WO2014182137A1 - 무선랜 시스템에서의 채널 사운딩 방법 및 이를 지원하는 장치 - Google Patents

무선랜 시스템에서의 채널 사운딩 방법 및 이를 지원하는 장치 Download PDF

Info

Publication number
WO2014182137A1
WO2014182137A1 PCT/KR2014/004214 KR2014004214W WO2014182137A1 WO 2014182137 A1 WO2014182137 A1 WO 2014182137A1 KR 2014004214 W KR2014004214 W KR 2014004214W WO 2014182137 A1 WO2014182137 A1 WO 2014182137A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
raw
sounding
channel sounding
access point
Prior art date
Application number
PCT/KR2014/004214
Other languages
English (en)
French (fr)
Inventor
정민호
권형진
이재승
이석규
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to CN201480026142.3A priority Critical patent/CN105230108B/zh
Priority to EP14795263.4A priority patent/EP2996427B1/en
Priority to US14/890,303 priority patent/US10375682B2/en
Priority to CN201910181638.2A priority patent/CN110234150B/zh
Priority to JP2016512843A priority patent/JP6511436B2/ja
Priority to EP19197779.2A priority patent/EP3614743B1/en
Publication of WO2014182137A1 publication Critical patent/WO2014182137A1/ko
Priority to US16/455,385 priority patent/US11304186B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the following description relates to a WLAN system, and more particularly, to channel sounding technology in a WLAN system.
  • WLAN Local area network
  • WLAN Wireless LAN is a method of communicating on a network using radio waves without using a cable.
  • the emergence of wireless LAN has emerged as an alternative to solve the difficulties of installation, maintenance, and mobility due to cabling, and the necessity is increasing due to the increase of mobile users.
  • the configuration of a wireless LAN includes an access point (hereinafter referred to as "AP") and a terminal device (hereinafter referred to as "STA").
  • the AP is a device that transmits radio waves for wireless LAN users within the transmission distance to access the Internet and the network, and acts as a hub of a mobile phone base station or a wired network.
  • the basic building block of the IEEE 802.11 network is a basic service set (hereinafter referred to as "BSS").
  • An IEEE 802.11 network includes an independent network (SS) in which terminals in a BSS directly communicate with each other, an infrastructure network (SS) in which an AP is involved in the process of the terminal communicating with terminals inside and outside the BSS, and BSSs.
  • SS independent network
  • SS infrastructure network
  • AP AP
  • an access point may simultaneously transmit a data frame to at least one STA (Multiple Input Multiple Output) paired.
  • STA Multiple Input Multiple Output
  • the AP and / or STA may obtain information on a channel to be used through channel sounding in transmitting a frame to the reception target AP and / or STA.
  • the sender requests channel information to be used for transmitting / receiving frames from the receiver, and the receiver estimates a channel and feeds back channel information to the sender before performing data frame transmission and reception.
  • a channel sounding method performed by an access point includes: broadcasting a beacon including information of a limited access window for channel sounding; And transmitting a plurality of NDPs to the station within the limited access window.
  • the access point may control data transmission of the station in a RAW section for the channel sounding.
  • the access point may control to prohibit data transmission of the station in a RAW section for the channel sounding.
  • the access point allows only transmitting the channel information to the access point after the NDPs are transmitted in a RAW section for the channel sounding. And other transmissions.
  • the beacon is a bit value indicating whether channel sounding is performed through the RAW, a bit value for controlling the transmission of the station in the RAW period and the The access point may include at least one of bit values indicating the type of communication to be performed.
  • the channel sounding method performed by the access point may further include receiving channel information estimated based on the NDP from the station.
  • a channel sounding method performed by a station includes: receiving a beacon from an access point including information of a limited access window for channel sounding; Estimating channel information based on a null data packet (NDP) received from the access point; And transmitting the estimated channel information to the access point.
  • NDP null data packet
  • the estimating may include identifying a type of communication that the access point intends to perform based on the received beacon; If the station supports the communication type, receiving an NDP from the access point within the restricted access window; And estimating channel information based on the received NDP and the identified communication type.
  • the estimating may include searching for a frequency channel satisfying a preset criterion among frequency channels used for communication with the access point, and searching for the found frequency. And determining information about the channel as channel information.
  • the estimating may include: searching a sector to which the station belongs among a plurality of sectors set by the access point, and identifying identification information of the searched sector.
  • the method may include determining channel information.
  • a wireless device includes a transceiver for transmitting and receiving a frame; And a processor operatively coupled with the transceiver, the processor broadcasting a beacon including information of a limited access window for channel sounding, wherein the processor broadcasts a plurality of NDPs within the restricted access window. Packets may be sent to the station.
  • a wireless device includes a transceiver for transmitting and receiving a frame; And a processor functionally coupled with the transceiver, the processor receiving a beacon from the access point, the beacon including information of a limited access window for channel sounding, and NDP (Null Data) received from the access point. Packet information may be estimated based on the packet, and the estimated channel information may be transmitted to the access point.
  • NDP Null Data
  • 1 is a diagram illustrating the overall configuration of a WLAN system.
  • 2 to 3 are diagrams for explaining an uplink channel access protocol through section-by-section allocation of wireless communication.
  • 4 to 6 are diagrams for describing a sectorized beam operation method.
  • FIG. 7 is a diagram illustrating a channel sounding method for sectorized beam operation according to an embodiment of the present invention.
  • SST sub-channel selective transmission
  • FIG 9 illustrates a channel sounding method for subchannel selective transmission according to an embodiment of the present invention.
  • FIG. 10 is a diagram for describing Single User-MIMO beamforming or Multi User-MIMO beamforming.
  • FIG. 11 illustrates a channel sounding method for SU-MIMO beamforming or MU-MIMO beamforming according to an embodiment of the present invention.
  • FIG. 12 is a flowchart illustrating an operation of a channel sounding method performed by an access point according to an embodiment of the present invention.
  • FIG. 13 is a flowchart illustrating an operation of a channel sounding method performed by a station according to an embodiment of the present invention.
  • FIG. 14 is a diagram illustrating a detailed configuration of a wireless device in which an embodiment of the present invention can be implemented.
  • each component or feature may be considered to be optional unless otherwise stated.
  • Each component or feature may be embodied in a form that is not combined with other components or features.
  • some components and / or features may be combined to form an embodiment of the present invention.
  • the order of the operations described in the embodiments of the present invention may be changed. Some components or features of one embodiment may be included in another embodiment or may be replaced with corresponding components or features of another embodiment.
  • Embodiments of the present invention may be supported by standard documents disclosed in at least one of the wireless access systems IEEE 802 system, 3GPP system, 3GPP LTE and LTE-A (LTE-Advanced) system and 3GPP2 system. That is, steps or parts which are not described to clearly reveal the technical spirit of the present invention among the embodiments of the present invention may be supported by the above documents. In addition, all terms disclosed in the present document can be described by the above standard document.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile communications (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • Wi-Fi IEEE 802.11
  • WiMAX IEEE 802.16
  • E-UTRA Evolved UTRA
  • 1 is a diagram illustrating the overall configuration of a WLAN system.
  • the WLAN system may include one or more basic service sets (BSSs).
  • BSS is a set of stations (STAs) that can successfully communicate with each other by synchronizing, and is not a concept indicating a specific area.
  • Infrastructure BSS is a distribution system that connects one or more non-AP STAs, an AP 110 that provides a Distribution Service, and a plurality of APs 110. ) May be included.
  • the AP 110 may manage non-AP STAs of the BSS.
  • a STA is any functional medium that includes a medium access control (MAC) compliant with the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard and a physical layer interface to a wireless medium. It includes both AP and non-AP STA.
  • MAC medium access control
  • IEEE Institute of Electrical and Electronics Engineers
  • the non-AP STA is an STA that is not an AP.
  • the non-AP STA may be a mobile terminal, a wireless device, a wireless transmit / receive unit (WTRU), a user equipment ( It may also be referred to by other names such as User Equipment (UE), Mobile Station (MS), Mobile Subscriber Unit, or simply User.
  • WTRU wireless transmit / receive unit
  • UE User Equipment
  • MS Mobile Station
  • STA 120 for convenience of description, a non-AP STA is referred to as an STA 120.
  • the AP 110 is a functional entity that provides the AP 110 with access to a distributed system via a wireless medium for the associated STA 120.
  • the communication between the STAs 120 is performed via the AP 110.
  • the AP 110 may also be referred to by other names such as a central controller, a base station (BS), a node-B, or a base transceiver system (BTS).
  • BS base station
  • BTS base transceiver system
  • a plurality of infrastructure BSSs including the BSS shown in FIG. 1 may be interconnected through a distributed system.
  • a plurality of BSSs connected through a distributed system is called an extended service set (ESS).
  • the AP 110 and the STA 120 included in the ESS may communicate with each other, and the STA 120 may move to another BSS in the same ESS.
  • a basic access mechanism of MAC is a carrier sense multiple access with collision avoidance (CSMA / CA) mechanism.
  • the CSMA / CA mechanism may also be referred to as the Distributed Coordination Function (DCF) of the IEEE 802.11 MAC, and basically employs a “listen before talk” access mechanism.
