WO2016089059A1 - 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치 - Google Patents

무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2016089059A1
WO2016089059A1 PCT/KR2015/012917 KR2015012917W WO2016089059A1 WO 2016089059 A1 WO2016089059 A1 WO 2016089059A1 KR 2015012917 W KR2015012917 W KR 2015012917W WO 2016089059 A1 WO2016089059 A1 WO 2016089059A1
Authority
WO
WIPO (PCT)
Prior art keywords
field
frame
sta
sig
ppdu
Prior art date
Application number
PCT/KR2015/012917
Other languages
English (en)
French (fr)
Inventor
천진영
류기선
이욱봉
조한규
Original Assignee
엘지전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자(주) filed Critical 엘지전자(주)
Priority to EP19190185.9A priority Critical patent/EP3588888B1/en
Priority to US15/527,692 priority patent/US10405338B2/en
Priority to EP15864893.1A priority patent/EP3229434B1/en
Publication of WO2016089059A1 publication Critical patent/WO2016089059A1/ko
Priority to US16/508,237 priority patent/US10986660B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for performing or supporting uplink single user / multi user transmission and an apparatus for supporting the same.
  • Wi-Fi is a Wireless Local Area Network (WLAN) technology that allows devices to access the Internet in the 2.4 GHz, 5 GHz, or 60 GHz frequency bands.
  • WLAN Wireless Local Area Network
  • WLANs are based on the Institute of Electrical and Electronic Engineers (IEEE) 802.11 standard.
  • IEEE 802.11 The Wireless Next Generation Standing Committee (WNG SC) of IEEE 802.11 is an ad hoc committee that considers the next generation wireless local area network (WLAN) in the medium to long term.
  • WNG SC Wireless Next Generation Standing Committee
  • IEEE 802.11n aims to increase the speed and reliability of networks and to extend the operating range of wireless networks. More specifically, IEEE 802.11n supports High Throughput (HT), which provides up to 600 Mbps data rate, and also supports both transmitter and receiver to minimize transmission errors and optimize data rates. It is based on Multiple Inputs and Multiple Outputs (MIMO) technology using multiple antennas.
  • HT High Throughput
  • MIMO Multiple Inputs and Multiple Outputs
  • IEEE 802.11ac supports data processing speeds of 1 Gbps and higher via 80 MHz bandwidth transmission and / or higher bandwidth transmission (eg 160 MHz) and operates primarily in the 5 GHz band.
  • IEEE 802.11ax often discussed in the next-generation WLAN task group, also known as IEEE 802.11ax or High Efficiency (HEW) WLAN, includes: 1) 802.11 physical layer and MAC in the 2.4 GHz and 5 GHz bands; (medium access control) layer enhancement, 2) spectral efficiency and area throughput improvement, 3) environments with interference sources, dense heterogeneous network environments, and high user loads. Such as improving performance in real indoor environments and outdoor environments, such as the environment.
  • IEEE 802.11ax Scenarios considered mainly in IEEE 802.11ax are dense environments with many access points (APs) and stations (STAs), and IEEE 802.11ax discusses spectral efficiency and area throughput improvement in such a situation. . In particular, there is an interest in improving the performance of the indoor environment as well as the outdoor environment, which is not much considered in the existing WLAN.
  • IEEE 802.11ax we are interested in scenarios such as wireless office, smart home, stadium, hotspot, and building / apartment. There is a discussion about improving system performance in dense environments with many STAs.
  • IEEE 802.11ax improves system performance in outdoor basic service set (OBSS) environment, outdoor environment performance, and cellular offloading rather than single link performance in one basic service set (BSS). Discussion is expected to be active.
  • the directionality of IEEE 802.11ax means that next-generation WLANs will increasingly have a technology range similar to that of mobile communication. Considering the situation where mobile communication and WLAN technology are recently discussed in the small cell and direct-to-direct communication area, the technical and business of next-generation WLAN and mobile communication based on IEEE 802.11ax Convergence is expected to become more active.
  • An object of the present invention is to propose an uplink single user or multi-user transmission method in a wireless communication system.
  • an object of the present invention is to propose an uplink frame structure for supporting uplink single user or multi-user transmission in a wireless communication system.
  • UL uplink
  • MU multi-user
  • OFDMA orthogonal
  • An A field and a first HE-SIG-B field wherein the first HE-SIG-A field includes first TXOP duration information indicating a first TXOP (Transmissio Opportunity) duration, and the first TXOP duration is It may be a remaining time interval for the frame exchange sequence of the STA.
  • first TXOP duration indicating a first TXOP (Transmissio Opportunity) duration
  • the first TXOP duration includes a length in time of the UL MU PPDU and a time length of the ACK frame.
  • the UL MU PPDU includes a second legacy preamble and a second HE preamble
  • the second HE preamble includes a second HE-SIG-A field.
  • the second HE-SIG-A field may include second TXOP duration information indicating a second TXOP duration
  • the second TXOP duration may be a remaining time interval for a frame exchange sequence of the STA. .
  • the second TXOP duration may include a time length of the ACK frame.
  • the first TXOP duration is an Inter Frame Space (IFS) time between the trigger frame and the UL MU frame and between the UL MU frame and the ACK frame. It may further include an IFS time.
  • IFS Inter Frame Space
  • the second TXOP duration may further include an Inter Frame Space (IFS) time between the UL MU PPDU and the ACK frame.
  • IFS Inter Frame Space
  • the second HE preamble of the UL MU PPDU is a HE-STF (High Efficiency-Short Training Field), HE-LTF (HE-Long Training Field)
  • the data field, the HE-STF, the HE-LTF, and the data field may be transmitted through a bandwidth of an allocated resource unit.
  • STA Stimulation device of a wireless LAN (WLAN) system according to an embodiment of the present invention for solving the above technical problem
  • RF Radio Frequency
  • the STA apparatus receives a trigger frame including resource unit allocation information for orthogonal frequency division multiple access (OFDMA) transmission and is based on the trigger frame.
  • OFDMA orthogonal frequency division multiple access
  • PPDU Physical Protocol Data Unit
  • ACK ACK frame for the UL MU PPDU
  • the trigger frame includes a first legacy preamble and a first high efficiency (HE) preamble.
  • HE high efficiency
  • the 1 HE preamble includes a first HE-SIG-A field and a first HE-SIG-B field, and the first HE-SIG-A field includes first TXOP duration information indicating a first TXOP (Transmissio Opportunity) duration.
  • first TXOP duration may be a remaining time interval for a frame exchange sequence of the STA device.
  • an uplink (UL) multi-user (MU) of an access point (STA) -STA (Station) in a wireless LAN (WLAN) system for solving the above technical problem.
  • the receiving method includes transmitting a trigger frame including resource unit allocation information for orthogonal frequency division multiple access (OFDMA) transmission; Receiving a UL MU Physical Protocol Data Unit (PPDU) based on the trigger frame; And transmitting an ACK frame for the UL MU PPDU, wherein the trigger frame includes a first legacy preamble and a first high efficiency (HE) preamble, and the first HE preamble includes a first HE-SIG ⁇ .
  • OFDMA orthogonal frequency division multiple access
  • PPDU Physical Protocol Data Unit
  • An A field and a first HE-SIG-B field wherein the first HE-SIG-A field includes first TXOP duration information indicating a first TXOP (Transmissio Opportunity) duration, and the first TXOP duration is It may be a remaining time interval for the frame exchange sequence of the STA.
  • first TXOP duration indicating a first TXOP (Transmissio Opportunity) duration
  • a plurality of users may smoothly perform multi-user transmission through resources independent of each other.
  • uplink multi-user transmission may be supported in units of resource units in a wireless communication system.
  • TXOP protection for the UL MU procedure can be effectively performed.
  • the STA that receives only the trigger frame in the BSS and the STA that overhear the trigger frame in the OBSS may be set to NAV.
  • STAs that recognize only one of the trigger frame or the UL MU frame may also set the NAV through the TXOP duration field of the UL MU frame.
  • TXOP duration field By including the TXOP duration field in the HE-SIG-A field, malfunction of legacy STAs can be prevented while exceeding the capacity limitation of the L-SIG field.
  • other STAs may set the NAV setting by decoding only the HE-SIG-A field even when the MAC header of frames transmitted and received in the UL MU procedure cannot be decoded.
  • FIG. 1 is a diagram illustrating an example of an IEEE 802.11 system to which the present invention can be applied.
  • FIG. 2 is a diagram illustrating a structure of a layer architecture of an IEEE 802.11 system to which the present invention may be applied.
  • FIG. 3 illustrates a non-HT format PPDU and a HT format PPDU of a wireless communication system to which the present invention can be applied.
  • FIG. 4 illustrates a VHT format PPDU format of a wireless communication system to which the present invention can be applied.
  • FIG. 5 is a diagram illustrating a constellation for distinguishing a format of a PPDU of a wireless communication system to which the present invention can be applied.
  • FIG. 6 illustrates a MAC frame format of an IEEE 802.11 system to which the present invention can be applied.
  • FIG. 7 is a diagram illustrating a Frame Control field in a MAC frame in a wireless communication system to which the present invention can be applied.
  • FIG. 8 illustrates the VHT format of the HT Control field in a wireless communication system to which the present invention can be applied.
  • FIG. 9 is a diagram for explaining an arbitrary backoff period and a frame transmission procedure in a wireless communication system to which the present invention can be applied.
  • FIG. 10 is a diagram illustrating an IFS relationship in a wireless communication system to which the present invention can be applied.
  • FIG. 11 is a diagram illustrating a downlink multi-user PPDU format in a wireless communication system to which the present invention can be applied.
  • FIG. 12 is a diagram illustrating a downlink multi-user PPDU format in a wireless communication system to which the present invention can be applied.
  • FIG. 13 is a diagram illustrating a downlink MU-MIMO transmission process in a wireless communication system to which the present invention can be applied.
  • FIG. 14 is a diagram illustrating an ACK frame in a wireless communication system to which the present invention can be applied.
  • FIG. 15 illustrates a block ACK request frame in a wireless communication system to which an embodiment of the present invention may be applied.
  • FIG. 16 illustrates a BAR information field of a block ACK request frame in a wireless communication system to which an embodiment of the present invention may be applied.
  • 17 is a diagram illustrating a block ACK (block Ack) frame in a wireless communication system to which the present invention can be applied.
  • FIG. 18 is a diagram illustrating a BA Information field of a block ACK frame in a wireless communication system to which the present invention can be applied.
  • FIG. 19 illustrates a High Efficiency (HE) format PPDU according to an embodiment of the present invention.
  • HE High Efficiency
  • FIG. 20 is a diagram illustrating a HE format PPDU according to an embodiment of the present invention.
  • 21 is a diagram illustrating a HE format PPDU according to an embodiment of the present invention.
  • FIG. 22 illustrates an HE format PPDU according to an embodiment of the present invention.
  • FIG. 23 is a diagram illustrating an uplink multi-user transmission procedure according to an embodiment of the present invention.
  • 25 illustrates UL MU transmission according to an embodiment of the present invention.
  • 26 shows an HE frame according to an embodiment of the present invention.
  • FIG. 28 illustrates an embodiment of a cascade structure in which the UL MU procedure and the TXOP protection according to an embodiment of the present invention, in particular, the UL MU procedure is transmitted with a DL MU frame.
  • 29 illustrates an embodiment of a cascade structure in which a UL MU procedure is transmitted with a DL MU frame as a UL MU procedure and a TXOP protection according to an embodiment of the present invention.
  • FIG. 30 illustrates an UL MU frame and TXOP protection according to an embodiment of the present invention.
  • FIG. 31 illustrates a STA apparatus according to an embodiment of the present invention.
  • FIG. 32 illustrates a UL MU transmission / reception method according to an embodiment of the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • GSM global system for mobile communications
  • GPRS general packet radio service
  • EDGE enhanced data rates for GSM evolution
  • OFDMA may be implemented with wireless technologies such as Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, evolved UTRA (E-UTRA), and the like.
  • UTRA is part of a universal mobile telecommunications system (UMTS).
  • 3rd generation partnership project (3GPP) long term evolution (LTE) is a part of evolved UMTS (E-UMTS) using E-UTRA, and employs OFDMA in downlink and SC-FDMA in uplink.
  • LTE-A evolution of 3GPP LTE.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802, 3GPP and 3GPP2. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • FIG. 1 is a diagram illustrating an example of an IEEE 802.11 system to which the present invention can be applied.
  • the IEEE 802.11 structure may be composed of a plurality of components, and a wireless communication system supporting a station (STA) station mobility that is transparent to a higher layer may be provided by their interaction.
  • STA station
  • a basic service set (BSS) may correspond to a basic building block in an IEEE 802.11 system.
  • FIG. 1 there are three BSSs (BSS 1 to BSS 3) and two STAs are included as members of each BSS (STA 1 and STA 2 are included in BSS 1, and STA 3 and STA 4 are BSS 2. Included in, and STA 5 and STA 6 are included in BSS 3) by way of example.
  • an ellipse representing a BSS may be understood to represent a coverage area where STAs included in the BSS maintain communication. This area may be referred to as a basic service area (BSA).
  • BSA basic service area
  • the most basic type of BSS in an IEEE 802.11 system is an independent BSS (IBSS).
  • the IBSS may have a minimal form consisting of only two STAs.
  • BSS 3 of FIG. 1, which is the simplest form and other components are omitted, may correspond to a representative example of the IBSS. This configuration is possible when STAs can communicate directly.
  • this type of LAN may not be configured in advance, but may be configured when a LAN is required, which may be referred to as an ad-hoc network.
  • the membership of the STA in the BSS may be dynamically changed by turning the STA on or off, the STA entering or exiting the BSS region, or the like.
  • the STA may join the BSS using a synchronization process.
  • the STA In order to access all services of the BSS infrastructure, the STA must be associated with the BSS. This association may be set up dynamically and may include the use of a Distribution System Service (DSS).
  • DSS Distribution System Service
  • the direct STA-to-STA distance in an 802.11 system may be limited by physical layer (PHY) performance. In some cases, this distance limit may be sufficient, but in some cases, communication between STAs over longer distances may be required.
  • a distribution system (DS) may be configured to support extended coverage.
  • the DS refers to a structure in which BSSs are interconnected. Specifically, instead of the BSS independently as shown in FIG. 1, the BSS may exist as an extended type component of a network composed of a plurality of BSSs.
  • DS is a logical concept and can be specified by the characteristics of the Distribution System Medium (DSM).
  • DSM Distribution System Medium
  • the IEEE 802.11 standard logically distinguishes between wireless medium (WM) and distribution system medium (DSM). Each logical medium is used for a different purpose and is used by different components.
  • the definition of the IEEE 802.11 standard does not limit these media to the same or to different ones.
  • the plurality of media are logically different, and thus the flexibility of the structure of the IEEE 802.11 system (DS structure or other network structure) can be described. That is, the IEEE 802.11 system structure can be implemented in various ways, the corresponding system structure can be specified independently by the physical characteristics of each implementation.
  • the DS may support mobile devices by providing seamless integration of multiple BSSs and providing logical services for handling addresses to destinations.
  • the AP means an entity that enables access to the DS through the WM to the associated STAs and has STA functionality. Data movement between the BSS and the DS may be performed through the AP.
  • STA 2 and STA 3 illustrated in FIG. 1 have a functionality of STA, and provide a function of allowing associated STAs STA 1 and STA 4 to access the DS.
  • all APs basically correspond to STAs, all APs are addressable entities.
  • the address used by the AP for communication on the WM and the address used by the AP for communication on the DSM need not necessarily be the same.
  • Data transmitted from one of the STAs associated with an AP to the STA address of that AP may always be received at an uncontrolled port and processed by an IEEE 802.1X port access entity.
  • transmission data (or frame) may be transmitted to the DS.
  • a wireless network of arbitrary size and complexity may be composed of DS and BSSs.
  • this type of network is referred to as an extended service set (ESS) network.
  • the ESS may correspond to a set of BSSs connected to one DS. However, the ESS does not include a DS.
  • the ESS network is characterized by what appears to be an IBSS network at the Logical Link Control (LLC) layer. STAs included in the ESS may communicate with each other, and mobile STAs may move from one BSS to another BSS (within the same ESS) transparently to the LLC.
  • LLC Logical Link Control
  • BSSs can be partially overlapped, which is the form generally used to provide continuous coverage.
  • the BSSs may not be physically connected, and logically there is no limit to the distance between the BSSs.
  • the BSSs can be located at the same physical location, which can be used to provide redundancy.
  • one (or more) IBSS or ESS networks may be physically present in the same space as one or more ESS networks. This may be necessary if the ad-hoc network is operating at the location of the ESS network, if the IEEE 802.11 networks are physically overlapped by different organizations, or if two or more different access and security policies are required at the same location. It may correspond to an ESS network type in a case.
  • an STA is a device that operates according to Medium Access Control (MAC) / PHY regulations of IEEE 802.11. As long as the function of the STA is not distinguished from the AP individually, the STA may include an AP STA and a non-AP STA. However, when communication is performed between the STA and the AP, the STA may be understood as a non-AP STA. In the example of FIG. 1, STA 1, STA 4, STA 5, and STA 6 correspond to non-AP STAs, and STA 2 and STA 3 correspond to AP STAs.
  • MAC Medium Access Control
  • Non-AP STAs generally correspond to devices that users directly handle, such as laptop computers and mobile phones.
  • a non-AP STA includes a wireless device, a terminal, a user equipment (UE), a mobile station (MS), a mobile terminal, and a wireless terminal.
  • WTRU wireless transmit / receive unit
  • MTC machine-type communication
  • M2M machine-to-machine
  • the AP is a base station (BS), Node-B (Node-B), evolved Node-B (eNB), and Base Transceiver System (BTS) in other wireless communication fields.
  • BS base station
  • Node-B Node-B
  • eNB evolved Node-B
  • BTS Base Transceiver System
  • downlink means communication from the AP to the non-AP STA
  • uplink means communication from the non-AP STA to the AP.
  • the transmitter may be part of an AP and the receiver may be part of a non-AP STA.
  • a transmitter may be part of a non-AP STA and a receiver may be part of an AP.
  • FIG. 2 is a diagram illustrating a structure of a layer architecture of an IEEE 802.11 system to which the present invention may be applied.
  • the layer architecture of the IEEE 802.11 system may include a MAC sublayer and a PHY sublayer.
  • the PHY sublayer may be divided into a Physical Layer Convergence Procedure (PLCP) entity and a Physical Medium Dependent (PMD) entity.
  • PLCP Physical Layer Convergence Procedure
  • PMD Physical Medium Dependent
  • the PLCP entity plays a role of connecting a data frame with a MAC sublayer
  • the PMD entity plays a role of wirelessly transmitting and receiving data with two or more STAs.
  • Both the MAC sublayer and the PHY sublayer may include a management entity, which may be referred to as a MAC sublayer management entity (MLME) and a PHY sublayer management entity (PLME), respectively.
  • MLME MAC sublayer management entity
  • PLME PHY sublayer management entity
  • These management entities provide layer management service interfaces through the operation of layer management functions.
  • the MLME may be connected to the PLME to perform management operations of the MAC sublayer, and likewise the PLME may be connected to the MLME to perform management operations of the PHY sublayer.
  • a Station Management Entity may be present in each STA.
  • the SME is a management entity independent of each layer.
  • the SME collects layer-based state information from MLME and PLME or sets values of specific parameters of each layer.
  • the SME can perform these functions on behalf of general system management entities and implement standard management protocols.
  • the XX-GET.request primitive is used to request the value of a Management Information Base attribute (MIB attribute), and the XX-GET.confirm primitive, if the status is 'SUCCESS', returns the value of that MIB attribute. Otherwise, it returns with an error indication in the status field.
  • MIB attribute Management Information Base attribute
  • the XX-SET.request primitive is used to request that a specified MIB attribute be set to a given value. If the MIB attribute is meant for a particular action, this request requests the execution of that particular action. And, if the state is 'SUCCESS' XX-SET.confirm primitive, it means that the specified MIB attribute is set to the requested value. In other cases, the status field indicates an error condition. If this MIB attribute means a specific operation, this primitive can confirm that the operation was performed.
  • MIB attribute Management Information Base attribute
  • XX-GET.confirm primitive if the status is 'SUCCESS', returns the value of that MIB attribute. Otherwise, it returns with
  • the MAC sublayer includes a MAC header and a frame check sequence (FCS) in a MAC Service Data Unit (MSDU) or a fragment of an MSDU received from an upper layer (eg, an LLC layer).
  • FCS frame check sequence
  • MSDU MAC Service Data Unit
  • MPDU MAC Protocol Data Unit
  • A-MSDU aggregated MSDU
  • a plurality of MSDUs may be merged into a single A-MSDU (aggregated MSDU).
  • the MSDU merging operation may be performed at the MAC upper layer.
  • the A-MSDU is delivered to the PHY sublayer as a single MPDU (if not fragmented).
  • the PHY sublayer generates a physical protocol data unit (PPDU) by adding an additional field including information required by a physical layer transceiver to a physical service data unit (PSDU) received from the MAC sublayer. . PPDUs are transmitted over wireless media.
  • PPDU physical protocol data unit
  • the PSDU is substantially the same as the MPDU since the PHY sublayer is received from the MAC sublayer and the MPDU is transmitted by the MAC sublayer to the PHY sublayer.
  • A-MPDU aggregated MPDU
  • a plurality of MPDUs may be merged into a single A-MPDU.
  • the MPDU merging operation may be performed at the MAC lower layer.
  • A-MPDUs may be merged with various types of MPDUs (eg, QoS data, Acknowledge (ACK), Block ACK (BlockAck), etc.).
  • the PHY sublayer receives the A-MPDU as a single PSDU from the MAC sublayer. That is, the PSDU is composed of a plurality of MPDUs.
  • A-MPDUs are transmitted over the wireless medium in a single PPDU.
  • PPDU Physical Protocol Data Unit
  • IEEE 802.11 WLAN system to which the present invention can be applied.
  • FIG. 3 illustrates a non-HT format PPDU and a HT format PPDU of a wireless communication system to which the present invention can be applied.
  • Non-HT PPDUs may also be referred to as legacy PPDUs.
  • the non-HT format PPDU includes an L-STF (Legacy (or Non-HT) Short Training field), L-LTF (Legacy (or, Non-HT) Long Training field) and It consists of a legacy format preamble and a data field composed of L-SIG (Legacy (or Non-HT) SIGNAL) field.
  • L-STF Legacy (or Non-HT) Short Training field
  • L-LTF Legacy (or, Non-HT) Long Training field
  • L-SIG Legacy (or Non-HT) SIGNAL
  • the L-STF may include a short training orthogonal frequency division multiplexing symbol (OFDM).
  • L-STF can be used for frame timing acquisition, automatic gain control (AGC), diversity detection, and coarse frequency / time synchronization. .
  • the L-LTF may include a long training orthogonal frequency division multiplexing symbol.
  • L-LTF may be used for fine frequency / time synchronization and channel estimation.
  • the L-SIG field may be used to transmit control information for demodulation and decoding of the data field.
  • the L-SIG field consists of a 4-bit Rate field, 1-bit Reserved bit, 12-bit Length field, 1-bit parity bit, and 6-bit Signal Tail field. Can be.
  • the rate field contains rate information, and the length field indicates the number of octets of the PSDU.
  • FIG. 3B illustrates an HT-mixed format PPDU (HTDU) for supporting both an IEEE 802.11n system and an IEEE 802.11a / g system.
  • HTDU HT-mixed format PPDU
  • the HT mixed format PPDU includes a legacy format preamble including an L-STF, L-LTF, and L-SIG fields, an HT-SIG (HT-Signal) field, and an HT-STF (HT Short). Training field), HT-formatted preamble and data field including HT-LTF (HT Long Training field).
  • L-STF, L-LTF, and L-SIG fields mean legacy fields for backward compatibility, they are the same as non-HT formats from L-STF to L-SIG fields. Even if the L-STA receives the HT mixed PPDU, the L-STA may interpret the data field through the L-LTF, L-LTF, and L-SIG fields. However, the L-LTF may further include information for channel estimation that the HT-STA performs to receive the HT mixed PPDU and demodulate the L-SIG field and the HT-SIG field.
  • the HT-STA may know that it is an HT-mixed format PPDU using the HT-SIG field following the legacy field, and may decode the data field based on the HT-STA.
  • the HT-LTF field may be used for channel estimation for demodulation of the data field. Since IEEE 802.11n supports Single-User Multi-Input and Multi-Output (SU-MIMO), a plurality of HT-LTF fields may be configured for channel estimation for each data field transmitted in a plurality of spatial streams.
  • SU-MIMO Single-User Multi-Input and Multi-Output
  • the HT-LTF field includes data HT-LTF used for channel estimation for spatial streams and extension HT-LTF (additional used for full channel sounding). It can be configured as. Accordingly, the plurality of HT-LTFs may be equal to or greater than the number of spatial streams transmitted.
  • the L-STF, L-LTF, and L-SIG fields are transmitted first in order to receive the L-STA and acquire data. Thereafter, the HT-SIG field is transmitted for demodulation and decoding of data transmitted for the HT-STA.
  • the HT-SIG field is transmitted without performing beamforming so that the L-STA and HT-STA can receive the corresponding PPDU to acquire data, and then the HT-STF, HT-LTF and data fields transmitted are precoded. Wireless signal transmission is performed through.
  • the HT-STF field is transmitted to allow the STA to perform precoding to take into account the variable power due to precoding, and then the plurality of HT-LTF and data fields after that.
  • Table 1 below is a table illustrating the HT-SIG field.
  • FIG. 3 (c) illustrates an HT-GF format PPDU (HT-GF) for supporting only an IEEE 802.11n system.
  • the HT-GF format PPDU includes HT-GF-STF, HT-LTF1, HT-SIG field, a plurality of HT-LTF2 and data fields.
  • HT-GF-STF is used for frame timing acquisition and AGC.
  • HT-LTF1 is used for channel estimation.
  • the HT-SIG field is used for demodulation and decoding of the data field.
  • HT-LTF2 is used for channel estimation for demodulation of data fields. Similarly, since HT-STA uses SU-MIMO, channel estimation is required for each data field transmitted in a plurality of spatial streams, and thus HT-LTF2 may be configured in plural.
  • the plurality of HT-LTF2 may be configured of a plurality of Data HT-LTF and a plurality of extended HT-LTF similarly to the HT-LTF field of the HT mixed PPDU.
  • the data field is a payload, and includes a service field, a SERVICE field, a scrambled PSDU field, tail bits, and padding bits. It may include. All bits of the data field are scrambled.
  • the service field has 16 bits. Each bit is assigned from 0 to 15, and transmitted sequentially from bit 0. Bits 0 to 6 are set to 0 and used to synchronize the descrambler in the receiver.
  • the IEEE 802.11ac WLAN system supports downlink multi-user multiple input multiple output (MU-MIMO) transmission in which a plurality of STAs simultaneously access a channel in order to efficiently use a wireless channel.
  • MU-MIMO downlink multi-user multiple input multiple output
  • the AP may simultaneously transmit packets to one or more STAs that are paired with MIMO.
  • DL MU transmission (downlink multi-user transmission) refers to a technology in which an AP transmits a PPDU to a plurality of non-AP STAs through the same time resource through one or more antennas.
  • the MU PPDU refers to a PPDU that delivers one or more PSDUs for one or more STAs using MU-MIMO technology or OFDMA technology.
  • the SU PPDU means a PPDU having a format in which only one PSDU can be delivered or in which no PSDU exists.
  • control information transmitted to the STA may be relatively large compared to the size of 802.11n control information for MU-MIMO transmission.
  • An example of control information additionally required for MU-MIMO support includes information indicating the number of spatial streams received by each STA, information related to modulation and coding of data transmitted to each STA, and the like. Can be.
  • the size of transmitted control information may be increased according to the number of receiving STAs.
  • control information required for MU-MIMO transmission is required separately for common control information common to all STAs and specific STAs.
  • the data may be transmitted by being divided into two types of information of dedicated control information.
  • FIG. 4 illustrates a VHT format PPDU format of a wireless communication system to which the present invention can be applied.
  • VHT format PPDU VHT format PPDU
  • a VHT format PPDU includes a legacy format preamble including a L-STF, L-LTF, and L-SIG fields, a VHT-SIG-A (VHT-Signal-A) field, and a VHT-STF ( A VHT format preamble and a data field including a VHT Short Training field (VHT-LTF), a VHT Long Training field (VHT-LTF), and a VHT-SIG-B (VHT-Signal-B) field.
  • VHT-LTF VHT Short Training field
  • VHT-LTF VHT Long Training field
  • VHT-SIG-B VHT-Signal-B
  • L-STF, L-LTF, and L-SIG mean legacy fields for backward compatibility, they are the same as non-HT formats from L-STF to L-SIG fields.
  • the L-LTF may further include information for channel estimation to be performed to demodulate the L-SIG field and the VHT-SIG-A field.
  • the L-STF, L-LTF, L-SIG field, and VHT-SIG-A field may be repeatedly transmitted in 20 MHz channel units. For example, when a PPDU is transmitted on four 20 MHz channels (i.e., 80 MHz bandwidth), the L-STF, L-LTF, L-SIG field, and VHT-SIG-A field are repeatedly transmitted on every 20 MHz channel. Can be.
  • the VHT-STA may know that it is a VHT format PPDU using the VHT-SIG-A field following the legacy field, and may decode the data field based on the VHT-STA.
  • the L-STF, L-LTF and L-SIG fields are transmitted first in order to receive the L-STA and acquire data. Thereafter, the VHT-SIG-A field is transmitted for demodulation and decoding of data transmitted for the VHT-STA.
  • the VHT-SIG-A field is a field for transmitting control information common to the AP and MIMO paired VHT STAs, and includes control information for interpreting the received VHT format PPDU.
  • the VHT-SIG-A field may include a VHT-SIG-A1 field and a VHT-SIG-A2 field.
  • the VHT-SIG-A1 field includes information on channel bandwidth (BW) used, whether space time block coding (STBC) is applied, and group identification information for indicating a group of STAs grouped in MU-MIMO.
  • Group ID Group Identifier
  • NSTS space-time streams
  • Partial AID Partial Association Identifier
  • Transmit power save forbidden information can do.
  • the Group ID means an identifier assigned to the STA group to be transmitted to support MU-MIMO transmission, and may indicate whether the currently used MIMO transmission method is MU-MIMO or SU-MIMO.
  • Table 2 is a table illustrating the VHT-SIG-A1 field.
  • the VHT-SIG-A2 field contains information on whether a short guard interval (GI) is used, forward error correction (FEC) information, information on modulation and coding scheme (MCS) for a single user, and multiple information.
  • GI short guard interval
  • FEC forward error correction
  • MCS modulation and coding scheme
  • Information on the type of channel coding for the user beamforming-related information, redundancy bits for cyclic redundancy checking (CRC), tail bits of convolutional decoder, and the like. Can be.
  • Table 3 is a table illustrating the VHT-SIG-A2 field.
  • VHT-STF is used to improve the performance of AGC estimation in MIMO transmission.
  • VHT-LTF is used by the VHT-STA to estimate the MIMO channel. Since the VHT WLAN system supports MU-MIMO, the VHT-LTF may be set as many as the number of spatial streams in which a PPDU is transmitted. In addition, if full channel sounding is supported, the number of VHT-LTFs may be greater.
  • the VHT-SIG-B field includes dedicated control information required for a plurality of MU-MIMO paired VHT-STAs to receive a PPDU and acquire data. Therefore, the VHT-STA may be designed to decode the VHT-SIG-B field only when the common control information included in the VHT-SIG-A field indicates the MU-MIMO transmission currently received. . On the other hand, if the common control information indicates that the currently received PPDU is for a single VHT-STA (including SU-MIMO), the STA may be designed not to decode the VHT-SIG-B field.
  • the VHT-SIG-B field includes a VHT-SIG-B length field, a VHT-MCS field, a reserved field, and a tail field.
  • the VHT-SIG-B Length field indicates the length of the A-MPDU (before end-of-frame padding).
  • the VHT-MCS field includes information on modulation, encoding, and rate-matching of each VHT-STA.
  • the size of the VHT-SIG-B field may vary depending on the type of MIMO transmission (MU-MIMO or SU-MIMO) and the channel bandwidth used for PPDU transmission.
  • FIG. 4 (b) illustrates the VHT-SIG-B field according to the PPDU transmission bandwidth.
  • the VHT-SIG-B bits are repeated twice.
  • the VHT-SIG-B bits are repeated four times and pad bits set to zero are attached.
  • VHT-SIG-B bits are repeated four times, as with the 80 MHz transmission, with pad bits set to zero attached. Then, all 117 bits are repeated again.
  • information indicating a bit size of a data field constituting the PPDU and / or indicating a bit stream size constituting a specific field May be included in the VHT-SIG-A field.
  • the L-SIG field may be used to effectively use the PPDU format.
  • a length field and a rate field included in the L-SIG field and transmitted may be used to provide necessary information.
  • MPDU MAC Protocol Data Unit
  • A-MPDU Aggregate MAC Protocol Data Unit
  • the data field is a payload and may include a service field, a scrambled PSDU, tail bits, and padding bits.
  • the STA Since the formats of various PPDUs are mixed and used as described above, the STA must be able to distinguish the formats of the received PPDUs.
  • the meaning of distinguishing a PPDU may have various meanings.
  • the meaning of identifying the PPDU may include determining whether the received PPDU is a PPDU that can be decoded (or interpreted) by the STA.
  • the meaning of distinguishing the PPDU may mean determining whether the received PPDU is a PPDU supported by the STA.
  • the meaning of distinguishing the PPDU may also be interpreted to mean what information is transmitted through the received PPDU.
  • FIG. 5 is a diagram illustrating a constellation for distinguishing a format of a PPDU of a wireless communication system to which the present invention can be applied.
  • FIG. 5 (a) illustrates the constellation of the L-SIG field included in the non-HT format PPDU
  • FIG. 5 (b) illustrates the phase rotation for HT mixed format PPDU detection
  • 5 (c) illustrates phase rotation for VHT format PPDU detection.
  • Phase is used. That is, the STA may distinguish the PPDU format based on the phase of the constellation of the OFDM symbol transmitted after the L-SIG field and / or the L-SIG field of the received PPDU.
  • binary phase shift keying (BPSK) is used for an OFDM symbol constituting the L-SIG field.
  • the STA determines whether it is an L-SIG field. That is, the STA tries to decode based on the constellation as shown in the example of FIG. If the STA fails to decode, it may be determined that the corresponding PPDU is an HT-GF format PPDU.
  • the phase of the constellation of OFDM symbols transmitted after the L-SIG field may be used. That is, the modulation method of OFDM symbols transmitted after the L-SIG field may be different, and the STA may distinguish the PPDU format based on the modulation method for the field after the L-SIG field of the received PPDU.
  • the phase of two OFDM symbols transmitted after the L-SIG field in the HT mixed format PPDU may be used.
  • the phases of OFDM symbol # 1 and OFDM symbol # 2 corresponding to the HT-SIG field transmitted after the L-SIG field in the HT mixed format PPDU are rotated by 90 degrees in the counterclockwise direction. That is, quadrature binary phase shift keying (QBPSK) is used as a modulation method for OFDM symbol # 1 and OFDM symbol # 2.
  • QBPSK constellation may be a constellation rotated by 90 degrees in a counterclockwise direction based on the BPSK constellation.
  • the STA attempts to decode the first OFDM symbol and the second OFDM symbol corresponding to the HT-SIG field transmitted after the L-SIG field of the received PPDU based on the properties as shown in the example of FIG. 5 (b). If the STA succeeds in decoding, it is determined that the corresponding PPDU is an HT format PPDU.
  • the phase of the constellation of the OFDM symbol transmitted after the L-SIG field may be used.
  • the phase of two OFDM symbols transmitted after the L-SIG field in the VHT format PPDU may be used.
  • phase of the OFDM symbol # 1 corresponding to the VHT-SIG-A field after the L-SIG field in the VHT format PPDU is not rotated, but the phase of the OFDM symbol # 2 is rotated by 90 degrees counterclockwise. . That is, BPSK is used for the modulation method for OFDM symbol # 1 and QBPSK is used for the modulation method for OFDM symbol # 2.
  • the STA attempts to decode the first OFDM symbol and the second OFDM symbol corresponding to the VHT-SIG field transmitted after the L-SIG field of the received PPDU based on the properties as illustrated in FIG. 5 (c). If the STA succeeds in decoding, it may be determined that the corresponding PPDU is a VHT format PPDU.
  • the STA may determine that the corresponding PPDU is a non-HT format PPDU.
  • FIG. 6 illustrates a MAC frame format of an IEEE 802.11 system to which the present invention can be applied.
  • a MAC frame (ie, an MPDU) includes a MAC header, a frame body, and a frame check sequence (FCS).
  • FCS frame check sequence
  • MAC Header includes Frame Control field, Duration / ID field, Address 1 field, Address 2 field, Address 3 field, Sequence control It is defined as an area including a Control field, an Address 4 field, a QoS Control field, and an HT Control field.
  • the Frame Control field includes information on the MAC frame characteristic. A detailed description of the Frame Control field will be given later.
  • the Duration / ID field may be implemented to have different values depending on the type and subtype of the corresponding MAC frame.
  • the Duration / ID field is an AID (association identifier) of the STA that transmitted the frame. It may be set to include. Otherwise, the Duration / ID field may be set to have a specific duration value according to the type and subtype of the corresponding MAC frame.
  • the Duration / ID fields included in the MAC header may be set to have the same value.
  • the Address 1 to Address 4 fields include a BSSID, a source address (SA), a destination address (DA), a transmission address (TA) indicating a transmission STA address, and a reception address indicating a destination STA address (TA).
  • SA source address
  • DA destination address
  • TA transmission address
  • TA reception address indicating a destination STA address
  • RA It is used to indicate Receiving Address.
  • the address field implemented as a TA field may be set to a bandwidth signaling TA value, in which case, the TA field may indicate that the corresponding MAC frame contains additional information in the scrambling sequence.
  • the bandwidth signaling TA may be represented by the MAC address of the STA transmitting the corresponding MAC frame, but the Individual / Group bit included in the MAC address may be set to a specific value (for example, '1'). Can be.
  • the Sequence Control field is set to include a sequence number and a fragment number.
  • the sequence number may indicate a sequence number allocated to the corresponding MAC frame.
  • the fragment number may indicate the number of each fragment of the corresponding MAC frame.
  • the QoS Control field contains information related to QoS.
  • the QoS Control field may be included when indicating a QoS data frame in a subtype subfield.
  • the HT Control field includes control information related to the HT and / or VHT transmission / reception schemes.
  • the HT Control field is included in the Control Wrapper frame. In addition, it exists in the QoS data frame and the management frame in which the order subfield value is 1.
  • the frame body is defined as a MAC payload, and data to be transmitted in a higher layer is located, and has a variable size.
  • the maximum MPDU size may be 11454 octets
  • the maximum PPDU size may be 5.484 ms.
  • FCS is defined as a MAC footer and is used for error detection of MAC frames.
  • the first three fields (Frame Control field, Duration / ID field and Address 1 field) and the last field (FCS field) constitute the minimum frame format and are present in every frame. Other fields may exist only in a specific frame type.
  • FIG. 7 is a diagram illustrating a Frame Control field in a MAC frame in a wireless communication system to which the present invention can be applied.
  • the Frame Control field includes a Protocol Version subfield, a Type subfield, a Subtype subfield, a To DS subfield, a From DS subfield, and more fragments.
  • the Protocol Version subfield may indicate the version of the WLAN protocol applied to the corresponding MAC frame.
  • the Type subfield and the Subtype subfield may be set to indicate information for identifying a function of a corresponding MAC frame.
  • the type of the MAC frame may include three frame types: a management frame, a control frame, and a data frame.
  • Each frame type may be further divided into subtypes.
  • control frames include request to send (RTS) frames, clear-to-send (CTS) frames, acknowledgment (ACK) frames, PS-Poll frames, content free (End) frames, CF End + CF-ACK frame, Block Acknowledgment request (BAR) frame, Block Acknowledgment (BA) frame, Control Wrapper (Control + HTcontrol) frame, VHT null data packet notification (NDPA) It may include a Null Data Packet Announcement and a Beamforming Report Poll frame.
  • Management frames include beacon frames, announcement traffic indication message (ATIM) frames, disassociation frames, association request / response frames, reassociation requests / responses Response frame, Probe Request / Response frame, Authentication frame, Deauthentication frame, Action frame, Action No ACK frame, Timing Advertisement It may include a frame.
  • ATIM announcement traffic indication message
  • disassociation frames association request / response frames
  • reassociation requests / responses Response frame Probe Request / Response frame
  • Authentication frame Deauthentication frame
  • Action frame Action No ACK frame
  • Timing Advertisement It may include a frame.
  • the To DS subfield and the From DS subfield may include information necessary to interpret the Address 1 field or the Address 4 field included in the corresponding MAC frame header.
  • both the To DS subfield and the From DS subfield are set to '0'.
  • the To DS subfield and the From DS subfield are set to '1' and '0' in order if the frame is a QoS Management frame (QMF), and in order if the frame is not QMF. Both can be set to '0', '0'.
  • QMF QoS Management frame
  • the More Fragments subfield may indicate whether there is a fragment to be transmitted following the corresponding MAC frame. If there is another fragment of the current MSDU or MMPDU, it may be set to '1', otherwise it may be set to '0'.
  • the Retry subfield may indicate whether the corresponding MAC frame is due to retransmission of a previous MAC frame. In case of retransmission of the previous MAC frame, it may be set to '1', otherwise it may be set to '0'.
  • the power management subfield may indicate a power management mode of the STA. If the value of the Power Management subfield is '1', the STA may indicate switching to the power save mode.
  • the More Data subfield may indicate whether there is an additional MAC frame to be transmitted. If there is an additional MAC frame to be transmitted, it may be set to '1', otherwise it may be set to '0'.
  • the Protected Frame subfield may indicate whether the frame body field is encrypted. If the Frame Body field includes information processed by the encryption encapsulation algorithm, it may be set to '1', otherwise it may be set to '0'.
  • each field described above corresponds to an example of fields that may be included in the MAC frame, but is not limited thereto. That is, each field described above may be replaced with another field or additional fields may be further included, and all fields may not be necessarily included.
  • FIG. 8 illustrates the VHT format of the HT Control field in a wireless communication system to which the present invention can be applied.
  • the HT Control field includes a VHT subfield, an HT Control Middle subfield, an AC Constraint subfield, and a Reverse Direction Grant (RDG) / More PPDU (More PPDU). It may consist of subfields.
  • RDG Reverse Direction Grant
  • More PPDU More PPDU
  • the HT Control field for the VHT may be referred to as a VHT Control field.
  • the HT Control Middle subfield may be implemented to have a different format according to the indication of the VHT subfield. A more detailed description of the HT Control Middle subfield will be given later.
  • the AC Constraint subfield indicates whether a mapped AC (Access Category) of a reverse direction (RD) data frame is limited to a single AC.
  • the RDG / More PPDU subfield may be interpreted differently depending on whether the corresponding field is transmitted by the RD initiator or the RD responder.
  • the RDG / More PPDU field When transmitted by the RD initiator, the RDG / More PPDU field is set to '1' if the RDG exists, and set to '0' if the RDG does not exist. When transmitted by the RD responder, it is set to '1' if the PPDU including the corresponding subfield is the last frame transmitted by the RD responder, and set to '0' when another PPDU is transmitted.
  • the HT Control Middle subfield may be implemented to have a different format according to the indication of the VHT subfield.
  • the HT Control Middle subfield of the HT Control field for VHT includes a reserved bit, a Modulation and Coding Scheme feedback request (MRQ) subfield, and an MRQ Sequence Identifier (MSI).
  • STBC Space-time block coding
  • MCS MCS feedback sequence identifier
  • LSB Least Significant Bit
  • MSB MCS Feedback
  • MSB Group ID Most Significant Bit
  • Coding Type Subfield Feedback Transmission Type (FB Tx Type: Feedback transmission type) subfield and voluntary MFB (Unsolicited MFB) subfield.
  • Table 4 shows a description of each subfield included in the HT Control Middle subfield of the VHT format.
  • the MFB subfield may include a VHT number of space time streams (NUM_STS) subfield, a VHT-MCS subfield, a bandwidth (BW) subfield, and a signal to noise ratio (SNR). It may include subfields.
  • NUM_STS VHT number of space time streams
  • BW bandwidth
  • SNR signal to noise ratio
  • the NUM_STS subfield indicates the number of recommended spatial streams.
  • the VHT-MCS subfield indicates a recommended MCS.
  • the BW subfield indicates bandwidth information related to the recommended MCS.
  • the SNR subfield indicates the average SNR value on the data subcarrier and spatial stream.
  • each field described above corresponds to an example of fields that may be included in the MAC frame, but is not limited thereto. That is, each field described above may be replaced with another field or additional fields may be further included, and all fields may not be necessarily included.
  • IEEE 802.11 communication is fundamentally different from the wired channel environment because the communication takes place over a shared wireless medium.
  • CSMA / CD carrier sense multiple access / collision detection
  • the channel environment does not change so much that the receiver does not experience significant signal attenuation.
  • detection was possible. This is because the power sensed by the receiver is instantaneously greater than the power transmitted by the transmitter.
  • a variety of factors e.g., large attenuation of the signal depending on distance, or instantaneous deep fading
  • the transmitter cannot accurately perform carrier sensing.
  • a carrier sense multiple access with collision avoidance (CSMA / CA) mechanism is introduced as a basic access mechanism of a MAC.
  • the CAMA / CA mechanism is also called the Distributed Coordination Function (DCF) of the IEEE 802.11 MAC. It basically employs a “listen before talk” access mechanism.
  • the AP and / or STA may sense a radio channel or medium during a predetermined time interval (eg, DCF Inter-Frame Space (DIFS)) prior to starting transmission.
  • DIFS DCF Inter-Frame Space
  • CCA Clear Channel Assessment
  • the AP and / or STA does not start its own transmission and assumes that several STAs are already waiting to use the medium.
  • the frame transmission may be attempted after waiting longer for a delay time (eg, a random backoff period) for access.
  • the STAs are expected to have different backoff period values, so that they will wait for different times before attempting frame transmission. This can minimize collisions.
  • HCF hybrid coordination function
  • the PCF refers to a polling-based synchronous access scheme in which polling is performed periodically so that all receiving APs and / or STAs can receive data frames.
  • the HCF has an Enhanced Distributed Channel Access (EDCA) and an HCF Controlled Channel Access (HCCA).
  • EDCA is a competition-based approach for providers to provide data frames to a large number of users
  • HCCA is a non-competition-based channel access scheme using a polling mechanism.
  • the HCF includes a media access mechanism for improving the quality of service (QoS) of the WLAN, and can transmit QoS data in both a contention period (CP) and a contention free period (CFP).
  • QoS quality of service
  • FIG. 9 is a diagram for explaining an arbitrary backoff period and a frame transmission procedure in a wireless communication system to which the present invention can be applied.
  • the random backoff count has a pseudo-random integer value and may be determined as one of values uniformly distributed in the range of 0 to a contention window (CW).
  • CW is a contention window parameter value.
  • the CW parameter is given CW_min as an initial value, but may take a double value when transmission fails (eg, when an ACK for a transmitted frame is not received). If the CW parameter value is CW_max, data transmission can be attempted while maintaining the CW_max value until the data transmission is successful. If the data transmission is successful, the CW parameter value is reset to the CW_min value.
  • the STA counts down the backoff slot according to the determined backoff count value and continuously monitors the medium during the countdown. If the media is monitored as occupied, the countdown stops and waits, and when the media is idle the countdown resumes.
  • the STA 3 may confirm that the medium is idle as much as DIFS and transmit the frame immediately.
  • each STA monitors and wait for the medium to be busy.
  • data may be transmitted in each of STA 1, STA 2, and STA 5, and each STA waits for DIFS when the medium is monitored in an idle state, and then backoff slots according to a random backoff count value selected by each STA. Counts down.
  • STA 2 selects the smallest backoff count value and STA 1 selects the largest backoff count value. That is, at the time when STA 2 finishes the backoff count and starts frame transmission, the remaining backoff time of STA 5 is shorter than the remaining backoff time of STA 1.
  • STA 1 and STA 5 stop counting and wait while STA 2 occupies the medium.
  • the STA 1 and the STA 5 resume the stopped backoff count after waiting for DIFS. That is, the frame transmission can be started after counting down the remaining backoff slots by the remaining backoff time. Since the remaining backoff time of STA 5 is shorter than that of STA 1, frame transmission of STA 5 is started.
  • STA 2 occupies the medium
  • data to be transmitted may also occur in STA 4.
  • the STA 4 waits for DIFS and then counts down the backoff slot according to the random backoff count value selected by the STA.
  • the remaining backoff time of STA 5 coincides with an arbitrary backoff count value of STA 4, and in this case, a collision may occur between STA 4 and STA 5. If a collision occurs, neither STA 4 nor STA 5 receive an ACK, and thus data transmission fails. In this case, STA4 and STA5 select a random backoff count value after doubling the CW value and perform countdown of the backoff slot.
  • the STA 1 may wait while the medium is occupied due to the transmission of the STA 4 and the STA 5, wait for DIFS when the medium is idle, and then start frame transmission after the remaining backoff time passes.
  • the CSMA / CA mechanism also includes virtual carrier sensing in addition to physical carrier sensing in which the AP and / or STA directly sense the medium.
  • Virtual carrier sensing is intended to compensate for problems that may occur in media access, such as a hidden node problem.
  • the MAC of the WLAN system uses a Network Allocation Vector (NAV).
  • the NAV is a value that indicates to the other AP and / or STA how long the AP and / or STA currently using or authorized to use the medium remain until the medium becomes available. Therefore, the value set to NAV corresponds to a period in which the medium is scheduled to be used by the AP and / or STA transmitting the frame, and the STA receiving the NAV value is prohibited from accessing the medium during the period.
  • the NAV may be set according to a value of a duration field of the MAC header of the frame.
  • the AP and / or STA may perform a procedure of exchanging a request to send (RTS) frame and a clear to send (CTS) frame to indicate that the AP and / or STA want to access the medium.
  • the RTS frame and the CTS frame include information indicating a time interval in which a wireless medium required for transmission and reception of an ACK frame is reserved when substantial data frame transmission and acknowledgment (ACK) are supported.
  • the other STA that receives the RTS frame transmitted from the AP and / or the STA to which the frame is to be transmitted or receives the CTS frame transmitted from the STA to which the frame is to be transmitted during the time period indicated by the information included in the RTS / CTS frame Can be set to not access the medium.
  • the time interval between frames is defined as Interframe Space (IFS).
  • IFS Interframe Space
  • the STA may determine whether the channel is used during the IFS time interval through carrier sensing.
  • Multiple IFSs are defined to provide a priority level that occupies a wireless medium in an 802.11 WLAN system.
  • FIG. 10 is a diagram illustrating an IFS relationship in a wireless communication system to which the present invention can be applied.
  • All timings can be determined with reference to the physical layer interface primitives, namely the PHY-TXEND.confirm primitive, the PHYTXSTART.confirm primitive, the PHY-RXSTART.indication primitive and the PHY-RXEND.indication primitive.
  • Frame spacing according to IFS type is as follows.
  • IFS timing is defined as the time gap on the medium. Except for AIFS, IFS timing is fixed for each physical layer.
  • SIFS includes an ACK frame, a CTS frame, a Block ACK Request (BlockAckReq) frame, or a PPDU containing a Block ACK (BlockAck) frame that is an immediate response to an A-MPDU, a second or consecutive MPDU of a fragment burst, or PCF. Used for transmission of the STA's response to polling by and has the highest priority. SIFS can also be used for point coordinator of frames regardless of the type of frame during non-competition interval (CFP) time. SIFS represents the time from the end of the last symbol of the previous frame or the signal extension (if present) to the start of the first symbol of the preamble of the next frame.
  • CCP non-competition interval
  • SIFS timing is achieved when the transmission of consecutive frames at the TxSIFS slot boundary begins.
  • SIFS is the shortest of the IFS between transmissions from different STAs.
  • the STA occupying the medium may be used when it is necessary to maintain the occupation of the medium during the period in which the frame exchange sequence is performed.
  • PIFS is used to gain priority in accessing media.
  • PIFS can be used in the following cases:
  • TIM Traffic Indication Map
  • Hybrid Coordinator initiating CFP or Transmission Opportunity (TXOP)
  • HC or non-AP QoS STA which is a polled TXOP holder for recovering from the absence of expected reception in a controlled access phase (CAP)
  • the STA using the PIFS starts transmission after the CS (carrier sense) mechanism that determines that the medium is idle at the TxPIFS slot boundary.
  • DIFS may be used by a STA operative to transmit a data frame (MPDU) and a management frame (MMPDU: MAC Management Protocol Data Unit) under DCF.
  • the STA using the DCF may transmit on the TxDIFS slot boundary if it is determined that the medium is idle through a carrier sense (CS) mechanism after a correctly received frame and backoff time expire.
  • the correctly received frame means a frame in which the PHY-RXEND.indication primitive does not indicate an error and the FCS indicates that the frame is not an error (error free).
  • SIFS time 'aSIFSTime' and slot time 'aSlotTime' may be determined for each physical layer.
  • the SIFS time has a fixed value, but the slot time may change dynamically according to a change in the air delay time (aAirPropagationTime).
  • the default physical layer parameter is based on 'aMACProcessingDelay' having a value equal to or smaller than 1 ms.
  • 3 ms may be the upper limit of the BSS maximum one-way distance ⁇ 450 m (round trip is ⁇ 900 m).
  • PIFS and SIFS are defined as Equations 4 and 5, respectively.
  • SIFS SIFS
  • PIFS PIFS
  • DIFS DIFS
  • Each MAC slot boundary for SIFS, PIFS, and DIFS is defined as in Equations 6 to 8, respectively.
  • Downlink MU- MIMO Frame (DL MU- MIMO Frame)
  • FIG. 11 is a diagram illustrating a downlink multi-user PPDU format in a wireless communication system to which the present invention can be applied.
  • a PPDU includes a preamble and a data field.
  • the data field may include a service field, a scrambled PSDU field, tail bits, and padding bits.
  • the AP may aggregate the MPDUs and transmit a data frame in an A-MPDU (aggregated MPDU) format.
  • the scrambled PSDU field may be configured as an A-MPDU.
  • An A-MPDU consists of a sequence of one or more A-MPDU subframes.
  • the A-MPDU is zero after the last A-MPDU subframe to fit the A-MPDU to the last octet of the PSDU. And three to three octets of an end-of-frame (EOF) pad.
  • EEF end-of-frame
  • the A-MPDU subframe consists of an MPDU delimiter, and optionally an MPDU may be included after the MPDU delimiter.
  • an MPDU may be included after the MPDU delimiter.
  • a pad octet is attached after the MPDU to make the length of each A-MPDU subframe a multiple of 4 octets.
  • the MPDU Delimiter is composed of a Reserved field, an MPDU Length field, a cyclic redundancy check (CRC) field, and a delimiter signature field.
  • CRC cyclic redundancy check
  • the MPDU Delimiter may further include an end-of-frame (EOF) field. If the MPDU Length field is 0 and the A-MPDU subframe used for padding or the A-MPDU subframe carrying the MPDU when the A-MPDU consists of only one MPDU, the EOF field is set to '1'. do. Otherwise it is set to '0'.
  • EEF end-of-frame
  • the MPDU Length field contains information about the length of the MPDU.
  • An A-MPDU subframe whose PDU Length field has a value of '0' is used when padding the corresponding A-MPDU to match the A-MPDU to available octets in the VHT PPDU.
  • the CRC field includes CRC information for error checking
  • the Delimiter Signature field includes pattern information used to search for an MPDU delimiter.
  • the MPDU is composed of a MAC header, a frame body, and a frame check sequence (FCS).
  • FCS frame check sequence
  • FIG. 12 is a diagram illustrating a downlink multi-user PPDU format in a wireless communication system to which the present invention can be applied.
  • the number of STAs receiving the PPDU is three and the number of spatial streams allocated to each STA is 1, but the number of STAs paired to the AP and the number of spatial streams allocated to each STA are shown in FIG. Is not limited to this.
