222311A (zh) * 2010-11-16 2013-07-24 交互数字专利控股公司 用于无线直接链路操作的方法和设备

Similar Documents

Publication Publication Date Title
KR102165810B1 (ko) 무선랜에서 간섭 정렬을 이용하는 통신 방법
CN110932996B (zh) 用于同时数据传送和接收的无线通信方法及装置
US11855723B2 (en) Beamforming training method and apparatus
US11700546B2 (en) Multi-user wireless communication method and wireless communication terminal using same
US10581582B2 (en) Wireless communication method and wireless communication device for configuring broadband link
KR102402450B1 (ko) 하위 대역 시그널링에 의한 스케줄링되고 트리거링된 mmW 발견 지원
US7953055B2 (en) Multi-channel MAC apparatus and method for WLAN devices with single radio interface
JP2011188480A (ja) ミリ波無線システムにおけるクラスタリング管理
US10327262B2 (en) Wireless communication method and wireless communication terminal
JP7197839B2 (ja) ミリメートル波wlanネットワークにおける割り当て及び方向情報配信
US9609678B2 (en) Method and apparatus for asynchronous Direct Link Setup in WLAN system
WO2016188245A1 (zh) 信道协商方法、站点及系统
US11743873B2 (en) Wireless communication method and wireless communication terminal, which use network allocation vector
US10660125B2 (en) Base station apparatus, wireless terminal apparatus, and wireless communication method
JP7244807B2 (ja) 指向性送信知識を用いる分散スケジューリングプロトコル
WO2017084503A1 (zh) 传输机会持有者变更方法及装置
WO2017012125A1 (zh) 无线接入点同步协作方法、设备及系统
WO2016187830A1 (zh) 一种数据通信方法及站点
KR102377876B1 (ko) 무선 랜에서의 기회적 간섭 정렬 방법
WO2024037326A1 (zh) 基于信道竞争的通信方法和装置
US20240008114A1 (en) Techniques for channel access in wireless communications systems
JP7235213B2 (ja) Mmwwlanネットワークにおける空間負荷アナウンス
WO2023221921A1 (zh) 通信方法、装置及系统
WO2021088046A1 (zh) 数据处理方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15892911

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15892911

Country of ref document: EP

Kind code of ref document: A1