  • DCF Distributed Coordination Function
  • the AP 110 and / or the STA 120 senses a radio channel or medium prior to transmitting a frame, and the medium is in an idle state based on the sensing result. If it is determined that the frame transmission is started through the medium. On the other hand, if the medium is detected as occupied status (occupied status), the AP 110 and / or STA 120 may wait by setting a delay period for access to the medium without starting its own transmission.
  • the CSMA / CA mechanism may also include virtual carrier sensing in addition to physical carrier sensing in which the AP 110 and / or STA 120 directly sense the medium.
  • Virtual carrier sensing is intended to compensate for problems that may occur in media access, such as a hidden node problem.
  • the MAC of the WLAN system uses a network allocation vector (NAV).
  • NAV network allocation vector
  • the NAV gives the other AP 110 and / or STA 120 the amount of time that the AP 110 and / or STA 120 currently using or authorized to use the medium remain until the medium is available. Indicates the value to indicate. Therefore, the value set to NAV is related to the period during which the medium is scheduled to be used by the AP 110 and / or the STA 120 transmitting the corresponding frame.
  • the AP 110 may simultaneously transmit data to an STA group including at least one or more STAs among a plurality of STAs 120 associated with itself.
  • the AP 110 may transmit multiple spatial streams to the plurality of STAs 120 using multiple antennas.
  • the AP 110 may transmit data to the STA 120 using a beamforming technique in order to improve transmission performance.
  • the AP 110 may require channel information on STAs 120 to transmit data, and may perform channel sounding to obtain required channel information.
  • Channel sounding may be performed based on NDP (Null Data Packet) and NDPA (NDP announcement).
  • NDP has a PPDU (PLCP Protocol Data Unit) format that excludes the data field of the MAC layer.
  • PLCP stands for Physical Layer Convergence Procedure.
  • the AP 110 may use the NDP to extract channel information from the STA 12.
  • the STA 120 may perform channel estimation based on the received NDP and feed back channel state information to the AP 110 as an estimation result. For example, the STA 120 may estimate the MIMO channel based on the very high throughput-long training fields (VHT-LTF) of the NDP and obtain channel information.
  • NDP may also be referred to as a sounding frame.
  • the NDPA is transmitted to inform which STA is the STA that should receive the NDP, and may also be referred to as a sounding announcement frame.
  • the STA 120 may determine whether the STA participates in channel sounding through the NDPA.
  • the AP 110 may include information on the STA, which is the target of channel sounding, in the NDPA frame and transmit the information to the STA 120.
  • the AP 110 may instruct the STA 120 to receive an NDP using the NDPA frame.
  • the AP 110 may transmit the NDPA and the NDP based on a restricted access window (RAW).
  • RAW restricted access window
  • RAW represents a time interval in which only specific STAs are allowed to access.
  • the AP 110 may transmit the NDPA and the NDP based on the RAW to prevent the station from randomly transmitting a frame during the channel sounding process and degrading the channel sounding performance.
  • the AP 110 may selectively perform channel sounding for only limited stations, thereby improving channel sounding performance.
  • 2 to 3 are diagrams for explaining an uplink channel access protocol through section-by-section allocation of wireless communication.
  • the AP may control access of the STA through the RAW 210.
  • the RAW 210 may include a plurality of time slots.
  • the STA may wake-up at a target beacon transmission time (TBTT) to receive a beacon frame.
  • TBTT indicates when the AP should transmit a beacon frame.
  • the beacon frame may include information about the slot duration for each RAW.
  • the slot length of each RAW can be set differently.
  • the STA determines a channel access slot configured by the AP and may be in a sleep state before the channel access slot.
  • the STA may start channel access based on an enhanced distributed channel access (EDCA) protocol near the boundary of the corresponding channel access slot.
  • EDCA enhanced distributed channel access
  • the AP may inform the STA whether a Transmit Opportunity (TXOP) rule is applied to each RAW 210. For example, the AP may inform that TXOP or transmission within the TXOP should not leave the slot boundary, and when such a rule is applied, the STA wakes up from the boundary of the slot and does not wait as much as ProbeDelay.
  • TXOP Transmit Opportunity
  • the AP may set a rule for RAWs having different slot lengths, respectively.
  • a "P" frame represents a PS-Poll / Trigger frame
  • a "D” frame represents a frame used for data transmission
  • an "A" frame represents an Acknowledgement (ACK) frame.
  • the frame exchange sequence in the RAW should be limited to the slot interval.
  • the frame exchange sequence may consist of a start frame and a response frame.
  • the RAW1 310 may be used as a guard interval for poll signals
  • the RAW2 320 may be used as a guard interval for data transmission.
  • 4 to 6 are diagrams for describing a sectorized beam operating method.
  • the AP may communicate with the STA using a sectorized beam operating method.
  • the sectorized beam / antenna operation method is used for reuse of spatial resources in a large area network.
  • the AP1 410 may transmit data through sectorized beam transmission to the STA1 420 located in the service area 1 420 of the AP1 410.
  • AP2 440 may transmit data through sectorized beam transmission to STA2 460 located in service area 2 450 of AP2 440.
  • OBSS overlapped BSSs
  • the hidden node problem in the same BSS can be reduced.
  • the AP may divide a space into a plurality of sectors and allocate resources to STAs belonging to each sector in a time division manner.
  • a beacon signal is independently transmitted for each sector, and STAs included in each sector may transmit or receive data within a time interval allocated to each sector.
  • the specific time interval may be allocated to a common time interval that all the STAs of all sectors can use.
  • the AP may flexibly select whether to perform sector beam transmission or omnidirectional beam transmission. Through this, the sectorized beam operation method can be applied more flexibly and flexibly.
  • the omnidirectional beam transmission may be performed in the RAW periods 610 and 620.
  • Sector beam transmission is allowed only when the AP knows a sector in the STA's pre-reserved short time period, and enables sector beam transmission during that short time period.
  • the sector receive beam may be used in combination with the sector transmit beam within the TXOP interval 630.
  • the AP may inform information about sector beam transmission through a beacon, a probe response, and an association response. The specific method of forming the sector beam may be different for each implementation method.
  • FIG. 7 is a diagram illustrating a channel sounding method for sectorized beam operation according to an embodiment of the present invention.
  • an AP may serially transmit a series of NDPs (or NDP frames) during a limited access window for channel sounding (hereinafter referred to as "sounding RAW").
  • the transmitted NDPs may be transmitted with a short inter-frame space (SIFS).
  • SIFS short inter-frame space
  • Each NDP may be transmitted in a corresponding signal of each sector for sector training.
  • FIG. 7 assumes that the number of sector beams is 4, and the AP may perform channel sounding based on RAW or PRAW (periodic RAW) after transmitting a beacon signal.
  • a high throughput control (HTC) frame may be transmitted prior to the NDP.
  • transmission of the STA may be prohibited during sounding RAW.
  • the STA may wake up at the start of the sounding RAW and hear the entire sounding RAW.
  • Channel sounding may be performed for all STAs or STAs having a limited range of association IDs (AIDs).
  • An STA targeted for channel sounding may be prohibited from being transmitted in the sounding RAW period.
  • the AID represents an identifier (ID) that the STA has received from the AP.
  • the STA may perform any transmission except transmission of a report packet for reporting a sector ID after receiving a series of NDPs. May be prohibited.
  • Channel sounding may be performed for all STAs or STAs having a limited range of AIDs.
  • the STA may wake up from the start of the sounding RAW and listen until the sounding RAW ends or the end of the transmission of the series of NDPs.
  • the beacon needs to include sounding RAW indication information indicating whether the RAW is a sounding RAW or a general RAW.
  • the sounding RAW indication information may be displayed on a RPS (RAW parameter set) Information Element (IE) transmitted from the beacon.
  • RPS RAW parameter set
  • IE Information Element
  • FIG. 8 is a diagram illustrating an example of a channel sounding method in subchannel selective transmission.
  • the AP may communicate with the STA through subchannel selective transmission.
  • subchannel selective transmission the STA may select a subchannel for its transmission and reception in the wideband BSS if allowed by the AP.
  • the STA may search for an optimal subchannel for communication with the AP and transmit information about the found optimal subchannel to the AP.
  • the AP may inform the related information through the beacon so that channel sounding measurement of the STAs can be made through frames transmitted after the beacon signal.
  • the beacon may include information such as the number of signals, the type of signals, the frequency location of the signals, and the transmission time.
  • the AP may optionally transmit a beacon indicating the subchannel sounding signal.
  • the AP may serially transmit a single channel or multiple channels of sounding signals. Channel sounding may be performed by an NDP signal, an additional beacon signal, or other packet by the AP. Information about the number, type (eg, NDP, beacon, etc.), frequency position, etc. of the sounding signal may be included in the beacon.
  • the Network Allocation Vector (NAV) may be set for the sounding signal by beacons.
  • the AP may select how much time is allocated for the channel sounding process.
  • the STA can determine which channels to sound during the trial beacon over several cycles.
  • the STA may select an optimal subchannel based on the sounding signal.
  • the STA may determine whether to switch to additional channels based on the beacon information.
  • the beacon signal and the sounding signal may be transmitted with a time interval of PIFS (Point Inter-Frame Space).