  • the MU PPDU includes L-TFs field (L-STF field and L-LTF field), L-SIG field, VHT-SIG-A field, VHT-TFs field (VHT-STF field and VHT-LTF). Field), VHT-SIG-B field, Service field, one or more PSDU, padding field, and Tail bit. Since the L-TFs field, the L-SIG field, the VHT-SIG-A field, the VHT-TFs field, and the VHT-SIG-B field are the same as in the example of FIG. 4, detailed descriptions thereof will be omitted.
  • Information for indicating the duration of the PPDU may be included in the L-SIG field.
  • the PPDU duration indicated by the L-SIG field is the symbol assigned to the VHT-SIG-A field, the symbol assigned to the VHT-TFs field, the field assigned to the VHT-SIG-B field, and the Service field.
  • the STA receiving the PPDU may obtain information about the duration of the PPDU through the information indicating the duration of the PPDU included in the L-SIG field.
  • Group ID information and space-time stream number information per user are transmitted through the VHT-SIG-A, and a coding method and MCS information are transmitted through the VHT-SIG-B.
  • the beamformees may check the VHT-SIG-A and the VHT-SIG-B, and may know whether the beamformees belong to the MU MIMO frame. Therefore, the STA that is not a member STA of the corresponding Group ID or the member of the corresponding Group ID or the number of allocated streams is '0' reduces power consumption by setting to stop receiving the physical layer from the VHT-SIG-A field to the end of the PPDU. can do.
  • the Group ID can receive the Group ID Management frame transmitted by the Beamformer in advance, so that the MU group belonging to the Beamformee and the user of the group to which the Beamformee belongs, that is, the stream through which the PPDU is received.
  • each VHT A-MPDU may be transmitted in a different stream.
  • each A-MPDU may have a different bit size.
  • null padding may be performed such that the time when the transmission of the plurality of data frames transmitted by the beamformer is the same as the time when the transmission of the maximum interval transmission data frame is terminated.
  • the maximum interval transmission data frame may be a frame in which valid downlink data is transmitted by the beamformer for the longest period.
  • the valid downlink data may be downlink data that is not null padded.
  • valid downlink data may be included in the A-MPDU and transmitted.
  • Null padding may be performed on the remaining data frames except the maximum interval transmission data frame among the plurality of data frames.
  • the beamformer may encode and fill one or more A-MPDU subframes located in temporal order in the plurality of A-MPDU subframes in the A-MPDU frame with only the MPDU delimiter field.
  • An A-MPDU subframe having an MPDU length of 0 may be referred to as a null subframe.
  • the EOF field of the MPDU Delimiter is set to '1'. Accordingly, when the MAC layer of the receiving STA detects the EOF field set to 1, power consumption may be reduced by setting the physical layer to stop reception.
  • FIG. 13 is a diagram illustrating a downlink MU-MIMO transmission process in a wireless communication system to which the present invention can be applied.
  • MU-MIMO is defined in downlink from the AP to the client (ie, non-AP STA).
  • client ie, non-AP STA.
  • a multi-user frame is simultaneously transmitted to multiple receivers, but acknowledgments should be transmitted separately in the uplink.
  • Block Ack Request is sent in response to a frame.
  • the AP transmits a VHT MU PPDU (ie, preamble and data) to all receivers (ie, STA 1, STA 2, and STA 3).
  • the VHT MU PPDU includes a VHT A-MPDU transmitted to each STA.
  • STA 1 Receiving a VHT MU PPDU from the AP, STA 1 transmits a block acknowledgment (BA) frame to the AP after SIFS.
  • BA block acknowledgment
  • the AP After receiving the BA from the STA 1, the AP transmits a block acknowledgment request (BAR) frame to the next STA 2 after SIFS, and the STA 2 transmits a BA frame to the AP after SIFS.
  • BAR block acknowledgment request
  • the AP receiving the BA frame from STA 2 transmits the BAR frame to STA 3 after SIFS, and STA 3 transmits the BA frame to AP after SIFS.
  • the AP transmits the next MU PPDU to all STAs.
  • an ACK frame is used as a response to the MPDU, and a block ACK frame is used as a response to the A-MPDU.
  • FIG. 14 is a diagram illustrating an ACK frame in a wireless communication system to which the present invention can be applied.
  • an ACK frame is composed of a frame control field, a duration field, an RA field, and an FCS.
  • the RA field may be a second address field of a data frame, a management frame, a block ACK request frame, a block ACK frame, or a PS-Poll frame received immediately before. It is set to the value of.
  • the ACK frame is transmitted by the non-QoS STA, the More Fragments subfield in the Frame Control field of the data frame or management frame received immediately before If '0', the duration value is set to '0'.
  • the duration value may include a data frame, a management frame, a block ACK request frame, a block received immediately before.
  • the duration / ID field of the ACK (Block Ack) frame or the PS-Poll frame the time required for transmitting the ACK frame and the SIFS interval are set to a value (ms). If the calculated duration value is not an integer value, it is rounded up.
  • FIG. 15 illustrates a block ACK request frame in a wireless communication system to which an embodiment of the present invention may be applied.
  • a block ACK request (BAR) frame includes a frame control field, a duration / ID field, a reception address field, a transmission address field, a BAR control ( BAR control field, BAR information field and frame check sequence (FCS).
  • BAR block ACK request
  • FCS frame check sequence
  • the RA field may be set to the address of the STA that receives the BAR frame.
  • the TA field may be set to an address of an STA that transmits a BAR frame.
  • the BAR control field includes a BAR Ack Policy subfield, a Multi-TID subfield, a Compressed Bitmap subfield, a Reserved subfield, and a TID Information (TID_Info) subfield. It includes.
  • Table 5 is a table illustrating a BAR control field.
  • the BAR Information field contains different information according to the type of the BAR frame. This will be described with reference to FIG. 16.
  • FIG. 16 illustrates a BAR information field of a block ACK request frame in a wireless communication system to which an embodiment of the present invention may be applied.
  • FIG. 16A illustrates a BAR Information field of a Basic BAR frame and a Compressed BAR frame
  • FIG. 16B illustrates a BAR Information field of a Multi-TID BAR frame.
  • the BAR Information field includes a Block Ack Starting Sequence Control subfield.
  • the Block Ack Starting Sequence Control subfield includes a fragment number subfield and a starting sequence number subfield.
  • the Fragment Number subfield is set to zero.
  • the Starting Sequence Number subfield includes the sequence number of the first MSDU in which the corresponding BAR frame is transmitted.
  • the Starting Sequence Control subfield includes the sequence number of the first MSDU or A-MSDU for which the corresponding BAR frame is to be transmitted.
  • the BAR Information field may include a TID Info subfield and a Block Ack Starting Sequence Control subfield. Stars are repeated.
  • the Per TID Info subfield includes a reserved subfield and a TID value subfield.
  • the TID Value subfield contains a TID value.
  • the Block Ack Starting Sequence Control subfield includes the Fragment Number and Starting Sequence Number subfields as described above.
  • the Fragment Number subfield is set to zero.
  • the Starting Sequence Control subfield includes the sequence number of the first MSDU or A-MSDU for which the corresponding BAR frame is to be transmitted.
  • 17 is a diagram illustrating a block ACK (block Ack) frame in a wireless communication system to which the present invention can be applied.
  • a block ACK (BA) frame includes a frame control field, a duration / ID field, a reception address (RA) field, a transmission address (TA) field, and a BA control (BA). control field, BA Information field, and frame check sequence (FCS).
  • BA frame check sequence
  • the RA field may be set to the address of the STA requesting the block ACK.
  • the TA field may be set to an address of an STA that transmits a BA frame.
  • the BA control field includes a BA Ack Policy subfield, a Multi-TID subfield, a Compressed Bitmap subfield, a Reserved subfield, and a TID Information (TID_Info) subfield. It includes.
  • Table 6 is a table illustrating a BA control field.
  • the BA Information field includes different information according to the type of the BA frame. This will be described with reference to FIG. 18.
  • FIG. 18 is a diagram illustrating a BA Information field of a block ACK frame in a wireless communication system to which the present invention can be applied.
  • FIG. 18 (a) illustrates a BA Information field of a Basic BA frame
  • FIG. 18 (b) illustrates a BA Information field of a Compressed BA frame
  • FIG. 18 (c) illustrates a BA Information field of a Multi-TID BA frame. To illustrate.
  • the BA Information field includes a Block Ack Starting Sequence Control subfield and a Block ACK Bitmap subfield.
  • the Block Ack Starting Sequence Control subfield includes a Fragment Number subfield and a Starting Sequence Number subfield as described above.
  • the Fragment Number subfield is set to zero.
  • the Starting Sequence Number subfield includes the sequence number of the first MSDU for transmitting the corresponding BA frame and is set to the same value as the Basic BAR frame received immediately before.
  • the Block Ack Bitmap subfield consists of 128 octets and is used to indicate the reception status of up to 64 MSDUs.
  • a value of '1' in the Block Ack Bitmap subfield indicates that the MPDU corresponding to the corresponding bit position was successfully received, and a value of '0' indicates that the MPDU corresponding to the corresponding bit position was not successfully received.
  • the BA Information field includes a block ACK starting sequence control subfield and a block ACK bitmap subfield.
  • the Block Ack Starting Sequence Control subfield includes a Fragment Number subfield and a Starting Sequence Number subfield as described above.
  • the Fragment Number subfield is set to zero.
  • the Starting Sequence Number subfield includes the sequence number of the first MSDU or A-MSDU for transmitting the corresponding BA frame, and is set to the same value as the Basic BAR frame received immediately before.
  • the Block Ack Bitmap subfield is 8 octets long and is used to indicate the reception status of up to 64 MSDUs and A-MSDUs.
  • a value of '1' in the Block Ack Bitmap subfield indicates that a single MSDU or A-MSDU corresponding to the corresponding bit position was successfully received.
  • a value of '0' indicates that a single MSDU or A-MSDU corresponding to the corresponding bit position was successful. Indicates that it has not been received.
  • a BA Information field includes a TID Info subfield, a Block Ack Starting Sequence Control subfield, and a block ACK bit.
  • the Block Ack Bitmap subfield is repeatedly configured for one or more TIDs, and configured in the order of increasing TIDs.
  • the Per TID Info subfield includes a reserved subfield and a TID value subfield.
  • the TID Value subfield contains a TID value.
  • the Block Ack Starting Sequence Control subfield includes the Fragment Number and Starting Sequence Number subfields as described above.
  • the Fragment Number subfield is set to zero.
  • the Starting Sequence Control subfield contains the sequence number of the first MSDU or A-MSDU for which the corresponding BA frame is to be transmitted.
  • the Block Ack Bitmap subfield consists of 8 octets in length.
  • a value of '1' in the Block Ack Bitmap subfield indicates that a single MSDU or A-MSDU corresponding to the corresponding bit position was successfully received.
  • a value of '0' indicates that a single MSDU or A-MSDU corresponding to the corresponding bit position was successful. Indicates that it has not been received.
  • New frames for next-generation WLAN systems 802.11ax systems, with increasing attention from vendors in various fields for next-generation WiFi and increased demand for high throughput and quality of experience (QoE) after 802.11ac.
  • QoE quality of experience
  • IEEE 802.11ax is a next-generation WLAN system that supports higher data rates and handles higher user loads.
  • One of the recently proposed WLAN systems is known as high efficiency WLAN (HEW: High). Called Efficiency WLAN).
  • the IEEE 802.11ax WLAN system may operate in the 2.4 GHz frequency band and the 5 GHz frequency band like the existing WLAN system. It can also operate in the higher 60 GHz frequency band.
  • IEEE 802.11ax the existing IEEE 802.11 OFDM system (IEEE 802.11a, 802.11n) is used for outdoor throughput transmission for average throughput enhancement and inter-symbol interference in outdoor environment. , 4x larger FFT size for each bandwidth than 802.11ac. This will be described with reference to the drawings below.
  • the description of the non-HT format PPDU, the HT-mixed format PPDU, the HT-greenfield format PPDU, and / or the VHT format PPDU described above will be described in HE format unless otherwise noted. May be incorporated into the description of the PPDU.
  • FIG. 19 illustrates a High Efficiency (HE) format PPDU according to an embodiment of the present invention.
  • HE High Efficiency
  • FIGS. 19 (a) to (d) illustrate more specific structures of an HE format PPDU.
  • the HE format PPDU for the HEW may be largely composed of a legacy part (L-part), an HE part (HE-part), and a data field (HE-data).
  • L-part legacy part
  • HE-part HE part
  • HE-data data field
  • the L-part is composed of an L-STF field, an L-LTF field, and an L-SIG field in the same manner as the conventional WLAN system maintains.
  • the L-STF field, L-LTF field, and L-SIG field may be referred to as a legacy preamble.
  • the HE-part is a part newly defined for the 802.11ax standard and may include an HE-STF field, an HE-SIG field, and an HE-LTF field.
  • 19 (a) illustrates the order of the HE-STF field, the HE-SIG field, and the HE-LTF field, but may be configured in a different order.
  • HE-LTF may be omitted.
  • the HE-SIG field may be collectively referred to as HE-preamble.
  • the L-part, the HE-SIG field, and the HE-preamble may be collectively referred to as a physical preamble (PHY).
  • PHY physical preamble
  • the HE-SIG may include information for decoding the HE-data field (eg, OFDMA, UL MU MIMO, Enhanced MCS, etc.).
  • information for decoding the HE-data field eg, OFDMA, UL MU MIMO, Enhanced MCS, etc.
  • the L-part and the HE-part may have different fast fourier transform (FFT) sizes (ie, subcarrier spacing), and may use different cyclic prefixes (CP).
  • FFT fast fourier transform
  • CP cyclic prefixes
  • 802.11ax systems can use FFT sizes that are four times larger than legacy WLAN systems. That is, the L-part may have a 1 ⁇ symbol structure, and the HE-part (particularly, HE-preamble and HE-data) may have a 4 ⁇ symbol structure.
  • 1 ⁇ , 2 ⁇ , 4 ⁇ size FFT means relative size with respect to legacy WLAN system (eg, IEEE 802.11a, 802.11n, 802.11ac, etc.).
  • the FFT size used for the L-part is 64, 128, 256, and 512 at 20 MHz, 40 MHz, 80 MHz, and 160 MHz, respectively
  • the FFT size used for the HE-part is 256 at 20 MHz, 40 MHz, 80 MHz, and 160 MHz, respectively. , 512, 1024, 2048.
  • the FFT size is larger than that of the legacy WLAN system, the number of subcarriers per unit frequency is increased because the subcarrier frequency spacing is smaller, but the OFDM symbol length is longer.
  • the use of a larger FFT size means that the subcarrier spacing is narrowed, and similarly, an Inverse Discrete Fourier Transform (IDFT) / Discrete Fourier Transform (DFT) period is increased.
  • IDFT Inverse Discrete Fourier Transform
  • DFT Discrete Fourier Transform
  • the IDFT / DFT period may mean a symbol length excluding the guard period (GI) in the OFDM symbol.
  • the subcarrier spacing of the HE-part is 1/4 of the subcarrier spacing of the L-part.
  • the ID-FT / DFT period of the HE-part is four times the IDFT / DFT period of the L-part.
  • the GI can be one of 0.8 ⁇ s, 1.6 ⁇ s, 3.2 ⁇ s, so the OFDM symbol length (or symbol interval) of the HE-part including the GI is 13.6 ⁇ s, 14.4 ⁇ s, 16 according to the GI. It can be
  • the HE-SIG field may be divided into an HE-SIG-A field and an HE-SIG-B field.
  • the HE-part of the HE format PPDU may include a HE-SIG-A field having a length of 12.8 kHz, a HE-STF field of 1 OFDM symbol, one or more HE-LTF fields, and a HE-SIG-B field of 1 OFDM symbol. It may include.
  • the FFT having a size four times larger than the existing PPDU may be applied from the HE-STF field. That is, FFTs of 256, 512, 1024, and 2048 sizes may be applied from the HE-STF field of the HE format PPDU of 20 MHz, 40 MHz, 80 MHz, and 160 MHz, respectively.
  • the HE-SIG-A field and the HE-SIG-B field are shown in FIG. May be different from 25 (b).
  • the HE-SIG-B field may be transmitted after the HE-SIG-A field
  • the HE-STF field and the HE-LTF field may be transmitted after the HE-SIG-B field.
  • an FFT of 4 times larger than a conventional PPDU may be applied from the HE-STF field.
  • the HE-SIG field may not be divided into an HE-SIG-A field and an HE-SIG-B field.
  • the HE-part of the HE format PPDU may include a HE-STF field of one OFDM symbol, a HE-SIG field of one OFDM symbol, and one or more HE-LTF fields.
  • the HE-part may be applied to an FFT four times larger than the existing PPDU. That is, FFTs of 256, 512, 1024, and 2048 sizes may be applied from the HE-STF field of the HE format PPDU of 20 MHz, 40 MHz, 80 MHz, and 160 MHz, respectively.
  • the HE-SIG field may not be divided into the HE-SIG-A field and the HE-SIG-B field, and the HE-LTF field may be omitted.
  • the HE-part of the HE format PPDU may include a HE-STF field of 1 OFDM symbol and a HE-SIG field of 1 OFDM symbol.
  • the HE-part may be applied to an FFT four times larger than the existing PPDU. That is, FFTs of 256, 512, 1024, and 2048 sizes may be applied from the HE-STF field of the HE format PPDU of 20 MHz, 40 MHz, 80 MHz, and 160 MHz, respectively.
  • the HE format PPDU for the WLAN system according to the present invention may be transmitted on at least one 20 MHz channel.
  • the HE format PPDU may be transmitted in a 40 MHz, 80 MHz, or 160 MHz frequency band through a total of four 20 MHz channels. This will be described in more detail with reference to the drawings below.
  • the HE format PPDU for the WLAN system to which the present invention can be applied may be transmitted through at least one 20 MHz channel.
  • the HE format PPDU may be transmitted in a 40 MHz, 80 MHz, or 160 MHz frequency band through a total of four 20 MHz channels. This will be described in more detail with reference to the drawings below.
  • FIG. 20 is a diagram illustrating a HE format PPDU according to an embodiment of the present invention.
  • FIG. 20 illustrates a PPDU format when 80 MHz is allocated to one STA (or OFDMA resource units are allocated to a plurality of STAs within 80 MHz) or when different streams of 80 MHz are allocated to a plurality of STAs.
  • L-STF, L-LTF, and L-SIG may be transmitted as OFDM symbols generated based on 64 FFT points (or 64 subcarriers) in each 20MHz channel.
  • the HE-SIG-A field may include common control information that is commonly transmitted to STAs receiving a PPDU.
  • the HE-SIG-A field may be transmitted in one to three OFDM symbols.
  • the HE-SIG-A field is copied in units of 20 MHz and contains the same information.
  • the HE-SIG-A field informs the total bandwidth information of the system.
  • Table 7 is a table illustrating information included in the HE-SIG-A field.
  • each field described above corresponds to an example of fields that may be included in the PPDU, but is not limited thereto. That is, each field described above may be replaced with another field or additional fields may be further included, and all fields may not be necessarily included.
  • HE-STF is used to improve the performance of AGC estimation in MIMO transmission.
  • the HE-SIG-B field may include user-specific information required for each STA to receive its own data (eg, PSDU).
  • PSDU user-specific information required for each STA to receive its own data
  • the HE-SIG-B field may be transmitted in one or two OFDM symbols.
  • the HE-SIG-B field may include information on the modulation and coding scheme (MCS) of the corresponding PSDU and the length of the corresponding PSDU.
  • MCS modulation and coding scheme
  • the L-STF, L-LTF, L-SIG, and HE-SIG-A fields may be repeatedly transmitted in units of 20 MHz channels. For example, when a PPDU is transmitted on four 20 MHz channels (i.e., 80 MHz band), the L-STF, L-LTF, L-SIG and HE-SIG-A fields may be repeatedly transmitted on every 20 MHz channel. have.
  • legacy STAs supporting legacy IEEE 802.11a / g / n / ac may not be able to decode the HE PPDU.
  • the L-STF, L-LTF, and L-SIG fields are transmitted through a 64 FFT on a 20 MHz channel so that the legacy STA can receive them.
  • the L-SIG field may occupy one OFDM symbol, one OFDM symbol time is 4 ms, and a GI may be 0.8 ms.
  • the FFT size for each frequency unit may be larger from the HE-STF (or HE-SIG-A). For example, 256 FFTs may be used in a 20 MHz channel, 512 FFTs may be used in a 40 MHz channel, and 1024 FFTs may be used in an 80 MHz channel. As the FFT size increases, the number of OFDM subcarriers per unit frequency increases because the interval between OFDM subcarriers becomes smaller, but the OFDM symbol time becomes longer. In order to improve the efficiency of the system, the length of the GI after the HE-STF may be set equal to the length of the GI of the HE-SIG-A.
  • the HE-SIG-A field may include information required for the HE STA to decode the HE PPDU.
  • the HE-SIG-A field may be transmitted through a 64 FFT in a 20 MHz channel so that both the legacy STA and the HE STA can receive it. This is because the HE STA can receive not only the HE format PPDU but also the existing HT / VHT format PPDU, and the legacy STA and the HE STA must distinguish between the HT / VHT format PPDU and the HE format PPDU.
  • 21 is a diagram illustrating a HE format PPDU according to an embodiment of the present invention.
  • the FFT size per unit frequency may be larger from the HE-STF (or HE-SIG-B).
  • 256 FFTs may be used in a 20 MHz channel
  • 512 FFTs may be used in a 40 MHz channel
  • 1024 FFTs may be used in an 80 MHz channel.
  • the HE-SIG-B field may include information specific to each STA, but may be encoded over the entire band (ie, indicated by the HE-SIG-A field). That is, the HE-SIG-B field includes information on all STAs and is received by all STAs.
  • the HE-SIG-B field may inform frequency bandwidth information allocated to each STA and / or stream information in a corresponding frequency band.
  • the HE-SIG-B may be allocated 20 MHz for STA 1, 20 MHz for STA 2, 20 MHz for STA 3, and 20 MHz for STA 4.
  • STA 1 and STA 2 may allocate 40 MHz, and STA 3 and STA 4 may then allocate 40 MHz.
  • STA 1 and STA 2 may allocate different streams, and STA 3 and STA 4 may allocate different streams.
  • the HE-SIG C field may be added to the example of FIG. 27.
  • information on all STAs may be transmitted over the entire band, and control information specific to each STA may be transmitted in units of 20 MHz through the HE-SIG-C field.
  • the HE-SIG-B field may be transmitted in units of 20 MHz in the same manner as the HE-SIG-A field without transmitting over the entire band. This will be described with reference to the drawings below.
  • FIG. 22 illustrates an HE format PPDU according to an embodiment of the present invention.
  • the HE-SIG-B field is not transmitted over the entire band, but is transmitted in 20 MHz units as in the HE-SIG-A field. However, at this time, the HE-SIG-B is encoded and transmitted in 20 MHz units differently from the HE-SIG-A field, but may not be copied and transmitted in 20 MHz units.
  • the FFT size per unit frequency may be larger from the HE-STF (or HE-SIG-B).
  • 256 FFTs may be used in a 20 MHz channel
  • 512 FFTs may be used in a 40 MHz channel
  • 1024 FFTs may be used in an 80 MHz channel.
  • the HE-SIG-A field is duplicated and transmitted in units of 20 MHz.
  • the HE-SIG-B field may inform frequency bandwidth information allocated to each STA and / or stream information in a corresponding frequency band. Since the HE-SIG-B field includes information about each STA, information about each STA may be included for each HE-SIG-B field in units of 20 MHz. In this case, in the example of FIG. 28, 20 MHz is allocated to each STA. For example, when 40 MHz is allocated to the STA, the HE-SIG-B field may be copied and transmitted in units of 20 MHz.
  • the data field is a payload and may include a service field, a scrambled PSDU, tail bits, and padding bits.
  • the HE format PPDU as shown in FIGS. 20 to 22 may be identified through a RL-SIG (Repeated L-SIG) field, which is a repetitive symbol of the L-SIG field.
  • the RL-SIG field is inserted before the HE SIG-A field, and each STA may identify the format of the received PPDU as the HE format PPDU using the RL-SIG field.
  • DL MU transmission downlink multi-user transmission
  • UL MU transmission uplink multi-user transmission
  • Such DL MU transmission or UL MU transmission may be multiplexed in a frequency domain or a spatial domain.
  • different frequency resources eg, subcarriers or tones
  • OFDMA orthogonal frequency division multiplexing
  • different spatial streams may be allocated as downlink or uplink resources for each of the plurality of STAs.
  • a transmission expression through different spatial streams may be referred to as 'DL / UL MU MIMO' transmission.
  • overlap between frequency resources used for transmitting uplink data by a plurality of STAs may occur. For example, when oscillators of the plurality of STAs are different, frequency offsets may appear differently. If each of a plurality of STAs having different frequency offsets simultaneously performs uplink transmission through different frequency resources, some of frequency regions used by each of the plurality of STAs may overlap.
  • the AP may receive signals of different power from each of the plurality of STAs. In this case, a signal arriving at a weak power may be difficult to be detected by the AP relative to a signal arriving at a strong power.
  • the present invention proposes a UL MU transmission method in a WLAN system.
  • FIG. 23 is a diagram illustrating an uplink multi-user transmission procedure according to an embodiment of the present invention.
  • an AP instructs STAs participating in UL MU transmission to prepare for UL MU transmission, receives UL MU data frames from corresponding STAs, and responds to an UL MU data frame with an ACK frame ( Transmits a Block Ack (BA) frame.
  • BA Block Ack
  • the AP transmits a UL MU Trigger frame (2310), thereby instructing STAs to transmit UL MU data to prepare for UL MU transmission.
  • the UL MU scheduling frame may be referred to as a term of a 'UL MU scheduling frame'.
  • the UL MU trigger frame 2310 may include control information such as STA identifier (ID) / address information, resource allocation information to be used by each STA, duration information, and the like.
  • ID STA identifier
  • the UL MU trigger frame 2310 may include control information such as STA identifier (ID) / address information, resource allocation information to be used by each STA, duration information, and the like.
  • the STA ID / address information means information on an identifier or an address for specifying each STA that transmits uplink data.
  • the resource allocation information includes information on uplink transmission resources allocated to each STA (for example, frequency / subcarrier information allocated to each STA in case of UL OFDMA transmission, and stream index allocated to each STA in case of UL MU MIMO transmission). Means information.
  • Duration information means information for determining a time resource for transmission of an uplink data frame transmitted by each of a plurality of STAs.
  • the duration information may include interval information of a TXOP (Transmit Opportunity) allocated for uplink transmission of each STA or information (eg, bits or symbols) about an uplink frame length. Can be.
  • TXOP Transmit Opportunity
  • information eg, bits or symbols
  • the UL MU trigger frame 2310 may further include control information such as MCS information, coding information, etc. to be used when transmitting the UL MU data frame for each STA.
  • the above control information is the HE-part (eg, HE-SIG-A field or HE-SIG-B field) of the PPDU carrying the UL MU trigger frame 2310 or the control field of the UL MU trigger frame 3110. (Eg, the Frame Control field of the MAC frame).
  • the PPDU carrying the UL MU trigger frame 2310 has a structure starting with L-part (eg, L-STF field, L-LTF field, L-SIG field, etc.).
  • legacy STAs may perform Network Allocation Vector (NAV) setting through L-SIG protection from the L-SIG field.
  • NAV Network Allocation Vector
  • legacy STAs may calculate an interval (hereinafter, referred to as an 'L-SIG guard interval') for NAV setting based on data length and data rate information in the L-SIG.
  • the legacy STAs may determine that there is no data to be transmitted to them during the calculated L-SIG protection period.
  • the L-SIG guard interval may be determined as the sum of the MAC duration field value of the UL MU trigger frame 2310 and the remaining interval after the L-SIG field of the PPDU carrying the UL MU trigger frame 2310. Accordingly, the L-SIG guard interval may be set to a value up to an interval for transmitting the ACK frame 3130 (or BA frame) transmitted to each STA according to the MAC duration value of the UL MU trigger frame 3110.
  • the first field may distinguish and indicate UL OFDMA transmission and UL MU MIMO transmission.
  • '0' may indicate UL OFDMA transmission
  • '1' may indicate UL MU MIMO transmission.
  • the size of the first field may consist of 1 bit.
  • the second field (eg, STA ID / address field) informs STA ID or STA addresses to participate in UL MU transmission.
  • the size of the second field may be configured as the number of bits to inform the STA ID ⁇ the number of STAs to participate in the UL MU. For example, when the second field consists of 12 bits, the ID / address of each STA may be indicated for every 4 bits.
  • the third field (eg, resource allocation field) indicates a resource region allocated to each STA for UL MU transmission.
  • the resource region allocated to each STA may be sequentially indicated to each STA in the order of the second field.
  • the first field value is '0', this indicates frequency information (eg, frequency index, subcarrier index, etc.) for UL MU transmission in the order of STA ID / address included in the second field.
  • frequency information eg, frequency index, subcarrier index, etc.
  • MIMO information eg, stream index, etc.
  • the size of the third field may be configured in a plurality of bits (or bitmap format).
  • ⁇ It may be configured as the number of STAs to participate in the UL MU transmission.
  • the second field is set in the order of 'STA 1' and 'STA 2'
  • the third field is set in the order of '2', '2'.
  • STA 1 when the first field is '0', STA 1 may be allocated frequency resources from the upper (or lower) frequency domain, and STA 2 may be sequentially allocated the next frequency resource. For example, in case of supporting 20 MHz OFDMA in an 80 MHz band, STA 1 may use a higher (or lower) 40 MHz band, and STA 2 may use a next 40 MHz band.
  • STA 1 may be allocated an upper (or lower) stream, and STA 2 may be sequentially allocated the next stream.
  • the beamforming scheme according to each stream may be specified in advance, or more specific information about the beamforming scheme according to the stream may be included in the third field or the fourth field.
  • Each STA transmits a UL MU data frame (UL MU Data frame, 2321, 2322, 2323) to the AP based on the UL MU trigger frame 2310 transmitted by the AP.
  • each STA may transmit the UL MU data frames 3121, 3122, and 3123 to the AP after SIFS after receiving the UL MU trigger frame 2310 from the AP.
  • Each STA may determine a specific frequency resource for UL OFDMA transmission or a spatial stream for UL MU MIMO transmission based on the resource allocation information of the UL MU trigger frame 3110.
  • each STA may transmit an uplink data frame on the same time resource through different frequency resources.
  • each of STA 1 to STA 3 may be allocated different frequency resources for uplink data frame transmission based on STA ID / address information and resource allocation information included in UL MU trigger frame 3110.
  • STA ID / address information may sequentially indicate STA 1 to STA 3
  • resource allocation information may sequentially indicate frequency resource 1, frequency resource 2, and frequency resource 3.
  • the STA 1 to STA 3 sequentially indicated based on the STA ID / address information may be allocated the frequency resource 1, the frequency resource 2, and the frequency resource 3 sequentially indicated based on the resource allocation information. That is, STA 1 may transmit frequency data 1, STA 2 may transmit frequency resource 2, and STA 3 may transmit uplink data frames 2321, 2322, and 2323 to the AP through frequency resource 3.
  • each STA may transmit an uplink data frame on the same time resource through at least one different stream among a plurality of spatial streams.
  • each of STA 1 to STA 3 may be allocated a spatial stream for uplink data frame transmission based on STA ID / address information and resource allocation information included in the UL MU trigger frame 2310.
  • STA ID / address information may sequentially indicate STA 1 to STA 3
  • resource allocation information may sequentially indicate spatial stream 1, spatial stream 2, and spatial stream 3.
  • the STA 1 to STA 3 sequentially indicated based on the STA ID / address information may be allocated to the spatial stream 1, the spatial stream 2, and the spatial stream 3 sequentially indicated based on the resource allocation information. That is, STA 1 may transmit the uplink data frames 3121, 3122, and 3123 to the AP through spatial stream 1, STA 2 is spatial stream 2, and STA 3 is spatial stream 3.
  • the transmission duration (or transmission end time) of the uplink data frames 2321, 2322, and 2323 transmitted by each STA may be determined by the MAC duration information included in the UL MU trigger frame 2310. have. Accordingly, each STA triggers UL MU triggering of transmission termination time of uplink data frames 2321, 2322, and 2323 (or uplink PPDUs carrying uplink data frames) through bit padding or fragmentation. The synchronization may be performed based on the MAC duration value included in the frame 2310.
  • the PPDU carrying the uplink data frames 2321, 2322, and 2323 can be configured in a new structure without the L-part.
  • the L-part of the PPDU carrying uplink data frames 3121, 3122, and 3123 may be in the form of a single frequency network (SFN). All STAs may transmit the same L-part configuration and content simultaneously).
  • SFN single frequency network
  • the L-part of the PPDU that delivers uplink data frames 3121, 3122, and 3123 is transmitted by the L-part in 20 MHz units in the band to which each STA is allocated. Can be.
  • the MAC duration value may be set to a value up to an interval for transmitting the ACK frame 2330, and the L-SIG guard interval may be determined based on the MAC duration value. have. Accordingly, the legacy STA may perform NAV setting up to the ACK frame 3130 through the L-SIG field of the UL MU trigger frame 2310.
  • the HE-SIG field in the PPDU carrying the UL MU trigger frame 2310 may also be unnecessary.
  • the HE-SIG-A field and / or the HE-SIG-B may not be transmitted.
  • the HE-SIG-A field and the HE-SIG-C field may be transmitted, and the HE-SIG-B field may not be transmitted.
  • the AP may transmit an ACK frame (ACK frame) 2330 (or BA frame) in response to the uplink data frames 2321, 2322, and 2323 received from each STA.
  • ACK frame ACK frame
  • BA frame BA frame
  • the existing ACK frame may be configured to include the AID (or Partial AID) of the STAs participating in the UL MU transmission in the RA field having a size of 6 octets.
  • the ACK frame 2330 may be sequentially transmitted to each STA participating in the UL MU transmission.
  • the ACK frame 2330 may be a resource (i.e., a frequency allocated to each STA). Or, it may be simultaneously transmitted to each STA participating in the UL MU transmission through a stream).
  • the AP may transmit only the ACK frame 2330 for the UL MU data frame that has been successfully received to the corresponding STA.
  • the AP may inform whether the reception was successful through the ACK frame 2330 as ACK or NACK. If the ACK frame 2330 includes NACK information, the ACK frame 2330 may also include information on the reason for the NACK or information therefor (eg, UL MU scheduling information).
  • the PPDU carrying the ACK frame 3130 may be configured in a new structure without the L-part.
  • the ACK frame 2330 may include STA ID or address information, but if the order of STAs indicated in the UL MU trigger frame 2310 is applied in the same manner, the STA ID or address information may be omitted.
  • the TXOP (ie, L-SIG guard interval) of the ACK frame 2330 is extended to include a frame for the next UL MU scheduling or a control frame including correction information for the next UL MU transmission. It may be.
  • an adjustment process such as synchronization between STAs may be added before or during the procedure according to FIG. 23.
  • the present invention proposes a frame structure configuration method including both single user (SU) transmission and multi user (MU) transmission.
  • multi-user (MU) transmission includes all cases where multiple users simultaneously transmit in the same time domain, such as OFDMA or MU MIMO.
  • a 'frame' may mean a DL / UL MAC frame (ie, a MAC control frame, a MAC management frame, or a data frame) itself, and a DL / that carries a DL / UL MAC frame. It may mean a UL (SU / MU) PPDU.
  • 1) DL SU and DL MU When the downlink, that is, when the AP transmits signals to STAs, the difference between SU and MU is to assign multiple STAs to all STAs (eg, PPDU bandwidth). The difference is whether it is assigned.
  • the DL does not need to be distinguished because the AP contending and transmitting the channel regardless of the SU or the MU, and the power limitation problem is less than that of the STA.
  • the entire band is generally allocated to one STA.
  • UL SU When a STA transmits a signal to an AP, the STA secures and transmits a medium through direct channel contending without a trigger frame of the AP.
  • the UL MU is referred to even if only one STA transmits an uplink data frame.
  • Uplink that is, when the STA transmits a signal to the AP, the AP transmits a DL frame (for example, a trigger frame) in advance so that the STA secures a channel for transmitting the UL data frame and then the STA This is a method for transmitting the UL signal. That is, uplink resources are not allocated to a channel that is not occupied by a DL frame (eg, a trigger frame).
  • a DL frame for example, a trigger frame
  • the AP may transmit a trigger frame and the STA may transmit a UL frame as indicated.
  • the STA may transmit a UL frame as indicated.
  • a UL MU when the STA transmits an UL frame in a channel reserved by the DL frame, it is referred to as a UL MU. That is, if a trigger frame is transmitted, even if only one STA transmits a UL data frame, it is a UL MU.
  • the HE-SIG1 field may be referred to as an HE-SIG-A field
  • the HE-SIG2 field may also be referred to as an HE-SIG-B field.
  • the MU STSs transmit UL data.
  • some STAs in the BSS may not be aware of the existence of the UL MU frame.
  • EIFS aSIFSTime + DIFS + EstimatedACKTxTime
  • the AP may complete in the EIFS until the transmission of the ACK frame after receiving the UL MU frame.
  • the UL MU packet of the 11ax system may be longer than that of the legacy system, the UL frame transmitted by the other STA1 after the EIFS may collide with the UL MU data communication by the trigger frame.
  • 25 illustrates UL MU transmission according to an embodiment of the present invention.
  • the AP transmits a trigger frame
  • the MU STSs transmit UL data.
  • some STAs in the OBSS may not recognize the existence of the trigger frame and the ACK frame.
  • the Othser STA2 may not overhear the trigger frame.
  • Other STA2 may overhear only the UL MU frame. Therefore, the Other STA2 may transmit its packet after EIFS from the end of the UL MU frame.
  • the length of the DL MU ACK frame may be longer than the length of the legacy ACK / BA frame, collision may occur with the frame transmitted by the Other STA2 and the ACK frame transmitted by the MU STAs.
  • TXOP stands for transmission opportunity.
  • TXOP represents an interval of time when a particular Quality of Service (QoS) STA has the right to initiate a frame exchange sequence on a wireless medium (WM). initiate frame exchange sequence onto the wireless medium).
  • TXOP may be defined as a start time and a maximum duration.
  • TXOP can be obtained by the STA successful channel contending (contending) or assigned by a hybrid coordinator (HC).
  • TXOP protection means to prevent the interference of other STAs during the frame transmission and reception period of the STA to protect the TXOP.
  • a specific STA may protect its TXOP by setting NAV other STAs other than the STA to be transmitted and received during the period in which the STA transmits and receives data.
  • the length of the TXOP related frame may mean the length of the time domain.
  • L-SIG TXOP protection may be applied to the TXOP protection.
  • L-SIG TXOP protection is used to indicate the length of a PPDU or to indicate the TXOP duration in an 802.11n system.
  • the L-SIG length value of the trigger frame and / or the UL MU frame may be used to set the TXOP length. If the length field value of the L-SIG of the trigger frame and / or the UL MU frame is set to the TXOP length, both the legacy STA and the 11ax STA interpret this duration as the PPDU length or TXOP length, and NAV by the length field value of the L-SIG. You can set
  • the legacy STA may recognize the L-SIG length as the PPDU length instead of setting the NAV as the L-SIG length. Accordingly, depending on the implementation of the transmitting and receiving device, if no data is detected during the length of the PPDU, the legacy STA may transition to an idle state and attempt to access the medium again.
  • the resource of the L-SIG is very limited, there is a problem that the value that can be signaled is limited. Since the L-SIG includes only one bit of parity bits, there is also a problem in that data reliability is low.
  • outdoor STAs may not be able to decode L-SIG well. Therefore, the following describes a TXOP protection method that does not use the length information included in the L-SIG field.
  • TXOP protection may be performed using a trigger frame.
  • the trigger frame may use a legacy PPDU format or use an 11ax PPDU format.
  • the legacy STA receiving the trigger frame may configure TXOP using the duration field included in the MAC header. If the trigger frame is in the 11ax PPDU format, the legacy STA may not set the TXOP.
  • the 11ax STA receiving the trigger frame may configure TXOP using the duration field included in the MAC header. If the trigger frame is in the 11ax PPDU format, the 11ax STA may configure TXOP using the duration field included in the MAC header.
  • the SIG B field of the trigger frame includes STA specific information, other STAs may not be able to decode the MAC header.
  • the present invention proposes a method of setting TXOP using the HE-SIG field.
  • the present invention proposes a TXOP protection method of a UL MU procedure using a length field.
  • Lenght may also be referred to herein as a duration or duration.
  • the length / duration information may be expressed in units of microseconds or symbols and may be signaled in units of bits or octets (bytes).
  • the positions of the HE-SIG-A field and the HE-SIG-B field may be changed, and the HE-SIG-C field may be added.
  • the HE-SIG-A / B / C fields have been described separately for convenience, all or part of the description of the HE-SIG-A field may be applied to the HE-SIG-B field. If two HE-SIG-B fields exist in succession, they may be referred to as a HE-SIG-B field and a HE-SIG-C field.
  • 26 shows an HE frame according to an embodiment of the present invention.
  • the HE PPDU includes legacy preambles (L-STF, L-LTF, L-SIG), HE preambles (HE-SIG-A, HE-SIG-B, HE-STF, and HE-LTF) and payload. It includes.
  • the PPDU includes an MPDU as a payload, and the MPDU further includes a MAC header, a payload, and a frame check sequence (FCS).
  • the L-SIG field may include a length field. If the length field of the L-SIG field is used for TXOP protection, this length field may be used for the NAV setting for the TXOP interval 1 that includes a frame that is subsequent to the current frame.
  • a frame transmitted and received continuously in the current frame is illustrated as an ACK frame. However, a frame transmitted and received continuously in the current frame may be an ACK frame or a BA frame.
  • the current frame is an RTS frame
  • the subsequent frame may be a CTS frame. That is, the length field may indicate the duration 1 of completing the transmission / reception procedure including the current frame. If the length field of the L-SIG field is not used for TXOP protection, the length field may indicate the length of the current frame.
  • the HE-SIG-A field may include a HE-SIG-B length field indicating the length 2 of the HE-SIG-B field.
  • the HE-SIG-A field may include a length field indicating the length 3 of the current frame.
  • the length field may be included in the HE-SIG-B field. If the length field of the L-SIG field is not used for TXOP protection, the length field of the HE-SIG field may be omitted.
  • the length field may be included in the MAC header.
  • the length field of the MAC header may be used for TXOP protection.
  • the length field of the MAC header indicates the length 4 including the length of the remaining frame and the length of frames continuously transmitted and received and may be used for NAV setting.
  • FIG. 27 illustrates an UL MU procedure in which an AP STA transmits a trigger frame, a plurality of STAs transmit a UL MU frame according to the trigger frame, and the AP STA transmits an ACK frame.
  • 27 illustrates an operation of one of a plurality of STAs transmitting an UL MU frame.
  • FIG. 27 illustrates an embodiment in which a trigger frame is transmitted as a PHY structure, the frame of FIG. 27 may be a MAC frame structure including an MPDU.
  • the L-SIG field of the trigger frame may include a length field. If the length field of the L-SIG field is used for TXOP protection, this length field may be used for the NAV setting for the length 1 including the UL MU procedure.
  • the HE-SIG-A field of the trigger frame may include a HE-SIG-B length field indicating the length 2 of the HE-SIG-B field.
  • the HE-SIG-B field of the trigger frame includes information on UL MU transmission.
  • the HE-SIG-B field may be used for the DL, and the HE-SIG-B field may be included in addition to the HE-SIG-B field.
  • the HE-SIG-B field may be the HE-SIG- field. It may also include a length field for the C field.
  • the HE-SIG-A field of the trigger frame may include a field indicating the length 3 for TXOP protection.
  • the length field for TXOP protection may be referred to as a TXOP protection field or a TXOP duration (interval) field.
  • the TXOP duration field may indicate the remaining time / section length for the frame exchange procedure of the STA.
  • the TXOP period indicated by the TXOP duration field may include the length of subsequent frames.
  • the TXOP interval may include a length of an UL MU frame and a length of an ACK frame.
  • the TXOP interval may further include a remaining signal frame portion after the signal field including the TXOP duration field.
  • the TXOP duration field may be used by the 11ax STA of the outdoor / weak channel that failed to decode the L-SIG field. However, the TXOP duration field may be used by all 11ax STAs.
  • the TXOP duration indicated by the TXOP duration field may indicate the length from the end of the HE-SIG-A field to the end of the ACK frame.
  • the TXOP duration of the trigger frame may further include a frame interval (IFS) time between the trigger frame and the UL MU frame and a frame time interval between the UL MU frame and the ACK frame.
  • IFS frame interval
  • the trigger frame may be transmitted in a MAC structure, in which case an interpretation of the length field of the 11ax frame may be used.
  • the TXOP protection interval is the entire UL MU procedure including the UL MU frame and the ACK frame.
  • the L-SIG length field may indicate the length of the current frame and the length field of the MAC header may indicate the TXOP length, respectively.
  • FIG. 28 illustrates an embodiment of a cascade structure in which the UL MU procedure and the TXOP protection according to an embodiment of the present invention, in particular, the UL MU procedure is transmitted with a DL MU frame.
  • each of the two HE-SIG-B fields may include information of DL and information of UL.
  • one HE-SIG-B field including information of DL and information of UL may be included.
  • the HE-SIG-B field may be long, which may cause performance degradation.
  • an embodiment including two HE-SIG-B fields will be described.
  • an indication is needed that a normal 11ax frame contains one HE-SIG-B field and a cascade frame contains two HE-SIG-B fields. . Even if the frame includes one HE-SIG-B field, an indicator may be needed to indicate whether one HE-SIG-B field indicates DL information or UL information. In addition, an indicator may be needed to indicate whether it is a MAC frame or a PHY frame.
  • the frame according to the embodiment of the present invention may indicate whether the frame is a general 11ax MAC frame by adding a 1-bit indicator to the HE-SIG-B. And even in the cascade format, the HE-SIG-B field for trigger information may always be included before the 11ax MAC frame.
  • the STA receiving the frame may process the received frame according to the indication bit value of the HE-SIG-B field.
  • the receiving STA recognizes and decodes the frame as the frame of FIG. 26 when the value of 1-bit indicator of the HE-SIG-B field is 0x0, and triggers the HE-SIG-B field when the value of 1-bit is 0x1. After acquiring the information for the UL transmission by recognizing this, it may be checked whether there is an additional HE-SIG-B field.
  • the HE-SIG-B field interpreted as trigger information may include a length field for the additional HE-SIG-B field. If the value of this length field is 0, the receiving STA may recognize the frame as a trigger PHY frame without additional HE-SIG-B. That is, the receiving STA may interpret the frame as in the embodiment of FIG. 27 when the length value is 0, and interpret the frame as in the embodiment of FIG. 28 when the length value is 1.
  • three HE-SIG-B fields may be used for DL, UL buffer status / channel status report, and UL data transmission.
  • an ACK / BA frame of the AP transmitted after receiving the UL frame may serve as a polling frame indicating the next UL transmission.
  • the ACK / BA + polling frame may be transmitted instead of the ACK / BA frame.
  • content constituting the HE-SIG-B field may vary according to each purpose.
  • the length field of (3) is not included in the HE-SIG-B field used for UL control and is used for DL information transmission.
  • the length field of (3) may be included in the HE-SIG-B field.
  • the number of HE-SIG-B fields, MCS information, length information, etc. may be signaled in the HE-SIG-A field.
  • the HE-SIG-A field indicates MCS information and length information of the first HE-SIG-B field, and the like, and MCS information and length information of the next HE-SIG-B field in the preceding HE-SIG-B field. It may also indicate.
  • the order of the HE-SIG-B fields may be configured such that the HE-SIG-B field with the more robust MCS includes the information for the trailing HE-SIG-B field in advance.
  • FIG. 29 illustrates an embodiment of a cascade structure in which a UL MU procedure is transmitted with a DL MU frame as a UL MU procedure and a TXOP protection according to an embodiment of the present invention.
  • FIG. 29 illustrates an embodiment of a cascade structure when trigger information is transmitted in a MAC frame.
  • the DL frame includes one MPDU (MAC header + payload + FCS) that carries trigger information.
  • the MPDU including the trigger information may be one MPDU of the A-MPDUs or one MPDU of MU MIMO or MU OFDMA.
  • the TXOP duration field may be included in the HE-SIG-A field.
  • information indicating that the PPDU includes trigger information or a MAC frame corresponding to the trigger information should be indicated.
  • the broadcast AID may be included in the HE-SIG-B field and the receiving STA may be instructed to read all MAC headers.
  • the receiving STA may determine whether the trigger information is included by checking only the corresponding position.
  • FIG. 30 illustrates an UL MU frame and TXOP protection according to an embodiment of the present invention.
  • the UL MU frame on the left side of FIG. 30 shows an UL MU frame structure of an STA that transmits data to an upper 10 MHz region of a 20 MHz band.
  • the HE-SIG-B field and the HE-SIG-C field may be omitted.
  • the length field included in the L-SIG field may indicate the TXOP length 1 from the UL frame to the ACK frame transmitted and received.
  • the HE-SIG-A field may include a length field indicating the length 2-1 of the HE-SIG-B field. If the HE-SIG-C field is present, it may indicate the length (2-2) of the HE-SIG-C field. If the frame includes both the HE-SIG-B field and the HE-SIG-C field, the HE-SIG-A field signals the length (2-1) of the HE-SIG-B field and the HE-SIG-B The field may signal the length 2-2 of the HE-SIG-C field.
  • the length field of the HE-SIG-A field may indicate the length 3 of the current frame (PPDU). However, as an embodiment, the length of the UL MU frame may have already been indicated in the trigger frame. In this case, the length field of the HE-SIG-A field may indicate the length of the entire TXOP 4 as the TXOP duration field. Through this, other STAs that do not recognize the trigger frame may set the NAV by decoding the TXOP duration field included in the HE-SIG-A field, and thus TXOP of the UL MU data transmission STA may be protected.
  • the remaining time / section length for the TXOP interval, that is, the frame exchange procedure, of the UL MU frame may include the length of the subsequent frame, that is, the length of the ACK frame. That is, the TXOP interval field of the UL MU frame may indicate a TXOP length including an ACK frame. As shown, the TXOP interval field of the UL MU frame may indicate a TXOP interval further including a frame interval (IFS) time between the UL MU frame and the ACK frame. In another embodiment, the TXOP period indicated by the TXOP interval field included in the UL MU frame may further include a remaining signal frame portion after the signal field including the TXOP duration field.
  • IFS frame interval
  • the length information of the MAC header may indicate the TXOP length. However, when transmitting the MU frame, other STAs do not need to decode the MAC header of the MU frame. Therefore, instead of using the length information of the MAC header for the NAV setting, it may be used for other purposes. For example, the length information of the MAC header may indicate the length of actual data minus padding.
  • the TXOP duration field should be set so that legacy STA and 11ax STA can set NAV.
  • the TXOP duration value indicated by the length field of the ACK frame which is the last frame of the UL MU procedure, is equal to the remaining length of its own frame in both the 11ax frame and the legacy frame. Accordingly, the L-SIG length, the HE-SIG-A length, and the MAC header may all be set to indicate the length up to the end of their frame. In one embodiment, the TXOP duration of the ACK frame may be set to zero.
  • FIG. 31 illustrates a STA apparatus according to an embodiment of the present invention.
  • the STA apparatus may include a memory 31010, a processor 31020, and an RF unit 31030.
  • the STA device may be an AP or a non-AP STA as an HE STA device.
  • the RF unit 31030 may be connected to the processor 31020 to transmit / receive a radio signal.
  • the RF unit 31030 may up-convert data received from the processor into a transmission / reception band to transmit a signal.
  • the processor 31020 may be connected to the RF unit 31030 to implement a physical layer and / or a MAC layer according to the IEEE 802.11 system.
  • the processor 31030 may be configured to perform an operation according to various embodiments of the present disclosure according to the drawings and description described above.
  • a module that implements the operation of the STA according to various embodiments of the present disclosure described above may be stored in the memory 31010 and executed by the processor 31020.
  • the memory 31010 is connected to the processor 31020 and stores various information for driving the processor 31020.
  • the memory 31010 may be included in the processor 31020 or may be installed outside the processor 31020 and connected to the processor 31020 by known means.
  • the STA apparatus may include a single antenna or multiple antennas.
  • the specific configuration of the STA apparatus of FIG. 31 may be implemented such that the matters described in the aforementioned various embodiments of the present invention are applied independently or two or more embodiments are simultaneously applied.
  • the data transmission / reception method including the reception operating mode information of the STA apparatus illustrated in FIG. 31 will be described again with the following flowchart.
  • FIG. 32 illustrates a UL MU transmission / reception method according to an embodiment of the present invention.
  • 32 illustrates communication between an AP STA and a plurality of MU STAs performing UL MU transmission. However, it will be described based on the operation of one of the plurality of MU STAs.
  • the STA receives a trigger frame from the AP STA (S32010).
  • the AP STA transmits a trigger frame to the MU STAs (S32010).
  • the trigger frame may include resource unit allocation information for OFDMA transmission.
  • the resource unit may be allocated 26 tons as the smallest unit unit by way of example.
  • the STA may transmit a UL MU PPDU to the AP STA based on the trigger frame (S32020).
  • the AP STA may receive the UL MU PPDU based on the trigger frame (S32020).
  • the STA may receive an ACK frame for the UL MU PPDU (S32030).
  • the AP STA may transmit an ACK frame for the received UL MU PPDU (S32030).
  • the trigger frame may include a legacy preamble and an HE preamble as shown in FIG. 27, and the HE preamble may include an HE-SIG-A field and an HE-SIG-B field.
  • the legacy preamble may include L-STF, L-LTF, and L-SIG fields.
  • the HE-SIG-A field of the trigger frame may include TXOP duration information / field indicating the TXOP duration.
  • TXOP duration is a time interval for the frame exchange sequence of the STA.
  • the frame exchange sequence of the STA may indicate transmission and reception of a trigger frame, a UL MU PPDU, and an ACK frame.
  • the UL MU PPDU may include a legacy preamble and a HE preamble, and the HE preamble may include a HE-SIG-A field.
  • the HE-SIG-A field of the UL MU PPDU may include TXOP duration information / field.
  • the definition and use of the TXOP duration is the same as the TXOP duration of the trigger frame.
  • the TXOP duration of the UL MU PPDU is the length of the remaining TXOP after the UL MU PPDU and includes the length of the ACK frame. This is because the target of the TXOP to be protected from the viewpoint of the STA transmitting the UL MU PPDU is an interval for transmitting the ACK frame after the UL MU PPDU.
  • the TXOP duration field of the trigger frame may indicate the length of time from after the trigger frame to the end of the ACK frame. Therefore, the TXOP duration of the trigger frame is the frame interval (IFS) time between the trigger frame reception and the UL MU PPDU transmission, the length of the UL MU PPDU, the frame interval (IFS) time between the reception of the ACK frame after the UL MU PPDU transmission, and the ACK frame. It may include a length.
  • the TXOP duration field of the trigger frame may indicate the length of time from the end of the HE-SIG-A field of the trigger frame to the end of the ACK frame. Therefore, the TXOP duration of the trigger frame is the length of the remainder after the HE-SIG-A field of the trigger frame, the frame interval (IFS) time between receiving the trigger frame and transmitting the UL MU PPDU, the length of the UL MU PPDU, and after transmitting the UL MU PPDU.
  • the TXOP duration field of the UL MU PPDU frame may indicate the length of time from after the UL MU PPDU to the end of the ACK frame. Accordingly, the TXOP duration of the UL MU PPDU may include the frame interval (IFS) time between the UL MU PPDU transmission and the reception of the ACK frame and the length of the ACK frame.
  • IFS frame interval
  • the TXOP duration field of the UL MU PPDU frame may indicate the length of time from the end of the HE-SIG-A field of the UL MU PPDU frame to the end of the ACK frame. Accordingly, the TXOP duration of the UL MU PPDU may include the length of the remaining part after the HE-SIG-A field of the UL MU PPDU, the frame interval (IFS) time between the UL MU PPDU transmission and the ACK frame reception, and the length of the ACK frame. .
  • IFS frame interval
  • the UL MU PPDU may include a HE-STF, a HE-LTF, and a data field.
  • the HE-STF, HE-LTF and data fields of the UL MU PPDU may be transmitted through the bandwidth of the resource unit allocated to the corresponding STA.
  • each component or feature is to be considered optional unless stated otherwise.
  • Each component or feature may be embodied in a form that is not combined with other components or features. It is also possible to combine some of the components and / or features to form an embodiment of the invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment. It is obvious that the claims may be combined to form an embodiment by combining claims that do not have an explicit citation relationship in the claims or as new claims by post-application correction.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in memory and driven by the processor.
  • the memory may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the uplink single user or multi-user transmission scheme in the wireless communication system of the present invention has been described with reference to the example applied to the IEEE 802.11 system, but it is possible to apply to various wireless communication systems in addition to the IEEE 802.11 system.