  • PIFS Point Inter-Frame Space
  • FIG 9 illustrates a channel sounding method for subchannel selective transmission according to an embodiment of the present invention.
  • the AP may serially transmit a series of NDPs.
  • NDPs can be transmitted at intervals as long as PIFS, and each NDP can be transmitted for a frequency channel assigned to each NDP.
  • the timing information of channel sounding using the NDP needs to be displayed in the RPS IE of the beacon.
  • a channel activity bitmap is ⁇ 0, 0, 0, 0, 1, 1, 1, 1 ⁇
  • a maximum transmission width is 2 MHz
  • a bandwidth span of each NDP is 2 MHz.
  • the bandwidth span of NDPA may or may not be in Duplicate Mode.
  • the channel sounding method for SST may operate in conjunction with PS-Poll RAW.
  • an STA to perform SST does not immediately transmit a PS-Poll frame to a STA having a TIM bit set to 1 after receiving a beacon.
  • the AP waits until the corresponding PS-Poll section ends and informs the AP of the optimal subchannel information found by the PS-Poll. Thereafter, the STA may receive data from the AP through the optimum subchannel in the RAW period for data transmission.
  • the STA to perform the SST informs the AP of the amount of data to be transmitted later through the PS-Poll with UDI in the PS-Poll RAW period after the sounding RAW.
  • data can be transmitted to the AP through an optimal subchannel. If there is a frame to be transmitted to the AP, the STA may transmit data to the AP through an optimal subchannel determined through channel sounding in a slot allocated to RAW for data transmission.
  • the STA can transmit data to the AP only after the activation time defined in the beacon, so the sounding RAW, PS-Poll RAW, and RAW for data transmission all need to be allocated after the activation time. . Therefore, PS-Poll RAW needs to be allocated after sounding RAW in downlink and uplink data transmission in SST. PS-Poll RAW may be allocated even before the activation time, but PS-Poll RAW allocated before the activation time corresponds to PS-Poll RAW irrelevant to SST operation. Such an operation may allow the AP to identify the optimal subchannels for each STA in advance and efficiently allocate resources while minimizing the consumption of time resources in the SST.
  • 10 is a diagram for describing SU-MIMO beamforming or MU-MIMO beamforming.
  • SU / MU-MIMO beamforming is defined as a combination of NDP announcement, NDP, feedback report, beamforming report poll, and additional feedback report as shown in FIG. 10.
  • STAs related to SU / MU-MIMO beamforming knew the start time of NDP sounding only after receiving an NDP Announcement packet. STAs cannot perform a power saving mode in order to receive an NDP announcement and must be kept awake, which is not appropriate in devices where power saving is important.
  • the AP In order to control the STAs to wake up at the start of NDP sounding, it is appropriate for the AP to inform the STAs of the NDP sounding information using the RPS IE of the beacon in advance.
  • NDP sounding for SU / MU-MIMO beamforming also needs to be set to sounding RAW.
  • FIG. 11 illustrates a channel sounding method for SU-MIMO beamforming or MU-MIMO beamforming according to an embodiment of the present invention.
  • a channel sounding method for SU / MU-MIMO beamforming will be described separately in the following two embodiments.
  • RAW RAW for transmitting a feedback report
  • STAs may wake up in a power saving mode at the start boundary of Report RAW.
  • the AID range of the STA targeted for channel sounding may be displayed in the RPS IE of the beacon.
  • Order combinations of STAs that are subject to channel sounding may be displayed in an order specific to NDPA.
  • the AP may allocate RAW for the Power Saving Poll (PS-Poll) before the report RAW as an optional. Can be.
  • the PS-Poll may describe user data indication (UDI) information indicating a data amount of a buffer for a modulation and coding scheme (MCS) and an uplink transmission.
  • the AP may selectively allocate PS-Poll RAWs allocated to PS-Poll to respective separate slots for each STA prior to Report RAW. Start timing information of PS-Poll RAW may also be included in the RPS IE of the beacon.
  • a "P" frame represents a PS-Poll frame
  • a "D" frame represents an uplink data frame in which an STA transmits data to an AP
  • an "A" frame represents an ACK frame.
  • the beamforming RAW may be set by extending the concept of sounding RAW.
  • the entire sequence of protocols for various combinations of NDPA transmission, NDP transmission, beamforming report feedback, beamforming report poll, and additional beamforming report feedback can be protected by beamforming RAW.
  • the beamforming RAW may be set as a separate RAW expressed in the RPS IE of the beacon, and may be classified into one type of the modified concept sounding RAW.
  • transmission of the STA other than the transmission of the channel feedback report may be prohibited. Whether or not it is beamforming RAW can be identified through Sounding RAW Indication and Sounding RAW Type Indication included in the RPS IE of Beacon. Sounding RAW Indication and Sounding RAW Type Indication will be described later.
  • STAs may wake up in a power saving mode at the start boundary of the beamforming RAW.
  • the AID range of the STA targeted for channel sounding may be displayed in the RPS IE of the beacon.
  • Order combinations of STAs that are subject to channel sounding may be displayed in an order specific to NDPA.
  • STAs are pre-determined slots to themselves. You can wake up from the power saving mode at the boundary of. This can reduce power consumption more efficiently.
  • the AP Since the AP does not know in advance the amount of data of the channel feedback report to be transmitted by each STA and the feedback transmission mode of each STA, the AP transmits the channel feedback report based on the MCS and bandwidth preset to transmit the channel feedback report.
  • the time interval can be estimated, and the length of the entire beamforming RAW can be sufficiently set based on the estimation result.
  • the AP may use the basic rate of the BSS or the MCS to which the NDPA is transmitted as the transmission MCS of the channel feedback report, and the transmission bandwidth of the channel feedback report may be determined to correspond to the bandwidth of the NDPA to NDP signal.
  • FIG. 12 is a flowchart illustrating an operation of a channel sounding method performed by an access point according to an embodiment of the present invention.
  • STAs operate similarly in channel sounding for SST and channel sounding for sectorized beam operation, thus integrating channel sounding for SST and channel sounding for sectorized beam operation.
  • Channel sounding may be performed for all STAs or for STAs having a limited range of AIDs.
  • the STA which is the target of channel sounding, can wake up from the start of the sounding RAW and hear the entire sounding RAW.
  • the integrated method of performing channel sounding enables efficient use of spatial and frequency resources, and improves the performance of channel sounding.
  • the STA may be prohibited from transmitting any transmission except for sending a report packet for reporting a sector ID or selected subchannel information after receiving a series of NDPs to ensure the performance of channel sounding. Can be.
  • Channel sounding may be performed for all STAs or STAs having a limited range of AIDs. The STA may wake up from the start of the sounding RAW and listen until the sounding RAW ends or the end of the transmission of the series of NDPs.
  • the sounding RAW may have a form of sweeping several frequency channels, or may include a transmission of a report packet of selected subchannel information thereafter.
  • the sounding RAW may take the form of sweeping several sectors, or even the transmission of a report packet about the selected sector ID information thereafter.
  • the AP may broadcast a beacon including information of RAW for channel sounding.
  • the AP may control data transmission of the STA in the RAW period for channel sounding.
  • the AP may control to prohibit data transmission of the STA in a RAW period for channel sounding.
  • the AP may control only to transmit the estimated channel information to the access point after NDPs are transmitted in the RAW period for channel sounding and to prohibit other transmissions.
  • the beacon transmitted by the AP may include at least one of a bit value indicating whether channel sounding is performed through the corresponding RAW, a bit value controlling the transmission of the station in the corresponding RAW section, and a bit value indicating the type of communication that the access point intends to perform. It may include one.
  • the information shown in Table 1 below may be included in the RPS IE transmitted by the beacons.
  • the beacon may include a bit value indicating whether to prohibit transmission of STAs in the sounding RAW.
  • the beacon indicates whether the sounding RAW is a sounding RAW for channel sounding for SST, channel sounding for sectorized beam operation, or channel sounding for SU / MU-MIMO beamforming. It can contain a bit value.
  • information as shown in Table 2 below may be included in the RPS IE transmitted by the beacon.
  • the beacon may include a bit value indicating whether to prohibit transmission of the STAs in addition to transmitting the report packet in the sounding RAW.
  • the beacon may include a bit value indicating whether the corresponding sounding RAW is a sounding RAW for channel sounding for SST and channel sounding for sectorized beam operation.
  • the information shown in Table 3 below may be included in the RPS IE transmitted by the beacons.
  • the beacon may include a bit value indicating whether to prohibit transmission of STAs in the sounding RAW.
  • the beacon may include a bit value indicating whether the corresponding sounding RAW is a sounding RAW for channel sounding for SST and channel sounding for sectorized beam operation.
  • the beacon may further include a bit value indicating whether the corresponding sounding RAW is a sounding RAW used for channel sounding for SU / MU-MIMO beamforming.
  • the sounding RAW and the corresponding report RAW may be combined to be expressed in the form of RAW type and sub-mode as shown in Table 4 below.
  • the non-AP STA may not start a new TXOP during RAW, but may choose to listen to sector sounding or SST sounding.
  • the non-AP STA may be allowed to transmit a response frame for a frame transmitted by the AP during the RXP.
  • the RAW type is Report RAW
  • one or more Report RAWs may be scheduled by the AP, and a Sector report or SST report is displayed for each STA during the corresponding RAW period. Regardless of the setting of the TIM bits corresponding to the above, it may be performed by a singular or plural STA.
  • an STA can send a sector report frame (including a preferred Sector ID) to the AP not earlier than the start of the assigned RAW slot.
  • the AP sends an ACK, Block ACK, This can be confirmed by transmitting a response frame such as an NDP ACK or a short ACK.
  • the response frame transmitted by the AP may include duration information on information on which the corresponding STA can continue power saving.
  • the length of the sector report frame exchange sequence cannot exceed the assigned slot duration calculated by the information given in the RAW Slot Definition subfield of the RAW Assignment field of the RPS element.
  • an NDP PS Poll frame format may be defined as shown in Table 5 or Table 6 below.
  • Table 5 shows an example of the MAC frame body of the NDP PS Poll
  • Table 6 shows another example of the MAC frame body of the NDP PS Poll.
  • the NDP PS Poll frame format shown in Tables 5 and 6 below may have a form in which the preferred sector ID value itself or the offset value for the reference sector ID is substituted in the Preferred MCS field or the UDI field instead.
  • the NDP PS Poll frame format can only be used in Report RAW for SST Sounding or Sector Sounding.
  • the STA can transmit an SST report frame (including the preferred sub-channel index in bitmap or coding form) to the AP at a time earlier than the start of the assigned RAW slot.
  • the AP can identify this by sending a response frame such as an ACK, a block ACK, an NDP ACK, or a short ACK.
  • the response frame transmitted by the AP may include duration information on information that the corresponding STA can maintain power saving.
  • the length of the SST report frame exchange sequence cannot exceed the assigned slot duration calculated by the information given in the RAW Slot Definition subfield of the RAW Assignment field of the RPS element.
  • the NDP PS Poll frame format may be defined as shown in Table 5 or Table 6 above.
  • Table 5 shows an example of the MAC frame body of the NDP PS Poll
  • Table 6 shows another example of the MAC frame body of the NDP PS Poll.
  • the NDP PS Poll frame format shown in Table 5 and Table 6 may have a form in which a preferred channel index value is substituted in the Preferred MCS field or the UDI field with its own value or the offset value from the reference channel.
  • the specified NDP PS Poll frame format can only be used in Report RAW for Sector Sounding or SST Sounding.
  • the AP may schedule channel sounding for several STAs using RAW of a beacon signal.
  • the AP may set the Sounding RAW Indication bit in the RPS IE to 1 and set the Sounding RAW Type Indication to correspond to the type in which channel sounding is performed.
  • the AP may indicate whether the sounding RAW type indication indicates whether the corresponding sounding RAW is channel sounding for SST or channel sounding for sectorized beam operation. If the Sounding RAW Indication bit in the RPS IE of the beacon is set to 0, this indicates that channel sounding is not performed in that RAW. Sounding RAW can be transferred in either periodic or improvised fashion.
  • the AP may transmit a plurality of NDPs to the STA in RAW for channel sounding.
  • the AP may continuously transmit each NDP at a predetermined time interval.
  • the AP may transmit NDPs with a time interval of short inter-frame space (SIFS) or point inter-frame space (PIFS).
  • SIFS short inter-frame space
  • PIFS point inter-frame space
  • the STA may wake up from the start time of RAW for channel sounding and stay up to the end time of the corresponding RAW or until the transmission of a series of NDPs is completed.
  • the AP may transmit NDPA in sounding RAW and may sequentially transmit a series of NDPs at PIFS intervals.
  • the AP may set the Sounding RAW Type Indication in the RPS IE to correspond to SST sounding.
  • the AP may transmit respective NDPs through different frequency channels.
  • a basic unit may be changed, and a bit field may be defined to display an option for setting a basic unit.
  • an available frequency channel or a frequency channel to be transmitted for the entire frequency band may be displayed in a bitmap or encrypted form.
  • the AP may transmit NDPs for each frequency channel used for SST in a RAW period for channel sounding. For example, the AP may transmit a series of NDPs at PIFS time intervals, starting with a low band frequency channel.
  • the AP may transmit NDPA in sounding RAW and may sequentially transmit a series of NDPs at PIFS intervals.
  • the AP may set the Sounding RAW Type Indication in the RPS IE to correspond to sector sounding.
  • the AP may transmit respective NDPs through different sectors.
  • the AP may transmit NDPs for each sector set by the AP in a RAW period for channel sounding. For example, the AP may transmit a series of NDPs at PIFS time intervals starting from sector 0.
  • the AP may receive channel information estimated based on the NDP from the STA and perform wireless communication with the STA based on the received channel information.
  • the AP may receive channel information via RAW for a feedback report.
  • the RAW for the feedback report can be assigned after the RAW for channel sounding.
  • the AP may receive optimal frequency channel information determined by the STA as channel information.
  • the AP may receive optimal sector ID information determined by the STA as channel information.
  • FIG. 13 is a flowchart illustrating an operation of a channel sounding method performed by a station according to an embodiment of the present invention.
  • the STA may receive a beacon from the AP that includes information of a limited access window (sounding RAW) for channel sounding.
  • the STA may identify the type of channel sounding through the beacon. For example, the STA may determine whether the type of channel sounding is SST sounding or sector sounding based on the Sounding RAW Type information included in the RPS IE of the beacon.
  • the STA may estimate channel information based on the NDP received from the AP.
  • the NDP can be sent in RAW for channel sounding.
  • the channel information may include an optimal frequency channel for SST or optimal sector ID information for sectorized beam operation.
  • the STA may be prohibited from transmitting data in the RAW period for channel sounding. Or, in the RAW period for channel sounding, the STA may only allow transmitting channel information to the AP after NDPs are transmitted, and other transmission may be prohibited.
  • the STA may identify a communication type that the AP intends to perform based on a beacon received from the AP, and determine whether to support the identified communication type.
  • the STA may receive an NDP from the AP in RAW for channel sounding and estimate channel information based on the received NDP and the identified communication type.
  • the communication type may be any one of SST, sectorized beam operation, SU-MIMO beamforming, or MU-MIMO beamforming.
  • the STA when the Sounding RAW Type is set to SST sounding, the STA is prohibited from transmitting data during the sounding RAW, so that the entire sounding RAW can be heard only if the corresponding STA supports the SST function. May be acceptable.
  • the STA may determine an optimal frequency channel based on the NDP.
  • the STA may search for a frequency channel that satisfies a predetermined criterion among frequency channels used for communication with the AP, and determine information about the found frequency channel as channel information.
  • the STA may transmit the estimated channel information to the AP. For example, the STA may report the decision optimal frequency channel directly to the AP.
  • the STA may inform the AP indirectly about the optimal frequency channel by transmitting data using the determined optimal frequency channel. That is, the STA may determine a frequency channel that satisfies a preset criterion among the plurality of frequency channels based on the NDP, and transmit channel information to the AP using the determined frequency channel. Alternatively, the STA is prohibited from transmitting except for reporting the optimal frequency channel after receiving the series of NDPs during the sounding RAW, and the entire sounding RAW or the series of NDPs only if the STA supports the SST function. Can be allowed to listen until the end of their transmission. The STA may transmit the determined optimal frequency channel information to the AP through a report packet.
  • the AP When a plurality of STAs feed back each optimal frequency channel to the AP, in order to prevent the frames for the feedback of the optimal frequency channel from colliding with other signals, the AP is assigned the frames for the feedback of the optimal frequency channel. You can control the report to be sent via RAW. At this time, the start time and a series of information of the report RAW may be included in the RPS IE of the beacon transmitted by the AP. When the estimated channel information is transmitted to the AP, transmission of other STAs other than the STA transmitting the channel information may be prohibited.
  • the STA when the Sounding RAW Type is set to sector sounding, the STA is prohibited from transmitting data during the sounding RAW, and only when the STA supports the sectorized beam operation function. You may be allowed to hear it.
  • the STA is prohibited from transmitting except for reporting the optimal sector ID after receiving a series of NDPs during the sounding RAW, and only when the STA supports the sectorized beam operation function. Or may be allowed to listen until the end of the transmission of the series of NDPs.
  • the STA may search for a sector to which it belongs among the plurality of sectors set by the AP, and determine identification information of the found sector as channel information. In operation 1330, the STA may transmit the estimated channel information to the AP.
  • the STA may selectively feed back the determined optimal sector ID to the AP.
  • the STA may transmit the determined optimal sector ID to the AP through a report packet.
  • the AP indicates that the frames for the feedback of the sector ID are sent via the report RAW. It can be controlled to be transmitted.
  • the start time and a series of information of the report RAW may be included in the RPS IE of the beacon transmitted by the AP.
  • FIG. 14 is a diagram illustrating a detailed configuration of a wireless device 1410 in which an embodiment of the present invention can be implemented.
  • the wireless device 1410 may include a processor 1430, a memory 1440, and a transceiver 1420.
  • the wireless device 1410 may correspond to an AP or STA of the present invention.
  • the transceiver 1420 may transmit or receive a wireless signal.
  • the processor 1430 may be configured to be functionally connected to and operate with the transceiver 1420.