Abstract

WLAN(Wireless LAN) 시스템에서 STA(Station)의 상향링크(UL: uplink) 다중 사용자(MU: Multi-User) 전송 방법이 개시된다. 본 발명에 따른 WLAN 시스템에서 STA의 상향링크 다중 사용자 전송 방법은, OFDMA(orthogonal frequency division multiple access) 전송을 위한 리소스 유닛 할당 정보를 포함하는 트리거 프레임(Trigger frame)을 수신하는 단계; 상기 주파수 자원 할당 정보에 기반하여 UL MU PPDU(Physical Protocol Data Unit) 프레임을 전송하는 단계; 및 상기 UL MU PPDU에 대한 ACK 프레임을 수신하는 단계를 포함한다.

Description

무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 상세하게 상향링크 단일 사용자(single user)/다중 사용자(multi user) 전송을 수행하기 위한 또는 지원하기 위한 방법 및 이를 지원하는 장치에 관한 것이다.
와이파이(Wi-Fi)는 2.4GHz, 5GHz 또는 60GHz 주파수 대역에서 기기가 인터넷에 접속 가능하게 하는 WLAN(Wireless Local Area Network) 기술이다.
WLAN은 IEEE(institute of electrical and electronic engineers) 802.11 표준에 기반한다. IEEE 802.11의 WNG SC(Wireless Next Generation Standing Committee)는 차세대 WLAN(wireless local area network)을 중장기적으로 고민하는 애드혹 위원회(committee)이다.
IEEE 802.11n은 네트워크의 속도와 신뢰성을 증가시키고, 무선 네트워크의 운영 거리를 확장하는데 목적을 두고 있다. 보다 구체적으로, IEEE 802.11n에서는 최대 600Mbps 데이터 처리 속도(data rate)를 제공하는 고처리율(HT: High Throughput)을 지원하며, 또한 전송 에러를 최소화하고 데이터 속도를 최적화하기 위해 송신부와 수신부 양단 모두에 다중 안테나를 사용하는 MIMO(Multiple Inputs and Multiple Outputs) 기술에 기반을 두고 있다.
WLAN의 보급이 활성화되고 또한 이를 이용한 어플리케이션이 다양화됨에 따라, 초고처리율(VHT: Very High Throughput)를 지원하는 차세대 WLAN 시스템은 IEEE 802.11n WLAN 시스템의 다음 버전으로서, IEEE 802.11ac가 새롭게 제정되었다. IEEE 802.11ac는 80MHz 대역폭 전송 및/또는 더 높은 대역폭 전송(예를 들어, 160MHz)을 통해 1Gbps 이상의 데이터 처리 속도를 지원하고, 주로 5 GHz 대역에서 동작한다.
최근에는 IEEE 802.11ac이 지원하는 데이터 처리 속도보다 더 높은 처리율을 지원하기 위한 새로운 WLAN 시스템에 대한 필요성이 대두되고 있다.
일명 IEEE 802.11ax 또는 고효율(HEW: High Efficiency) WLAN라고 불리는 차세대 WLAN 태스크 그룹에서 주로 논의되는 IEEE 802.11ax의 범위(scope)는 1) 2.4GHz 및 5GHz 등의 대역에서 802.11 PHY(physical) 계층과 MAC(medium access control) 계층의 향상, 2) 스펙트럼 효율성(spectrum efficiency)과 영역 쓰루풋(area throughput) 향상, 3) 간섭 소스가 존재하는 환경, 밀집한 이종 네트워크(heterogeneous network) 환경 및 높은 사용자 부하가 존재하는 환경과 같은 실제 실내 환경 및 실외 환경에서 성능을 향상 등을 포함한다.
IEEE 802.11ax에서 주로 고려되는 시나리오는 AP(access point)와 STA(station)이 많은 밀집 환경이며, IEEE 802.11ax는 이러한 상황에서 스펙트럼 효율(spectrum efficiency)과 공간 전송률(area throughput) 개선에 대해 논의한다. 특히, 실내 환경뿐만 아니라, 기존 WLAN에서 많이 고려되지 않던 실외 환경에서의 실질적 성능 개선에 관심을 가진다.
IEEE 802.11ax에서는 무선 오피스(wireless office), 스마트 홈(smart home), 스타디움(Stadium), 핫스팟(Hotspot), 빌딩/아파트(building/apartment)와 같은 시나리오에 관심이 크며, 해당 시나리오 기반으로 AP와 STA가 많은 밀집 환경에서의 시스템 성능 향상에 대한 논의가 수행되고 있다.
앞으로 IEEE 802.11ax에서는 하나의 BSS(basic service set)에서의 단일 링크 성능 향상보다는, OBSS(overlapping basic service set) 환경에서의 시스템 성능 향상 및 실외 환경 성능 개선, 그리고 셀룰러 오프로딩(cellular offloading) 등에 대한 논의가 활발할 것으로 예상된다. 이러한 IEEE 802.11ax의 방향성은 차세대 WLAN이 점점 이동 통신과 유사한 기술 범위를 갖게 됨을 의미한다. 최근 스몰 셀(small cell) 및 D2D(Direct-to-Direct) 통신 영역에서 이동 통신과 WLAN 기술이 함께 논의되고 있는 상황을 고려해 볼 때, IEEE 802.11ax를 기반한 차세대 WLAN과 이동 통신의 기술적 및 사업적 융합은 더욱 활발해질 것으로 예측된다.
본 발명의 목적은 무선 통신 시스템에서 상향링크 단일 사용자(single user) 또는 다중 사용자(multi-user) 전송 방법을 제안한다.
또한, 본 발명의 목적은 무선 통신 시스템에서 상향링크 단일 사용자(single user) 또는 다중 사용자(multi-user) 전송을 지원하기 위한 상향링크 프레임 구조를 제안한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상술한 기술적 과제를 해결하기 위한 본 발명의 실시예에 따른 WLAN(Wireless LAN) 시스템에서 STA(Station)의 상향링크(UL: uplink) 다중 사용자(MU: Multi-User) 전송 방법은, OFDMA(orthogonal frequency division multiple access) 전송을 위한 리소스 유닛 할당 정보를 포함하는 트리거 프레임(Trigger frame)을 수신하는 단계; 상기 트리거 프레임에 기초하여 UL MU PPDU(Physical Protocol Data Unit)를 전송하는 단계; 및 상기 UL MU PPDU에 대한 ACK 프레임을 수신하는 단계를 포함하고, 상기 트리거 프레임은 제 1 레거시 프리앰블 및 제 1 HE(High Effiency) 프리앰블을 포함하고, 상기 제 1 HE 프리앰블은 제 1 HE-SIG-A 필드 및 제 1 HE-SIG-B 필드를 포함하며, 상기 제 1 HE-SIG-A 필드는 제 1 TXOP(Transmissio Opportunity) 듀레이션을 나타내는 제 1 TXOP 듀레이션 정보를 포함하고, 상기 제 1 TXOP 듀레이션은 상기 STA의 프레임 교환 시퀀스에 대한 남은 시간 인터벌이 될 수 있다.
또한, 본 발명의 실시예에 따른 상향링크 다중 사용자 전송 방법에 있어서, 상기 제 1 TXOP 듀레이션은 상기 UL MU PPDU의 시간 길이(length in time) 및 상기 ACK 프레임의 시간 길이를 포함한다.
또한, 본 발명의 실시예에 따른 상향링크 다중 사용자 전송 방법에 있어서, 상기 UL MU PPDU는 제 2 레거시 프리앰블 및 제 2 HE 프리앰블을 포함하며, 상기 제 2 HE 프리앰블은 제 2 HE-SIG-A 필드를 포함하고, 상기 제 2 HE-SIG-A 필드는 제 2 TXOP 듀레이션을 나타내는 제 2 TXOP 듀레이션 정보를 포함하고, 상기 제 2 TXOP 듀레이션은 상기 STA의 프레임 교환 시퀀스에 대한 남은 시간 인터벌이 될 수 있다.
또한, 본 발명의 실시예에 따른 상향링크 다중 사용자 전송 방법에 있어서, 상기 제 2 TXOP 듀레이션은 상기 ACK 프레임의 시간 길이를 포함할 수 있다.
또한, 본 발명의 실시예에 따른 상향링크 다중 사용자 전송 방법에 있어서, 상기 제 1 TXOP 듀레이션은 상기 트리거 프레임 및 상기 UL MU 프레임간의 IFS(Inter Frame Space) 시간 및 상기 UL MU 프레임 및 상기 ACK 프레임 간의 IFS 시간을 더 포함할 수 있다.
또한, 본 발명의 실시예에 따른 상향링크 다중 사용자 전송 방법에 있어서, 상기 제 2 TXOP 듀레이션은 상기 UL MU PPDU 및 상기 ACK 프레임간의 IFS(Inter Frame Space) 시간을 더 포함할 수 있다.
또한, 본 발명의 실시예에 따른 상향링크 다중 사용자 전송 방법에 있어서, 상기 UL MU PPDU의 상기 제 2 HE 프리앰블은 HE-STF(High Efficiency-Short Training Field), HE-LTF(HE-Long Training Field) 및 데이터 필드를 포함하고, 상기 HE-STF, 상기 HE-LTF 및 상기 데이터 필드는 할당된 리소스 유닛의 대역폭을 통해 전송될 수 있다.
또한, 상술한 기술적 과제를 해결하기 위한 본 발명의 실시예에 따른 WLAN(Wireless LAN) 시스템의 STA(Station) 장치는, 무선 신호를 송수신하기 위한 RF(Radio Frequency) 유닛; 및 상기 RF 유닛을 제어하는 프로세서를 포함하고, 상기 STA 장치는, OFDMA(orthogonal frequency division multiple access) 전송을 위한 리소스 유닛 할당 정보를 포함하는 트리거 프레임(Trigger frame)을 수신하고, 상기 트리거 프레임에 기초하여 UL MU PPDU(Physical Protocol Data Unit)를 전송하고, 및 상기 UL MU PPDU에 대한 ACK 프레임을 수신하며, 상기 트리거 프레임은 제 1 레거시 프리앰블 및 제 1 HE(High Effiency) 프리앰블을 포함하고, 상기 제 1 HE 프리앰블은 제 1 HE-SIG-A 필드 및 제 1 HE-SIG-B 필드를 포함하며, 상기 제 1 HE-SIG-A 필드는 제 1 TXOP(Transmissio Opportunity) 듀레이션을 나타내는 제 1 TXOP 듀레이션 정보를 포함하고, 상기 제 1 TXOP 듀레이션은 상기 STA 장치의 프레임 교환 시퀀스에 대한 남은 시간 인터벌이 될 수 있다.
또한, 상술한 기술적 과제를 해결하기 위한 본 발명의 실시예에 따른 WLAN(Wireless LAN) 시스템에서 AP(Access Point)-STA(Station)의 상향링크(UL: uplink) 다중 사용자(MU: Multi-User) 수신 방법은, OFDMA(orthogonal frequency division multiple access) 전송을 위한 리소스 유닛 할당 정보를 포함하는 트리거 프레임(Trigger frame)을 전송하는 단계; 상기 트리거 프레임에 기초하여 UL MU PPDU(Physical Protocol Data Unit)를 수신하는 단계; 및 상기 UL MU PPDU에 대한 ACK 프레임을 전송하는 단계를 포함하고, 상기 트리거 프레임은 제 1 레거시 프리앰블 및 제 1 HE(High Effiency) 프리앰블을 포함하고, 상기 제 1 HE 프리앰블은 제 1 HE-SIG-A 필드 및 제 1 HE-SIG-B 필드를 포함하며, 상기 제 1 HE-SIG-A 필드는 제 1 TXOP(Transmissio Opportunity) 듀레이션을 나타내는 제 1 TXOP 듀레이션 정보를 포함하고, 상기 제 1 TXOP 듀레이션은 상기 STA의 프레임 교환 시퀀스에 대한 남은 시간 인터벌이 될 수 있다.
본 발명의 실시예에 따르면, 무선 통신 시스템에서 복수의 사용자가 서로 독립적인 자원을 통해 원활하게 다중 사용자(multi-user) 전송을 수행할 수 있다.
또한, 본 발명의 실시예에 따르면, 무선 통신 시스템에서 리소스 유닛 단위로 상향링크 다중 사용자(single user) 전송을 지원할 수 있다.
본 발명의 실시예에 따르면 UL MU 절차에 대한 TXOP 프로텍션을 효과적으로 수행할 수 있다. 다시 말하면, 본 발명의 실시예에 따르면 HE-SIG-A 필드에 TXOP 듀레이션 필드를 포함시킴으로써 BSS 내에서 트리거 프레임만 수신한 STA, OBSS에서 트리거 프레임만 오버히어링한 STA를 NAV 세팅시킬 수 있다. 본 발명의 실시예에 따르면 트리거 프레임 및 UL MU 프레임에 TXOP 듀레이션 필드를 포함시키므로, 트리거 프레임 또는 UL MU 프레임 중 하나만 인식한 STA들도 UL MU 프레임의 TXOP 듀레이션 필드를 통해 NAV 세팅을 할 수 있다.
TXOP 듀레이션 필드를 HE-SIG-A 필드에 포함시킴으로써 L-SIG 필드의 용량 제한을 벗어나면서 레거시 STA들의 오동작을 방지할 수 있다. 또한 다른 STA들은 UL MU 절차에서 송수신되는 프레임들의 MAC 헤더를 디코딩하지 못하는 경우에도 HE-SIG-A 필드까지만 디코딩하여 NAV 세팅을 시킬 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 이하의 상세한 설명에서 추가로 설명한다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 특징을 설명한다.
도 1은 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 일례를 나타내는 도면이다.
도 2는 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 계층 아키텍처(layer architecture)의 구조를 예시하는 도면이다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템의 non-HT 포맷 PPDU 및 HT 포맷 PPDU를 예시한다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템의 VHT 포맷 PPDU 포맷을 예시한다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템의 PPDU의 포맷을 구분하기 위한 성상(constellation)을 예시하는 도면이다.
도 6은 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 MAC 프레임 포맷을 예시한다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 MAC 프레임 내 프레임 제어(Frame Control) 필드를 예시하는 도면이다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 HT Control 필드의 VHT 포맷을 예시한다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 임의 백오프 주기와 프레임 전송 절차를 설명하기 위한 도면이다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 IFS 관계를 예시하는 도면이다.
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 다중 사용자(multi-user) PPDU 포맷을 예시하는 도면이다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 다중 사용자(multi-user) PPDU 포맷을 예시하는 도면이다.
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 MU-MIMO 전송 과정을 예시하는 도면이다.
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 ACK 프레임을 예시하는 도면이다.
도 15는 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK 요청(Block Ack Request) 프레임을 예시하는 도면이다.
도 16은 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK 요청(Block Ack Request) 프레임의 BAR 정보(BAR Information) 필드를 예시하는 도면이다.
도 17은 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK(Block Ack) 프레임을 예시하는 도면이다.
도 18은 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK(Block Ack) 프레임의 BA 정보(BA Information) 필드를 예시하는 도면이다.
도 19는 본 발명의 일 실시예에 따른 HE(High Efficiency) 포맷 PPDU를 예시하는 도면이다.
도 20은 본 발명의 일 실시예에 따른 HE 포맷 PPDU을 예시하는 도면이다.
도 21은 본 발명의 일 실시예에 따른 HE 포맷 PPDU을 예시하는 도면이다.
도 22는 본 발명의 일 실시예에 따른 HE 포맷 PPDU을 예시하는 도면이다.
도 23은 본 발명의 일 실시예에 따른 상향링크 다중 사용자(multi-user) 전송 절차를 예시하는 도면이다.
도 24는 본 발명의 실시예에 따른 UL MU 전송을 나타낸다.
도 25는 본 발명의 실시예에 따른 UL MU 전송을 나타낸다.
도 26은 본 발명의 일 실시예에 따른 HE 프레임을 나타낸다.
도 27은 본 발명의 실시예에 따른 UL MU 절차 및 TXOP 프로텍션을 나타낸다.
도 28은 본 발명의 실시예에 따른 UL MU 절차 및 TXOP 프로텍션으로서, 특히 UL MU 절차가 DL MU 프레임과 함께 전송되는 캐스케이드(cascade) 구조의 실시예를 나타낸다.
도 29는 본 발명의 실시예에 따른 UL MU 절차 및 TXOP 프로텍션으로서, UL MU 절차가 DL MU 프레임과 함께 전송되는 캐스케이드(cascade) 구조의 실시예를 나타낸다.
도 30은 본 발명의 실시예에 따른 UL MU 프레임 및 TXOP 프로텍션을 나타낸다.
도 31은 본 발명의 일 실시예에 따른 STA 장치를 나타낸다.
도 32는 본 발명의 실시예에 따른 UL MU 전송/수신 방법을 나타낸다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access), NOMA(non-orthogonal multiple access) 등과 같은 다양한 무선 접속 시스템에 이용될 수 있다. CDMA는 UTRA(universal terrestrial radio access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(global system for mobile communications)/GPRS(general packet radio service)/EDGE(enhanced data rates for GSM evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE(institute of electrical and electronics engineers) 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(universal mobile telecommunications system)의 일부이다. 3GPP(3rd generation partnership project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(evolved UMTS)의 일부로써, 하향링크에서 OFDMA를 채용하고 상향링크에서 SC-FDMA를 채용한다. LTE-A(advanced)는 3GPP LTE의 진화이다.
본 발명의 실시예들은 무선 접속 시스템들인 IEEE 802, 3GPP 및 3GPP2 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
설명을 명확하게 하기 위해, IEEE 802.11 시스템을 위주로 기술하지만 본 발명의 기술적 특징이 이에 제한되는 것은 아니다.
본 발명이 적용될 수 있는 시스템 일반
도 1은 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 일례를 나타내는 도면이다.
IEEE 802.11 구조는 복수개의 구성요소들로 구성될 수 있고, 이들의 상호작용에 의해 상위계층에 대해 트랜스패런트(transparent)한 스테이션(STA: Station) 이동성을 지원하는 무선 통신 시스템이 제공될 수 있다. 기본 서비스 세트(BSS: Basic Service Set)는 IEEE 802.11 시스템에서의 기본적인 구성 블록에 해당할 수 있다.
도 1 에서는 3개의 BSS(BSS 1 내지 BSS 3)가 존재하고 각각의 BSS의 멤버로서 2개의 STA이 포함되는 것(STA 1 및 STA 2 는 BSS 1에 포함되고, STA 3 및 STA 4는 BSS 2에 포함되며, STA 5 및 STA 6은 BSS 3에 포함됨)을 예시적으로 도시한다.
도 1 에서 BSS를 나타내는 타원은 해당 BSS에 포함된 STA들이 통신을 유지하는 커버리지 영역을 나타내는 것으로도 이해될 수 있다. 이 영역을 기본 서비스 영역(BSA: Basic Service Area)이라고 칭할 수 있다. STA가 BSA 밖으로 이동하게 되면 해당 BSA 내의 다른 STA들과 직접적으로 통신할 수 없게 된다.
IEEE 802.11 시스템에서 가장 기본적인 타입의 BSS는 독립적인 BSS(IBSS: Independent BSS)이다. 예를 들어, IBSS는 2 개의 STA만으로 구성된 최소의 형태를 가질 수 있다. 또한, 가장 단순한 형태이고 다른 구성요소들이 생략되어 있는 도 1 의 BSS 3이 IBSS의 대표적인 예시에 해당할 수 있다. 이러한 구성은 STA들이 직접 통신할 수 있는 경우에 가능하다. 또한, 이러한 형태의 LAN은 미리 계획되어서 구성되는 것이 아니라 LAN이 필요한 경우에 구성될 수 있으며, 이를 애드-혹(ad-hoc) 네트워크라고 칭할 수도 있다.
STA의 켜지거나 꺼짐, STA가 BSS 영역에 들어오거나 나감 등에 의해서, BSS에서의 STA의 멤버십이 동적으로 변경될 수 있다. BSS의 멤버가 되기 위해서는, STA는 동기화 과정을 이용하여 BSS에 조인할 수 있다. BSS 기반 구조의 모든 서비스에 액세스하기 위해서는, STA는 BSS에 연계(associated)되어야 한다. 이러한 연계(association)는 동적으로 설정될 수 있고, 분배 시스템 서비스(DSS: Distribution System Service)의 이용을 포함할 수 있다.
802.11 시스템에서 직접적인 STA-대-STA의 거리는 물리 계층(PHY: physical) 성능에 의해서 제한될 수 있다. 어떠한 경우에는 이러한 거리의 한계가 충분할 수도 있지만, 경우에 따라서는 보다 먼 거리의 STA 간의 통신이 필요할 수도 있다. 확장된 커버리지를 지원하기 위해서 분배 시스템(DS: Distribution System)이 구성될 수 있다.
DS는 BSS들이 상호 연결되는 구조를 의미한다. 구체적으로, 도 1 과 같이 BSS가 독립적으로 존재하는 대신에, 복수개의 BSS들로 구성된 네트워크의 확장된 형태의 구성요소로서 BSS가 존재할 수도 있다.
DS는 논리적인 개념이며 분배 시스템 매체(DSM: Distribution System Medium)의 특성에 의해서 특정될 수 있다. 이와 관련하여, IEEE 802.11 표준에서는 무선 매체(WM: Wireless Medium)와 분배 시스템 매체(DSM: Distribution System Medium)을 논리적으로 구분하고 있다. 각각의 논리적 매체는 상이한 목적을 위해서 사용되며, 상이한 구성요소에 의해서 사용된다. IEEE 802.11 표준의 정의에서는 이러한 매체들이 동일한 것으로 제한하지도 않고 상이한 것으로 제한하지도 않는다. 이와 같이 복수개의 매체들이 논리적으로 상이하다는 점에서, IEEE 802.11 시스템의 구조(DS 구조 또는 다른 네트워크 구조)의 유연성이 설명될 수 있다. 즉, IEEE 802.11 시스템 구조는 다양하게 구현될 수 있으며, 각각의 구현예의 물리적인 특성에 의해서 독립적으로 해당 시스템 구조가 특정될 수 있다.
DS는 복수개의 BSS들의 끊김 없는(seamless) 통합을 제공하고 목적지로의 어드레스를 다루는 데에 필요한 논리적 서비스들을 제공함으로써 이동 장치를 지원할 수 있다.
AP는, 연계된 STA들에 대해서 WM을 통해서 DS로의 액세스를 가능하게 하고 STA 기능성을 가지는 개체를 의미한다. AP를 통해서 BSS 및 DS 간의 데이터 이동이 수행될 수 있다. 예를 들어, 도 1에서 도시하는 STA 2 및 STA 3은 STA의 기능성을 가지면서, 연계된 STA들(STA 1 및 STA 4)가 DS로 액세스하도록 하는 기능을 제공한다. 또한, 모든 AP는 기본적으로 STA에 해당하므로, 모든 AP는 어드레스 가능한 개체이다. WM 상에서의 통신을 위해 AP에 의해서 사용되는 어드레스와 DSM 상에서의 통신을 위해 AP에 의해서 사용되는 어드레스는 반드시 동일할 필요는 없다.
AP에 연계된 STA들 중의 하나로부터 그 AP의 STA 어드레스로 전송되는 데이터는, 항상 비제어 포트(uncontrolled port)에서 수신되고 IEEE 802.1X 포트 액세스 개체에 의해서 처리될 수 있다. 또한, 제어 포트(controlled port)가 인증되면 전송 데이터(또는 프레임)는 DS로 전달될 수 있다.
임의의(arbitrary) 크기 및 복잡도를 가지는 무선 네트워크가 DS 및 BSS들로 구성될 수 있다. IEEE 802.11 시스템에서는 이러한 방식의 네트워크를 확장된 서비스 세트(ESS: Extended Service Set) 네트워크라고 칭한다. ESS는 하나의 DS에 연결된 BSS들의 집합에 해당할 수 있다. 그러나, ESS는 DS를 포함하지는 않는다. ESS 네트워크는 논리 링크 제어(LLC: Logical Link Control) 계층에서 IBSS 네트워크로 보이는 점이 특징이다. ESS에 포함되는 STA들은 서로 통신할 수 있고, 이동 STA들은 LLC에 트랜스패런트(transparent)하게 하나의 BSS에서 다른 BSS로(동일한 ESS 내에서) 이동할 수 있다.
IEEE 802.11 시스템에서는 도 1 에서의 BSS들의 상대적인 물리적 위치에 대해서 아무것도 가정하지 않으며, 다음과 같은 형태가 모두 가능하다.
구체적으로, BSS들은 부분적으로 중첩될 수 있고, 이는 연속적인 커버리지를 제공하기 위해서 일반적으로 이용되는 형태이다. 또한, BSS들은 물리적으로 연결되어 있지 않을 수 있고, 논리적으로는 BSS들 간의 거리에 제한은 없다. 또한, BSS들은 물리적으로 동일한 위치에 위치할 수 있고, 이는 리던던시(redundancy)를 제공하기 위해서 이용될 수 있다. 또한, 하나 (또는 하나 이상의) IBSS 또는 ESS 네트워크들이 하나 또는 그 이상의 ESS 네트워크로서 동일한 공간에 물리적으로 존재할 수 있다. 이는 ESS 네트워크가 존재하는 위치에 ad-hoc 네트워크가 동작하는 경우나, 상이한 기관(organizations)에 의해서 물리적으로 중첩되는 IEEE 802.11 네트워크들이 구성되는 경우나, 동일한 위치에서 2 이상의 상이한 액세스 및 보안 정책이 필요한 경우 등에서의 ESS 네트워크 형태에 해당할 수 있다.
WLAN 시스템에서 STA은 IEEE 802.11의 매체 접속 제어(MAC: Medium Access Control)/PHY 규정에 따라 동작하는 장치이다. STA의 기능이 AP와 개별적으로 구분되지 않는 한, STA는 AP STA과 비-AP STA(non-AP STA)를 포함할 수 있다. 다만, STA과 AP 간에 통신이 수행된다고 할 때, STA은 non-AP STA으로 이해될 수 있다. 도 1의 예시에서 STA 1, STA 4, STA 5 및 STA 6은 non-AP STA에 해당하고, STA 2 및 STA 3은 AP STA 에 해당한다.
Non-AP STA는 랩탑 컴퓨터, 이동 전화기와 같이 일반적으로 사용자가 직접 다루는 장치에 해당한다. 이하의 설명에서 non-AP STA는 무선 장치(wireless device), 단말(terminal), 사용자 장치(UE: User Equipment), 이동국(MS: Mobile Station), 이동 단말(Mobile Terminal), 무선 단말(wireless terminal), 무선 송수신 유닛(WTRU: Wireless Transmit/Receive Unit), 네트워크 인터페이스 장치(network interface device), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치 등으로 칭할 수도 있다.
또한, AP는 다른 무선 통신 분야에서의 기지국(BS: Base Station), 노드-B(Node-B), 발전된 노드-B(eNB: evolved Node-B), 기저 송수신 시스템(BTS: Base Transceiver System), 펨토 기지국(Femto BS) 등에 대응하는 개념이다.
이하, 본 명세서에서 하향링크(DL: downlink)는 AP에서 non-AP STA로의 통신을 의미하며, 상향링크(UL: uplink)는 non-AP STA에서 AP로의 통신을 의미한다. 하향링크에서 송신기는 AP의 일부이고, 수신기는 non-AP STA의 일부일 수 있다. 상향링크에서 송신기는 non-AP STA의 일부이고, 수신기는 AP의 일부일 수 있다.
도 2는 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 계층 아키텍처(layer architecture)의 구조를 예시하는 도면이다.
도 2를 참조하면, IEEE 802.11 시스템의 계층 아키텍처는 MAC 부계층(MAC sublayer)과 PHY 부계층(PHY sublayer)을 포함할 수 있다.
PHY sublayer은 PLCP(Physical Layer Convergence Procedure) 개체(entity)와 PMD(Physical Medium Dependent) 개체로 구분될 수도 있다. 이 경우, PLCP 개체는 MAC sublayer와 데이터 프레임을 연결하는 역할을 수행하고, PMD 개체는 2개 또는 그 이상의 STA과 데이터를 무선으로 송수신하는 역할을 수행한다.
MAC sublayer과 PHY sublayer 모두 관리 개체(Management Entity)를 포함할 수 있으며, 각각 MAC 서브계층 관리 개체(MLME: MAC Sublayer Management Entity)과 PHY 서브계층 관리 개체(PLME: Physical Sublayer Management Entity)로 지칭할 수 있다. 이들 관리 개체은 계층 관리 함수의 동작을 통해 계층 관리 서비스 인터페이스를 제공한다. MLME는 PLME와 연결되어 MAC sublayer의 관리 동작(management operation)을 수행할 수 있고, 마찬가지로 PLME도 MLME와 연결되어 PHY sublayer의 관리 동작(management operation)을 수행할 수 있다.
정확한 MAC 동작을 제공하기 위하여, SME(Station Management Entity)가 각 STA 내에 존재할 수 있다. SME는 각 계층과 독립적인 관리 개체로서, MLME와 PLME로부터 계층 기반 상태 정보를 수집하거나 각 계층의 특정 파라미터들의 값을 설정한다. SME는 일반 시스템 관리 개체들을 대신하여 이러한 기능을 수행할 수 있으며, 표준 관리 프로토콜을 구현할 수 있다.
MLME, PLME 및 SME은 프리미티브(primitive)를 기반의 다양한 방법으로 상호 작용(interact)할 수 있다. 구체적으로, XX-GET.request 프리미티브는 관리 정보 베이스 속성(MIB attribute: Management Information Base attribute)의 값을 요청하기 위해 사용되고, XX-GET.confirm 프리미티브는 상태가 'SUCCESS'라면, 해당 MIB 속성 값을 리턴(return)하고, 그 외의 경우에는 상태 필드에 오류 표시를 하여 리턴한다. XX-SET.request 프리미티브는 지정된 MIB 속성을 주어진 값으로 설정하도록 요청하기 위해 사용된다. MIB 속성이 특정 동작으로 의미하고 있다면, 이 요청은 그 특정 동작의 실행을 요청한다. 그리고, XX-SET.confirm 프리미티브는 상태가 'SUCCESS'라면, 이는 지정된 MIB 속성이 요청된 값으로 설정되었음을 의미한다. 그 외의 경우에는, 상태 필드는 오류 상황을 나타낸다. 이 MIB 속성이 특정 동작을 의미한다면, 이 프리미티브는 해당 동작의 수행된 것을 확인해 줄 수 있다.
각 sublayer에서의 동작을 간략하게 설명하면 다음과 같다.
MAC sublayer는 상위 계층(예를 들어, LLC 계층)으로부터 전달 받은 MAC 서비스 데이터 유닛(MSDU: MAC Service Data Unit) 또는 MSDU의 조각(fragment)에 MAC 헤더(header)와 프레임 체크 시퀀스(FCS: Frame Check Sequence)을 부착하여 하나 이상의 MAC 프로토콜 데이터 유닛(MPDU: MAC Protocol Data Unit)을 생성한다. 생성된 MPDU는 PHY sublayer로 전달된다.
A-MSDU(aggregated MSDU) 기법(scheme)이 사용되는 경우, 복수 개의 MSDU는 단일의 A-MSDU(aggregated MSDU)로 병합될 수 있다. MSDU 병합 동작은 MAC 상위 계층에서 수행될 수 있다. A-MSDU는 단일의 MPDU(조각화(fragment)되지 않는 경우)로 PHY sublayer로 전달된다.
PHY sublayer는 MAC sublayer으로부터 전달 받은 물리 서비스 데이터 유닛(PSDU: Physical Service Data Unit)에 물리 계층 송수신기에 의해 필요한 정보를 포함하는 부가필드를 덧붙여 물리 프로토콜 데이터 유닛(PPDU: Physical Protocol Data Unit)을 생성한다. PPDU는 무선 매체를 통해 전송된다.
PSDU는 PHY sublayer가 MAC sublayer로부터 수신한 것이고, MPDU는 MAC sublayer가 PHY sublayer로 전송한 것이므로, PSDU는 실질적으로 MPDU와 동일하다.
A-MPDU(aggregated MPDU) 기법(scheme)이 사용되는 경우, 복수의 MPDU(이때, 각 MPDU는 A-MSDU를 나를 수 있다.)는 단일의 A-MPDU로 병합될 수 있다. MPDU 병합 동작은 MAC 하위 계층에서 수행될 수 있다. A-MPDU는 다양한 타입의 MPDU(예를 들어, QoS 데이터, ACK(Acknowledge), 블록 ACK(BlockAck) 등)이 병합될 수 있다. PHY sublayer는 MAC sublayer로부터 단일의 PSDU로써 A-MPDU를 수신한다. 즉, PSDU는 복수의 MPDU로 구성된다. 따라서, A-MPDU는 단일의 PPDU 내에서 무선 매체를 통해 전송된다.
PPDU (Physical Protocol Data Unit) 포맷
PPDU(Physical Protocol Data Unit)는 물리 계층에서 발생되는 데이터 블록을 의미한다. 이하, 본 발명이 적용될 수 있는 IEEE 802.11 WLAN 시스템을 기초로 PPDU 포맷을 설명한다.
도 3은 본 발명이 적용될 수 있는 무선 통신 시스템의 non-HT 포맷 PPDU 및 HT 포맷 PPDU를 예시한다.
도 3의 (a)는 IEEE 802.11a/g 시스템을 지원하기 위한 non-HT 포맷 PPDU을 예시한다. non-HT PPDU은 레거시(legacy) PPDU으로도 불릴 수 있다.
도 3의 (a)를 참조하면, non-HT 포맷 PPDU은 L-STF(Legacy(또는, Non-HT) Short Training field), L-LTF(Legacy(또는, Non-HT) Long Training field) 및 L-SIG(Legacy(또는 Non-HT) SIGNAL) 필드로 구성되는 레가시 포맷 프리앰블과 데이터 필드를 포함하여 구성된다.
L-STF는 짧은 트레이닝 OFDM(short training orthogonal frequency division multiplexing symbol)을 포함할 수 있다. L-STF는 프레임 타이밍 획득(frame timing acquisition), 자동 이득 제어(AGC: Automatic Gain Control), 다이버시티 검출(diversity detection), 대략적인 주파수/시간 동기화(coarse frequency/time synchronization)을 위해 사용될 수 있다.
L-LTF는 긴 트레이닝 OFDM 심볼(long training orthogonal frequency division multiplexing symbol)을 포함할 수 있다. L-LTF는 정밀한 주파수/시간 동기화(fine frequency/time synchronization) 및 채널 추정(channel estimation)을 위해 사용될 수 있다.
L-SIG 필드는 데이터 필드의 복조 및 디코딩을 위한 제어 정보를 전송하기 위하여 사용될 수 있다.
L-SIG 필드는 4 비트의 레이트(Rate) 필드, 1비트의 예비(Reserved) 비트, 12 비트의 길이(Length) 필드, 1비트의 패리티 비트, 6비트의 신호 테일(Signal Tail) 필드로 구성될 수 있다.
레이트 필드는 전송율 정보를 포함하고, 길이 필드는 PSDU의 옥텟의 수를 지시한다.
도 3의 (b)는 IEEE 802.11n 시스템 및 IEEE 802.11a/g 시스템을 모두 지원하기 위한 HT 혼합 포맷 PPDU(HT-mixed format PPDU)을 예시한다.
도 3의 (b)를 참조하면, HT 혼합 포맷 PPDU은 L-STF, L-LTF 및 L-SIG 필드로 구성되는 레가시 포맷 프리앰블과 HT-SIG(HT-Signal) 필드, HT-STF(HT Short Training field), HT-LTF(HT Long Training field)로 구성되는 HT 포맷 프리앰블 및 데이터 필드를 포함하여 구성된다.
L-STF, L-LTF 및 L-SIG 필드는 하위 호환성(backward compatibility)를 위한 레가시 필드를 의미하므로, L-STF부터 L-SIG 필드까지 non-HT 포맷과 동일하다. L-STA은 HT 혼합 PPDU를 수신하여도 L-LTF, L-LTF 및 L-SIG 필드를 통해 데이터 필드를 해석할 수 있다. 다만 L-LTF는 HT-STA이 HT 혼합 PPDU를 수신하고 L-SIG 필드 및 HT-SIG 필드를 복조하기 위하여 수행할 채널 추정을 위한 정보를 더 포함할 수 있다.
HT-STA는 레가시 필드 뒤에 오는 HT-SIG 필드 이용하여 HT-혼합 포맷 PPDU임을 알 수 있으며, 이를 기반으로 데이터 필드를 디코딩할 수 있다.
HT-LTF 필드는 데이터 필드의 복조를 위한 채널 추정에 사용될 수 있다. IEEE 802.11n은 SU-MIMO(Single-User Multi-Input and Multi-Output)를 지원하므로 복수의 공간 스트림으로 전송되는 데이터 필드 각각에 대하여 채널 추정을 위해 HT-LTF 필드는 복수로 구성될 수 있다.
HT-LTF 필드는 공간 스트림에 대한 채널 추정을 위하여 사용되는 데이터 HT-LTF(data HT-LTF)와 풀 채널 사운딩(full channel sounding)을 위해 추가적으로 사용되는 확장 HT-LTF(extension HT-LTF)로 구성될 수 있다. 따라서, 복수의 HT-LTF는 전송되는 공간 스트림의 개수보다 같거나 많을 수 있다.
HT-혼합 포맷 PPDU은 L-STA도 수신하여 데이터를 획득할 수 있도록 하기 위해 L-STF, L-LTF 및 L-SIG 필드가 가장 먼저 전송된다. 이후 HT-STA을 위하여 전송되는 데이터의 복조 및 디코딩을 위해 HT-SIG 필드가 전송된다.
HT-SIG 필드까지는 빔포밍을 수행하지 않고 전송하여 L-STA 및 HT-STA이 해당 PPDU를 수신하여 데이터를 획득할 수 있도록 하고, 이후 전송되는 HT-STF, HT-LTF 및 데이터 필드는 프리코딩을 통한 무선 신호 전송이 수행된다. 여기서 프리코딩을 하여 수신하는 STA에서 프리코딩에 의한 전력이 가변 되는 부분을 감안할 수 있도록 HT-STF 필드를 전송하고 그 이후에 복수의 HT-LTF 및 데이터 필드를 전송한다.
아래 표 1은 HT-SIG 필드를 예시하는 표이다.
Figure PCTKR2015012917-appb-T000001
도 3의 (c)는 IEEE 802.11n 시스템만을 지원하기 위한 HT-GF 포맷 PPDU(HT-greenfield format PPDU)을 예시한다.
도 3의 (c)를 참조하면, HT-GF 포맷 PPDU은 HT-GF-STF, HT-LTF1, HT-SIG 필드, 복수의 HT-LTF2 및 데이터 필드를 포함한다.
HT-GF-STF는 프레임 타이밍 획득 및 AGC를 위해 사용된다.
HT-LTF1는 채널 추정을 위해 사용된다.
HT-SIG 필드는 데이터 필드의 복조 및 디코딩을 위해 사용된다.
HT-LTF2는 데이터 필드의 복조를 위한 채널 추정에 사용된다. 마찬가지로 HT-STA은 SU-MIMO를 사용하므로 복수의 공간 스트림으로 전송되는 데이터 필드 각각에 대하여 채널 추정을 요하므로 HT-LTF2는 복수로 구성될 수 있다.
복수의 HT-LTF2는 HT 혼합 PPDU의 HT-LTF 필드와 유사하게 복수의 Data HT-LTF와 복수의 확장 HT-LTF로 구성될 수 있다.
도 3의 (a) 내지 (c)에서 데이터 필드는 페이로드(payload)로서, 서비스 필드(SERVICE field), 스크램블링된 PSDU(scrambled PSDU) 필드, 테일 비트(Tail bits), 패딩 비트(padding bits)를 포함할 수 있다. 데이터 필드의 모든 비트는 스크램블된다.
도 3(d)는 데이터 필드에 포함되는 서비스 필드를 나타낸다. 서비스 필드는 16 비트를 가진다. 각 비트는 0번부터 15번까지 부여되며, 0번 비트부터 순차적으로 전송된다. 0번부터 6번 비트는 0으로 설정되고, 수신단 내 디스크램블러(descrambler)를 동기화하기 위하여 사용된다.
IEEE 802.11ac WLAN 시스템은 무선채널을 효율적으로 이용하기 위하여 복수의 STA들이 동시에 채널에 액세스하는 하향링크 MU-MIMO(Multi User Multiple Input Multiple Output) 방식의 전송을 지원한다. MU-MIMO 전송 방식에 따르면, AP가 MIMO 페어링(pairing)된 하나 이상의 STA에게 동시에 패킷을 전송할 수 있다.
DL MU 전송(downlink multi-user transmission)은 하나 이상의 안테나를 통해 AP가 동일한 시간 자원을 통해 PPDU를 복수의 non-AP STA에게 전송하는 기술을 의미한다.
이하, MU PPDU는 MU-MIMO 기술 또는 OFDMA 기술을 이용하여 하나 이상의 STA을 위한 하나 이상의 PSDU를 전달하는 PPDU를 의미한다. 그리고, SU PPDU는 하나의 PSDU만을 전달할 수 있거나 PSDU가 존재하지 않는 포맷을 가진 PPDU를 의미한다.
MU-MIMO 전송을 위하여 802.11n 제어 정보의 크기에 비하여 STA에 전송되는 제어 정보의 크기가 상대적으로 클 수 있다. MU-MIMO 지원을 위해 추가적으로 요구되는 제어 정보의 일례로, 각 STA에 의해 수신되는 공간적 스트림(spatial stream)의 수를 지시하는 정보, 각 STA에 전송되는 데이터의 변조 및 코딩 관련 정보 등이 이에 해당될 수 있다.
따라서, 복수의 STA에 동시에 데이터 서비스를 제공하기 위하여 MU-MIMO 전송이 수행될 때, 전송되는 제어 정보의 크기는 수신하는 STA의 수에 따라 증가될 수 있다.