  • the processor 1430 may control the wireless device 1410 to perform a channel sounding method according to an embodiment of the present invention based on FIGS. 7, 9, and 11 to 13.
  • At least one of the processor 1430 and the transceiver 1420 may include at least one of an application-specific integrated circuit (ASIC), another chipset, a logic circuit, and a data processing device.
  • ASIC application-specific integrated circuit
  • the above-described technique may be implemented as a module (process, function, etc.) for performing the above-described function.
  • the module may be stored in the memory 1440 and executed by the processor 1430.
  • the memory 1440 may be included in the processor 1430 and may be functionally connected to the processor 1430 by various known means which are separately located outside.
  • Method according to the embodiment is implemented in the form of program instructions that can be executed by various computer means may be recorded on a computer readable medium or performed by at least one processor (processor).
  • the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded on the media may be those specially designed and constructed for the purposes of the embodiments, or they may be of the kind well-known and available to those having skill in the computer software arts.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks, and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks, such as floppy disks.
  • Magneto-optical media and hardware devices specifically configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
  • program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware device described above may be configured to operate as one or more software modules to perform the operations of the embodiments, and vice versa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선랜 시스템에서의 채널 사운딩 방법 및 이를 수행하기 위한 장치가 개시된다. 채널 사운딩 방법을 수행하는 액세스 포인트는, 채널 사운딩을 위한 제한된 액세스 윈도우의 정보를 비콘에 포함하여 브로드캐스트하고, 제한된 액세스 윈도우 내에서 채널 추정을 위한 NDP(Null Data Packet)들을 스테이션에 전송할 수 있다. 스테이션은 NDP에 기초하여 채널 정보를 추정하고, 추정한 채널 정보를 액세스 포인트로 전송할 수 있다.

Description

무선랜 시스템에서의 채널 사운딩 방법 및 이를 지원하는 장치
아래의 설명은 무선랜 시스템에 관한 것으로, 더욱 구체적으로는 무선랜 시스템에서의 채널 사운딩 기술에 관한 것이다.
근거리 통신망인 랜(LAN, Local Area Network)은 크게 유선 랜과 무선 랜(wireless LAN; WLAN)으로 나누어진다. 무선 랜은 케이블을 사용하지 않고 전파를 이용하여 네트워크 상에서 통신을 수행하는 방식이다. 무선 랜의 등장은 케이블링으로 인한 설치, 유지보수, 이동의 어려움을 해소하기 위한 대안으로 대두되었으며, 이동 사용자의 증가로 인해 그 필요성이 점점 늘어나고 있는 추세이다.
무선 랜의 구성은 액세스 포인트(Access Point, 이하 "AP"라 칭한다)와 단말 장치(Station, 이하 "STA"라 칭한다)로 이루어진다. AP는 전송거리 이내의 무선 랜 사용자들이 인터넷 접속 및 네트워크를 이용할 수 있도록 전파를 보내는 장비로서 휴대폰의 기지국 또는 유선 네트워크의 허브와 같은 역할을 한다.
IEEE 802.11 네트워크의 기본 구성 블록은 기본 서비스 셋(Basic Service Set, 이하 "BSS"라 칭한다)이다. IEEE 802.11 네트워크에는 BSS 내에 있는 단말들이 서로 간에 직접 통신을 수행하는 독립 네트워크(Independent BSS), 단말이 BSS 내외의 단말과 통신을 수행하는 과정에서 AP가 개입되는 인프라스트럭처 네트워크(Infrastructure BSS), BSS들을 서로 연결함으로써 서비스영역을 확장시키는 확장 서비스 셋(Extended Service Set)이 있다.
차세대 무선랜 시스템에서 AP(access point)는 MIMO(Multiple Input Multiple Output) 페어링된 적어도 하나 이상의 STA(Station)에게 동시에 데이터 프레임을 전송할 수 있다.
무선랜 시스템에서 AP 및/또는 STA은 수신 대상 AP 및/또는 STA에게 프레임을 전송함에 있어서 채널 사운딩을 통해 사용할 채널에 대한 정보를 획득할 수 있다. 전송자는 수신자에게 프레임 송수신을 위해 사용할 채널 정보를 요청하고, 수신자는 채널을 추정하고 이에 대한 채널 정보를 전송자에게 피드백 하는 과정이 데이터 프레임 송수신 이전에 수행될 수 있다.
일실시예에 따른 액세스 포인트에 의해 수행되는 채널 사운딩 방법은, 채널 사운딩을 위한 제한된 액세스 윈도우의 정보를 포함하는 비콘을 브로드캐스트하는 단계; 및 상기 제한된 액세스 윈도우 내에서 복수의 NDP(Null Data Packet)들을 스테이션에 전송하는 단계를 포함할 수 있다.
일실시예에 따른 액세스 포인트에 의해 수행되는 채널 사운딩 방법에서, 상기 액세스 포인트는 상기 채널 사운딩을 위한 RAW 구간에서 상기 스테이션의 데이터 전송을 제어할 수 있다.
일실시예에 따른 액세스 포인트에 의해 수행되는 채널 사운딩 방법에서, 상기 액세스 포인트는 상기 채널 사운딩을 위한 RAW 구간에서, 상기 스테이션의 데이터 전송을 금지하도록 제어할 수 있다.
일실시예에 따른 액세스 포인트에 의해 수행되는 채널 사운딩 방법에서, 상기 액세스 포인트는 상기 채널 사운딩을 위한 RAW 구간에서, 상기 NDP들이 전송된 이후에 상기 채널 정보를 상기 액세스 포인트에 전송하는 것만 허용하고, 다른 전송은 금지하도록 제어할 수 있다.
일실시예에 따른 액세스 포인트에 의해 수행되는 채널 사운딩 방법에서, 상기 비콘은 상기 RAW를 통해 채널 사운딩이 수행되는지 여부를 나타내는 비트 값, 상기 RAW 구간에서 스테이션의 전송을 제어하는 비트 값 및 상기 액세스 포인트가 수행하려는 통신 타입을 나타내는 비트 값 중 적어도 하나를 포함할 수 있다.
일실시예에 따른 액세스 포인트에 의해 수행되는 채널 사운딩 방법은, 상기 스테이션으로부터 상기 NDP에 기초하여 추정된 채널 정보를 수신하는 단계를 더 포함할 수 있다.
일실시예에 따른 스테이션에 의해 수행되는 채널 사운딩 방법은, 채널 사운딩을 위한 제한된 액세스 윈도우의 정보를 포함하는 비콘을 액세스 포인트로부터 수신하는 단계; 상기 액세스 포인트로부터 수신한 NDP(Null Data Packet)에 기초하여 채널 정보를 추정하는 단계; 및 상기 추정한 채널 정보를 상기 액세스 포인트로 전송하는 단계를 포함할 수 있다.
일실시예에 따른 스테이션에 의해 수행되는 채널 사운딩 방법에서, 상기 추정하는 단계는, 상기 수신한 비콘에 기초하여 상기 액세스 포인트가 수행하려는 통신 타입을 식별하는 단계; 상기 스테이션이 상기 통신 타입을 지원하는 경우, 상기 제한된 액세스 윈도우 내에서 상기 액세스 포인트로부터 NDP를 수신하는 단계; 및 상기 수신한 NDP 및 상기 식별한 통신 타입에 기초하여 채널 정보를 추정하는 단계를 포함할 수 있다.
일실시예에 따른 스테이션에 의해 수행되는 채널 사운딩 방법에서, 상기 추정하는 단계는, 상기 액세스 포인트와의 통신에 이용되는 주파수 채널 중 미리 설정된 기준을 만족시키는 주파수 채널을 탐색하고, 상기 탐색된 주파수 채널에 관한 정보를 채널 정보로 결정하는 단계를 포함할 수 있다.
일실시예에 따른 스테이션에 의해 수행되는 채널 사운딩 방법에서, 상기 추정하는 단계는, 상기 액세스 포인트에 의해 설정된 복수의 섹터들 중 상기 스테이션이 속하는 섹터를 탐색하고, 상기 탐색하는 섹터의 식별 정보를 채널 정보로 결정하는 단계를 포함할 수 있다.
일실시예에 따른 무선 장치는, 프레임을 송신 및 수신하는 트랜스시버; 및 상기 트랜스시버와 기능적으로 결합된 프로세서를 포함할 수 있고, 상기 프로세서는, 채널 사운딩을 위한 제한된 액세스 윈도우의 정보를 포함하는 비콘을 브로드캐스트하고, 상기 제한된 액세스 윈도우 내에서 복수의 NDP(Null Data Packet)들을 스테이션에 전송할 수 있다.
다른 실시예에 따른 무선 장치는, 프레임을 송신 및 수신하는 트랜스시버; 및 상기 트랜스시버와 기능적으로 결합된 프로세서를 포함할 수 있고, 상기 프로세서는, 채널 사운딩을 위한 제한된 액세스 윈도우의 정보를 포함하는 비콘을 액세스 포인트로부터 수신하고, 상기 액세스 포인트로부터 수신한 NDP(Null Data Packet)에 기초하여 채널 정보를 추정하고, 상기 추정한 채널 정보를 상기 액세스 포인트로 전송할 수 있다.
도 1은 무선랜 시스템의 전체적인 구성을 도시한 도면이다.
도 2 내지 도 3은 무선 통신의 구간별 할당을 통한 업링크 채널 액세스 프로토콜을 설명하기 위한 도면이다.
도 4 내지 도 6은 섹터화된 빔 운용(Sectorized Beam Operation) 방법을 설명하기 위한 도면이다.
도 7은 본 발명의 일실시예에 따른 섹터화된 빔 운용을 위한 채널 사운딩 방법을 설명하기 위한 도면이다.
도 8은 부채널 선택적 전송(sub-channel selective transmission; SST)에서의 채널 사운딩 방법의 일례를 나타내는 도면이다.
도 9는 본 발명의 일실시예에 따른 부채널 선택적 전송을 위한 채널 사운딩 방법을 설명하기 위한 도면이다.
도 10은 SU-MIMO(Single User-MIMO) 빔포밍(beamforming) 또는 MU-MIMO(Multi User-MIMO) 빔포밍을 설명하기 위한 도면이다.
도 11은 본 발명의 일실시예에 따른 SU-MIMO 빔포밍 또는 MU-MIMO 빔포밍을 위한 채널 사운딩 방법을 설명하기 위한 도면이다.
도 12는 본 발명의 일실시예에 따른 액세스 포인트에 의해 수행되는 채널 사운딩 방법의 동작을 도시한 흐름도이다.
도 13은 본 발명의 일실시예에 따른 스테이션에 의해 수행되는 채널 사운딩 방법의 동작을 도시한 흐름도이다.
도 14는 본 발명의 실시예가 구현될 수 있는 무선 장치의 세부 구성을 도시한 도면이다.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
이하의 실시예들은 본 발명의 구성요소들과 특징들을 소정 형태로 결합한 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려될 수 있다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성할 수도 있다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다.
이하의 설명에서 사용되는 특정 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시된다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.
본 발명의 실시예들은 무선 액세스 시스템들인 IEEE 802 시스템, 3GPP 시스템, 3GPP LTE 및 LTE-A(LTE-Advanced)시스템 및 3GPP2 시스템 중 적어도 하나에 개시된 표준 문서들에 의해 뒷받침될 수 있다. 즉, 본 발명의 실시예들 중 본 발명의 기술적 사상을 명확히 드러내기 위해 설명하지 않은 단계들 또는 부분들은 상기 문서들에 의해 뒷받침될 수 있다. 또한, 본 문서에서 개시하고 있는 모든 용어들은 상기 표준 문서에 의해 설명될 수 있다.
이하의 기술은 CDMA(Code Division Multiple Access), FDMA(Frequency Division Multiple Access), TDMA(Time Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier Frequency Division Multiple Access) 등과 같은 다양한 무선 액세스 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. 명확성을 위하여 이하에서는 IEEE 802.11 시스템을 위주로 설명하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
도 1은 무선랜 시스템의 전체적인 구성을 도시한 도면이다.
WLAN 시스템은 하나 또는 그 이상의 기본 서비스 세트(Basic Service Set, BSS)를 포함할 수 있다. BSS는 성공적으로 동기화를 이루어서 서로 통신할 수 있는 스테이션(Station, STA)의 집합으로써, 특정 영역을 가리키는 개념은 아니다
인프라스트럭쳐(infrastructure) BSS는 하나 또는 그 이상의 비-AP 스테이션(non-AP STA), 분산 서비스(Distribution Service)를 제공하는 AP(110) 및 다수의 AP(110)들을 연결시키는 분산 시스템(Distribution System)을 포함할 수 있다. 인프라스트럭쳐 BSS에서는 AP(110)가 BSS의 non-AP STA들을 관리할 수 있다.
STA은 IEEE(Institute of Electrical and Electronics Engineers) 802.11 표준 규정을 따르는 매체 접속 제어(Medium Access Control, MAC)와 무선 매체에 대한 물리 계층(Physical Layer) 인터페이스를 포함하는 임의의 기능 매체로서, 광의로는 AP와 non-AP STA를 모두 포함한다.
non-AP STA는 AP가 아닌 STA로서, 예를 들어, non-AP STA은 이동 단말(mobile terminal), 무선 기기(wireless device), 무선 송수신 유닛(Wireless Transmit/Receive Unit; WTRU), 사용자 장비(User Equipment; UE), 이동국(Mobile Station; MS), 이동 가입자 유닛(Mobile Subscriber Unit) 또는 단순히 사용자(User) 등의 다른 명칭으로도 지칭할 수 있다. 이하에서는 설명의 편의를 위하여 non-AP STA를 STA(120)으로 지칭하도록 한다.
AP(110)는 해당 AP(110)에게 결합된(associated) STA(120)을 위하여 무선 매체를 경유하여 분산 시스템에 대한 접속을 제공하는 기능 개체이다. AP(110)를 포함하는 인프라스트럭쳐 BSS에서, STA(120)들 사이의 통신은 AP(110)를 경유하여 이루어지는 것이 원칙이나, STA(120)들 간의 다이렉트 링크가 설정된 경우에는 해당 STA(120)들은 AP(110)를 경유하지 않고 직접 통신할 수 있다. 예를 들어, AP(110)는 중앙 제어기(central controller), 기지국(Base Station, BS), 노드-B, 또는 BTS(Base Transceiver System) 등의 다른 명칭으로도 지칭할 수 있다.
도 1에 도시된 BSS를 포함하는 복수의 인프라스트럭쳐 BSS는 분산 시스템을 통해 상호 연결될 수 있다. 분산 시스템을 통하여 연결된 복수의 BSS를 확장 서비스 세트(Extended Service Set; ESS)라 한다. ESS에 포함되는 AP(110) 및 STA(120)들은 서로 통신할 수 있으며, 동일한 ESS에서 STA(120)은 다른 BSS로 이동할 수 있다.
IEEE 802.11에 따른 무선랜 시스템에서, MAC(Medium Access Control)의 기본 접속 메커니즘은 CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance) 메커니즘이다. CSMA/CA 메커니즘은 IEEE 802.11 MAC의 분배 조정 기능(Distributed Coordination Function, DCF)이라고도 지칭할 수 있고, 기본적으로 “listen before talk” 접속 메커니즘을 채용하고 있다. 예를 들어, AP(110) 및/또는 STA(120)은 프레임을 전송하기에 앞서 무선 채널 또는 매체(medium)를 센싱(sensing)하고, 센싱 결과에 기초하여 매체가 휴지 상태(idle status)인 것으로 판단되면, 해당 매체를 통하여 프레임 전송을 시작한다. 반면, 매체가 점유 상태(occupied status)인 것으로 감지되면, 해당 AP(110) 및/또는 STA(120)은 자기 자신의 전송을 시작하지 않고 매체 접근을 위한 지연 기간을 설정하여 대기할 수 있다.
CSMA/CA 메커니즘은 AP(110) 및/또는 STA(120)이 매체를 직접 센싱하는 물리적 캐리어 센싱(physical carrier sensing) 외에 가상 캐리어 센싱(virtual carrier sensing)도 포함할 수 있다. 가상 캐리어 센싱은 히든 노드 문제(hidden node problem) 등과 같이 매체 접근상 발생할 수 있는 문제를 보완하기 위한 것이다. 가상 캐리어 센싱을 위하여, 무선랜 시스템의 MAC은 네트워크 할당 벡터(Network Allocation Vector, NAV)를 이용한다. NAV는 현재 매체를 사용하고 있거나 또는 사용할 권한이 있는 AP(110) 및/또는 STA(120)이 매체가 이용 가능한 상태로 되기까지 남아 있는 시간을 다른 AP(110) 및/또는 STA(120)에게 지시하는 값을 나타낸다. 따라서, NAV로 설정된 값은 해당 프레임을 전송하는 AP(110) 및/또는 STA(120)에 의하여 매체의 사용이 예정되어 있는 기간과 관련이 있다.
도 1과 같은 무선랜 시스템에서 AP(110)는 자신과 결합(association)되어 있는 복수의 STA(120)들 중 적어도 하나 이상의 STA을 포함하는 STA 그룹에게 데이터를 동시에 전송할 수 있다.
MU-MIMO(Multi User-Multiple Input Multiple Output) 통신 시스템에서는, AP(110)가 다중 안테나를 이용하여 여러 개의 공간 스트림을 복수의 STA(120)으로 전송할 수 있다. 또한, AP(110)가 여러 개의 송신 안테나를 사용하는 경우, AP(110)는 전송 성능을 개선하기 위하여 빔포밍(beamforming) 기술을 이용하여 STA(120)에 데이터를 전송할 수 있다.
AP(110)는 데이터를 전송하고자 하는 STA(120)들에 대한 채널 정보를 필요로 하고, 필요로 하는 채널 정보를 획득하기 위해 채널 사운딩(channel sounding)을 수행할 수 있다. 채널 사운딩은 NDP(Null Data Packet)과 NDPA(NDP announcement)에 기초하여 수행될 수 있다. NDP는 MAC 계층의 데이터 필드가 제외된 PPDU(PLCP Protocol Data Unit) 포맷을 가진다. PLCP는 물리 계층 수렴 처리(Physical Layer convergence Procedure)를 나타낸다. AP(110)는 STA(12)로부터 채널 정보를 추출하기 위해 NDP를 사용할 수 있다. STA(120)는 수신한 NDP에 기초하여 채널 추정을 수행하고, 추정 결과로서 채널 상태 정보를 AP(110)에 피드백할 수 있다. 예를 들어, STA(120)는 NDP의 VHT-LTF(very high throughput-long training fields)를 기반으로 MIMO 채널을 추정하고, 채널 정보를 획득할 수 있다. NDP는 사운딩 프레임(sounding frame)이라고도 지칭할 수 있다.