이와 같이 증가되는 제어 정보의 크기를 효율적으로 전송하기 위하여, MU-MIMO 전송을 위해 요구되는 복수의 제어 정보는 모든 STA에 공통으로 요구되는 공통 제어 정보(common control information)와 특정 STA에 개별적으로 요구되는 전용 제어 정보(dedicated control information)의 두 가지 타입의 정보로 구분하여 전송될 수 있다.
도 4는 본 발명이 적용될 수 있는 무선 통신 시스템의 VHT 포맷 PPDU 포맷을 예시한다.
도 4(a)는 IEEE 802.11ac 시스템을 지원하기 위한 VHT 포맷 PPDU(VHT format PPDU)을 예시한다.
도 4(a)를 참조하면, VHT 포맷 PPDU은 L-STF, L-LTF 및 L-SIG 필드로 구성되는 레가시 포맷 프리앰블과 VHT-SIG-A(VHT-Signal-A) 필드, VHT-STF(VHT Short Training field), VHT-LTF(VHT Long Training field), VHT-SIG-B(VHT-Signal-B) 필드로 구성되는 VHT 포맷 프리앰블 및 데이터 필드를 포함하여 구성된다.
L-STF, L-LTF 및 L-SIG는 하위 호환성(backward compatibility)를 위한 레가시 필드를 의미하므로, L-STF부터 L-SIG 필드까지 non-HT 포맷과 동일하다. 다만, L-LTF는 L-SIG 필드 및 VHT-SIG-A 필드를 복조하기 위하여 수행할 채널 추정을 위한 정보를 더 포함할 수 있다.
L-STF, L-LTF, L-SIG 필드 및 VHT-SIG-A 필드는 20MHz 채널 단위로 반복되어 전송될 수 있다. 예를 들어, PPDU가 4개의 20MHz 채널(즉, 80 MHz 대역폭)을 통해 전송될 때, L-STF, L-LTF, L-SIG 필드 및 VHT-SIG-A 필드는 매 20MHz 채널에서 반복되어 전송될 수 있다.
VHT-STA는 레가시 필드 뒤에 오는 VHT-SIG-A 필드 이용하여 VHT 포맷 PPDU임을 알 수 있으며, 이를 기반으로 데이터 필드를 디코딩할 수 있다.
VHT 포맷 PPDU은 L-STA도 수신하여 데이터를 획득할 수 있도록 하기 위해 L-STF, L-LTF 및 L-SIG 필드가 가장 먼저 전송된다. 이후, VHT-STA을 위하여 전송되는 데이터의 복조 및 디코딩을 위해 VHT-SIG-A 필드가 전송된다.
VHT-SIG-A 필드는 AP와 MIMO 페어링된(paired) VHT STA들에게 공통되는 제어 정보 전송을 위한 필드로서, 이는 수신된 VHT 포맷 PPDU를 해석하기 위한 제어 정보를 포함하고 있다.
VHT-SIG-A 필드는 VHT-SIG-A1 필드와 VHT-SIG-A2 필드를 포함할 수 있다.
VHT-SIG-A1 필드는 사용하는 채널 대역폭(BW: bandwidth) 정보, 시공간 블록 코딩(STBC: Space Time Block Coding)의 적용 여부, MU-MIMO에서 그룹핑된 STA들의 그룹의 지시하기 위한 그룹 식별 정보(Group ID: Group Identifier), 사용되는 스트림의 개수(NSTS: Number of space-time stream)/부분 AID(Partial AID(association Identifier))에 대한 정보 및 전송 파워 세이브 금지(Transmit power save forbidden) 정보를 포함할 수 있다. 여기서, Group ID는 MU-MIMO 전송을 지원하기 위해 전송 대상 STA 그룹에 대하여 할당되는 식별자를 의미하며, 현재 사용된 MIMO 전송 방법이 MU-MIMO인지 또는 SU-MIMO 인지 여부를 나타낼 수 있다.
표 2은 VHT-SIG-A1 필드를 예시하는 표이다.
Figure PCTKR2015012917-appb-T000002
VHT-SIG-A2 필드는 짧은 보호구간(GI: Guard Interval) 사용 여부에 대한 정보, 포워드 에러 정정(FEC: Forward Error Correction) 정보, 단일 사용자에 대한 MCS(Modulation and Coding Scheme)에 관한 정보, 복수 사용자에 대한 채널 코딩의 종류에 관한 정보, 빔포밍 관련 정보, CRC(Cyclic Redundancy Checking)를 위한 여분 비트(redundancy bits)와 컨벌루셔널 디코딩(convolutional decoder)의 테일 비트(tail bit) 등을 포함할 수 있다.
표 3은 VHT-SIG-A2 필드를 예시하는 표이다.
Figure PCTKR2015012917-appb-T000003
VHT-STF는 MIMO 전송에 있어서 AGC 추정의 성능을 개선하기 위해 사용된다.
VHT-LTF는 VHT-STA이 MIMO 채널을 추정하는데 사용된다. VHT WLAN 시스템은 MU-MIMO를 지원하기 때문에, VHT-LTF는 PPDU가 전송되는 공간 스트림의 개수만큼 설정될 수 있다. 추가적으로, 풀 채널 사운딩(full channel sounding)이 지원되는 경우, VHT-LTF의 수는 더 많아질 수 있다.
VHT-SIG-B 필드는 MU-MIMO 페어링된 복수의 VHT-STA이 PPDU를 수신하여 데이터를 획득하는데 필요한 전용 제어 정보를 포함한다. 따라서, VHT-SIG-A 필드에 포함된 공용 제어 정보가 현재 수신된 PPDU가 MU-MIMO 전송을 지시한 경우에만, VHT-STA은 VHT-SIG-B 필드를 디코딩(decoding)하도록 설계될 수 있다. 반면, 공용 제어 정보가 현재 수신된 PPDU가 단일 VHT-STA을 위한 것(SU-MIMO를 포함)임을 지시한 경우 STA은 VHT-SIG-B 필드를 디코딩하지 않도록 설계될 수 있다.
VHT-SIG-B 필드는 VHT-SIG-B 길이(Length) 필드, VHT-MCS 필드, 예비(Reserved) 필드, 테일(Tail) 필드를 포함한다.
VHT-SIG-B 길이(Length) 필드는 A-MPDU의 길이(EOF(end-of-frame) 패딩 이전)를 지시한다. VHT-MCS 필드는 각 VHT-STA들의 변조(modulation), 인코딩(encoding) 및 레이트 매칭(rate-matching)에 대한 정보를 포함한다.
VHT-SIG-B 필드의 크기는 MIMO 전송의 유형(MU-MIMO 또는 SU-MIMO) 및 PPDU 전송을 위해 사용하는 채널 대역폭에 따라 다를 수 있다.
도 4(b)는 PPDU 전송 대역폭에 따른 VHT-SIG-B 필드를 예시한다.
도 4(b)를 참조하면, 40MHz 전송에 있어서, VHT-SIG-B 비트는 2번 반복된다. 80MHz 전송에 있어서, VHT-SIG-B 비트는 4번 반복되고, 0로 셋팅된 패드 비트가 부착된다.
160MHz 전송 및 80+80MHz 에 있어서, 먼저 80MHz 전송과 같이 VHT-SIG-B 비트는 4번 반복되고, 0로 셋팅된 패드 비트가 부착된다. 그리고, 전체 117 비트가 다시 반복된다.
MU-MIMO를 지원하는 시스템에서 동일한 크기의 PPDU를 AP에 페어링된 STA들에게 전송하기 위하여, PPDU를 구성하는 데이터 필드의 비트 크기를 지시하는 정보 및/또는 특정 필드를 구성하는 비트 스트림 크기를 지시하는 정보가 VHT-SIG-A 필드에 포함될 수 있다.
다만, 효과적으로 PPDU 포맷을 사용하기 위하여 L-SIG 필드가 사용될 수도 있다. 동일한 크기의 PPDU가 모든 STA에게 전송되기 위하여 L-SIG 필드 내 포함되어 전송되는 길이 필드(length field) 및 레이트 필드(rate field)가 필요한 정보를 제공하기 위해 사용될 수 있다. 이 경우, MPDU(MAC Protocol Data Unit) 및/또는 A-MPDU(Aggregate MAC Protocol Data Unit)가 MAC 계층의 바이트(또는 옥텟(oct: octet)) 기반으로 설정되므로 물리 계층에서 추가적인 패딩(padding)이 요구될 수 있다.
도 4에서 데이터 필드는 페이로드(payload)로서, 서비스 필드(SERVICE field), 스크램블링된 PSDU(scrambled PSDU), 테일 비트(tail bits), 패딩 비트(padding bits)를 포함할 수 있다.
위와 같이 여러 가지의 PPDU의 포맷이 혼합되어 사용되기 때문에, STA은 수신한 PPDU의 포맷을 구분할 수 있어야 한다.
여기서, PPDU를 구분한다는 의미(또는, PPDU 포맷을 구분한다는 의미)는 다양한 의미를 가질 수 있다. 예를 들어, PPDU를 구분한다는 의미는 수신한 PPDU가 STA에 의해 디코딩(또는, 해석)이 가능한 PPDU인지 여부에 대하여 판단한다는 의미를 포함할 수 있다. 또한, PPDU를 구분한다는 의미는 수신한 PPDU가 STA에 의해 지원 가능한 PPDU인지 여부에 대하여 판단한다는 의미일 수도 있다. 또한, PPDU를 구분한다는 의미는 수신한 PPDU를 통해 전송된 정보가 어떠한 정보인지를 구분한다는 의미로도 해석될 수 있다.
이에 대하여 아래 도면을 참조하여 보다 상세히 설명한다.
도 5는 본 발명이 적용될 수 있는 무선 통신 시스템의 PPDU의 포맷을 구분하기 위한 성상(constellation)을 예시하는 도면이다.
도 5(a)는 non-HT 포맷 PPDU에 포함되는 L-SIG 필드의 성상(constellation)를 예시하고, 도 5(b)는 HT 혼합 포맷 PPDU 검출을 위한 위상 회전(phase rotation)을 예시하며, 도 5(c)는 VHT 포맷 PPDU 검출을 위한 위상 회전(phase rotation)을 예시한다.
STA이 non-HT 포맷 PPDU, HT-GF 포맷 PPDU, HT 혼합 포맷 PPDU 및 VHT 포맷 PPDU을 구분(classification)하기 위하여, L-SIG 필드 및 L-SIG 필드 이후에 전송되는 OFDM 심볼의 성상(constellation)의 위상(phase)이 사용된다. 즉, STA은 수신한 PPDU의 L-SIG 필드 및/또는 L-SIG 필드 이후에 전송되는 OFDM 심볼의 성상의 위상을 기반으로 PPDU 포맷을 구분할 수 있다.
도 5(a)를 참조하면, L-SIG 필드를 구성하는 OFDM 심볼은 BPSK(Binary Phase Shift Keying)가 이용된다.
먼저, HT-GF 포맷 PPDU를 구분하기 위하여, STA은 수신한 PPDU에서 최초의 SIG 필드가 감지되면, L-SIG 필드인지 여부를 판단한다. 즉, STA은 도 5(a)의 예시와 같은 성상을 기반으로 디코딩을 시도한다. STA이 디코딩에 실패하면 해당 PPDU가 HT-GF 포맷 PPDU라고 판단할 수 있다.
다음으로, non-HT 포맷 PPDU, HT 혼합 포맷 PPDU 및 VHT 포맷 PPDU을 구분(classification)하기 위하여, L-SIG 필드 이후에 전송되는 OFDM 심볼의 성상의 위상이 사용될 수 있다. 즉, L-SIG 필드 이후에 전송되는 OFDM 심볼의 변조 방법이 서로 다를 수 있으며, STA은 수신한 PPDU의 L-SIG 필드 이후의 필드에 대한 변조 방법을 기반으로 PPDU 포맷을 구분할 수 있다.
도 5(b)를 참조하면, HT 혼합 포맷 PPDU를 구분하기 위하여, HT 혼합 포맷 PPDU에서 L-SIG 필드 이후에 전송되는 2개의 OFDM 심볼의 위상이 사용될 수 있다.
보다 구체적으로, HT 혼합 포맷 PPDU에서 L-SIG 필드 이후에 전송되는 HT-SIG 필드에 대응되는 OFDM 심볼 #1 및 OFDM 심볼 #2의 위상은 모두 반시계 방향으로 90도만큼 회전된다. 즉, OFDM 심볼 #1 및 OFDM 심볼 #2에 대한 변조 방법은 QBPSK(Quadrature Binary Phase Shift Keying)가 이용된다. QBPSK 성상은 BPSK 성상을 기준으로 반시계 방향으로 90도만큼 위상이 회전한 성상일 수 있다.
STA은 수신한 PPDU의 L-SIG 필드 다음에 전송되는 HT-SIG 필드에 대응되는 제1 OFDM 심볼 및 제2 OFDM 심볼을 도 5(b)의 예시와 같은 성상을 기반으로 디코딩을 시도한다. STA이 디코딩에 성공하면 해당 PPDU가 HT 포맷 PPDU라고 판단한다.
다음으로, non-HT 포맷 PPDU 및 VHT 포맷 PPDU을 구분하기 위하여, L-SIG 필드 이후에 전송되는 OFDM 심볼의 성상의 위상이 사용될 수 있다.
도 5(c)를 참조하면, VHT 포맷 PPDU를 구분(classification)하기 위하여, VHT 포맷 PPDU에서 L-SIG 필드 이후에 전송되는 2개의 OFDM 심볼의 위상이 사용될 수 있다.
보다 구체적으로, VHT 포맷 PPDU에서 L-SIG 필드 이후의 VHT-SIG-A 필드에 대응되는 OFDM 심볼 #1의 위상은 회전되지 않으나, OFDM 심볼 #2의 위상은 반시계 방향으로 90도만큼 회전된다. 즉, OFDM 심볼 #1에 대한 변조 방법은 BPSK가 이용되고, OFDM 심볼 #2에 대한 변조 방법은 QBPSK가 이용된다.
STA은 수신한 PPDU의 L-SIG 필드 다음에 전송되는 VHT-SIG 필드에 대응되는 제1 OFDM 심볼 및 제2 OFDM 심볼을 도 5(c)의 예시와 같은 성상을 기반으로 디코딩을 시도한다. STA이 디코딩에 성공하면 해당 PPDU가 VHT 포맷 PPDU이라고 판단할 수 있다.
반면, 디코딩에 실패하면, STA은 해당 PPDU가 non-HT 포맷 PPDU이라고 판단할 수 있다.
MAC 프레임 포맷
도 6은 본 발명이 적용될 수 있는 IEEE 802.11 시스템의 MAC 프레임 포맷을 예시한다.
도 6을 참조하면, MAC 프레임(즉, MPDU)은 MAC 헤더(MAC Header), 프레임 몸체(Frame Body) 및 프레임 체크 시퀀스(FCS: frame check sequence)로 구성된다.
MAC Header는 프레임 제어(Frame Control) 필드, 지속 시간/식별자(Duration/ID) 필드, 주소 1(Address 1) 필드, 주소 2(Address 2) 필드, 주소 3(Address 3) 필드, 시퀀스 제어(Sequence Control) 필드, 주소 4(Address 4) 필드, QoS 제어(QoS Control) 필드 및 HT 제어(HT Control) 필드를 포함하는 영역으로 정의된다.
Frame Control 필드는 해당 MAC 프레임 특성에 대한 정보를 포함한다. Frame Control 필드에 대한 보다 상세한 설명은 후술한다.
Duration/ID 필드는 해당 MAC 프레임의 타입 및 서브타입에 따른 다른 값을 가지도록 구현될 수 있다.
만약, 해당 MAC 프레임의 타입 및 서브타입이 파워 세이브(PS: power save) 운영을 위한 PS-폴(PS-Poll) 프레임의 경우, Duration/ID 필드는 프레임을 전송한 STA의 AID(association identifier)를 포함하도록 설정될 수 있다. 그 이외의 경우, Duration/ID 필드는 해당 MAC 프레임의 타입 및 서브타입에 따라 특정 지속시간 값을 가지도록 설정될 수 있다. 또한, 프레임이 A-MPDU(aggregate-MPDU) 포맷에 포함된 MPDU인 경우, MAC 헤더에 포함된 Duration/ID 필드는 모두 동일한 값을 가지도록 설정될 수도 있다.
Address 1 필드 내지 Address 4 필드는 BSSID, 소스 주소(SA: source address), 목적 주소(DA: destination address), 전송 STA 주소를 나타내는 전송 주소 (TA: Transmitting Address), 수신 STA 주소를 나타내는 수신 주소(RA: Receiving Address)를 지시하기 위하여 사용된다.
한편, TA 필드로 구현된 주소 필드는 대역폭 시그널링 TA(bandwidth signaling TA) 값으로 설정될 수 있으며, 이 경우 TA 필드는 해당 MAC 프레임이 스크램블링 시퀀스에 추가적인 정보를 담고 있음을 지시할 수 있다. 대역폭 시그널링 TA는 해당 MAC 프레임을 전송하는 STA의 MAC 주소로 표현될 수 있으나, MAC 주소에 포함된 개별/그룹 비트(Individual/Group bit)가 특정 값(예를 들어, '1')으로 설정될 수 있다.
Sequence Control 필드는 시퀀스 넘버(sequence number) 및 조각 넘버(fragment number)를 포함하도록 설정된다. 시퀀스 넘버를 해당 MAC 프레임에 할당된 시퀀스 넘버를 지시할 수 있다. 조각 넘버는 해당 MAC 프레임의 각 조각의 넘버를 지시할 수 있다.
QoS Control 필드는 QoS와 관련된 정보를 포함한다. QoS Control 필드는 서브타입(Subtype) 서브필드에서 QoS 데이터 프레임을 지시하는 경우 포함될 수 있다.
HT Control 필드는 HT 및/또는 VHT 송수신 기법과 관련된 제어 정보를 포함한다. HT Control 필드는 제어 래퍼(Control Wrapper) 프레임에 포함된다. 또한, 오더(Order) 서브필드 값이 1인 QoS 데이터(QoS Data) 프레임, 관리(Management) 프레임에 존재한다.
Frame Body는 MAC 페이로드(payload)로 정의되고, 상위 계층에서 전송하고자 하는 데이터가 위치하게 되며, 가변적인 크기를 가진다. 예를 들어, 최대 MPDU의 크기는 11454 옥텟(octets)이고, 최대 PPDU 크기는 5.484 ms일 수 있다.
FCS는 MAC 풋터(footer)로 정의되고, MAC 프레임의 에러 탐색을 위하여 사용된다.
처음 세 필드(Frame Control 필드, Duration/ID 필드 및 Address 1 필드)와 제일 마지막 필드(FCS 필드)는 최소 프레임 포맷을 구성하며, 모든 프레임에 존재한다. 그 외의 필드는 특정 프레임 타입에서만 존재할 수 있다.
도 7은 본 발명이 적용될 수 있는 무선 통신 시스템에서 MAC 프레임 내 프레임 제어(Frame Control) 필드를 예시하는 도면이다.
도 7을 참조하면, Frame Control 필드는 프로토콜 버전(Protocol Version) 서브필드, 타입(Type) 서브필드, 서브타입(Subtype) 서브필드, To DS 서브필드, From DS 서브필드, 추가 조각(More Fragments) 서브필드, 재시도(Retry) 서브필드, 파워 관리(Power Management) 서브필드, 추가 데이터(More Data) 서브필드, 보호된 프레임(Protected Frame) 서브필드 및 오더(Order) 서브필드로 구성된다.
Protocol Version 서브필드는 해당 MAC 프레임에 적용된 WLAN 프로토콜의 버전을 지시할 수 있다.
Type 서브필드 및 Subtype 서브필드는 해당 MAC 프레임의 기능을 식별하는 정보를 지시하도록 설정될 수 있다.
MAC 프레임의 타입은 관리 프레임(Management Frame), 제어 프레임(Control Frame), 데이터 프레임(Data Frame) 3가지의 프레임 타입을 포함할 수 있다.
그리고, 각 프레임 타입들은 다시 서브타입으로 구분될 수 있다.
예를 들어, 제어 프레임(Control frames)은 RTS(request to send) 프레임, CTS(clear-to-send) 프레임, ACK(Acknowledgment) 프레임, PS-Poll 프레임, CF(contention free)-End 프레임, CF-End+CF-ACK 프레임, 블록 ACK 요청(BAR: Block Acknowledgment request) 프레임, 블록 ACK(BA: Block Acknowledgment) 프레임, 제어 래퍼(Control Wrapper(Control+HTcontrol)) 프레임, VHT 널 데이터 패킷 공지(NDPA: Null Data Packet Announcement), 빔포밍 보고 폴(Beamforming Report Poll) 프레임을 포함할 수 있다.
관리 프레임(Management frames)은 비콘(Beacon) 프레임, ATIM(Announcement Traffic Indication Message) 프레임, 연계해제(Disassociation) 프레임, 연계 요청/응답(Association Request/Response) 프레임, 재연계 요청/응답(Reassociation Request/Response) 프레임, 프로브 요청/응답(Probe Request/Response) 프레임, 인증(Authentication) 프레임, 인증해제(Deauthentication) 프레임, 동작(Action) 프레임, 동작 무응답(Action No ACK) 프레임, 타이밍 광고(Timing Advertisement) 프레임을 포함할 수 있다.
To DS 서브필드 및 From DS 서브필드는 해당 MAC 프레임 헤더에 포함된 Address 1 필드 내지 Address 4 필드를 해석하기 위하여 필요한 정보를 포함할 수 있다. Control 프레임의 경우, To DS 서브필드 및 From DS 서브필드는 모두 '0'로 설정된다. Management 프레임의 경우, To DS 서브필드 및 From DS 서브필드는 해당 프레임이 QoS 관리 프레임(QMF: QoS Management frame)이면 순서대로 '1', '0'으로 설정되고, 해당 프레임이 QMF가 아니면 순서대로 모두 '0', '0'로 설정될 수 있다.
More Fragments 서브필드는 해당 MAC 프레임에 이어 전송될 조각(fragment)이 존재하는지 여부를 지시할 수 있다. 현재 MSDU 또는 MMPDU의 또 다른 조각(fragment)가 존재하는 경우 '1'로 설정되고, 그렇지 않은 경우 '0'로 설정될 수 있다.
Retry 서브필드는 해당 MAC 프레임이 이전 MAC 프레임의 재전송에 따른 것인지 여부를 지시할 수 있다. 이전 MAC 프레임의 재전송인 경우 '1'로 설정되고, 그렇지 않은 경우 '0'으로 설정될 수 있다.
Power Management 서브필드는 STA의 파워 관리 모드를 지시할 수 있다. Power Management 서브필드 값이 '1'이면 STA이 파워 세이브 모드로 전환하는 것을 지시할 수 있다.
More Data 서브필드는 추가적으로 전송될 MAC 프레임이 존재하는지 여부를 지시할 수 있다. 추가적으로 전송될 MAC 프레임이 존재하는 경우 '1'로 설정되고, 그렇지 않은 경우 '0'으로 설정될 수 있다.
Protected Frame 서브필드는 프레임 바디(Frame Body) 필드가 암호화되었는지 여부를 지시할 수 있다. Frame Body 필드가 암호화된 인캡슐레이션 알고리즘(cryptographic encapsulation algorithm)에 의해 처리된 정보를 포함하는 경우 '1'로 설정되고, 그렇지 않은 경우 '0'으로 설정될 수 있다.
앞서 설명한 각 필드들에 포함되는 정보들은 IEEE 802.11 시스템의 정의를 따를 수 있다. 또한, 앞서 설명한 각 필드들은 MAC 프레임에 포함될 수 있는 필드들의 예시에 해당하며, 이에 한정되지 않는다. 즉, 앞서 설명한 각 필드가 다른 필드로 대체되거나 추가적인 필드가 더 포함될 수 있으며, 모든 필드가 필수적으로 포함되지 않을 수도 있다.
도 8은 본 발명이 적용될 수 있는 무선 통신 시스템에서 HT Control 필드의 VHT 포맷을 예시한다.
도 8을 참조하면, HT Control 필드는 VHT 서브필드, HT 제어 미들(HT Control Middle) 서브필드, AC 제한(AC Constraint) 서브필드 및 역방향 승인(RDG: Reverse Direction Grant)/추가 PPDU(More PPDU) 서브필드로 구성될 수 있다.
VHT 서브필드는 HT Control 필드가 VHT를 위한 HT Control 필드의 포맷을 가지는지(VHT=1) 또는 HT를 위한 HT Control 필드의 포맷을 가지는지(VHT=0) 여부를 지시한다. 도 8에서는 VHT를 위한 HT Control 필드(즉, VHT=1)를 가정하여 설명한다. VHT를 위한 HT Control 필드를 VHT Control 필드로 지칭할 수 있다.
HT Control Middle 서브필드는 VHT 서브필드의 지시에 따라 다른 포맷을 가지도록 구현될 수 있다. HT Control Middle 서브필드에 대한 보다 상세한 설명은 후술한다.
AC Constraint 서브필드는 역방향(RD: reverse direction) 데이터 프레임의 맵핑된 AC(Access Category)가 단일 AC에 한정된 것인지 여부를 지시한다.
RDG/More PPDU 서브필드는 해당 필드가 RD 개시자(initiator) 또는 RD 응답자(responder)에 의하여 전송되는지 여부에 따라 다르게 해석될 수 있다.
RD 개시자에 의하여 전송된 경우, RDG가 존재하는 경우 RDG/More PPDU 필드가 '1'로 설정되고, RDG가 존재하지 않는 경우 '0'으로 설정된다. RD 응답자에 의하여 전송된 경우, 해당 서브필드를 포함하는 PPDU가 RD 응답자에 의해 전송된 마지막 프레임이면 '1'로 설정되고, 또 다른 PPDU가 전송되면 '0'으로 설정된다.
상술한 바와 같이, HT Control Middle 서브필드는 VHT 서브필드의 지시에 따라 다른 포맷을 가지도록 구현될 수 있다.
VHT를 위한 HT Control 필드의 HT Control Middle 서브필드는 예비 비트(Reserved bit), MCS 피드백 요청(MRQ: MCS(Modulation and Coding Scheme) feedback request) 서브필드, MRQ 시퀀스 식별자(MSI: MRQ Sequence Identifier)/시공간 블록 코딩(STBC: space-time block coding) 서브필드, MCS 피드백 시퀀스 식별자(MFSI: MCS feedback sequence identifier)/그룹 ID 최하위 비트(GID-L: LSB(Least Significant Bit) of Group ID) 서브필드, MCS 피드백(MFB: MCS Feedback) 서브필드, 그룹 ID 최상위 비트(GID-H: MSB(Most Significant Bit) of Group ID) 서브필드, 코딩 타입(Coding Type) 서브필드, 피드백 전송 타입(FB Tx Type: Feedback Transmission type) 서브필드 및 자발적 MFB(Unsolicited MFB) 서브필드로 구성될 수 있다.
표 4는 VHT 포맷의 HT Control Middle 서브필드에 포함된 각 서브필드에 대한 설명을 나타낸다.
Figure PCTKR2015012917-appb-T000004
그리고, MFB 서브필드는 VHT 공간-시간 스트림 개수(NUM_STS: Number of space time streams) 서브필드, VHT-MCS 서브필드, 대역폭(BW: Bandwidth) 서브필드, 신호 대 잡음비(SNR: Signal to Noise Ratio) 서브필드를 포함할 수 있다.
NUM_STS 서브필드는 추천하는 공간 스트림의 개수를 지시한다. VHT-MCS 서브필드는 추천하는 MCS를 지시한다. BW 서브필드는 추천하는 MCS와 관련된 대역폭 정보를 지시한다. SNR 서브필드는 데이터 서브캐리어 및 공간 스트림 상의 평균 SNR 값을 지시한다.
앞서 설명한 각 필드들에 포함되는 정보들은 IEEE 802.11 시스템의 정의를 따를 수 있다. 또한, 앞서 설명한 각 필드들은 MAC 프레임에 포함될 수 있는 필드들의 예시에 해당하며, 이에 한정되지 않는다. 즉, 앞서 설명한 각 필드가 다른 필드로 대체되거나 추가적인 필드가 더 포함될 수 있으며, 모든 필드가 필수적으로 포함되지 않을 수도 있다.
매체 액세스 메커니즘
IEEE 802.11에서 통신은 공유된 무선 매체(shared wireless medium)에서 이루어지기 때문에 유선 채널(wired channel) 환경과는 근본적으로 다른 특징을 가진다.
유선 채널 환경에서는 CSMA/CD(carrier sense multiple access/collision detection) 기반으로 통신이 가능하다. 예를 들어 송신단에서 한번 시그널이 전송되면 채널 환경이 큰 변화가 없기 때문에 수신단까지 큰 신호 감쇄를 겪지 않고 전송이 된다. 이때 두 개 이상의 시그널이 충돌되면 감지(detection)이 가능했다. 이는 수신단에서 감지된 전력(power)이 순간적으로 송신단에서 전송한 전력보다 커지기 때문이다. 하지만, 무선 채널 환경은 다양한 요소들 (예를 들어, 거리에 따라 시그널의 감쇄가 크다거나 순간적으로 깊은 페이딩(deep fading)을 겪을 수 있음)이 채널에 영향을 주기 때문에 실제로 수신단에서 신호가 제대로 전송이 되었는지 혹은 충돌이 발생되었는지 송신단에서 정확히 캐리어 센싱(carrier sensing)을 할 수가 없다.
이에 따라, IEEE 802.11에 따른 WLAN 시스템에서, MAC의 기본 액세스 메커니즘으로서 CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance) 메커니즘을 도입하였다. CAMA/CA 메커니즘은 IEEE 802.11 MAC의 분배 조정 기능(DCF: Distributed Coordination Function)이라고도 불리는데, 기본적으로 “listen before talk” 액세스 메커니즘을 채용하고 있다. 이러한 유형의 액세스 메커니즘에 따르면, AP 및/또는 STA은 전송을 시작하기에 앞서, 소정의 시간 구간(예를 들어, DIFS(DCF Inter-Frame Space)) 동안 무선 채널 또는 매체(medium)를 센싱(sensing)하는 CCA(Clear Channel Assessment)를 수행한다. 센싱 결과, 만일 매체가 유휴 상태(idle status)인 것으로 판단되면, 해당 매체를 통하여 프레임 전송을 시작한다. 반면, 매체가 점유 상태(occupied status)인 것으로 감지되면, 해당 AP 및/또는 STA은 자기 자신의 전송을 시작하지 않고, 이미 여러 STA들이 해당 매체를 사용하기 위해 대기하고 있다는 가정하에 DIFS에 추가적으로 매체 액세스를 위한 지연 시간(예를 들어, 임의 백오프 주기(random backoff period)) 동안 더 기다린 후에 프레임 전송을 시도할 수 있다.
임의 백오프 주기를 적용함으로써, 프레임을 전송하기 위한 여러 STA들이 존재한다고 가정할 때 여러 STA들은 확률적으로 다른 백오프 주기 값을 가지게 되어 서로 다른 시간 동안 대기한 후에 프레임 전송을 시도할 것이 기대되므로, 충돌(collision)을 최소화시킬 수 있다.
또한, IEEE 802.11 MAC 프로토콜은 HCF(Hybrid Coordination Function)를 제공한다. HCF는 상기 DCF와 지점 조정 기능(PCF: Point Coordination Function)를 기반으로 한다. PCF는 폴링(polling) 기반의 동기식 액세스 방식으로 모든 수신 AP 및/또는 STA이 데이터 프레임을 수신할 수 있도록 주기적으로 폴링하는 방식을 일컫는다. 또한, HCF는 EDCA(Enhanced Distributed Channel Access)와 HCCA(HCF Controlled Channel Access)를 가진다. EDCA는 제공자가 다수의 사용자에게 데이터 프레임을 제공하기 위한 액세스 방식을 경쟁 기반으로 수행하는 것이고, HCCA는 폴링(polling) 메커니즘을 이용한 비경쟁 기반의 채널 액세스 방식을 사용하는 것이다. 또한, HCF는 WLAN의 QoS(Quality of Service)를 향상시키기 위한 매체 액세스 메커니즘을 포함하며, 경쟁 주기(CP: Contention Period)와 비경쟁 주기(CFP: Contention Free Period) 모두에서 QoS 데이터를 전송할 수 있다.
도 9는 본 발명이 적용될 수 있는 무선 통신 시스템에서 임의 백오프 주기와 프레임 전송 절차를 설명하기 위한 도면이다.
특정 매체가 점유(occupy 또는 busy) 상태에서 유휴(idle) 상태로 변경되면, 여러 STA들은 데이터(또는 프레임) 전송을 시도할 수 있다. 이때, 충돌을 최소화하기 위한 방안으로서, STA들은 각각 임의 백오프 카운트(random backoff count)를 선택하고 그에 해당하는 슬롯 시간(slot time)만큼 대기한 후에 전송을 시도할 수 있다. 임의 백오프 카운트는 의사-임의 정수(pseudo-random integer) 값을 가지며, 0 내지 경쟁 윈도우(CW: Contention Window) 범위에서 균일 분포(uniform distribution)한 값 중 하나로 결정될 수 있다. 여기서, CW는 경쟁 윈도우 파라미터 값이다. CW 파라미터는 초기 값으로 CW_min이 주어지지만, 전송이 실패된 경우(예를 들어, 전송된 프레임에 대한 ACK을 수신하지 못한 경우)에 2배의 값을 취할 수 있다. CW 파라미터 값이 CW_max가 되면 데이터 전송이 성공할 때까지 CW_max 값을 유지하면서 데이터 전송을 시도할 수 있고, 데이터 전송이 성공하는 경우에는 CW_min 값으로 리셋된다. CW, CW_min 및 CW_max 값은 (2^n)-1 (n=0, 1, 2, ...)로 설정되는 것이 바람직하다.
임의 백오프 과정이 시작되면 STA은 결정된 백오프 카운트 값에 따라서 백오프 슬롯을 카운트 다운하고, 카운트 다운하는 동안에 계속하여 매체를 모니터링한다. 매체게 점유 상태로 모니터링되면 카운트 다운을 중단하고 대기하게 되며, 매체가 유휴 상태가 되면 카운트 다운을 재개한다.
도 9의 예시에서 STA 3의 MAC에 전송할 패킷이 도달한 경우에, STA 3은 DIFS 만큼 매체가 유휴 상태인 것을 확인하고 바로 프레임을 전송할 수 있다.
한편, 나머지 STA들은 매체가 점유(busy) 상태인 것을 모니터링하고 대기한다. 그 동안 STA 1, STA 2 및 STA 5의 각각에서도 전송할 데이터가 발생할 수 있고, 각각의 STA은 매체가 유휴 상태로 모니터링되면 DIFS만큼 대기한 후에, 각자가 선택한 임의 백오프 카운트 값에 따라서 백오프 슬롯을 카운트 다운한다.
도 9의 예시에서는 STA 2가 가장 작은 백오프 카운트 값을 선택하고, STA 1이 가장 큰 백오프 카운트 값을 선택한 경우를 나타난다. 즉, STA 2가 백오프 카운트를 마치고 프레임 전송을 시작하는 시점에서 STA 5의 잔여 백오프 시간은 STA 1의 잔여 백오프 시간보다 짧은 경우를 예시한다.
STA 1 및 STA 5는 STA 2가 매체를 점유하는 동안에 카운트 다운을 멈추고 대기한다. STA 2의 매체 점유가 종료되어 매체가 다시 유휴 상태가 되면, STA 1 및 STA 5는 DIFS만큼 대기한 후에, 멈추었던 백오프 카운트를 재개한다. 즉, 잔여 백오프 시간만큼의 나머지 백오프 슬롯을 카운트 다운한 후에서 프레임 전송을 시작할 수 있다. STA 5의 잔여 백오프 시간이 STA 1보다 짧았으므로 STA 5의 프레임 전송을 시작하게 된다.
한편, STA 2가 매체를 점유하는 동안에서 STA 4에서도 전송할 데이터가 발생할 수 있다. 이때, STA 4 입장에서는 매체가 유휴 상태가 되면 DIFS 만큼 대기한 후, 자신이 선택한 임의 백오프 카운트 값에 따른 백오프 슬롯의 카운트 다운을 수행한다.
도 9의 예시에서는 STA 5의 잔여 백오프 시간이 STA 4의 임의 백오프 카운트 값과 우연히 일치하는 경우를 나타내며, 이 경우 STA 4와 STA 5 간에 충돌이 발생할 수 있다. 충돌이 발생하는 경우에는 STA 4와 STA 5 모두 ACK을 수신하지 못하여, 데이터 전송을 실패하게 된다. 이 경우, STA 4와 STA 5는 CW 값을 2배로 늘린 후에 임의 백오프 카운트 값을 선택하고 백오프 슬롯의 카운트 다운을 수행한다.
한편, STA 1은 STA 4와 STA 5의 전송으로 인해 매체가 점유 상태인 동안에 대기하고 있다가, 매체가 유휴 상태가 되면 DIFS 만큼 대기한 후에, 잔여 백오프 시간이 지나면 프레임 전송을 시작할 수 있다.
CSMA/CA 메커니즘은 AP 및/또는 STA이 매체를 직접 센싱하는 물리적 캐리어 센싱(physical carrier sensing) 외에 가상 캐리어 센싱(virtual carrier sensing)도 포함한다.
가상 캐리어 센싱은 히든 노드 문제(hidden node problem) 등과 같이 매체 접근상 발생할 수 있는 문제를 보완하기 위한 것이다. 가상 캐리어 센싱을 위하여, WLAN 시스템의 MAC은 네트워크 할당 벡터(NAV: Network Allocation Vector)를 이용한다. NAV는 현재 매체를 사용하고 있거나 또는 사용할 권한이 있는 AP 및/또는 STA이, 매체가 이용 가능한 상태로 되기까지 남아 있는 시간을 다른 AP 및/또는 STA에게 지시하는 값이다. 따라서 NAV로 설정된 값은 해당 프레임을 전송하는 AP 및/또는 STA에 의하여 매체의 사용이 예정되어 있는 기간에 해당하고, NAV 값을 수신하는 STA은 해당 기간 동안 매체 액세스가 금지된다. NAV는, 예를 들어, 프레임의 MAC 헤더(header)의 지속 기간(duration) 필드의 값에 따라 설정될 수 있다.
AP 및/또는 STA은 매체에 접근하고자 함을 알리기 위해 RTS(request to send) 프레임 및 CTS(clear to send) 프레임을 교환하는 절차를 수행할 수 있다. RTS 프레임 및 CTS 프레임은 실질적인 데이터 프레임 전송 및 수신 확인 응답(ACK)이 지원될 경우 ACK 프레임이 송수신 되는데 필요한 무선 매체가 접근 예약된 시간적인 구간을 지시하는 정보를 포함한다. 프레임을 전송하고자 하는 AP 및/또는 STA으로부터 전송된 RTS 프레임을 수신하거나, 프레임 전송 대상 STA으로부터 전송된 CTS 프레임을 수신한 다른 STA은 RTS/CTS 프레임에 포함되어 있는 정보가 지시하는 시간적인 구간 동안 매체에 접근하지 않도록 설정될 수 있다.
프레임 간격( interframe space)
프레임 사이의 시간 간격을 프레임 간격(IFS: Interframe Space)으로 정의한다. STA은 캐리어 센싱(carrier sensing)을 통해 IFS 시간 구간 동안 채널이 사용되는지 여부를 판단할 수 있다. 802.11 WLAN 시스템에서 무선 매체를 점유하는 우선 레벨(priority level)을 제공하기 위하여 복수의 IFS이 정의된다.
도 10은 본 발명이 적용될 수 있는 무선 통신 시스템에서 IFS 관계를 예시하는 도면이다.
모든 타이밍은 물리 계층 인터페이스 프리미티브 즉, PHY-TXEND.confirm 프리미티브, PHYTXSTART.confirm 프리미티브, PHY-RXSTART.indication 프리미티브 및 PHY-RXEND.indication 프리미티브를 참조하여 정해질 수 있다.
IFS 종류에 따른 프레임 간격은 아래와 같다.
a) 축소된 프레임 간격(RIFS: reduced interframe space)
b) 짧은 프레임 간격(SIFS: short interframe space)
c) PCF 프레임 간격(PIFS: PCF interframe space)
d) DCF 프레임 간격(DIFS: DCF interframe space)
e) 조정 프레임 간격(AIFS: arbitration interframe space)
f) 확장 프레임 간격(EIFS: extended interframe space)
서로 다른 IFS들은 STA의 비트율(bit rate)과 무관하게 물리 계층에 의해 특정된 속성으로부터 결정된다. IFS 타이밍은 매체 상에서의 시간 갭(time gap)으로 정의된다. AIFS를 제외한 IFS 타이밍은 각 물리 계층 별로 고정된다.
SIFS는 ACK 프레임, CTS 프레임, 블록 ACK 요청(BlockAckReq) 프레임 또는 A-MPDU에 대한 즉각적인 응답인 블록 ACK(BlockAck) 프레임을 포함하는 PPDU, 조각난 버스트(fragment burst)의 두 번째 또는 연속적인 MPDU, PCF에 의한 폴링(polling)에 대한 STA의 응답의 전송을 위해 사용되며 최고 우선 순위를 가진다. SIFS는 또한 비경쟁 구간(CFP) 시간 동안 프레임의 타입과 무관하게 프레임들의 지점 조정(point coordinator)을 위해 사용될 수 있다. SIFS는 이전 프레임의 마지막 심볼의 종료 또는 시그널 확장(존재하는 경우)으로부터 이어지는 다음 프레임의 프리앰블의 첫 번째 심볼의 시작까지의 시간을 나타낸다.
SIFS 타이밍은 TxSIFS 슬롯 경계에서 연속적인 프레임의 전송이 시작될 때 달성된다.
SIFS는 서로 다른 STA들로부터의 전송 간의 IFS 중에서 가장 짧다. 매체를 점유하고 있는 STA이 프레임 교환 시퀀스(frame exchange sequence)가 수행되는 구간 동안 매체의 점유를 유지할 필요가 있는 경우 사용될 수 있다.
프레임 교환 시퀀스 내 전송 간 가장 작은 갭을 사용함으로써, 더 긴 갭 동안 매체가 유휴 상태가 되길 기다리는 것이 요구되는 다른 STA들이 매체의 사용을 시도하는 것을 방지할 수 있다. 따라서, 진행 중인 프레임 교환 시퀀스가 완료되는데 우선권을 부여할 수 있다.
PIFS는 매체를 액세스하는데 우선권을 획득하기 위하여 사용된다.
PIFS는 다음과 같은 경우에 사용될 수 있다.
- PCF 하에 동작하는 STA
- 채널 스위치 공지(Channel Switch Announcement) 프레임을 전송하는 STA
- 트래픽 지시 맵(TIM: Traffic Indication Map) 프레임을 전송하는 STA
- CFP 또는 전송 기회(TXOP: Transmission Opportunity)를 시작하는 하이브리드 조정자(HC: Hybrid Coordinator)
- CAP(controlled access phase) 내 예상된 수신의 부재로부터 복구(recovering)하기 위한 폴링된 TXOP 홀더(holder)인 HC 또는 non-AP QoS STA
- CTS2의 전송 전 듀얼 CTS 보호를 사용하는 HT STA
- 전송 실패 이후에 계속하여 전송하기 위한 TXOP 홀더(holder)
- 에러 복구(error recovery)를 사용하여 계속하여 전송하기 위한 RD(reverse direction) 개시자
- PSMP(power save multi-poll) 복구 프레임을 전송하는 PSMP 시퀀스 동안 HT AP
- EDCA 채널 액세스를 사용하는 40MHz 마스크 PPDU를 전송하기 전 세컨더리 채널(secondary channel) 내 CCA를 수행하는 HT STA
앞서 나열된 예시 중 세컨더리 채널(secondary channel)에서 CCA을 수행하는 경우를 제외하고, PIFS를 사용하는 STA은 TxPIFS 슬롯 경계에서 매체가 유휴 상태임을 결정하는 CS(carrier sense) 메커니즘 이후에 전송을 시작한다.
DIFS는 DCF 하에 데이터 프레임(MPDU) 및 관리 프레임(MMPDU: MAC Management Protocol Data Unit)을 전송하도록 동작하는 STA에 의해 사용될 수 있다. DCF를 사용하는 STA은 정확히 수신된 프레임 및 백오프 타임이 만료된 이후 CS(carrier sense) 메커니즘을 통해 매체가 유휴 상태라고 결정되면, TxDIFS 슬롯 경계에서 전송할 수 있다. 여기서, 정확히 수신된 프레임은 PHY-RXEND.indication 프리미티브가 에러를 지시하지 않고, FCS가 프레임이 에러가 아님(error free)을 지시하는 프레임을 의미한다.
SIFS 시간('aSIFSTime')과 슬롯 시간('aSlotTime')은 물리 계층 별로 결정될 수 있다. SIFS 시간은 고정된 값을 가지나, 슬롯 시간은 무선 지연 시간(aAirPropagationTime) 변화에 따라 동적으로 변화할 수 있다.
'aSIFSTime'은 아래 수학식 1 및 2와 같이 정의된다.
Figure PCTKR2015012917-appb-M000001
Figure PCTKR2015012917-appb-M000002
'aSlotTime'은 아래 수학식 3과 같이 정의된다.
Figure PCTKR2015012917-appb-M000003
수학식 3에서 기본적인(default) 물리 계층 파라미터는 1㎲와 같거나 작은 값을 가지는 'aMACProcessingDelay'에 기반한다. 무선 파는 자유 공간(free space)에서 300m/㎲로 확산된다. 예를 들어, 3㎲는 BSS 최대 일방향(one-way) 거리 ~450m(왕복 시간(round trip)은 ~900m)의 상한선일 수 있다.
PIFS와 SIFS는 각각 아래 수학식 4 및 5와 같이 정의된다.
Figure PCTKR2015012917-appb-M000004
Figure PCTKR2015012917-appb-M000005
앞서 수학식 1 내지 5에서 괄호 안에 수치는 일반적인 값을 예시하는 것이나, 그 값은 STA 별로 혹은 STA의 위치 별로 달라질 수 있다.
상술한 SIFS, PIFS 및 DIFS 들은 매체와 서로 다른 MAC 슬롯 경계(TxSIFS, TxPIFS, TxDIFS)를 기반으로 측정된다.
SIFS, PIFS 및 DIFS 에 대한 각 MAC 슬롯 경계는 각각 아래 수학식 6 내지 8과 같이 정의된다.
Figure PCTKR2015012917-appb-M000006
Figure PCTKR2015012917-appb-M000007
Figure PCTKR2015012917-appb-M000008
하향링크 MU- MIMO 프레임(DL MU- MIMO Frame)
도 11은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 다중 사용자(multi-user) PPDU 포맷을 예시하는 도면이다.
도 11을 참조하면, PPDU은 프리앰블 및 데이터 필드(Data field)를 포함하여 구성된다. 데이터 필드는 서비스 필드(SERVICE field), 스크램블링된 PSDU(scrambled PSDU) 필드, 테일 비트(Tail bits), 패딩 비트(padding bits)를 포함할 수 있다.
AP는 MPDU를 병합(aggregation)하여 A-MPDU(aggregated MPDU) 포맷으로 데이터 프레임을 전송할 수 있다. 이 경우, 스크램블링된 PSDU(scrambled PSDU) 필드는 A-MPDU로 구성될 수 있다.
A-MPDU는 하나 이상의 A-MPDU 서브프레임(A-MPDU subframe)의 배열(sequence)로 구성된다.
VHT PPDU의 경우, 각 A-MPDU 서브프레임의 길이가 4 옥텟의 배수이므로, A-MPDU는 PSDU의 마지막 옥텟에 A-MPDU를 맞추기 위하여 마지막 A-MPDU 서브프레임(A-MPDU subframe) 이후에 0 내지 3 옥텟의 EOF(end-of-frame) 패드(pad)를 포함할 수 있다.
A-MPDU 서브프레임은 MPDU 딜리미터(delimiter)로 구성되고, 선택적으로 MPDU가 MPDU 딜리미터(Delimiter) 이후에 포함될 수 있다. 또한, 하나의 A-MPDU 내 마지막 A-MPDU 서브프레임을 제외하고, 각 A-MPDU 서브프레임의 길이를 4 옥텟의 배수로 만들기 위하여 패드 옥텟이 MPDU 이후에 부착된다.
MPDU Delimiter는 예비(Reserved) 필드, MPDU 길이(MPDU Length) 필드, CRC (cyclic redundancy check) 필드, 딜리미터 시그니처(Delimiter Signature) 필드로 구성된다.
VHT PPDU의 경우, MPDU Delimiter는 EOF(end-of-frame) 필드를 더 포함할 수 있다. MPDU Length 필드가 0이고 패딩하기 위하여 사용되는 A-MPDU 서브프레임, 또는 A-MPDU가 하나의 MPDU만으로 구성되는 경우 해당 MPDU가 실어지는 A-MPDU 서브프레임의 경우, EOF 필드는 '1'로 셋팅된다. 그렇지 않은 경우 '0'으로 셋팅된다.
MPDU Length 필드는 MPDU의 길이에 대한 정보를 포함한다.
해당 A-MPDU 서브프레임에 MPDU가 존재하지 않는 경우 '0'으로 셋팅된다. PDU Length 필드가 '0' 값을 가지는 A-MPDU 서브프레임은 VHT PPDU 내 가용한 옥텟에 A-MPDU를 맞추기 위해 해당 A-MPDU에 패딩할 때 사용된다.
CRC 필드는 에러 체크를 위한 CRC 정보, Delimiter Signature 필드는 MPDU 딜리미터를 검색하기 위하여 사용되는 패턴 정보를 포함한다.
그리고, MPDU는 MAC 헤더(MAC Header), 프레임 몸체(Frame Body) 및 프레임 체크 시퀀스(FCS)로 구성된다.
도 12는 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 다중 사용자(multi-user) PPDU 포맷을 예시하는 도면이다.
도 12은 해당 PPDU를 수신하는 STA의 개수가 3개이고, 각 STA에 할당되는 공간적 스트림(spatial stream)의 개수가 1이라고 가정하나 AP에 페어링된 STA의 수, 각 STA에 할당되는 공간적 스트림의 수는 이에 한정되지 않는다.
도 12를 참조하면, MU PPDU는 L-TFs 필드(L-STF 필드 및 L-LTF 필드), L-SIG 필드, VHT-SIG-A 필드, VHT-TFs 필드(VHT-STF 필드 및 VHT-LTF 필드), VHT-SIG-B 필드, Service 필드, 하나 이상의 PSDU, padding 필드 및 Tail 비트를 포함하여 구성된다. L-TFs 필드, L-SIG 필드, VHT-SIG-A 필드, VHT-TFs 필드, VHT-SIG-B 필드는 앞서 도 4의 예시와 동일하므로 이하 상세한 설명은 생략한다.
PPDU 지속기간을 지시하기 위한 정보가 L-SIG 필드에 포함될 수 있다. PPDU 내에서, L-SIG 필드에 의해 지시된 PPDU 지속기간은 VHT-SIG-A 필드가 할당된 심볼, VHT-TFs 필드가 할당된 심볼, VHT-SIG-B 필드가 할당된 필드, Service 필드를 구성하는 비트, PSDU를 구성하는 비트, padding 필드를 구성하는 비트 및 Tail 필드를 구성하는 비트를 포함한다. PPDU를 수신하는 STA은 L-SIG 필드에 포함된 PPDU 지속시간을 지시하는 정보를 통해 PPDU의 지속기간에 대한 정보를 획득할 수 있다.
상술한 바와 같이, VHT-SIG-A를 통해 Group ID 정보, 각 사용자 당 시공간 스트림 수 정보가 전송되고, VHT-SIG-B를 통해 코딩(coding) 방법 및 MCS 정보 등이 전송된다. 따라서, Beamformee들은 VHT-SIG-A와 VHT-SIG-B를 확인하고, 자신이 속한 MU MIMO 프레임인지 여부를 알 수 있다. 따라서, 해당 Group ID의 멤버 STA이 아니거나 해당 Group ID의 멤버이나 할당된 스트림 수가 '0'인 STA은 VHT-SIG-A 필드 이후부터 PPDU 끝까지 물리 계층의 수신을 중단하도록 설정함으로써 전력 소모를 절감할 수 있다.
Group ID는 사전에 Beamformer가 전송하는 Group ID Management 프레임을 수신함으로써, Beamformee가 어떤 MU 그룹에 속하는지, 자신이 속하는 그룹 중에서 몇 번째 사용자인지, 즉 어떤 스트림을 통해 PPDU를 수신하는지 알 수 있다.
802.11ac을 기반으로 하는 VHT MU PPDU 내 전송되는 모든 MPDU는 A-MPDU에 포함된다. 도 12의 데이터 필드에서 각 VHT A-MPDU는 서로 다른 스트림으로 전송될 수 있다.
도 12에서 각 STA에 전송되는 데이터의 크기가 상이할 수 있으므로, 각각의 A-MPDU는 서로 다른 비트 크기를 가질 수 있다.
이 경우, Beamformer가 전송하는 복수의 데이터 프레임의 전송이 종료되는 시간은 최대 구간 전송 데이터 프레임의 전송이 종료되는 시간과 동일하도록 널 패딩(null padding)을 수행할 수 있다. 최대 구간 전송 데이터 프레임은 Beamformer에 의해 유효 하향링크 데이터가 가장 오랜 구간 동안 전송되는 프레임일 수 있다. 유효 하향링크 데이터는 널 패딩되지 않은 하향링크 데이터일 수 있다. 예를 들어, 유효 하향링크 데이터는 A-MPDU에 포함되어 전송될 수 있다. 복수의 데이터 프레임 중 최대 구간 전송 데이터 프레임을 제외한 나머지 데이터 프레임은 널 패딩을 수행할 수 있다.
널 패딩을 위해 Beamformer는 A-MPDU 프레임 내 복수의 A-MPDU 서브프레임에서 시간적으로 후순위에 위치한 하나 이상의 A-MPDU 서브프레임을 MPDU delimiter 필드만으로 인코딩하여 채울 수 있다. MPDU 길이가 0인 A-MPDU 서브프레임을 널 서브프레임(Null subframe)으로 지칭할 수 있다.
앞서 살펴본 바와 같이, 널 서브프레임은 MPDU Delimiter의 EOF 필드가 '1'로 셋팅된다. 따라서, 수신측 STA의 MAC 계층에서는 1로 셋팅된 EOF 필드를 감지하면, 물리 계층에 수신을 중단하도록 설정함으로써 전력 소모를 절감할 수 있다.
블록 ACK (Block Ack ) 절차
도 13은 본 발명이 적용될 수 있는 무선 통신 시스템에서 하향링크 MU-MIMO 전송 과정을 예시하는 도면이다.
802.11ac에서는 MU-MIMO는 AP로부터 클라이언트(즉, non-AP STA)으로 향하는 하향링크에서 정의된다. 이때, 다중 사용자 프레임(multi-user frame)은 다중 수신자에게 동시에 전송되나, 수신 확인(acknowledgement)은 상향링크에서 개별적으로 전송되어야 한다.
802.11ac을 기반으로 하는 VHT MU PPDU 내 전송되는 모든 MPDU는 A-MPDU에 포함되므로, VHT MU PPDU에 대한 즉각적인 응답이 아닌 VHT MU PPDU 내 A-MPDU에 대한 응답은 AP에 의한 블록 ACK 요청(BAR: Block Ack Request) 프레임에 대한 응답으로 전송된다.
먼저, AP는 모든 수신자(즉, STA 1, STA 2, STA 3)에게 VHT MU PPDU(즉, 프리앰블 및 데이터)를 전송한다. VHT MU PPDU는 각 STA에 전송되는 VHT A-MPDU를 포함한다.
AP로부터 VHT MU PPDU를 수신한 STA 1은 SIFS 이후에 블록 ACK(BA: Block Acknowledgement) 프레임을 AP로 전송한다. BA 프레임에 대하여 보다 상세한 설명은 후술한다.
STA 1으로부터 BA를 수신한 AP는 SIFS 이후에 BAR(block acknowledgement request) 프레임을 다음 STA 2로 전송하고, STA 2는 SIFS 이후에 BA 프레임을 AP로 전송한다. STA 2로부터 BA 프레임을 수신한 AP는 SIFS 이후에 BAR 프레임을 STA 3로 전송하고, STA 3은 SIFS 이후에 BA 프레임을 AP로 전송한다.
이러한 과정이 모든 STA들에 대해 수행되면, AP는 다음 MU PPDU를 모든 STA에게 전송한다.
ACK (Acknowledgement)/블록 ACK (Block ACK ) 프레임
일반적으로 MPDU의 응답으로 ACK 프레임을 사용하고, A-MPDU의 응답으로 블록 ACK 프레임을 사용한다.
도 14는 본 발명이 적용될 수 있는 무선 통신 시스템에서 ACK 프레임을 예시하는 도면이다.
도 14를 참조하면, ACK 프레임은 프레임 제어(Frame Control) 필드, 지속기간(Duration) 필드, RA 필드 및 FCS로 구성된다.
RA 필드는 직전에 수신된 데이터(Data) 프레임, 관리(Management) 프레임, 블록 ACK 요청(Block Ack Request) 프레임, 블록 ACK(Block Ack) 프레임 또는 PS-Poll 프레임의 제2 주소(Address 2) 필드의 값으로 설정된다.
비 QoS(non-QoS) STA에 의해 ACK 프레임이 전송되는 경우, 직전에 수신된 데이터(Data) 프레임, 관리(Management) 프레임의 프레임 제어(Frame Control) 필드 내 모어 프래그먼트(More Fragments) 서브필드가 '0'이면, 지속기간(duration) 값은 '0'으로 설정된다.
비 QoS(non-QoS) STA에 의해 전송되지 않는 ACK 프레임에서 지속기간(duration) 값은 직전에 수신된 데이터(Data) 프레임, 관리(Management) 프레임, 블록 ACK 요청(Block Ack Request) 프레임, 블록 ACK(Block Ack) 프레임 또는 PS-Poll 프레임의 Duration/ID 필드에서 ACK 프레임 전송을 위해 요구되는 시간 및 SIFS 구간을 차감한 값(ms)으로 설정된다. 계산된 지속기간(duration) 값이 정수 값이 아닌 경우, 반올림된다.
이하, 블록 ACK (요청) 프레임에 대하여 살펴본다.
도 15는 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK 요청(Block Ack Request) 프레임을 예시하는 도면이다.
도 15를 참조하면, 블록 ACK 요청(BAR) 프레임은 프레임 제어(Frame Control) 필드, 지속기간/식별자(Duration/ID) 필드, 수신 주소(RA) 필드, 전송 주소(TA) 필드, BAR 제어(BAR control) 필드, BAR 정보(BAR Information) 필드 및 프레임 체크 시퀀스(FCS)로 구성된다.
RA 필드는 BAR 프레임을 수신하는 STA의 주소로 설정될 수 있다.
TA 필드는 BAR 프레임을 전송하는 STA의 주소로 설정될 수 있다.
BAR control 필드는 BAR Ack 정책(BAR Ack Policy) 서브필드, 다중-TID(Multi-TID) 서브필드, 압축 비트맵(Compressed Bitmap) 서브필드, 예비(Reserved) 서브필드 및 TID 정보(TID_Info) 서브필드를 포함한다.
표 5는 BAR control 필드를 예시하는 표이다.
Figure PCTKR2015012917-appb-T000005
BAR Information 필드는 BAR 프레임의 타입에 따라 상이한 정보가 포함된다. 이에 대하여 도 16을 참조하여 설명한다.
도 16은 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK 요청(Block Ack Request) 프레임의 BAR 정보(BAR Information) 필드를 예시하는 도면이다.
도 16(a)는 Basic BAR 프레임 및 Compressed BAR 프레임의 BAR Information 필드를 예시하고, 도 16(b)는 Multi-TID BAR 프레임의 BAR Information 필드를 예시한다.
도 16(a)를 참조하면, Basic BAR 프레임 및 Compressed BAR 프레임의 경우, BAR Information 필드는 블록 ACK 시작 시퀀스 제어(Block Ack Starting Sequence Control) 서브필드를 포함한다.
그리고, Block Ack Starting Sequence Control 서브필드는 조각 번호(Fragment Number) 서브필드, 시작 시퀀스 번호(Starting Sequence Number) 서브필드를 포함한다.
Fragment Number 서브필드는 0으로 설정된다.
Basic BAR 프레임의 경우, Starting Sequence Number 서브필드는 해당 BAR 프레임이 전송되는 첫 번째 MSDU의 시퀀스 번호를 포함한다. Compressed BAR 프레임의 경우, Starting Sequence Control 서브필드는 해당 BAR 프레임이 전송되기 위한 첫 번째 MSDU 또는 A-MSDU의 시퀀스 번호를 포함한다.
도 16(b)를 참조하면, Multi-TID BAR 프레임의 경우, BAR Information 필드는 TID 별 정보(Per TID Info) 서브필드 및 블록 ACK 시작 시퀀스 제어(Block Ack Starting Sequence Control) 서브필드가 하나 이상의 TID 별로 반복되어 구성된다.
Per TID Info 서브필드는 예비(Reserved) 서브필드 및 TID 값(TID Value) 서브필드를 포함한다. TID Value 서브필드는 TID 값을 포함한다.
Block Ack Starting Sequence Control 서브필드는 상술한 바와 같이 Fragment Number 및 Starting Sequence Number 서브필드를 포함한다. Fragment Number 서브필드는 0으로 설정된다. Starting Sequence Control 서브필드는 해당 BAR 프레임이 전송되기 위한 첫 번째 MSDU 또는 A-MSDU의 시퀀스 번호를 포함한다.
도 17은 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK(Block Ack) 프레임을 예시하는 도면이다.
도 17을 참조하면, 블록 ACK(BA) 프레임은 프레임 제어(Frame Control) 필드, 지속기간/식별자(Duration/ID) 필드, 수신 주소(RA) 필드, 전송 주소(TA) 필드, BA 제어(BA control) 필드, BA 정보(BA Information) 필드 및 프레임 체크 시퀀스(FCS)로 구성된다.
RA 필드는 블록 ACK을 요청한 STA의 주소로 설정될 수 있다.
TA 필드는 BA 프레임을 전송하는 STA의 주소로 설정될 수 있다.
BA control 필드는 BA Ack 정책(BA Ack Policy) 서브필드, 다중-TID(Multi-TID) 서브필드, 압축 비트맵(Compressed Bitmap) 서브필드, 예비(Reserved) 서브필드 및 TID 정보(TID_Info) 서브필드를 포함한다.
표 6은 BA control 필드를 예시하는 표이다.
Figure PCTKR2015012917-appb-T000006
BA Information 필드는 BA 프레임의 타입에 따라 상이한 정보가 포함된다. 이에 대하여 도 18을 참조하여 설명한다.
도 18은 본 발명이 적용될 수 있는 무선 통신 시스템에서 블록 ACK(Block Ack) 프레임의 BA 정보(BA Information) 필드를 예시하는 도면이다.
도 18(a)의 Basic BA 프레임의 BA Information 필드를 예시하고, 도 18(b)는 Compressed BA 프레임의 BA Information 필드를 예시하고, 도 18(c)는 Multi-TID BA 프레임의 BA Information 필드를 예시한다.
도 18(a)를 참조하면, Basic BA 프레임의 경우, BA Information 필드는 블록 ACK 시작 시퀀스 제어(Block Ack Starting Sequence Control) 서브필드 및 블록 ACK 비트맵(Block Ack Bitmap) 서브필드를 포함한다.
Block Ack Starting Sequence Control 서브필드는 상술한 바와 같이 Fragment Number 서브필드 및 Starting Sequence Number 서브필드를 포함한다.
Fragment Number 서브필드는 0으로 설정된다.
Starting Sequence Number 서브필드는 해당 BA 프레임이 전송되기 위한 첫 번째 MSDU의 시퀀스 번호를 포함하고, 직전에 수신한 Basic BAR 프레임과 동일한 값으로 설정된다.
Block Ack Bitmap 서브필드는 128 옥텟의 길이로 구성되고, 최대 64개의 MSDU의 수신 상태를 지시하기 위하여 사용된다. Block Ack Bitmap 서브필드에서 '1' 값은 해당 비트 위치에 대응되는 MPDU가 성공적으로 수신되었음을 지시하고, '0' 값은 해당 비트 위치에 대응되는 MPDU가 성공적으로 수신되지 않았음을 지시한다.
도 18(b)를 참조하면, Compressed BA 프레임의 경우, BA Information 필드는 블록 ACK 시작 시퀀스 제어(Block Ack Starting Sequence Control) 서브필드 및 블록 ACK 비트맵(Block Ack Bitmap) 서브필드를 포함한다.
Block Ack Starting Sequence Control 서브필드는 상술한 바와 같이 Fragment Number 서브필드 및 Starting Sequence Number 서브필드를 포함한다.
Fragment Number 서브필드는 0으로 설정된다.
Starting Sequence Number 서브필드는 해당 BA 프레임이 전송되기 위한 첫 번째 MSDU 또는 A-MSDU의 시퀀스 번호를 포함하고, 직전에 수신한 Basic BAR 프레임과 동일한 값으로 설정된다.
Block Ack Bitmap 서브필드는 8 옥텟의 길이로 구성되고, 최대 64개의 MSDU 및 A-MSDU의 수신 상태를 지시하기 위하여 사용된다. Block Ack Bitmap 서브필드에서 '1' 값은 해당 비트 위치에 대응되는 단일 MSDU 또는 A-MSDU가 성공적으로 수신되었음을 지시하고, '0' 값은 해당 비트 위치에 대응되는 단일 MSDU 또는 A-MSDU가 성공적으로 수신되지 않았음을 지시한다.
도 18(c)를 참조하면, Multi-TID BA 프레임의 경우, BA Information 필드는 TID 별 정보(Per TID Info) 서브필드, 블록 ACK 시작 시퀀스 제어(Block Ack Starting Sequence Control) 서브필드 및 블록 ACK 비트맵(Block Ack Bitmap) 서브필드가 하나 이상의 TID 별로 반복되어 구성되고, TID가 증가되는 순서대로 구성된다.
Per TID Info 서브필드는 예비(Reserved) 서브필드 및 TID 값(TID Value) 서브필드를 포함한다. TID Value 서브필드는 TID 값을 포함한다.
Block Ack Starting Sequence Control 서브필드는 상술한 바와 같이 Fragment Number 및 Starting Sequence Number 서브필드를 포함한다. Fragment Number 서브필드는 0으로 설정된다. Starting Sequence Control 서브필드는 해당 BA 프레임이 전송되기 위한 첫 번째 MSDU 또는 A-MSDU의 시퀀스 번호를 포함한다.
Block Ack Bitmap 서브필드는 8 옥텟의 길이로 구성된다. Block Ack Bitmap 서브필드에서 '1' 값은 해당 비트 위치에 대응되는 단일 MSDU 또는 A-MSDU가 성공적으로 수신되었음을 지시하고, '0' 값은 해당 비트 위치에 대응되는 단일 MSDU 또는 A-MSDU가 성공적으로 수신되지 않았음을 지시한다.
상향링크 단일 사용자/다중 사용자 전송 방법
차세대 WiFi에 대한 다양한 분야의 벤더들의 많은 관심과 802.11ac 이후의 높은 스루풋(high throughput) 및 QoE(quality of experience) 성능 향상에 대한 요구가 높아지고 있는 상황에서 차세대 WLAN 시스템인 802.11ax 시스템을 위한 새로운 프레임 포맷 및 뉴머롤로지(numerology)에 대한 논의가 활발히 진행 중이다.
IEEE 802.11ax은 더 높은 데이터 처리율(data rate)을 지원하고 더 높은 사용자 부하(user load)를 처리하기 위한 차세대 WLAN 시스템으로서 최근에 새롭게 제안되고 있는 WLAN 시스템 중 하나로서, 일명 고효율 WLAN(HEW: High Efficiency WLAN)라고 불린다.
IEEE 802.11ax WLAN 시스템은 기존 WLAN 시스템과 동일하게 2.4 GHz 주파수 대역 및 5 GHz 주파수 대역에서 동작할 수 있다. 또한, 그보다 높은 60 GHz 주파수 대역에서도 동작할 수 있다.
IEEE 802.11ax 시스템에서는 평균 스루풋 향상(average throughput enhancement)과 실외 환경에서의 심볼 간 간섭(inter-symbol interference)에 대한 강인한 전송(outdoor robust transmission)을 위해서 기존 IEEE 802.11 OFDM system (IEEE 802.11a, 802.11n, 802.11ac 등)보다 각 대역폭에서 4배 큰 FFT 크기를 사용할 수 있다. 이에 대하여 아래 도면을 참조하여 설명한다.
이하, 본 발명에 HE 포맷 PPDU에 대한 설명에 있어서, 별도의 언급이 없더라도 앞서 설명한 non-HT 포맷 PPDU, HT-mixed 포맷 PPDU, HT-greenfield 포맷 PPDU 및/또는 VHT 포맷 PPDU에 대한 설명이 HE 포맷 PPDU에 대한 설명에 병합될 수 있다.
도 19는 본 발명의 일 실시예에 따른 HE(High Efficiency) 포맷 PPDU를 예시하는 도면이다.
도 19(a)는 HE 포맷 PPDU의 개략적인 구조를 예시하고, 도 19(b) 내지 (d)는 HE 포맷 PPDU의 보다 구체적인 구조를 예시한다.
도 19(a)를 참조하면, HEW를 위한 HE 포맷 PPDU는 크게 레가시 부분(L-part: legacy-part), HE 부분(HE-part) 및 데이터 필드(HE-data)로 구성될 수 있다.
L-part는 기존의 WLAN 시스템에서 유지하는 형태와 동일하게 L-STF 필드, L-LTF 필드 및 L-SIG 필드로 구성된다. L-STF 필드, L-LTF 필드 및 L-SIG 필드를 레가시 프리앰블(legacy preamble)이라고 지칭할 수 있다.
HE-part는 802.11ax 표준을 위하여 새롭게 정의되는 부분으로서, HE-STF 필드, HE-SIG 필드 및 HE-LTF 필드를 포함할 수 있다. 도 19(a)에서는 HE-STF 필드, HE-SIG 필드 및 HE-LTF 필드의 순서를 예시하고 있으나, 이와 상이한 순서로 구성될 수 있다. 또한, HE-LTF는 생략될 수도 있다. HE-STF 필드 및 HE-LTF 필드뿐만 아니라 HE-SIG 필드를 포함하여 HE-preamble로 통칭할 수도 있다.
또한, L-part, HE-SIG 필드, HE-preamble을 물리 프리앰블(PHY(physical) preamble)로 통칭할 수 있다.
HE-SIG는 HE-data 필드를 디코딩하기 위한 정보(예를 들어, OFDMA, UL MU MIMO, 향상된 MCS 등)을 포함할 수 있다.
L-part와 HE-part는 서로 다른 FFT(Fast Fourier Transform) 크기(즉, 서브캐리어 간격(spacing))을 가질 수 있으며, 서로 다른 CP(Cyclic Prefix)를 사용할 수도 있다.
802.11ax 시스템에서는 레가시 WLAN 시스템에 비하여 4배 큰(4×) FFT 크기를 사용할 수 있다. 즉, L-part는 1× 심볼 구조로 구성되고, HE-part(특히, HE-preamble 및 HE-data)는 4× 심볼 구조로 구성될 수 있다. 여기서, 1×, 2×, 4× 크기의 FFT는 레가시 WLAN 시스템(예를 들어, IEEE 802.11a, 802.11n, 802.11ac 등)에 대한 상대적인 크기를 의미한다.
예를 들어, L-part에 이용되는 FFT 크기는 20MHz, 40MHz, 80MHz 및 160MHz에서 각각 64, 128, 256, 512라면, HE-part에 이용되는 FFT 크기는 20MHz, 40MHz, 80MHz 및 160MHz에서 각각 256, 512, 1024, 2048일 수 있다.
이와 같이 레가시 WLAN 시스템 보다 FFT 크기가 커지면, 서브캐리어 주파수 간격(subcarrier frequency spacing)이 작아지므로 단위 주파수 당 서브캐리어의 수가 증가되나, OFDM 심볼 길이가 길어진다.
즉, 더 큰 FFT 크기가 사용된다는 것은 서브캐리어 간격이 좁아진다는 의미이며, 마찬가지로 IDFT(Inverse Discrete Fourier Transform)/DFT(Discrete Fourier Transform) 주기(period)가 늘어난다는 의미이다. 여기서, IDFT/DFT 주기는 OFDM 심볼에서 보호 구간(GI)을 제외한 심볼 길이를 의미할 수 있다.
따라서, HE-part(특히, HE-preamble 및 HE-data)는 L-part에 비하여 4배 큰 FFT 크기가 사용된다면, HE-part의 서브캐리어 간격은 L-part의 서브캐리어 간격의 1/4 배가 되고, HE-part의 IDFT/DFT 주기는 L-part의 IDFT/DFT 주기의 4배가 된다. 예를 들어, L-part의 서브캐리어 간격이 312.5kHz(=20MHz/64, 40MHZ/128, 80MHz/256 및/또는 160MHz/512)라면 HE-part의 서브캐리어 간격은 78.125kHz(=20MHz/256, 40MHZ/512, 80MHz/1024 및/또는 160MHz/2048)일 수 있다. 또한, L-part의 IDFT/DFT 주기가 3.2㎲(=1/312.5kHz)이라면, HE-part의 IDFT/DFT 주기는 12.8㎲(=1/78.125kHz)일 수 있다.
여기서, GI는 0.8㎲, 1.6㎲, 3.2㎲ 중 하나가 사용될 수 있으므로, GI를 포함하는 HE-part의 OFDM 심볼 길이(또는 심볼 간격(symbol interval))은 GI에 따라 13.6㎲, 14.4㎲, 16㎲일 수 있다.
도 19(b)를 참조하면, HE-SIG 필드는 HE-SIG-A 필드와 HE-SIG-B 필드로 구분될 수 있다.
예를 들어, HE 포맷 PPDU의 HE-part는 12.8㎲ 길이를 가지는 HE-SIG-A 필드, 1 OFDM 심볼의 HE-STF 필드, 하나 이상의 HE-LTF 필드 및 1 OFDM 심볼의 HE-SIG-B 필드를 포함할 수 있다.
또한, HE-part에서 HE-SIG-A 필드는 제외하고 HE-STF 필드부터는 기존의 PPDU 보다 4배 큰 크기의 FFT가 적용될 수 있다. 즉, 256, 512, 1024 및 2048 크기의 FFT가 각각 20MHz, 40MHz, 80MHz 및 160MHz의 HE 포맷 PPDU의 HE-STF 필드부터 적용될 수 있다.
다만, 도 19(b)와 같이 HE-SIG가 HE-SIG-A 필드와 HE-SIG-B 필드로 구분되어 전송될 때, HE-SIG-A 필드 및 HE-SIG-B 필드의 위치는 도 25(b)와 상이할 수 있다. 예를 들어, HE-SIG-A 필드 다음에 HE-SIG-B 필드가 전송되고, HE-SIG-B 필드 다음에 HE-STF 필드와 HE-LTF 필드가 전송될 수 있다. 이 경우에도 마찬가지로 HE-STF 필드부터는 기존의 PPDU 보다 4배 큰 크기의 FFT가 적용될 수 있다.
도 19(c)를 참조하면, HE-SIG 필드는 HE-SIG-A 필드와 HE-SIG-B 필드로 구분되지 않을 수 있다.
예를 들어, HE 포맷 PPDU의 HE-part는 1 OFDM 심볼의 HE-STF 필드, 1 OFDM 심볼의 HE-SIG 필드 및 하나 이상의 HE-LTF 필드를 포함할 수 있다.
위와 유사하게 HE-part는 기존의 PPDU 보다 4배 큰 크기의 FFT가 적용될 수 있다. 즉, 256, 512, 1024 및 2048 크기의 FFT가 각각 20MHz, 40MHz, 80MHz 및 160MHz의 HE 포맷 PPDU의 HE-STF 필드부터 적용될 수 있다.
도 19(d)를 참조하면, HE-SIG 필드는 HE-SIG-A 필드와 HE-SIG-B 필드로 구분되지 않으며, HE-LTF 필드는 생략될 수 있다.
예를 들어, HE 포맷 PPDU의 HE-part는 1 OFDM 심볼의 HE-STF 필드 및 1 OFDM 심볼의 HE-SIG 필드를 포함할 수 있다.
위와 유사하게 HE-part는 기존의 PPDU 보다 4배 큰 크기의 FFT가 적용될 수 있다. 즉, 256, 512, 1024 및 2048 크기의 FFT가 각각 20MHz, 40MHz, 80MHz 및 160MHz의 HE 포맷 PPDU의 HE-STF 필드부터 적용될 수 있다.
본 발명에 따른 WLAN 시스템을 위한 HE 포맷 PPDU는 적어도 하나의 20MHz 채널을 통해 전송될 수 있다. 예를 들어, HE 포맷 PPDU은 총 4개의 20MHz 채널을 통해 40MHz, 80MHz 또는 160MHz 주파수 대역에서 전송될 수 있다. 이에 대하여 아래 도면을 참조하여 보다 상세히 설명한다.
본 발명이 적용될 수 있는 WLAN 시스템을 위한 HE 포맷 PPDU는 적어도 하나의 20MHz 채널을 통해 전송될 수 있다. 예를 들어, HE 포맷 PPDU은 총 4개의 20MHz 채널을 통해 40MHz, 80MHz 또는 160MHz 주파수 대역에서 전송될 수 있다. 이에 대하여 아래 도면을 참조하여 보다 상세히 설명한다.
도 20은 본 발명의 일 실시예에 따른 HE 포맷 PPDU을 예시하는 도면이다.
도 20에서는 하나의 STA에 80MHz가 할당된 경우(또는 80MHz 내 복수의 STA에게 OFDMA 자원 유닛이 할당된 경우) 혹은 복수의 STA에게 각각 80MHz의 서로 다른 스트림이 할당된 경우의 PPDU 포맷을 예시한다.
도 20을 참조하면, L-STF, L-LTF 및 L-SIG은 각 20MHz 채널에서 64 FFT 포인트(또는 64 서브캐리어)에 기반하여 생성된 OFDM 심볼로 전송될 수 있다.
HE-SIG-A 필드는 PPDU를 수신하는 STA들에게 공통으로 전송되는 공용 제어 정보를 포함할 수 있다. HE-SIG-A 필드는 1개 내지 3개의 OFDM 심볼에서 전송될 수 있다. HE-SIG-A 필드는 20MHz 단위로 복사되어 동일한 정보를 포함한다. 또한, HE-SIG-A 필드는 시스템의 전체 대역폭 정보를 알려준다.
표 7은 HE-SIG-A 필드에 포함되는 정보를 예시하는 표이다.
Figure PCTKR2015012917-appb-T000007
표 7에 예시되는 각 필드들에 포함되는 정보들은 IEEE 802.11 시스템의 정의를 따를 수 있다. 또한, 앞서 설명한 각 필드들은 PPDU에 포함될 수 있는 필드들의 예시에 해당하며, 이에 한정되지 않는다. 즉, 앞서 설명한 각 필드가 다른 필드로 대체되거나 추가적인 필드가 더 포함될 수 있으며, 모든 필드가 필수적으로 포함되지 않을 수도 있다.
HE-STF는 MIMO 전송에 있어서 AGC 추정의 성능을 개선하기 위해 사용된다.
HE-SIG-B 필드는 각 STA이 자신의 데이터(예를 들어, PSDU)를 수신하기 위하여 요구되는 사용자 특정(user-specific) 정보를 포함할 수 있다. HE-SIG-B 필드는 하나 또는 두 개의 OFDM 심볼에서 전송될 수 있다. 예를 들어, HE-SIG-B 필드는 해당 PSDU의 변조 및 코딩 기법(MCS) 및 해당 PSDU의 길이에 관한 정보를 포함할 수 있다.
L-STF, L-LTF, L-SIG 및 HE-SIG-A 필드는 20MHz 채널 단위로 반복되어 전송될 수 있다. 예를 들어, PPDU가 4개의 20MHz 채널(즉, 80MHz 대역)을 통해 전송될 때, L-STF, L-LTF, L-SIG 및 HE-SIG-A 필드는 매 20MHz 채널에서 반복되어 전송될 수 있다.
FFT 크기가 커지면, 기존의 IEEE 802.11a/g/n/ac를 지원하는 레가시 STA은 해당 HE PPDU를 디코딩하지 못할 수 있다. 레가시 STA과 HE STA이 공존(coexistence)하기 위하여, L-STF, L-LTF 및 L-SIG 필드는 레가시 STA이 수신할 수 있도록 20MHz 채널에서 64 FFT를 통해 전송된다. 예를 들어, L-SIG 필드는 하나의 OFDM 심볼을 점유하고, 하나의 OFDM 심볼 시간은 4㎲ 이며, GI는 0.8㎲일 수 있다.
각 주파수 단위 별 FFT 크기는 HE-STF(또는 HE-SIG-A)부터 더욱 커질 수 있다. 예를 들어, 256 FFT가 20MHz 채널에서 사용되고, 512 FFT가 40MHz 채널에서 사용되며, 1024 FFT가 80MHz 채널에서 사용될 수 있다. FFT 크기가 커지면, OFDM 서브캐리어 간의 간격이 작아지므로 단위 주파수 당 OFDM 서브캐리어의 수가 증가되나, OFDM 심볼 시간은 길어진다. 시스템의 효율을 향상시키기 위하여 HE-STF 이후의 GI의 길이는 HE-SIG-A의 GI의 길이와 동일하게 설정될 수 있다.
HE-SIG-A 필드는 HE STA이 HE PPDU를 디코딩하기 위하여 요구되는 정보를 포함할 수 있다. 그러나, HE-SIG-A 필드는 레가시 STA과 HE STA이 모두 수신할 수 있도록 20MHz 채널에서 64 FFT를 통해 전송될 수 있다. 이는 HE STA가 HE 포맷 PPDU 뿐만 아니라 기존의 HT/VHT 포맷 PPDU를 수신할 수 있으며, 레가시 STA 및 HE STA이 HT/VHT 포맷 PPDU와 HE 포맷 PPDU를 구분하여야 하기 때문이다.
도 21은 본 발명의 일 실시예에 따른 HE 포맷 PPDU을 예시하는 도면이다.
도 21에서는 20MHz 채널들이 각각 서로 다른 STA들(예를 들어, STA 1, STA 2, STA 3 및 STA 4)에 할당되는 경우를 가정한다.
도 21을 참조하면, 단위 주파수 당 FFT 크기는 HE-STF(또는 HE-SIG-B)부터 더욱 커질 수 있다. 예를 들어, HE-STF(또는 HE-SIG-B)부터 256 FFT가 20MHz 채널에서 사용되고, 512 FFT가 40MHz 채널에서 사용되며, 1024 FFT가 80MHz 채널에서 사용될 수 있다.
PPDU에 포함되는 각 필드에서 전송되는 정보는 앞서 도 26의 예시와 동일하므로 이하 설명을 생략한다.
HE-SIG-B 필드는 각 STA에 특정된 정보를 포함할 수 있으나, 전체 밴드(즉, HE-SIG-A 필드에서 지시)에 걸쳐서 인코딩될 수 있다. 즉, HE-SIG-B 필드는 모든 STA에 대한 정보를 포함하며 모든 STA들이 수신하게 된다.
HE-SIG-B 필드는 각 STA 별로 할당되는 주파수 대역폭 정보 및/또는 해당 주파수 대역에서 스트림 정보를 알려줄 수 있다. 예를 들어, 도 27에서 HE-SIG-B는 STA 1는 20MHz, STA 2는 그 다음 20MHz, STA 3는 그 다음 20MHz, STA 4는 그 다음 20MHz가 할당될 수 있다. 또한, STA 1과 STA 2는 40MHz를 할당하고, STA 3와 STA 4는 그 다음 40MHz를 할당할 수 있다. 이 경우, STA 1과 STA 2는 서로 다른 스트림을 할당하고, STA 3와 STA 4는 서로 다른 스트림을 할당할 수 있다.
또한, HE-SIG-C 필드를 정의하여, 도 27의 예시에 HE-SIG C 필드가 추가될 수 있다. 이 경우, HE-SIG-B 필드에서는 전대역에 걸쳐서 모든 STA에 대한 정보가 전송되고, 각 STA에 특정한 제어 정보는 HE-SIG-C 필드를 통해 20MHz 단위로 전송될 수도 있다.
또한, 도 20 및 도 21의 예시와 상이하게 HE-SIG-B 필드는 전대역에 걸쳐 전송하지 않고 HE-SIG-A 필드와 동일하게 20MHz 단위로 전송될 수 있다. 이에 대하여 아래 도면을 참조하여 설명한다.
도 22는 본 발명의 일 실시예에 따른 HE 포맷 PPDU을 예시하는 도면이다.
도 22에서는 20MHz 채널들이 각각 서로 다른 STA들(예를 들어, STA 1, STA 2, STA 3 및 STA 4)에 할당되는 경우를 가정한다.
도 22를 참조하면, HE-SIG-B 필드는 전대역에 걸쳐 전송되지 않고, HE-SIG-A 필드와 동일하게 20MHz 단위로 전송된다. 다만, 이때 HE-SIG-B는 HE-SIG-A 필드와 상이하게 20MHz 단위로 인코딩되어 전송되나, 20MHz 단위로 복제되어 전송되지는 않을 수 있다.
이 경우, 단위 주파수 당 FFT 크기는 HE-STF(또는 HE-SIG-B)부터 더욱 커질 수 있다. 예를 들어, HE-STF(또는 HE-SIG-B)부터 256 FFT가 20MHz 채널에서 사용되고, 512 FFT가 40MHz 채널에서 사용되며, 1024 FFT가 80MHz 채널에서 사용될 수 있다.
PPDU에 포함되는 각 필드에서 전송되는 정보는 앞서 도 20의 예시와 동일하므로 이하 설명을 생략한다.
HE-SIG-A 필드는 20MHz 단위로 복사되어(duplicated) 전송된다.
HE-SIG-B 필드는 각 STA 별로 할당되는 주파수 대역폭 정보 및/또는 해당 주파수 대역에서 스트림 정보를 알려줄 수 있다. HE-SIG-B 필드는 각 STA에 대한 정보를 포함하므로 20MHz 단위의 각 HE-SIG-B 필드 별로 각 STA에 대한 정보가 포함될 수 있다. 이때, 도 28의 예시에서는 각 STA 별로 20MHz가 할당되는 경우를 예시하고 있으나, 예를 들어 STA에 40MHz가 할당되는 경우, 20MHz 단위로 HE-SIG-B 필드가 복사되어 전송될 수도 있다.
각 BSS 별로 서로 다른 대역폭을 지원하는 상황에서 인접한 BSS로부터의 간섭 레벨이 적은 일부의 대역폭을 STA에게 할당하는 경우에 위와 같이 HE-SIG-B 필드를 전대역에 걸쳐서 전송하지 않는 것이 보다 바람직할 수 있다.
도 20 내지 도 22에서 데이터 필드는 페이로드(payload)로서, 서비스 필드(SERVICE field), 스크램블링된 PSDU, 테일 비트(tail bits), 패딩 비트(padding bits)를 포함할 수 있다.
한편, 앞서 도 20 내지 도 22와 같은 HE 포맷 PPDU는 L-SIG 필드의 반복 심볼인 RL-SIG(Repeated L-SIG) 필드를 통해서 구분될 수 있다. RL-SIG 필드는 HE SIG-A 필드 앞에 삽입되며, 각 STA은 RL-SIG 필드를 이용하여 수신된 PPDU의 포맷을 HE 포맷 PPDU로서 구분할 수 있다.
WLAN 시스템에서 동작하는 AP가 동일한 시간 자원 상에서 복수의 STA으로 데이터를 전송하는 방식을 DL MU 전송(downlink multi-user transmission)이라고 지칭할 수 있다. 반대로, WLAN 시스템에서 동작하는 복수의 STA이 동일한 시간 자원 상에서 AP로 데이터를 전송하는 방식을 UL MU 전송(uplink multi-user transmission)이라고 지칭할 수 있다.
이러한 DL MU 전송 또는 UL MU 전송은 주파수 도메인(frequency domain) 또는 공간 도메인(spatial domain) 상에서 다중화될 수 있다.
주파수 도메인 상에서 다중화되는 경우, OFDMA(orthogonal frequency division multiplexing)를 기반으로 복수의 STA 각각에 대해 서로 다른 주파수 자원(예를 들어, 서브캐리어 또는 톤(tone))이 하향링크 또는 상향링크 자원으로 할당될 수 있다. 이러한 동일한 시간 자원에서 서로 다른 주파수 자원을 통한 전송 방식을 'DL/UL OFDMA 전송'이라고 지칭할 수 있다.
공간 도메인(spatial domain) 상에서 다중화되는 경우, 복수의 STA 각각에 대해 서로 다른 공간 스트림이 하향링크 또는 상향링크 자원으로 할당될 수 있다. 이러한 동일한 시간 자원에서 서로 다른 공간적 스트림을 통한 전송 식을 'DL/UL MU MIMO' 전송이라고 지칭할 수 있다.
이하, WLAN 시스템에서 다중 사용자(multi-user) 상향링크 전송 방법에 대하여 설명한다.
현재 WLAN 시스템에서는 아래와 같은 제약 사항으로 인해 UL MU 전송을 지원하지 못한다.
현재 WLAN 시스템에서는 복수의 STA으로부터 전송되는 상향링크 데이터의 전송 타이밍에 대한 동기화가 지원되지 않는다. 예를 들어, 기존의 WLAN 시스템에서 복수의 STA들이 동일한 시간 자원을 통해 상향링크 데이터를 전송하는 경우를 가정하면, 현재 WLAN 시스템에서는 복수의 STA 각각은 다른 STA의 상향링크 데이터의 전송 타이밍을 알 수 없다. 따라서, AP는 복수의 STA 각각으로부터 동일한 시간 자원 상에서 상향링크 데이터를 수신하기 어렵다.
또한, 현재 WLAN 시스템에서는 복수의 STA에 의해 상향링크 데이터를 전송하기 위해 사용되는 주파수 자원 간의 중첩이 발생될 수 있다. 예를 들어, 복수의 STA 각각의 오실레이터(oscillator)가 다를 경우, 주파수 오프셋(frequency offset)이 다르게 나타날 수 있다. 만약, 주파수 오프셋이 다른 복수의 STA 각각이 서로 다른 주파수 자원을 통해 동시에 상향링크 전송을 수행하는 경우, 복수의 STA 각각에 의해 사용되는 주파수 영역 중 일부가 중첩될 수 있다.
또한, 기존의 WLAN 시스템에서는 복수의 STA 각각에 대한 파워 제어가 수행되지 않는다. 복수의 STA 각각과 AP 사이의 거리와 채널 환경에 종속적으로 AP는 복수의 STA 각각으로부터 서로 다른 파워의 신호를 수신할 수 있다. 이러한 경우, 약한 파워로 도착하는 신호는 강한 파워로 도착하는 신호에 비해 상대적으로 AP에 의해 검출되기 어려울 수 있다.
이에 따라, 본 발명은 WLAN 시스템에서의 UL MU 전송 방법을 제안한다.
도 23은 본 발명의 일 실시예에 따른 상향링크 다중 사용자(multi-user) 전송 절차를 예시하는 도면이다.
도 23을 참조하면, AP가 UL MU 전송에 참여하는 STA들에게 UL MU 전송을 준비할 것을 지시하고, 해당 STA들로부터 UL MU 데이터 프레임을 수신하며, UL MU 데이터 프레임에 대한 응답으로 ACK 프레임(BA(Block Ack) 프레임)을 전송한다.