NDPA는 NDP를 수신해야 하는 STA이 어느 STA인지를 알려주기 위해 전송되고, 사운딩 알림 프레임(sounding announcement frame)이라고도 지칭할 수 있다. STA(120)는 NDPA를 통해 자신이 채널 사운딩에 참여하는 STA인지 여부를 결정할 수 있다. AP(110)는 채널 사운딩의 대상이 되는 STA에 대한 정보를 NDPA 프레임에 포함하여 STA(120)에 전송할 수 있다. AP(110)는 NDPA 프레임을 이용하여 STA(120)에게 NDP를 수신할 것을 지시할 수 있다. AP(110)는 NDPA 및 NDP를 제한된 액세스 윈도우(Restricted Access Window; RAW)에 기초하여 전송할 수 있다.
RAW는 특정 STA들에게만 액세스가 허용되는 시간 구간을 나타낸다. AP(110)는 NDPA 및 NDP를 RAW에 기초하여 전송함으로써 채널 사운딩 과정에서 스테이션이 프레임을 임의로 전송하여 채널 사운딩 성능이 저하되는 것을 방지할 수 있다. 또한, AP(110)는 한정된 스테이션들에 대해서만 선별적으로 채널 사운딩을 수행할 수 있고, 이를 통해 채널 사운딩 성능을 개선시킬 수 있다.
도 2 내지 도 3은 무선 통신의 구간별 할당을 통한 업링크 채널 액세스 프로토콜을 설명하기 위한 도면이다.
도 2를 참조하면, AP는 RAW(210)를 통해 STA의 액세스를 제어할 수 있다. RAW(210)는 복수 개의 타임 슬롯(time slot)을 포함할 수 있다. STA는 TBTT(Target Beacon Transmission Time)에 깨어나서(wake-up) 비콘 프레임(beacon frame)을 수신할 수 있다. TBTT는 AP가 비콘 프레임을 전송해야 하는 시점을 나타낸다. 비콘 프레임은 각각의 RAW에 대한 슬롯 구간(slot duration)에 관한 정보를 포함할 수 있다. 각각의 RAW의 슬롯 길이는 다르게 설정될 수 있다. STA는 AP에 의하여 설정된 채널 액세스 슬롯을 결정하고, 해당 채널 액세스 슬롯 이전에는 sleep 상태에 있을 수 있다. STA는 해당 채널 액세스 슬롯의 경계 부근에서는 향상된 분산 채널 접근(Enhanced Distributed Channel Access; EDCA) 프로토콜에 기반한 채널 액세스를 시작할 수 있다.
AP는 STA에 전송 기회(Transmit Opportunity; TXOP) 규칙이 각 RAW(210)에 적용되는지 여부를 알려줄 수 있다. 예를 들어, AP는 TXOP 이나 TXOP 내에서의 전송이 슬롯의 경계(slot boundary)를 벗어나지 않아야 함을 알려줄 수 있고, 이러한 규칙이 적용되는 경우 STA은 슬롯의 경계에서 깨어나서 ProbeDelay만큼도 기다리지 않는다.
도 3을 참조하면, AP는 각각 다른 슬롯 길이를 갖는 RAW들에 대한 규칙을 설정할 수 있다. 도 3에서, "P" 프레임은 PS-Poll/Trigger 프레임을 나타내고, "D" 프레임은 데이터 전송에 이용되는 프레임을 나타내며, "A" 프레임은 Acknowledgement (ACK) 프레임을 나타낸다. 각각 다른 슬롯 길이를 가지는 RAW들에 대한 규칙으로서, TXOP 규칙이 적용되는 경우 RAW 내에서의 프레임 교환 시퀀스(frame exchange sequence)는 슬롯 구간 내로 제한되어야 한다. 프레임 교환 시퀀스는 시작 프레임과 응답 프레임으로 구성될 수 있다. 도 3에 도시된 일례처럼, RAW1(310)은 Poll 신호들을 위한 보호 구간으로 이용될 수 있고, RAW2(320)는 DATA 전송을 위한 보호 구간으로 이용될 수 있다.
도 4 내지 도 6은 섹터화된 빔 운용 방법을 설명하기 위한 도면이다.
도 4를 참조하면, AP는 섹터화된 빔 운용 방법을 이용하여 STA와 통신할 수 있다. 일반적으로, 섹터화된 빔/안테나 운용 방법은 넓은 영역에 설치된 네트워크에서 공간적 자원의 재사용을 위해 이용된다. AP1(410)는 AP1(410)의 서비스 영역1(420)에 위치한 STA1(420)에 섹터화된 빔 전송(sectorized beam transmission)을 통해 데이터를 전송할 수 있다. 마찬가지로, AP2(440)는 AP2(440)의 서비스 영역2(450)에 위치한 STA2(460)에 섹터화된 빔 전송을 통해 데이터를 전송할 수 있다. 섹터화된 빔 운용 방법을 통해 이웃한 AP로부터 오는 간섭 신호 및 Overlapped BSS (OBSS)로부터의 간섭 신호가 효과적으로 줄어들 수 있다. 그리고, 섹터화된 빔 운용 방법이 특정 섹터에서 사용되는 동안 활성화 상태에 있는 STA의 개수가 감소되기 때문에, 동일 BSS 내에서의 hidden node 문제도 감소될 수 있다.
도 5는 섹터화된 빔 운용 방법에 대한 일례를 나타내는 도면이다. 도 5를 참조하면, AP는 공간을 복수 개의 섹터로 분할하고, 시간 분할적 방법으로 각 섹터에 속하는 STA들에게 자원을 할당할 수 있다. 각 섹터마다 비콘 신호가 독립적으로 전송되고, 각 섹터에 포함된 STA들은 각각의 섹터에 할당된 시간 구간 내에서 데이터를 전송하거나 수신할 수 있다. 특정 시간 구간은 모든 섹터의 STA들이 모두 이용할 수 있는 공통된 시간 구간으로 할당될 수도 있다.
도 6은 섹터화된 빔 운용 방법에 대한 다른 예를 나타내는 도면이다. 도 6을 참조하면, AP는 섹터 빔 전송을 수행할지 아니면 전방향 빔 전송을 수행할지 여부를 탄력적으로 선택할 수 있다. 이를 통해, 섹터화된 빔 운용 방법이 보다 유연하고 탄련적으로 적용될 수 있다. 전방향 빔 전송은 RAW 구간(610, 620)에서 수행될 수 있다. 섹터 빔 전송은 오직 AP가 STA의 미리 예약된 짧은 시간 구간에서의 섹터를 아는 경우에만 허용되며, 해당 짧은 시간 구간 동안에서 섹터 빔 전송이 가능하게 된다. 섹터 수신 빔은 TXOP 구간(630) 내에서 섹터 송신 빔과 결합되어 사용될 수 있다. AP는 섹터 빔 전송에 관한 정보를 비콘, 프로브 응답(probe response), 연결 응답(association response)을 통해 알려줄 수 있다. 섹터 빔의 구체적인 형성 방법은 각 구현 방법에 따라 다를 수 있다.
도 7은 본 발명의 일실시예에 따른 섹터화된 빔 운용을 위한 채널 사운딩 방법을 설명하기 위한 도면이다.
도 7을 참조하면, AP는 채널 사운딩을 위한 제한된 액세스 윈도우(이하, "사운딩 RAW"라고 지칭함) 동안에 일련의 NDP(또는, NDP 프레임)들을 연쇄적으로 전송할 수 있다. 전송되는 NDP들은 서로 짧은 프레임간 간격(Short Inter-frame Space; SIFS)을 가지고 전송될 수 있다. 각각의 NDP들은 섹터 트레이닝(sector training)을 위하여 각각의 섹터의 해당 신호로 전송될 수 있다. 도 7은 섹터 빔의 개수가 4개인 경우를 가정한 것이고, AP는 비콘 신호를 전송한 이후에 RAW 또는 PRAW (periodic RAW)에 기초하여 채널 사운딩을 수행할 수 있다. +HTC(High Throughput Control) 프레임이 NDP에 선행하여 전송될 수 있다.
일실시예에 따르면, 채널 사운딩의 성능을 보장하기 위해, 사운딩 RAW 동안에는 STA의 전송이 금지될 수 있다. 다만, STA는 사운딩 RAW 시작 시점에서 깨어나서 사운딩 RAW 전체를 들을 수 있다. 채널 사운딩은 모든 STA들 또는 제한된 범위의 AID(association ID)를 가지는 STA들에 대해 수행될 수 있다. 채널 사운딩의 대상이 되는 STA는 사운딩 RAW 구간에서 전송이 금지될 수 있다.
AID는 STA이 AP로부터 부여받은 식별자(ID)를 나타낸다.