먼저 AP는 UL MU 트리거 프레임(UL MU Trigger frame, 2310)을 전송함으로써, UL MU 데이터를 전송할 STA들에게 UL MU 전송을 준비할 것을 지시한다. 여기서, UL MU 스케줄링 프레임은 'UL MU 스케줄링(scheduling) 프레임'의 용어로 불릴 수도 있다.
여기서, UL MU 트리거 프레임(2310)은 STA 식별자(ID: Identifier)/주소(address) 정보, 각 STA이 사용할 자원 할당 정보, 지속기간(duration) 정보 등과 같은 제어 정보를 포함할 수 있다.
STA ID/주소 정보는 상향링크 데이터를 전송하는 각 STA을 특정하기 위한 식별자 또는 주소에 대한 정보를 의미한다.
자원 할당 정보는 각 STA 별로 할당되는 상향링크 전송 자원(예를 들어, UL OFDMA 전송의 경우 각 STA에게 할당되는 주파수/서브캐리어 정보, UL MU MIMO 전송의 경우 각 STA에게 할당되는 스트림 인덱스)에 대한 정보를 의미한다.
지속기간(duration) 정보는 복수의 STA 각각에 의해 전송되는 상향링크 데이터 프레임의 전송을 위한 시간 자원을 결정하기 위한 정보를 의미한다.
예를 들어, 지속 기간 정보는 각 STA의 상향링크 전송을 위해 할당된 TXOP(Transmit Opportunity)의 구간 정보 혹은 상향링크 프레임 길이(frame length)에 대한 정보(예를 들어, 비트 또는 심볼)를 포함할 수 있다.
또한, UL MU 트리거 프레임(2310)은 각 STA 별로 UL MU 데이터 프레임 전송 시 사용해야 할 MCS 정보, 코딩(Coding) 정보 등과 같은 제어 정보를 더 포함할 수도 있다.
위와 같은 제어 정보는 UL MU 트리거 프레임(2310)을 전달하는 PPDU의 HE-part(예를 들어, HE-SIG-A 필드 또는 HE-SIG-B 필드)나 UL MU 트리거 프레임(3110)의 제어 필드(예를 들어, MAC 프레임의 Frame Control 필드 등)에서 전송될 수 있다.
UL MU 트리거 프레임(2310)을 전달하는 PPDU는 L-part(예를 들어, L-STF 필드, L-LTF 필드, L-SIG 필드 등)으로 시작하는 구조를 가진다. 이에 따라, 레가시 STA들은 L-SIG 필드로부터 L-SIG 보호(L-SIG protection)을 통해 NAV(Network Allocation Vector) 셋팅을 수행할 수도 있다. 예를 들어, 레가시 STA들은 L-SIG에서 데이터 길이(length) 및 데이터율(data rate) 정보를 기반으로 NAV 셋팅을 위한 구간(이하, 'L-SIG 보호 구간')을 산출할 수 있다. 그리고, 레가시 STA들은 산출된 L-SIG 보호 구간 동안에는 자신에게 전송될 데이터가 없다고 판단할 수 있다.
예를 들어, L-SIG 보호 구간은 UL MU 트리거 프레임(2310)의 MAC duration 필드 값과 UL MU 트리거 프레임(2310)을 나르는 PPDU의 L-SIG 필드 이후의 잔여 구간의 합으로 결정될 수 있다. 이에 따라, L-SIG 보호 구간은 UL MU 트리거 프레임(3110)의 MAC duration 값에 따라 각 STA에게 전송되는 ACK 프레임(3130)(또는 BA 프레임)을 전송하는 구간까지의 값으로 설정될 수 있다.
이하, 각 STA에게 UL MU 전송을 위한 자원 할당 방법을 보다 구체적으로 살펴본다. 설명의 편의를 위해 제어 정보가 포함되는 필드를 구분하여 설명하나 본 발명이 이에 한정되는 것은 아니다.
제1 필드는 UL OFDMA 전송과 UL MU MIMO 전송을 구분하여 지시할 수 있다. 예를 들어, '0'이면 UL OFDMA 전송을 지시하고, '1'이면 UL MU MIMO 전송을 지시할 수 있다. 제1 필드의 크기는 1 비트로 구성될 수 있다.
제2 필드(예를 들어, STA ID/주소 필드)는 UL MU 전송에 참여할 STA ID 혹은 STA 주소들을 알려준다. 제2 필드의 크기는 STA ID를 알려주기 위한 비트 수 × UL MU에 참여할 STA 수로 구성될 수 있다. 예를 들어, 제2 필드가 12 비트로 구성되는 경우, 4 비트 별로 각 STA의 ID/주소를 지시할 수 있다.
제3 필드(예를 들어, 자원 할당 필드)는 UL MU 전송을 위해 각 STA에 할당되는 자원 영역을 지시한다. 이때, 각 STA에 할당되는 자원 영역은 앞서 제2 필드의 순서에 따라 각 STA에게 순차적으로 지시될 수 있다.
만약, 제1 필드 값이 '0'인 경우, 제2 필드에 포함된 STA ID/주소의 순서대로 UL MU 전송을 위한 주파수 정보(예를 들어, 주파수 인덱스, 서브캐리어 인덱스 등)를 나타내고, 제1 필드 값이 '1'인 경우, 제2 필드에 포함된 STA ID/주소의 순서대로 UL MU 전송을 위한 MIMO 정보(예를 들어, 스트림 인덱스 등)를 나타낸다.
이때, 하나의 STA에게 여러 개의 인덱스(즉, 주파수/서브캐리어 인덱스 또는 스트림 인덱스)를 알려줄 수도 있으므로, 제3 필드의 크기는 복수의 비트(혹은, 비트맵(bitmap) 형식으로 구성될 수 있음) × UL MU 전송에 참여할 STA 개수로 구성될 수 있다.
예를 들어, 제2 필드가 'STA 1', 'STA 2'의 순서로 설정되고, 제3 필드가 '2', '2'의 순서로 설정된다고 가정한다.
이 경우, 제1 필드가 '0'인 경우, STA 1은 상위(또는, 하위) 주파수 영역부터 주파수 자원이 할당되고, STA 2는 그 다음의 주파수 자원이 순차적으로 할당될 수 있다. 일례로, 80MHz 대역에서 20MHz 단위의 OFDMA를 지원하는 경우, STA 1은 상위(또는, 하위) 40MHz 대역, STA 2는 그 다음의 40MHz 대역을 사용할 수 있다.
반면, 제1 필드가 '1'인 경우, STA 1은 상위(또는, 하위) 스트림이 할당되고, STA 2는 그 다음 스트림이 순차적으로 할당될 수 있다. 이때, 각 스트림에 따른 빔포밍 방식은 사전에 지정되어 있거나, 제3 필드 또는 제4 필드에서 스트림에 따른 빔포밍 방식에 대한 보다 구체적인 정보가 포함될 수도 있다.
각 STA은 AP에 의해 전송되는 UL MU 트리거 프레임(2310)을 기반으로 UL MU 데이터 프레임(UL MU Data frame, 2321, 2322, 2323)을 AP에 전송한다. 여기서, 각 STA은 AP로부터 UL MU 트리거 프레임(2310)을 수신 후 SIFS 이후에 UL MU 데이터 프레임(3121, 3122, 3123)을 AP에 전송할 수 있다.
각 STA은 UL MU 트리거 프레임(3110)의 자원 할당 정보를 기반으로 UL OFDMA 전송을 위한 특정한 주파수 자원 또는 UL MU MIMO 전송을 위한 공간적 스트림을 결정할 수 있다.
구체적으로, UL OFDMA 전송의 경우, 각 STA은 서로 다른 주파수 자원을 통해 동일한 시간 자원 상에서 상향링크 데이터 프레임을 전송할 수 있다.
여기서, STA 1 내지 STA 3 각각은 UL MU 트리거 프레임(3110)에 포함된 STA ID/주소 정보 및 자원 할당 정보를 기반으로 상향링크 데이터 프레임 전송을 위한 서로 다른 주파수 자원을 할당 받을 수 있다. 예를 들어, STA ID/주소 정보가 STA 1 내지 STA 3을 순차적으로 지시하고, 자원 할당 정보가 주파수 자원 1, 주파수 자원 2, 주파수 자원 3을 순차적으로 지시할 수 있다. 이 경우, STA ID/주소 정보를 기반으로 순차적으로 지시된 STA 1 내지 STA 3은 자원 할당 정보를 기반으로 순차적으로 지시된 주파수 자원 1, 주파수 자원 2, 주파수 자원 3을 각각 할당 받을 수 있다. 즉, STA 1은 주파수 자원 1, STA 2는 주파수 자원 2, STA 3은 주파수 자원 3을 통해 상향링크 데이터 프레임(2321, 2322, 2323)을 AP로 전송할 수 있다.
또한, UL MU MIMO 전송의 경우, 각 STA은 복수의 공간적 스트림 중 적어도 하나의 서로 다른 스트림을 통해 동일한 시간 자원 상에서 상향링크 데이터 프레임을 전송할 수 있다.
여기서, STA 1 내지 STA 3 각각은 UL MU 트리거 프레임(2310)에 포함된 STA ID/주소 정보 및 자원 할당 정보 기반으로 상향링크 데이터 프레임 전송을 위한 공간적 스트림을 할당 받을 수 있다. 예를 들어, STA ID/주소 정보가 STA 1 내지 STA 3을 순차적으로 지시하고, 자원 할당 정보가 공간적 스트림 1, 공간적 스트림 2, 공간적 스트림 3을 순차적으로 지시할 수 있다. 이 경우, STA ID/주소 정보를 기반으로 순차적으로 지시된 STA 1 내지 STA 3은 자원 할당 정보 기반으로 순차적으로 지시된 공간적 스트림 1, 공간적 스트림 2, 공간적 스트림 3을 각각 할당 받을 수 있다. 즉, STA 1은 공간적 스트림 1, STA 2는 공간적 스트림 2, STA 3은 공간적 스트림 3을 통해 상향링크 데이터 프레임(3121, 3122, 3123)을 AP로 전송할 수 있다.
상술한 바와 같이, 각 STA에 의해 전송되는 상향링크 데이터 프레임(2321, 2322, 2323)의 전송 지속기간(또는 전송 종료 시점)은 UL MU 트리거 프레임(2310)에 포함된 MAC duration 정보에 의해 결정될 수 있다. 따라서, 각 STA은 비트 패딩(padding) 또는 조각화(fragmentation)을 통해 상향링크 데이터 프레임(2321, 2322, 2323)(또는, 상향링크 데이터 프레임을 전달하는 상향링크 PPDU)의 전송 종료 시점을 UL MU 트리거 프레임(2310)에 포함된 MAC duration 값을 기반으로 동기화할 수 있다.
상향링크 데이터 프레임(2321, 2322, 2323)을 전달하는 PPDU는 L-part 없이도 새로운 구조로도 구성이 가능하다.
또한, UL MU MIMO 전송이거나 20MHz 미만의 서브밴드 형태의 UL OFDMA 전송의 경우, 상향링크 데이터 프레임(3121, 3122, 3123)을 전달하는 PPDU의 L-part는 SFN(Single Frequency Network) 형태(즉, 모든 STA이 동일한 L-part 구성과 내용을 동시에 전송)로 전송될 수 있다. 반면, 20MHz 이상의 서브밴드 형태의 UL OFDMA 전송의 경우, 상향링크 데이터 프레임(3121, 3122, 3123)을 전달하는 PPDU의 L-part는 각 STA이 할당된 대역에서 20MHz 단위로 각각 L-part가 전송될 수 있다.
상술한 바와 같이, UL MU 트리거 프레임(2310)에서 MAC duration 값이 ACK 프레임(2330)을 전송하는 구간까지의 값으로 설정될 수 있으며, L-SIG 보호 구간은 MAC duration 값을 기반으로 정해질 수 있다. 따라서, 레가시 STA은 UL MU 트리거 프레임(2310)의 L-SIG 필드를 통해 ACK 프레임(3130)까지 NAV 셋팅을 할 수 있다.
UL MU 트리거 프레임(2310)의 정보로 상향링크 데이터 프레임을 충분히 구성할 수 있다면, UL MU 트리거 프레임(2310)을 전달하는 PPDU 내 HE-SIG 필드(즉, 데이터 프레임의 구성 방식에 대한 제어 정보를 전송하는 영역)도 필요 없을 수 있다. 예를 들어, HE-SIG-A 필드 및/또는 HE-SIG-B가 전송되지 않을 수 있다. 또한, HE-SIG-A 필드와 HE-SIG-C 필드는 전송되고, HE-SIG-B 필드는 전송되지 않을 수 있다.
AP는 각 STA으로부터 수신한 상향링크 데이터 프레임(2321, 2322, 2323)에 대한 응답으로 ACK 프레임(ACK frame, 2330)(또는 BA 프레임)을 전송할 수 있다. 여기서, AP는 각 STA으로부터 상향링크 데이터 프레임(2321, 2322, 2323)을 수신하고 SIFS 이후에 ACK 프레임(2330)을 각 STA에게 전송할 수 있다.
만일, 기존의 ACK 프레임의 구조를 동일하게 이용한다면, 6 옥텟 크기를 가지는 RA 필드에 UL MU 전송에 참여하는 STA들의 AID(혹은, 부분 AID(Partial AID))를 포함하여 구성할 수 있다.
또는, 새로운 구조의 ACK 프레임을 구성한다면 DL SU 전송 또는 DL MU 전송을 위한 형태로 구성이 가능하다. 즉, DL SU 전송의 경우 ACK 프레임(2330)은 UL MU 전송에 참여하는 각 STA에게 순차적으로 전송될 수 있으며, DL MU 전송의 경우 ACK 프레임(2330)은 각 STA에 할당된 자원(즉, 주파수 혹은 스트림)을 통해 UL MU 전송에 참여하는 각 STA에게 동시에 전송될 수 있다.
AP는 수신에 성공한 UL MU 데이터 프레임에 대한 ACK 프레임(2330)만을 해당 STA에게 전송할 수 있다. 또한, AP는 ACK 프레임(2330)을 통해 수신 성공 여부를 ACK 또는 NACK으로 알려줄 수 있다. 만약 ACK 프레임(2330)이 NACK 정보를 포함한다면, NACK에 대한 이유나 그 후의 절차를 위한 정보(예를 들어, UL MU 스케줄링 정보 등)도 포함할 수 있다.
또는, ACK 프레임(3130)을 전달하는 PPDU는 L-part 없이 새로운 구조로 구성할 수도 있다.
ACK 프레임(2330)은 STA ID 혹은 주소 정보를 포함할 수도 있으나, UL MU 트리거 프레임(2310)에서 지시된 STA의 순서를 동일하게 적용한다면, STA ID 혹은 주소 정보를 생략할 수도 있다.
또한, ACK 프레임(2330)의 TXOP(즉, L-SIG 보호 구간)을 연장하여 다음의 UL MU 스케줄링을 위한 프레임이나, 다음의 UL MU 전송을 위한 보정 정보 등을 포함하는 제어 프레임이 TXOP 내 포함될 수도 있다.
한편, UL MU 전송을 위하여 앞서 도 23에 따른 절차 내 또는 이전에 STA들 간에 동기를 맞추는 등의 보정(adjustment) 과정이 추가될 수도 있다.
이하에서는, 본 발명에서는 단일 사용자(SU: single user) 전송과 다중 사용자(MU: multi user) 전송을 모두 포함한 프레임 구조 구성 방법에 대하여 제안한다.
본 발명에서 다중 사용자(MU) 전송이라 함은 OFDMA 혹은 MU MIMO 등과 같이 동일한 시간영역에 다중 사용자가 동시에 전송하는 모든 경우를 포함한다.
이하, 본 발명의 설명에 있어서, '프레임'은 DL/UL MAC 프레임(즉, MAC 제어 프레임, MAC 관리 프레임 또는 데이터 프레임) 그 자체를 의미할 수도 있으며, 또한 DL/UL MAC 프레임을 나르는 DL/UL (SU/MU) PPDU를 의미할 수도 있다.
모드에 대한 정의
1) DL SU와 DL MU: 하향링크 즉, AP가 STA들에게 신호를 전송할 때 SU와 MU의 차이는 전 대역(예를 들어, PPDU의 대역폭)을 하나의 STA에게 할당해주는지 여러 STA들에게 할당해 주는 지의 차이이다.
그러나, DL은 SU나 MU에 상관없이 AP가 채널을 경쟁(contending)하여 전송하고, 파워(Power)의 제한 문제가 STA보다 덜하므로 별도의 구별이 필요하지 않다. 또한, OFDMA 구조에서 SU를 사용해도 일반적으로 전 대역을 한 STA에게 할당해 준다.
2) UL SU: 상향링크 즉, STA이 AP에게 신호를 전송할 때, AP의 트리거 프레임(trigger frame) 없이 STA이 직접 채널 경쟁(contending)을 통해 매체를 확보하여 전송하는 방법이다. 이하, 본 발명의 설명에 있어서, 트리거 프레임이 존재한다면 상향링크 데이터 프레임을 하나의 STA만 전송하는 경우라도 UL MU라고 지칭한다.
3) UL MU: 상향링크 즉, STA이 AP에게 신호를 전송할 때, AP가 사전에 DL 프레임(예를 들어, 트리거 프레임)을 전송해서 STA이 UL 데이터 프레임을 전송할 채널을 확보해 놓고 그 후 STA이 UL 신호를 전송하는 방법이다. 즉, DL 프레임(예를 들어, 트리거 프레임)에 의해 점유되지 않은 채널에서는 상향링크 자원이 할당되지 않는다.
예를 들어, AP가 트리거 프레임을 전송하고 그 지시대로 STA이 UL 프레임을 전송할 수 있다. 이때, 상술한 바와 같이 하나의 STA이 UL 프레임을 전송하는 경우라도, DL 프레임이 확보해 놓은 채널에서 STA이 UL 프레임을 전송하는 경우는 UL MU라고 지칭한다. 즉, 트리거 프레임이 전송된다면, UL 데이터 프레임을 하나의 STA만 전송을 하여도 UL MU이다.
이하, 본 발명을 설명함에 있어서, HE-SIG1 필드는 HE-SIG-A 필드로 지칭될 수 있으며, 또한 HE-SIG2 필드는 HE-SIG-B 필드로 지칭될 수 있다.
도 24는 본 발명의 실시예에 따른 UL MU 전송을 나타낸다.
도 24에서, AP가 트리거 프레임을 전송하면 MU STS들이 UL 데이터를 전송한다. 그러나 BSS내의 어떤 STA는 UL MU 프레임의 존재를 인식하지 못할 수도 있다.
도 24에서, Other STA1은 BSS내에서 트리거 프레임을 수신하지만, UL MU 프레임은 수신하지 못한다. 따라서 Other STA1은 트리거 프레임 수신 후 EIFS(EIFS= aSIFSTime + DIFS + EstimatedACKTxTime) 후에 UL 데이터를 AP로 전송할 수도 있다. 레거시 801.11 시스템의 경우, AP는 UL MU 프레임 수신 후 ACK 프레임의 전송까지 EIFS안에 완료할 수 있다. 그러나 11ax 시스템의 UL MU 패킷은 길이가 레거시 시스템에 비해 더 길어질 수 있어, Other STA1이 EIFS 후에 전송하는 UL 프레임이 트리거 프레임에 의한 UL MU 데이터 통신과 충돌할 수도 있다.
도 25는 본 발명의 실시예에 따른 UL MU 전송을 나타낸다.
도 25에서, AP가 트리거 프레임을 전송하고, MU STS들이 UL 데이터를 전송한다. 그러나 OBSS의 어떤 STA는 트리거 프레임과 ACK 프레임의 존재를 인식하지 못할 수도 있다.
도 25에서, Othser STA2는 트리거 프레임을 오버히어링하지 못한다. Other STA2는 UL MU 프레임만을 오버히어링할 수 있다. 따라서, Other STA2는 UL MU 프레임 종료로부터 EIFS 후에 자신의 패킷을 전송할 수 있다. 그러나 DL MU ACK 프레임의 길이가 레거시 ACK/BA 프레임의 길이보다 더 길 수 있어, Other STA2가 전송하는 프레임과 MU STA들이 전송하는 ACK 프레임과 충돌이 발생할 수 있다.
도 24 및 도 25에서 나타낸 바와 같은 UL MU 절차(precedure)에서 타 STA 전송 데이터와의 충돌을 방지하기 위한 추가적인 TXOP 프로텍션(protection)이 필요하게 된다. 이하에서는 이러한 UL MU 절차를 위한 TXOP 프로텍션에 대해 설명하도록 한다.
TXOP는 전송 기회(tranmission opportunity)를 의미한다. 다시 말하면, TXOP는 특정 QoS(Quality of Service) STA가 무선 매체(WM) 상애서 프레임 교환 시퀀스를 개시할 권리를 갖는 시간 구간을 나타낸다(TXOP: An interval of time when a particular QoS STA has the right to initiate frame exchange sequence onto the wireless medium). TXOP는 시작 시간 및 최대 듀레이션으로 정의될 수도 있다. TXOP는 STA가 성공적인 채널 컨텐딩(contending)에 의해 획득되거나 HC(Hybrid Coordinator)에 의해 할당될 수 있다. TXOP 프로텍션은 이러한 TXOP를 보호하기 위해 STA의 프레임 송수신 구간 동안 타 STA들의 간섭을 방지하는 것을 의미한다. 예를 들면, 특정 STA는 자신이 데이터를 송수신하는 구간 동안 송수신 대상인 STA 외의 다른 STA들을 NAV 세팅함으로써, 자신의 TXOP를 보호할 수 있다. 이하에서, TXOP 관련 프레임의 길이는 시간 도메인의 길이를 의미할 수 있다.
TXOP 프로텍션을 위해 상술한 L-SIG TXOP 프로텍션을 적용할 수 있다. L-SIG TXOP 프로텍션은 PPDU 길이를 나타내거나, 802.11n 시스템에서 TXOP 듀레이션(지속기간, duration)을 나타내는데 사용된다. 트리거 프레임 및/또는 UL MU 프레임의 L-SIG 길이값을 TXOP 길이를 설정하는데 사용할 수 있다. 트리거 프레임 및/또는 UL MU 프레임의 L-SIG의 길이 필드 값이 TXOP 길이로 설정되면, 레거시 STA 및 11ax STA 모두 이 듀레이션을 PPDU 길이 또는 TXOP 길이로 해석하고, L-SIG의 길이 필드 값만큼 NAV를 세팅할 수 있다.
다만, L-SIG TXOP 프로텍션을 사용하는 경우 레거시 STA은 L-SIG 길이로 NAV 세팅을 하는 것이 아니라 이 L-SIG 길이를 PPDU 길이로 인식할 수 있다. 따라서 송수신 기기의 구현에 따라서 레거시 STA는 PPDU 길이 동안 데이터가 검출되지 않으면 유휴(idle) 상태로 천이하여 다시 매체 접속을 시도할 수도 있다. 또한 L-SIG의 자원은 매우 한정되어 시그널링할 수 있는 값이 한정되는 문제점이 있다. L-SIG는 오직 1비트의 패리티 비트가 포함되므로, 데이터의 신뢰도가 떨어지는 문제점도 있다. 마지막으로 아웃도어 STA들은 L-SIG를 잘 디코딩하지 못할 수도 있다. 따라서, 이하에서는 L-SIG 필드에 포함된 길이 정보를 사용하지 않는 TXOP 프로텍션 방법에 대해 설명한다.
트리거 프레임을 사용하여 TXOP 프로텍션을 수행할 수 있다. 트리거 프레임은 레거시 PPDU 포맷을 사용하거나, 11ax PPDU 포맷을 사용할 수 있다.
트리거 프레임이 레거시 PPDU 포맷인 경우, 트리거 프레임을 수신한 레거시 STA은 MAC 헤더에 포함된 듀레이션 필드를 사용하여 TXOP를 설정할 수 있다. 트리거 프레임이 11ax PPDU 포맷인 경우, 레거시 STA은 TXOP를 설정할 수 없다.
트리거 프레임이 레거시 PPDU인 경우, 트리거 프레임을 수신한 11ax STA은 MAC 헤더에 포함된 듀레이션 필드를 사용하여 TXOP를 설정할 수 있다. 트리거 프레임이 11ax PPDU 포맷인 경우, 11ax STA은 MAC 헤더에 포함된 듀레이션 필드를 사용하여 TXOP를 설정할 수 있다. 그러나 트리거 프레임의 SIG B 필드가 STA 특정 정보를 포함하는 경우 다른 STA들은 MAC 헤더를 디코딩하지 못할 수도 있다. 특히, 도 25에서 OBSS의 STA가 다른 BSS의 신호 프레임의 MAC 헤더까지 모두 디코딩을 하여 TXOP를 설정하는 것은 시스템 효율을 저하시킬 수 있다. 따라서 본 발명에서는 HE-SIG 필드를 사용하여 TXOP를 설정하는 방법을 제안한다.
본 발명은 길이(length) 필드를 사용하는 UL MU 절차의 TXOP 프로텍션 방법을 제안한다. 본 명세서에서 길이(lenght)는 지속기간(Duration) 또는 듀레이션이라고 지칭할 수도 있다. 길이/듀레이션 정보는 마이크로초(μs) 단위 또는 심볼 단위로 표현될 수 있으며, 비트 또는 옥텟(바이트) 단위로 시그널링될 수 있다. 본 발명의 실시에에서, HE-SIG-A 필드 및 HE-SIG-B 필드의 위치는 변경될 수 있고, HE-SIG-C 필드가 추가될 수도 있다. 편의상 HE-SIG-A/B/C 필드들을 나누어 설명하였지만, HE-SIG-A 필드에 대한 설명들의 전부 또는 일부가 HE-SIG-B 필드에 적용될 수도 있다. HE-SIG-B 필드가 연속하여 2개 존재하는 경우 이들을 HE-SIG-B 필드 및 HE-SIG-C 필드라고 지칭할 수도 있다.
도 26은 본 발명의 일 실시예에 따른 HE 프레임을 나타낸다.
도 26에서, HE PPDU는 레거시 프리임블(L-STF, L-LTF, L-SIG), HE 프리앰블(HE-SIG-A, HE-SIG-B, HE-STF 및 HE-LTF) 및 페이로드를 포함한다. 도 26에서 PPDU는 페이로드로서 MPDU를 포함하고, MPDU는 MAC 헤더, 페이로드 및 FCS(Frame Check Sequence)를 더 포함한다.
L-SIG 필드는 길이 필드를 포함할 수 있다. L-SIG 필드의 길이 필드가 TXOP 프로텍션을 위해 사용되는 경우, 이 길이 필드는 현재 프레임에 연속하여 나타내는 프레임을 포함하는 TXOP 구간(1)에 대한 NAV 세팅에 사용될 수 있다. 도 26에서, 현 프레임에 연속하여 송수신되는 프레임은 ACK 프레임으로 도시하였다. 다만, 현 프레임에 연속하여 송수신되는 프레임은 ACK 프레임 또는 BA 프레임이 될 수 있다. 또한, 현 프레임이 RTS 프레임이면 후속하는 프레임은 CTS 프레임이 될 수도 있다. 즉 길이 필드는 현 프레임을 포함하는 송수신 절차를 완결하는 듀레이션(1)을 지시할 수 있다. L-SIG 필드의 길이 필드가 TXOP 프로텍션을 위해 사용되지 않는 경우, 길이 필드는 현재 프레임의 길이를 지시할 수도 있다.
HE-SIG-A 필드는 HE-SIG-B 필드의 길이(2)를 지시하는 HE-SIG-B 길이 필드를 포함할 수 있다.
HE-SIG-A 필드는 현재 프레임의 길이(3)를 지시하는 길이 필드를 포함할 수 있다. 길이 필드는 HE-SIG-B 필드에 포함될 수도 있다. L-SIG 필드의 길이 필드가 TXOP 프로텍션용으로 사용되지 않는 경우 HE-SIG 필드의 길이 필드는 생략될 수도 있다.
MAC 헤더에 길이 필드가 포함될 수 있다. MAC 헤더의 길이 필드는 TXOP 프로텍션 용으로 사용될 수 있다. MAC 헤더의 길이 필드는 남은 프레임의 길이 및 연속하여 송수신되는 프레임의 길이를 포함하는 길이(4)를 지시하며, NAV 세팅에 사용될 수 있다.
도 27은 본 발명의 실시예에 따른 UL MU 절차 및 TXOP 프로텍션을 나타낸다.
도 27은 AP STA이 트리거 프레임을 전송하고, 트리거 프레임에 따라서 복수의 STA가 UL MU 프레임을 전송하며, AP STA이 ACK 프레임을 전송하는 UL MU 절차를 나타낸다. 도 27은 UL MU 프레임을 전송하는 복수의 STA들 중 하나의 STA에 대한 동작을 나타낸다. 도 27은 트리거 프레임이 PHY 구조로서 전송되는 실시예를 나타내지만, 도 27의 프레임은 MPDU를 포함하는 MAC 프레임 구조가 될 수도 있다.
트리거 프레임의 L-SIG 필드는 길이 필드를 포함할 수 있다. L-SIG 필드의 길이 필드가 TXOP 프로텍션을 위해 사용되는 경우, 이 길이 필드는 UL MU 절차를 포함하는 길이(1)에 대한 NAV 세팅에 사용될 수 있다.
트리거 프레임의 HE-SIG-A 필드는 HE-SIG-B 필드의 길이(2)를 지시하는 HE-SIG-B 길이 필드를 포함할 수 있다. 트리거 프레임의 HE-SIG-B 필드는 UL MU 전송에 대한 정보를 포함한다. 실시예로서, HE-SIG-B 필드는 DL 용으로 사용하고, HE-SIG-B 필드에 추가로 HE-SIG-C 필드가 포함될 수도 있으며, 이러한 경우 HE-SIG-B 필드가 HE-SIG-C 필드에 대한 길이 필드를 포함할 수도 있다.
트리거 프레임의 HE-SIG-A 필드는 TXOP 프로텍션을 위한 길이(3)를 지시하는 필드를 포함할 수 있다. TXOP 프로텍션을 위한 길이 필드를 TXOP 보호 필드 또는 TXOP 듀레이션(구간) 필드라고 지칭할 수도 있다. TXOP 듀레이션 필드는 STA의 프레임 교환 절차에 대한 남은 시간/구간 길이를 지시할 수 있다. TXOP 듀레이션 필드가 나타내는 TXOP 구간은 후속하는 프레임들의 길이를 포함할 수 있다. 도 27에서와 같이, TXOP 구간은 UL MU 프레임의 길이 및 ACK 프레임의 길이를 포함할 수 있다. 다른 실시예로서, TXOP 구간은 TXOP 듀레이션 필드를 포함하는 신호 필드 이후의 남은 신호 프레임 부분을 더 포함할 수도 있다. TXOP 듀레이션 필드는 L-SIG 필드의 디코딩에 실패한 아웃도어/약한 채널의 11ax STA에 의해 사용될 수도 있다. 다만, TXOP 듀레이션 필드는 모든 11ax STA들에 의해 사용될 수도 있다. TXOP 듀레이션 필드가 나타내는 TXOP 듀레이션은 HE-SIG-A 필드 끝에서 ACK 프레임의 끝까지의 길이를 나타낼 수도 있다. 트리거 프레임의 TXOP 듀레이션은 트리거 프레임과 UL MU 프레임 사이의 프레임간격(IFS) 시간 및 UL MU 프레임과 ACK 프레임 사이의 프레임 시간 간격을 더 포함할 수도 있다.
트리거 프레임은 MAC 구조로 전송될 수도 있으며, 이 경우 11ax 프레임의 길이 필드의 해석을 사용할 수 있다. 다만 TXOP 프로텍션 구간은 UL MU 프레임과 ACK 프레임을 구간을 포함하는 UL MU 절차 전체이다. 이 경우 L-SIG 길이 필드는 현재 프레임의 길이를, MAC 헤더의 길이 필드는 TXOP 길이를 각각 지시할 수도 있다.
도 28은 본 발명의 실시예에 따른 UL MU 절차 및 TXOP 프로텍션으로서, 특히 UL MU 절차가 DL MU 프레임과 함께 전송되는 캐스케이드(cascade) 구조의 실시예를 나타낸다.
도 28에서, 길이들((1), (2), (3), (5))에 대한 필드들에 대한 설명은 도 26 및 도 27에서 상술한 바와 같다. 다만, 도 28의 실시예에서는 2개의 SIG-B 필드가 포함된다. 2개의 HE-SIG-B 필드들은 별도로 코딩된 2개의 HS-SIG-B 필드일 수도 있다. 즉 2개의 HE-SIG-B 필드 각각은 DL의 정보 및 UL의 정보를 포함할 수 있다. 다만 실시예로서, DL의 정보 및 UL의 정보를 포함하는 하나의 HE-SIG-B 필드가 포함될 수도 있다. 이러한 경우 HE-SIG-B 필드가 길어져서 성능 열화를 발생시킬 수 있다. 이하에서는 2개의 HE-SIG-B 필드를 포함하는 실시예에 대해 설명한다.
프레임이 2개의 HE-SIG-B 필드를 포함하는 경우, 일반 11ax 프레임은 하나의 HE-SIG-B 필드를, 캐스케이드 프레임은 두개의 HE-SIG-B 필드를 포함한다는 지시자(indication)가 필요하다. 프레임이 하나의 HE-SIG-B 필드를 포함하는 경우에도 하나의 HE-SIG-B 필드가 DL 정보를 나타내는지 또는 UL 정보를 나타내는지에 대한 지시자가 필요할 수 있다. 추가로, MAC 프레임인지 또는 PHY 프레임인지를 지시하는 지시자가 필요할 수도 있다.
따라서 본 발명의 실시예에 따른 프레임은 HE-SIG-B에 1비트 지시자를 추가하여 프레임이 일반적인 11ax MAC 프레임인지 여부를 지시할 수 있다. 그리고 캐스케이드 포맷인 경우에도 트리거 정보를 위한 HE-SIG-B 필드가 항상 11ax MAC 프레임 앞에 포함될 수 있다. 이러한 프레임을 수신한 STA는 HE-SIG-B 필드의 인디케이션 비트 값에 따라 수신 프레임을 처리할 수 있다.
실시예로서, 수신 STA는 HE-SIG-B 필드의 지시자 1비트의 값이 0x0이면 프레임을 도 26의 프레임으로서 인식하여 디코딩하고, 1비트의 값이 0x1이면 HE-SIG-B 필드를 트리거 정보로 인식하여 UL 전송을 위한 정보를 획득한 후, 추가적인 HE-SIG-B 필드가 있는지 여부를 확인할 수 있다. 트리거 정보로 해석되는 HE-SIG-B 필드는 추가적인 HE-SIG-B 필드에 대한 길이 필드를 포함할 수 있다. 이러한 길이 필드의 값이 0이면 수신 STA는 해당 프레임을 추가적인 HE-SIG-B가 없는 트리거 PHY 프레임으로 인식할 수도 있다. 즉 수신 STA은 이 길이 값이 0이면 도 27의 실시예와 같이 프레임을 해석하고, 이 길이 값이 1이면 도 28의 실시예와 같이 프레임을 해석할 수 있다.
실시예로서, HE-SIG-B 필드는 두개 이상이 될 수도 있다. 예를 들면, DL 용, UL 버퍼 상태/채널 상태 리포트 용, UL 데이터 전송용을 3개의 HE-SIG-B 필드가 사용될 수도 있다. 연속된 UL 전송을 지시하기 위해, UL 프레임을 수신한 후 전송되는 AP의 ACK/BA 프레임이 다음 UL 전송을 지시하는 폴링 프레임의 역할을 수행할 수도 있다. 이러한 경우, ACK/BA 프레임 대신 ACK/BA+폴링 프레임이 전송될 수도 있다. 이 경우 각각의 목적에 따라서 HE-SIG-B 필드를 구성하는 컨텐츠가 달라질 수 있다. 예를 들면, (3)의 길이 정보가 HE-SIG-B 필드로 전송되면 UL 컨트롤 용으로 사용되는 HE-SIG-B 필드에 (3)의 길이 필드는 포함되지 않고 DL 정보 전송용으로 사용되는 HE-SIG-B 필드에 (3)의 길이 필드가 포함될 수 있다.
다른 실시예로서, HE-SIG-A 필드에서 HE-SIG-B 필드의 개수, MCS 정보, 길이 정보 등을 모두 시그널링할 수도 있다. 또는 HE-SIG-A 필드에서는 제일 선행하는 HE-SIG-B 필드의 MCS 정보 및 길이 정보 등을 나타내고, 선행 HE-SIG-B 필드에서 다음 HE-SIG-B 필드에 대한 MCS 정보 및 길이 정보 등을 나타낼 수도 있다. 실시예로서, HE-SIG-B 필드들의 순서는 더 로버스트한 MCS를 갖는 HE-SIG-B 필드가 선행하여 후행 HE-SIG-B 필드에 대한 정보를 포함하도록 구성될 수 있다.
도 29는 본 발명의 실시예에 따른 UL MU 절차 및 TXOP 프로텍션으로서, UL MU 절차가 DL MU 프레임과 함께 전송되는 캐스케이드(cascade) 구조의 실시예를 나타낸다. 특히, 도 29는 트리거 정보가 MAC 프레임으로 전송되는 경우 캐스케이드 구조의 실시예를 나타낸다.
도 29에서와 같이, DL 프레임은 트리거 정보를 전달(carry)하는 하나의 MPDU(MAC 헤더+페이로드+FCS)를 포함한다. 트리거 정보가 포함되는 MPDU는 A-MPDU 중 하나의 MPDU가 되거나, MU MIMO 또는 MU OFDMA 중 하나의 MPDU가 될 수도 있다.
도 29의 실시예에서도, TXOP 듀레이션 필드가 HE-SIG-A 필드에 포함될 수 있다. 다만, PPDU에 트리거 정보 또는 트리거 정보에 해당하는 MAC 프레임이 포함되었다는 정보가 지시되어야 한다. 예를 들면, HE-SIG-B 필드에 브로드캐스트 AID를 포함시키고 수신 STA이 모든 MAC 헤더를 읽어보도록 지시할 수 있다. 또는 트리거 정보를 싣는 MPDU의 위치를 고정함으로써, 수신 STA은 해당 위치만 확인하여 트리거 정보의 포함 여부를 파악할 수도 있다.
도 30은 본 발명의 실시예에 따른 UL MU 프레임 및 TXOP 프로텍션을 나타낸다.
도 30 좌측의 UL MU 프레임은 20MHz 대역 중 상위 10MHz 영역에 데이터를 전송하는 STA의 UL MU 프레임 구조를 나타낸다. 도 30의 UL 프레임 구조에서, HE-SIG-B 필드 및 HE-SIG-C 필드는 생략될 수도 있다.
실시예로서, L-SIG 필드에 포함된 길이 필드는 UL 프레임에 이어 송수신되는 ACK 프레임까지의 TXOP 길이(1)를 나타낼 수 있다.
HE-SIG-A 필드는 HE-SIG-B 필드의 길이(2-1)를 나타내는 길이 필드를 포함할 수 있다. HE-SIG-C 필드가 존재하면 HE-SIG-C 필드의 길이(2-2)를 나타낼 수도 있다. 프레임에 HE-SIG-B 필드 및 HE-SIG-C 필드가 모두 포함되는 경우, HE-SIG-A 필드에서는 HE-SIG-B 필드의 길이(2-1)를 시그널링하고, HE-SIG-B 필드가 HE-SIG-C 필드의 길이(2-2)를 시그널링할 수도 있다.
HE-SIG-A 필드의 길이 필드는 현재 프레임(PPDU)의 길이(3)를 나타낼 수도 있다. 다만, 실시예로서, UL MU 프레임의 길이는 트리거 프레임에서 이미 지시되었을 수도 있다. 이러한 경우, HE-SIG-A 필드의 길이 필드는 TXOP 듀레이션 필드로서 전체 TXOP(4)의 길이를 지시할 수 있다. 이를 통해 트리거 프레임을 인식하지 못한 다른 STA들도 HE-SIG-A 필드에 포함된 TXOP 듀레이션 필드를 디코딩하여 NAV를 세팅할 수 있고, 따라서 UL MU 데이터 전송 STA의 TXOP가 보호될 수 있다.
TXOP 듀레이션 필드에 대한 설명은 도 27에서 설명한 바와 같다. 다만 UL MU 프레임의 TXOP 구간 즉 프레임 교환 절차에 대한 남은 시간/구간 길이는 후속 프레임의 길이 즉 ACK 프레임의 길이를 포함할 수 있다. 즉, UL MU 프레임의 TXOP 구간 필드는 ACK 프레임을 포함하는 TXOP 길이를 지시할 수 있다. 그리고 도시한 바와 같이 UL MU 프레임의 TXOP 구간 필드는 UL MU 프레임과 ACK 프레임 사이의 프레임간격(IFS) 시간을 더 포함하는 TXOP 구간을 지시할 수도 있다. 다른 실시예로서, UL MU 프레임에 포함된 TXOP 구간 필드가 지시하는 TXOP 구간은 TXOP 듀레이션 필드를 포함하는 신호 필드 이후의 남은 신호 프레임 부분을 더 포함할 수도 있다.
MAC 헤더의 길이 정보는 TXOP 길이를 지시할 수 있다. 다만 MU 프레임 전송 시 다른 STA 들은 이 MU 프레임의 MAC 헤더까지 디코딩할 필요는 없다. 따라서 MAC 헤더의 길이 정보를 NAV 세팅을 위해 사용하는 대신, 다른 용도로 사용할 수도 있다. 예를 들면, MAC 헤더의 길이 정보가 패딩을 뺀 실제 데이터의 길이를 지시할 수도 있다.
후속 ACK 프레임은 레거시 ACK/BA 프레임과 달리 MU AKC 정보를 전송하므로 길이가 더 길어질 수 있다. 따라서 레거시 STA 및 11ax STA가 NAV 세팅을 할 수 있도록 TXOP 듀레이션 필드를 설정해야 한다. UL MU 절차의 마지막 프레임인 ACK 프레임의 길이 필드가 나타내는 TXOP 듀레이션 값은 11ax 프레임 및 레거시 프레임 모두 자신의 프레임의 남은 길이와 동일하다. 따라서 L-SIG 길이, HE-SIG-A 길이 및 MAC 헤더 모두 자신의 프레임 마지막까지의 길이를 지시하도록 설정될 수 있다.일 실시예로서, ACK 프레임의 TXOP 듀레이션은 0으로 세팅될 수도 있다.
도 31은 본 발명의 일 실시예에 따른 STA 장치를 나타낸다.
도 31에서, STA 장치는 메모리(31010), 프로세서(31020) 및 RF 유닛(31030)을 포함할 수 있다. 그리고 상술한 바와 같이 STA 장치는 HE STA 장치로서, AP 또는 non-AP STA가 될 수 있다.
RF 유닛(31030)은 프로세서(31020)와 연결되어 무선 신호를 송신/수신할 수 있다. RF 유닛(31030)은 프로세서로부터 수신된 데이터를 송수신 대역으로 업컨버팅하여 신호를 전송할 수 있다.
프로세서(31020)는 RF 유닛(31030)과 연결되어 IEEE 802.11 시스템에 따른 물리 계층 및/또는 MAC 계층을 구현할 수 있다. 프로세서(31030)는 상술한 도면 및 설명에 따른 본 발명의 다양한 실시예에 따른 동작을 수행하도록 구성될 수 있다. 또한, 상술한 본 발명의 다양한 실시예에 따른 STA의 동작을 구현하는 모듈이 메모리(31010)에 저장되고, 프로세서(31020)에 의하여 실행될 수 있다.
메모리(31010)는 프로세서(31020)와 연결되어, 프로세서(31020)를 구동하기 위한 다양한 정보를 저장한다. 메모리(31010)는 프로세서(31020)의 내부에 포함되거나 또는 프로세서(31020)의 외부에 설치되어 프로세서(31020)와 공지의 수단에 의해 연결될 수 있다.
또한, STA 장치는 한 개의 안테나(single antenna) 또는 다중 안테나(multiple antenna)를 포함할 수 있다. 도 31의 STA 장치의 구체적인 구성은, 전술한 본 발명의 다양한 실시예에서 설명한 사항들이 독립적으로 적용되거나 또는 2 이상의 실시예가 동시에 적용되도록 구현될 수 있다.
도 31에서 나타낸 STA 장치의 수신 오퍼레이팅 모드 정보를 포함하는 데이터 송수신 방법에 대해서는 이하의 순서도와 함께 다시 설명하도록 한다.
도 32는 본 발명의 실시예에 따른 UL MU 전송/수신 방법을 나타낸다.
도 32는 AP STA와 UL MU 전송을 수행하는 복수의 MU STA들과의 통신을 나타낸다. 다만, 복수의 MU STA들 중 하나의 STA의 동작을 기준으로 설명한다.
도 32에서, STA는 AP STA로부터 트리거 프레임을 수신한다(S32010). 다시 말하면 AP STA는 MU STA들로 트리거 프레임을 전송한다(S32010). 트리거 프레임은 OFDMA 전송을 위한 리소스 유닛 할당 정보를 포함할 수 있다. 리소스 유닛은 실시예로서 26톤을 가장 작은 단위 유닛으로 할당될 수 있다.
STA는 트리거 프레임에 기초하여 AP STA로 UL MU PPDU를 전송할 수 있다(S32020). 다시 말하면, AP STA는 트리거 프레임에 기초한 UL MU PPDU를 수신할 수 있다(S32020).
STA는 UL MU PPDU에 대한 ACK 프레임을 수신할 수 있다(S32030). 다시 말하면, AP STA는 수신한 UL MU PPDU에 대한 ACK 프레임을 전송할 수 있다(S32030).
트리거 프레임은 도 27과 같이 레거시 프리앰블 및 HE 프리앰블을 포함할 수 있으며, HE 프리앰블은 HE-SIG-A 필드 및 HE-SIG-B 필드를 포함할 수 있다. 레거시 프리앰블은 L-STF, L-LTF, L-SIG 필드를 포함할 수 있다.
트리거 프레임의 HE-SIG-A 필드는 TXOP 듀레이션을 나타내는 TXOP 듀레이션 정보/필드를 포함할 수 있다. TXOP 듀레이션은 상기 STA의 프레임 교환 시퀀스에 대한 시간 인터벌이다. STA의 프레임 교환 시퀀스는 트리거 프레임, UL MU PPDU 및 ACK 프레임의 송수신을 나타낼 수 있다.
UL MU PPDU는 레거시 프리앰블 및 HE 프리앰블을 포함하며, HE 프리앰블은 HE-SIG-A 필드를 포함할 수 있다. UL MU PPDU의 HE-SIG-A 필드는 TXOP 듀레이션 정보/필드를 포함할 수 있다. TXOP 듀레이션의 정의 및 용도는 트리거 프레임의 TXOP 듀레이션과 같다. 다만 UL MU PPDU의 TXOP 듀레이션은 UL MU PPDU이후 나머지의 TXOP 길이로서, ACK 프레임의 길이를 포함한다. UL MU PPDU를 전송하는 STA 입장에서 보호되어야 하는 TXOP의 대상은 UL MU PPDU이후의 ACK 프레임 전송에 대한 구간이기 때문이다.
트리거 프레임의 TXOP 듀레이션 필드는 트리거 프레임 후로부터 ACK 프레임의 끝까지의 시간 길이를 나타낼 수 있다. 따라서 트리거 프레임의 TXOP 듀레이션은 트리거 프레임 수신과 UL MU PPDU 전송 사이의 프레임간격(IFS) 시간, UL MU PPDU의 길이, UL MU PPDU 전송 후 ACK 프레임 수신 사이의 프레임간격(IFS) 시간 및 ACK 프레임의 길이를 포함할 수 있다.
다른 실시예로서, 트리거 프레임의 TXOP 듀레이션 필드는 트리거 프레임의 HE-SIG-A 필드의 끝으로부터 ACK 프레임의 끝까지의 시간 길이를 나타낼 수 있다. 따라서 트리거 프레임의 TXOP 듀레이션은 트리거 프레임의 HE-SIG-A 필드 후 나머지 부분의 길이, 트리거 프레임 수신과 UL MU PPDU 전송 사이의 프레임간격(IFS) 시간, UL MU PPDU의 길이, UL MU PPDU 전송 후 ACK 프레임 수신 사이의 프레임간격(IFS) 시간 및 ACK 프레임의 길이를 포함할 수 있다.
UL MU PPDU 프레임의 TXOP 듀레이션 필드는 UL MU PPDU 후로부터 ACK 프레임의 끝까지의 시간 길이를 나타낼 수 있다. 따라서 UL MU PPDU의 TXOP 듀레이션은 UL MU PPDU 전송과 ACK 프레임 수신 사이의 프레임간격(IFS) 시간 및 ACK 프레임의 길이를 포함할 수 있다.
다른 실시예로서, UL MU PPDU 프레임의 TXOP 듀레이션 필드는 UL MU PPDU의 HE-SIG-A 필드의 끝으로부터 ACK 프레임의 끝까지의 시간 길이를 나타낼 수 있다. 따라서 UL MU PPDU의 TXOP 듀레이션은 UL MU PPDU의 HE-SIG-A 필드 후 나머지 부분의 길이, UL MU PPDU 전송과 ACK 프레임 수신 사이의 프레임간격(IFS) 시간 및 ACK 프레임의 길이를 포함할 수 있다.
UL MU PPDU는 HE-STF, HE-LTF 및 데이터 필드를 포함할 수 있다. UL MU PPDU의 HE-STF, HE-LTF 및 데이터 필드는 해당 STA에 할당된 리소스 유닛의 대역폭을 통해 전송될 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리는 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명의 무선 통신 시스템에서 상향링크 단일 사용자 또는 다중 사용자 전송 방안은 IEEE 802.11 시스템에 적용되는 예를 중심으로 설명하였으나, IEEE 802.11 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (15)

  1. WLAN(Wireless LAN) 시스템에서 STA(Station)의 상향링크(UL: uplink) 다중 사용자(MU: Multi-User) 전송 방법에 있어서,
    OFDMA(orthogonal frequency division multiple access) 전송을 위한 리소스 유닛 할당 정보를 포함하는 트리거 프레임(Trigger frame)을 수신하는 단계;
    상기 트리거 프레임에 기초하여 UL MU PPDU(Physical Protocol Data Unit)를 전송하는 단계; 및
    상기 UL MU PPDU에 대한 ACK 프레임을 수신하는 단계를 포함하고,
    상기 트리거 프레임은 제 1 레거시 프리앰블 및 제 1 HE(High Effiency) 프리앰블을 포함하고, 상기 제 1 HE 프리앰블은 제 1 HE-SIG-A 필드 및 제 1 HE-SIG-B 필드를 포함하며,
    상기 제 1 HE-SIG-A 필드는 제 1 TXOP(Transmissio Opportunity) 듀레이션을 나타내는 제 1 TXOP 듀레이션 정보를 포함하고, 상기 제 1 TXOP 듀레이션은 상기 STA의 프레임 교환 시퀀스에 대한 남은 시간 인터벌인, 상향링크 다중 사용자 전송 방법.
  2. 제 1 항에 있어서,
    상기 제 1 TXOP 듀레이션은 상기 UL MU PPDU의 시간 길이(length in time) 및 상기 ACK 프레임의 시간 길이를 포함하는, 상향링크 다중 사용자 전송 방법.
  3. 제 2 항에 있어서,
    상기 UL MU PPDU는 제 2 레거시 프리앰블 및 제 2 HE 프리앰블을 포함하며, 상기 제 2 HE 프리앰블은 제 2 HE-SIG-A 필드를 포함하고,
    상기 제 2 HE-SIG-A 필드는 제 2 TXOP 듀레이션을 나타내는 제 2 TXOP 듀레이션 정보를 포함하고, 상기 제 2 TXOP 듀레이션은 상기 STA의 프레임 교환 시퀀스에 대한 남은 시간 인터벌인, 상향링크 다중 사용자 전송 방법.
  4. 제 3 항에 있어서,
    상기 제 2 TXOP 듀레이션은 상기 ACK 프레임의 시간 길이를 포함하는, 상향링크 다중 사용자 전송 방법.
  5. 제 2 항에 있어서,
    상기 제 1 TXOP 듀레이션은 상기 트리거 프레임 및 상기 UL MU 프레임간의 IFS(Inter Frame Space) 시간 및 상기 UL MU 프레임 및 상기 ACK 프레임 간의 IFS 시간을 더 포함하는, 상향링크 다중 사용자 전송 방법.
  6. 제 4 항에 있어서,
    상기 제 2 TXOP 듀레이션은 상기 UL MU PPDU 및 상기 ACK 프레임간의 IFS(Inter Frame Space) 시간을 더 포함하는, 상향링크 다중 사용자 전송 방법.
  7. 제 3 항에 있어서,
    상기 UL MU PPDU의 상기 제 2 HE 프리앰블은 HE-STF(High Efficiency-Short Training Field), HE-LTF(HE-Long Training Field) 및 데이터 필드를 포함하고,
    상기 HE-STF, 상기 HE-LTF 및 상기 데이터 필드는 할당된 리소스 유닛의 대역폭을 통해 전송되는, 상향링크 다중 사용자 전송 방법.
  8. WLAN(Wireless LAN) 시스템의 STA(Station) 장치에 있어서,
    무선 신호를 송수신하기 위한 RF(Radio Frequency) 유닛; 및
    상기 RF 유닛을 제어하는 프로세서를 포함하고,
    상기 STA 장치는,
    OFDMA(orthogonal frequency division multiple access) 전송을 위한 리소스 유닛 할당 정보를 포함하는 트리거 프레임(Trigger frame)을 수신하고,
    상기 트리거 프레임에 기초하여 UL MU PPDU(Physical Protocol Data Unit)를 전송하고, 및
    상기 UL MU PPDU에 대한 ACK 프레임을 수신하며,
    상기 트리거 프레임은 제 1 레거시 프리앰블 및 제 1 HE(High Effiency) 프리앰블을 포함하고, 상기 제 1 HE 프리앰블은 제 1 HE-SIG-A 필드 및 제 1 HE-SIG-B 필드를 포함하며,
    상기 제 1 HE-SIG-A 필드는 제 1 TXOP(Transmissio Opportunity) 듀레이션을 나타내는 제 1 TXOP 듀레이션 정보를 포함하고, 상기 제 1 TXOP 듀레이션은 상기 STA 장치의 프레임 교환 시퀀스에 대한 남은 시간 인터벌인, STA 장치.
  9. 제 8 항에 있어서,
    상기 제 1 TXOP 듀레이션은 상기 UL MU PPDU의 시간 길이(length in time) 및 상기 ACK 프레임의 시간 길이를 포함하는, STA 장치.
  10. 제 9 항에 있어서,
    상기 UL MU PPDU는 제 2 레거시 프리앰블 및 제 2 HE 프리앰블을 포함하며, 상기 제 2 HE 프리앰블은 제 2 HE-SIG-A 필드를 포함하고,
    상기 제 2 HE-SIG-A 필드는 제 2 TXOP 듀레이션을 나타내는 제 2 TXOP 듀레이션 정보를 포함하고, 상기 제 2 TXOP 듀레이션은 상기 STA의 프레임 교환 시퀀스에 대한 남은 시간 인터벌인, STA 장치.
  11. 제 10 항에 있어서,
    상기 제 2 TXOP 듀레이션은 상기 ACK 프레임의 시간 길이를 포함하는, STA 장치.
  12. 제 9 항에 있어서,
    상기 제 1 TXOP 듀레이션은 상기 트리거 프레임 및 상기 UL MU 프레임간의 IFS(Inter Frame Space) 시간 및 상기 UL MU 프레임 및 상기 ACK 프레임 간의 IFS 시간을 더 포함하는, STA 장치.
  13. 제 11 항에 있어서,
    상기 제 2 TXOP 듀레이션은 상기 UL MU PPDU 및 상기 ACK 프레임간의 IFS(Inter Frame Space) 시간을 더 포함하는, STA 장치.
  14. 제 10 항에 있어서,
    상기 UL MU PPDU의 상기 제 2 HE 프리앰블은 HE-STF(High Efficiency-Short Training Field), HE-LTF(HE-Long Training Field) 및 데이터 필드를 포함하고,
    상기 HE-STF, 상기 HE-LTF 및 상기 데이터 필드는 할당된 리소스 유닛의 대역폭을 통해 전송되는, STA 장치.
  15. WLAN(Wireless LAN) 시스템에서 AP(Access Point)-STA(Station)의 상향링크(UL: uplink) 다중 사용자(MU: Multi-User) 수신 방법에 있어서,
    OFDMA(orthogonal frequency division multiple access) 전송을 위한 리소스 유닛 할당 정보를 포함하는 트리거 프레임(Trigger frame)을 전송하는 단계;
    상기 트리거 프레임에 기초하여 UL MU PPDU(Physical Protocol Data Unit)를 수신하는 단계; 및
    상기 UL MU PPDU에 대한 ACK 프레임을 전송하는 단계를 포함하고,
    상기 트리거 프레임은 제 1 레거시 프리앰블 및 제 1 HE(High Effiency) 프리앰블을 포함하고, 상기 제 1 HE 프리앰블은 제 1 HE-SIG-A 필드 및 제 1 HE-SIG-B 필드를 포함하며,
    상기 제 1 HE-SIG-A 필드는 제 1 TXOP(Transmissio Opportunity) 듀레이션을 나타내는 제 1 TXOP 듀레이션 정보를 포함하고, 상기 제 1 TXOP 듀레이션은 상기 STA의 프레임 교환 시퀀스에 대한 남은 시간 인터벌인, 상향링크 다중 사용자 수신 방법.
PCT/KR2015/012917 2014-12-05 2015-11-30 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치 WO2016089059A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19190185.9A EP3588888B1 (en) 2014-12-05 2015-11-30 Data transmission method in wireless communication system and device therefor
US15/527,692 US10405338B2 (en) 2014-12-05 2015-11-30 Data transmission method in wireless communication system and device therefor
EP15864893.1A EP3229434B1 (en) 2014-12-05 2015-11-30 Data transmission method in wireless communication system and device therefor
US16/508,237 US10986660B2 (en) 2014-12-05 2019-07-10 Data transmission method in wireless communication system and device therefor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201462087809P 2014-12-05 2014-12-05
US62/087,809 2014-12-05
US201462089243P 2014-12-09 2014-12-09
US62/089,243 2014-12-09
US201562109622P 2015-01-30 2015-01-30
US62/109,622 2015-01-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/527,692 A-371-Of-International US10405338B2 (en) 2014-12-05 2015-11-30 Data transmission method in wireless communication system and device therefor
US16/508,237 Continuation US10986660B2 (en) 2014-12-05 2019-07-10 Data transmission method in wireless communication system and device therefor

Publications (1)

Publication Number Publication Date
WO2016089059A1 true WO2016089059A1 (ko) 2016-06-09

Family

ID=56091963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012917 WO2016089059A1 (ko) 2014-12-05 2015-11-30 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치

Country Status (3)

Country Link
US (2) US10405338B2 (ko)
EP (2) EP3229434B1 (ko)
WO (1) WO2016089059A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016206601A1 (zh) * 2015-06-23 2016-12-29 中兴通讯股份有限公司 竞争传输方法及装置
CN107509252A (zh) * 2016-06-14 2017-12-22 华为技术有限公司 一种数据传输方法及装置
WO2019182267A1 (ko) * 2018-03-23 2019-09-26 엘지전자 주식회사 무선랜 시스템에서 fdr을 기반으로 ppdu를 송신하는 방법 및 장치
WO2019194516A1 (ko) * 2018-04-06 2019-10-10 엘지전자 주식회사 무선랜 시스템에서 fdr을 기반으로 ppdu를 송신하는 방법 및 장치

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10405338B2 (en) 2014-12-05 2019-09-03 Lg Electronics Inc. Data transmission method in wireless communication system and device therefor
CN111970099B (zh) * 2015-02-17 2023-07-25 韦勒斯标准与技术协会公司 一种站和用于站的无线通信方法
US20160255645A1 (en) * 2015-02-27 2016-09-01 Intel IP Corporation Cyclic shift diversity in wireless communications
US9705622B2 (en) 2015-03-06 2017-07-11 Newracom, Inc. Support for additional decoding processing time in wireless LAN systems
CN107534897B (zh) * 2015-03-06 2021-05-28 交互数字专利控股公司 用于无线局域网(wlan)长符号持续时间迁移的方法和系统
CN113595600A (zh) 2015-03-06 2021-11-02 交互数字专利控股公司 Wlan系统中的短分组优化
US10116360B2 (en) * 2015-04-23 2018-10-30 Newracom, Inc. Method and apparatus for uplink multi-user transmission in a high efficiency wireless LAN
US9876544B2 (en) * 2015-04-30 2018-01-23 Intel IP Corporation Apparatus, system and method of multi-user wireless communication
JP6696637B2 (ja) * 2015-05-27 2020-05-20 ホアウェイ・テクノロジーズ・カンパニー・リミテッド チャネルアクセス方法及び装置
EP3565354B1 (en) * 2015-07-06 2020-09-23 Sony Corporation Communication apparatus and communication method
CN107852680A (zh) * 2015-07-16 2018-03-27 A·阿特夫 在无线局域网中通信用的设备、方法以及计算机可读媒体
US10560962B2 (en) * 2015-07-29 2020-02-11 Lg Electronics Inc. Method and apparatus for transmitting data in wireless communication system
CN113162746A (zh) 2015-08-26 2021-07-23 华为技术有限公司 传输he-ltf序列的方法和装置
US10512074B2 (en) * 2015-08-31 2019-12-17 Intel IP Corporation Uplink (UL) multi-user (MU) feedback using high-efficiency (HE) long training fields in a wireless local-area network
CN108199820B (zh) * 2015-09-01 2019-03-26 华为技术有限公司 传输信息的方法、无线局域网装置
EP3347999A1 (en) * 2015-09-10 2018-07-18 Marvell World Trade Ltd. Systems and methods for transmitting a preamble within a wireless local area network (wlan)
EP3376814A4 (en) * 2015-11-12 2018-10-31 Fujitsu Limited Terminal device, base station device, wireless communication system, and wireless communication method
CN109462560B (zh) 2015-11-23 2020-07-07 华为技术有限公司 无线局域网数据传输方法和装置
KR102352193B1 (ko) * 2015-12-02 2022-01-18 삼성전자주식회사 통신 시스템에서 데이터 송수신 방법 및 장치
CN106879070B (zh) * 2015-12-11 2020-07-24 华为技术有限公司 一种无线局域网中触发帧的传输方法及装置
US10200989B2 (en) 2016-01-13 2019-02-05 Intel IP Corporation Network allocation vector settings for multi-user operation
US10128989B2 (en) * 2016-03-01 2018-11-13 Intel IP Corporation Station (STA), access point (AP) and method for aggregation of data packets for uplink transmission
WO2017152962A1 (en) * 2016-03-08 2017-09-14 Huawei Technologies Co., Ltd. Client and access point communication devices allocating indicated portion of uplink frame for multiple types of control data
WO2017180747A2 (en) 2016-04-12 2017-10-19 Marvell Semiconductor, Inc. Uplink multi-user transmission
EP3443702A1 (en) * 2016-04-14 2019-02-20 Marvell World Trade, Ltd. Determining channel availability for orthogonal frequency division multiple access operation
WO2017185259A1 (zh) * 2016-04-27 2017-11-02 华为技术有限公司 光无线通信网络中传输信息的方法、协调器和终端节点
US10200514B2 (en) * 2016-06-29 2019-02-05 Intel IP Corporation Pre-high-efficiency (HE)-short training field preamble transmission for the HE-trigger based physical layer convergence protocol (PLCP) protocol data unit (PPDU)
US10439687B2 (en) 2016-07-18 2019-10-08 Intel IP Corporation Transmission opportunity (TXOP) duration field disable setting in high efficiency signal A (HE-SIG-A)
CN107994976B (zh) * 2016-10-26 2021-06-22 华为技术有限公司 一种快速应答回复方法及装置
US20190097850A1 (en) * 2018-11-30 2019-03-28 Thomas Kenney Preamble design for extremely high throughput wireless communication with backward compatibility
CN110087259B (zh) * 2019-05-05 2020-07-28 华中科技大学 一种6g调度信息保护方法及系统
US11576208B2 (en) * 2019-10-30 2023-02-07 Mediatek Singapore Pte. Ltd. Apparatus and methods for TB PPDU alignment for multi-link triggered uplink access in a wireless network
US20230171806A1 (en) * 2020-05-05 2023-06-01 Telefonaktiebolaget Lm Ericsson (Publ) Backoff Counter Handling for TXOP Sharing
GB2595459B (en) * 2020-05-25 2022-09-07 Canon Kk Method and apparatus for multi-user direct link transmission
CN113938166A (zh) * 2020-06-29 2022-01-14 三星电子株式会社 用于基于增强型空数据分组声明的无线通信的设备和方法
CN114125854A (zh) * 2020-08-28 2022-03-01 华为技术有限公司 通信方法及装置
US11457100B2 (en) * 2021-01-25 2022-09-27 Rohde & Schwarz Gmbh & Co. Kg Classification method and classification module
WO2022173251A1 (ko) * 2021-02-10 2022-08-18 주식회사 윌러스표준기술연구소 멀티 링크를 사용하는 무선 통신 방법 및 이를 사용하는 무선 통신 단말
CN115333908B (zh) * 2021-05-10 2024-03-08 苏州速通半导体科技有限公司 无线局域网中的发射器及由其执行的方法
US11632273B1 (en) * 2021-12-02 2023-04-18 Qualcomm Incorporated Processing multiuser multiple-input multiple-output communications having unavailable spatial streams

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140079016A1 (en) * 2010-11-12 2014-03-20 Yuying Dai Method and apparatus for performing channel aggregation and medium access control retransmission
WO2014130702A1 (en) * 2013-02-20 2014-08-28 Qualcomm Incorporated Acknowledgement (ack) type indication and deferral time determination
WO2014172198A1 (en) * 2013-04-15 2014-10-23 Qualcomm Incorporated Apparatus and method using backwards-compatible preamble formats for multiple access wlan communication system
WO2014171788A1 (ko) * 2013-04-19 2014-10-23 엘지전자 주식회사 시그널 필드를 송신하는 방법 및 장치
WO2014182137A1 (ko) * 2013-05-10 2014-11-13 한국전자통신연구원 무선랜 시스템에서의 채널 사운딩 방법 및 이를 지원하는 장치

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140007901A1 (en) * 2012-07-06 2014-01-09 Jack Chen Methods and apparatus for bevel edge cleaning in a plasma processing system
US20150296507A1 (en) * 2012-12-07 2015-10-15 Nokia Corporation Multipath communication
WO2014107031A1 (ko) 2013-01-02 2014-07-10 엘지전자 주식회사 무선랜 시스템에서 채널 액세스 방법 및 장치
US9871683B2 (en) * 2013-05-07 2018-01-16 Lg Electronics Inc. Method and device for transmitting data unit
US10075269B2 (en) * 2014-09-12 2018-09-11 Lg Electronics Inc. Method for transmitting data in WLAN system, and device for same
US10405338B2 (en) 2014-12-05 2019-09-03 Lg Electronics Inc. Data transmission method in wireless communication system and device therefor
WO2016172620A1 (en) * 2015-04-24 2016-10-27 Newracom, Inc. Preamble and payload for high efficiency (he) transmission
US10420121B2 (en) * 2015-11-03 2019-09-17 Newracom, Inc. Aggregated HE control content in A-MPDU
US10420120B2 (en) * 2016-12-15 2019-09-17 Lg Electronics Inc. Method for transmitting uplink frame in wireless LAN system and wireless device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140079016A1 (en) * 2010-11-12 2014-03-20 Yuying Dai Method and apparatus for performing channel aggregation and medium access control retransmission
WO2014130702A1 (en) * 2013-02-20 2014-08-28 Qualcomm Incorporated Acknowledgement (ack) type indication and deferral time determination
WO2014172198A1 (en) * 2013-04-15 2014-10-23 Qualcomm Incorporated Apparatus and method using backwards-compatible preamble formats for multiple access wlan communication system
WO2014171788A1 (ko) * 2013-04-19 2014-10-23 엘지전자 주식회사 시그널 필드를 송신하는 방법 및 장치
WO2014182137A1 (ko) * 2013-05-10 2014-11-13 한국전자통신연구원 무선랜 시스템에서의 채널 사운딩 방법 및 이를 지원하는 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3229434A4 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016206601A1 (zh) * 2015-06-23 2016-12-29 中兴通讯股份有限公司 竞争传输方法及装置
US10674538B2 (en) 2015-06-23 2020-06-02 Zte Corporation Method and device for competitive transmission
RU2711509C1 (ru) * 2016-06-14 2020-01-17 Хуавей Текнолоджиз Ко., Лтд. Способ и устройство передачи данных
KR102181737B1 (ko) * 2016-06-14 2020-11-23 후아웨이 테크놀러지 컴퍼니 리미티드 데이터 송신 방법 및 장치
JP2019511875A (ja) * 2016-06-14 2019-04-25 華為技術有限公司Huawei Technologies Co.,Ltd. データ伝送方法および装置
EP3986062A1 (en) * 2016-06-14 2022-04-20 Huawei Technologies Co., Ltd. Data transmission method and apparatus
CN107509252B (zh) * 2016-06-14 2021-06-15 华为技术有限公司 一种数据传输方法及装置
AU2017285829B2 (en) * 2016-06-14 2019-11-07 Huawei Technologies Co., Ltd. Data transmission method and apparatus
KR20180113560A (ko) * 2016-06-14 2018-10-16 후아웨이 테크놀러지 컴퍼니 리미티드 데이터 송신 방법 및 장치
CN110912668A (zh) * 2016-06-14 2020-03-24 华为技术有限公司 一种数据传输方法及装置
CN107509252A (zh) * 2016-06-14 2017-12-22 华为技术有限公司 一种数据传输方法及装置
CN110912668B (zh) * 2016-06-14 2020-10-27 华为技术有限公司 一种数据传输方法及装置
EP3413661A4 (en) * 2016-06-14 2019-02-27 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR DATA TRANSMISSION
US11277252B2 (en) 2018-03-23 2022-03-15 Lg Electronics Inc. Method and apparatus for transmitting PPDU on basis of FDR in wireless LAN system
WO2019182267A1 (ko) * 2018-03-23 2019-09-26 엘지전자 주식회사 무선랜 시스템에서 fdr을 기반으로 ppdu를 송신하는 방법 및 장치
WO2019194516A1 (ko) * 2018-04-06 2019-10-10 엘지전자 주식회사 무선랜 시스템에서 fdr을 기반으로 ppdu를 송신하는 방법 및 장치
US11581997B2 (en) 2018-04-06 2023-02-14 Lg Electronics Inc. Method and device for transmitting PPDU on basis of FDR in wireless LAN system

Also Published As

Publication number Publication date
EP3229434A4 (en) 2018-08-15
EP3588888A1 (en) 2020-01-01
US20180310330A1 (en) 2018-10-25
US10405338B2 (en) 2019-09-03
EP3588888B1 (en) 2021-03-10
EP3229434B1 (en) 2019-09-04
EP3229434A1 (en) 2017-10-11
US20200045723A1 (en) 2020-02-06
US10986660B2 (en) 2021-04-20

Similar Documents

Publication Publication Date Title
WO2016089059A1 (ko) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
WO2016028124A1 (ko) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
WO2016028125A2 (ko) 무선 통신 시스템에서 상향링크 전송 방법 및 이를 위한 장치
WO2016032258A2 (ko) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
WO2016053024A1 (ko) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
WO2016021838A1 (ko) 무선 통신 시스템에서 프레임 전송 방법 및 이를 위한 장치
WO2016099139A1 (ko) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
WO2017022898A1 (ko) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
WO2016143970A1 (ko) 무선 통신 시스템의 데이터 전송 방법 및 장치
WO2016028131A1 (ko) 무선 통신 시스템에서 상향링크 다중 사용자 전송 방법 및 이를 위한 장치
WO2016024750A1 (ko) 무선 통신 시스템에서 하향링크 다중 사용자 전송 방법 및 이를 위한 장치
WO2016021831A1 (ko) 무선 통신 시스템에서 다중 사용자 전송 방법 및 이를 위한 장치
WO2015199306A1 (ko) 무선 통신 시스템에서 다중 사용자 상향링크 데이터 전송을 위한 방법 및 이를 위한 장치
WO2016159513A1 (ko) 무선 통신 시스템의 데이터 전송 방법 및 장치
WO2016039526A1 (ko) Wlan 시스템에서 데이터 전송 방법 및 이를 위한 장치
WO2017034081A1 (ko) 무선 통신 시스템의 데이터 전송 방법 및 장치
WO2016099140A1 (ko) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
WO2016167608A1 (ko) 무선 통신 시스템에서 채널 사운딩 방법 및 이를 위한 장치
WO2016167609A1 (ko) 무선 통신 시스템에서 채널 사운딩 방법 및 이를 위한 장치
WO2016125998A1 (ko) 무선 통신 시스템에서 다중 사용자 송수신을 위한 방법 및 이를 위한 장치
WO2017069589A1 (ko) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
WO2017043713A1 (ko) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
WO2017030297A1 (ko) 무선 통신 시스템에서 채널 상태의 피드백 방법 및 이를 위한 장치
WO2016068672A2 (ko) 무선 통신 시스템에서 다중 사용자 송수신을 위한 방법 및 이를 위한 장치
WO2016186469A1 (ko) 무선랜 시스템에서 nav를 관리하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864893

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15527692

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015864893

Country of ref document: EP