다른 실시예에 따르면, 채널 사운딩의 성능을 보장하기 위해, 사운딩 RAW 동안 STA는 일련의 NDP들을 수신한 이후에 섹터 ID를 보고하기 위한 리포트 패킷(report packet)의 전송을 제외한 일체의 전송이 금지될 수 있다. 채널 사운딩은 모든 STA들 또는 제한된 범위의 AID를 가지는 STA들에 대해 수행될 수 있다. STA는 사운딩 RAW 시작 시점에서 깨어나서 사운딩 RAW가 끝나는 시점 또는 일련의 NDP의 전송이 끝나는 시점까지 들을 수 있다.
위와 같은 STA 동작의 특이성으로 인하여, RAW가 사운딩 RAW인지 아니면 일반적인 RAW인지 여부를 표시하는 사운딩 RAW 인디케이션(Sounding RAW Indication) 정보가 비콘에 포함될 필요가 있다. 사운딩 RAW 인디케이션 정보는 비콘에서 전송되는 RPS (RAW parameter set) IE(Information Element)에 표시될 수 있다.
도 8은 부채널 선택적 전송에서의 채널 사운딩 방법의 일례를 나타내는 도면이다.
AP는 부채널 선택적 전송을 통해 STA과 통신할 수 있다. 부채널 선택적 전송에서, STA는 AP에 의하여 허용되는 경우 광대역 BSS에서 자신의 전송 및 수신을 위한 부채널을 선택할 수 있다. STA는 AP와의 통신을 위한 최적의 부채널을 탐색하고, 탐색된 최적의 부채널에 관한 정보를 AP에 전송할 수 있다. AP는 비콘 신호 이후에 전송되는 프레임들을 통하여 STA들의 채널 사운딩 측정이 가능하게 될 수 있도록 관련 정보를 비콘을 통해 알려 줄 수 있다. 예를 들어, 비콘은 신호의 개수, 신호의 종류, 신호의 주파수 위치, 및 전송 시간 등의 정보를 포함할 수 있다.
AP는 선택적으로 부채널 사운딩 신호를 알려주는 비콘을 전송할 수 있다. AP는 단일 채널 또는 다수 채널의 사운딩 신호를 연쇄적으로 전송할 수 있다. 채널 사운딩은 NDP 신호, 추가적 비콘 신호, 또는 AP에 의한 다른 패킷에 의해 수행될 수 있다. 사운딩 신호의 개수, 종류(예를 들어, NDP, 비콘 등), 주파수 위치 등에 관한 정보는 비콘에 포함될 수 있다. 네트워크 할당 벡터(Network Allocation Vector; NAV)는 비콘에 의하여 사운딩 신호에 대해 설정될 수도 있다. AP는 채널 사운딩 과정에 대해 어느 정도의 시간이 할당되는지를 선택할 수 있다. STA는 여러 사이클에 걸친 시험 비콘(examining beacon) 동안에 어느 채널들을 사운딩할 것인지를 결정할 수 있다. STA는 사운딩 신호에 기초하여 최적의 부채널을 선택할 수 있다. STA는 비콘 정보에 기초하여 추가적인 채널들로 스위치할 것인지 여부를 결정할 수 있다. 비콘 신호와 사운딩 신호는 PIFS (Point Inter-Frame Space)의 시간 간격을 가지고 전송될 수 있다.
도 9는 본 발명의 일실시예에 따른 부채널 선택적 전송을 위한 채널 사운딩 방법을 설명하기 위한 도면이다.
도 9를 참조하면, SST를 위한 채널 사운딩 방법에서 AP는 일련의 NDP들을 연쇄적으로 전송할 수 있다. NDP들은 PIFS 만큼의 시간 간격을 가지고 전송될 수 있고, 각각의 NDP들은 각 NDP들에 할당된 주파수 채널에 대하여 전송될 수 있다. 이 때, NDP을 이용한 채널 사운딩의 타이밍 정보가 비콘의 RPS IE에 표시되어야 할 필요가 있다. 도 9의 실시예는, Channel Activity Bitmap이 {0, 0, 0, 0, 1, 1, 1, 1}이고, Maximum Transmission Width가 2MHz이고, 각 NDP의 Bandwidth span이 2MHz인 경우를 가정하였다. NDPA의 Bandwidth span은 Duplicate Mode일 수도 있고, 아닐 수도 있다.
다른 실시예에 따르면, SST를 위한 채널 사운딩 방법은 PS-Poll RAW와 연계되어 동작할 수 있다. 다운링크(downlink; DL) 전송의 경우, SST를 수행할 STA는 비콘을 수신한 후, TIM(Traffic Indication Map) 비트가 1로 설정되어 있는 STA에 대하여 PS-Poll 프레임을 바로 전송하지 않고, 사운딩 RAW 이후에 다른 목적으로 미리 스케쥴링된 또는 새로이 할당된 PS-Poll 구간이 있으면, 해당 PS-Poll 구간이 종료될 때까지 기다렸다가 PS-Poll로 알아낸 최적의 부채널 정보를 AP에게 알릴 수 있다. 이후에, STA는 데이터 전송을 위한 RAW 구간에서 해당 최적의 부채널을 통해 AP로부터 데이터를 수신할 수 있다.
업링크(uplink; UP) 전송의 경우, SST를 수행할 STA는 사운딩 RAW 이후 PS-Poll RAW 구간에서 PS-Poll with UDI를 통해 이후에 전송할 데이터량을 AP에 알려주면, 이후의 데이터 전송을 위한 RAW 구간에서 최적의 부채널을 통해 데이터를 AP로 전송할 수 있다. STA는 AP로 전송할 프레임이 있으면, 데이터 전송을 위한 RAW에 할당된 슬롯에서 채널 사운딩을 통해 결정된 최적의 부채널을 통해 데이터를 AP로 전송할 수 있다.
SST에서, STA는 비콘에 정의된 Activation Time 이후에야 부채널을 통해 데이터를 AP로 전송할 수 있으므로, 사운딩 RAW, PS-Poll RAW 및 데이터 전송을 위한 RAW는 모두 Activation Time 이후에 할당될 필요가 있다. 따라서, SST에서의 다운링크 및 업링크 데이터 전송에서 PS-Poll RAW는 사운딩 RAW 이후에 할당될 필요가 있다. Activation time 이전에도 PS-Poll RAW가 할당될 수 있으나, Activation Time 이전에 할당된 PS-Poll RAW는 SST 동작과 무관한 PS-Poll RAW에 해당된다. 이와 같은 동작은, SST에서 시간 자원의 소모를 최소화하면서, AP가 STA별 최적의 부채널들을 미리 파악하여 자원이 효율적으로 할당되도록 할 수 있다.
도 10은 SU-MIMO 빔포밍 또는 MU-MIMO 빔포밍을 설명하기 위한 도면이다.
802.11 ac에서는 SU/MU-MIMO 빔포밍을 도 10에서와 같이, NDP announcement, NDP, 피드백 보고(feedback report), 그리고 빔포밍 보고 폴(Beamforming Report Poll)과 추가적인 피드백 보고의 조합으로 정의하고 있다. 기존 SU/MU 빔포밍 방법에서, SU/MU-MIMO 빔포밍과 관련된 STA들은 NDP Announcement 패킷을 수신한 이후에야 NDP 사운딩의 시작 시점을 알게 되었다. STA들은 NDP Announcement를 수신하기 위해 파워 세이빙(power saving) 모드를 수행하지 못하고, 계속하여 깨어 있어야 하는데 이는 파워 세이빙이 중요한 디바이스에서는 적절하지 못하다. STA들이 NDP 사운딩의 시작 시점에서 깨어나도록 제어하기 위해서는 AP가 미리 비콘의 RPS IE를 이용하여 NDP 사운딩에 관한 정보를 STA들에 알려주는 것이 적절하다. SU/MU-MIMO 빔포밍을 위한 NDP 사운딩에서도 이를 사운딩 RAW로 설정하는 것이 필요하다.
도 11은 본 발명의 일실시예에 따른 SU-MIMO 빔포밍 또는 MU-MIMO 빔포밍을 위한 채널 사운딩 방법을 설명하기 위한 도면이다.
SU/MU-MIMO 빔포밍을 위한 채널 사운딩 방법은, 다음의 두 가지 실시예들로 구분하여 설명하도록 한다.
<일실시예에 따른 SU/MU-MIMO 빔포밍을 위한 NDP 사운딩 수행 방법>
도 11을 참조하면, 사운딩 RAW 이후에, 여러 개의 채널 Feedback Report들이 비콘의 RPS IE에 표현되는 별도의 RAW로 설정될 수 있다. 이하, Feedback Report의 전송을 위한 RAW를 리포트 RAW(Report RAW)로 지칭하도록 한다. STA들은 Report RAW의 시작 경계(boundary)에서 파워 세이빙 모드에서 깨어날 수 있다. 채널 사운딩의 대상이 되는 STA의 AID 범위는 비콘의 RPS IE에 표시될 수 있다. 채널 사운딩의 대상이 되는 STA들의 순서 조합은 NDPA에 특정한 순서로 표시될 수 있다. 각 STA들이 전송할 채널 Feedback Report의 데이터량 및 각 STA들의 피드백 전송 모드를 AP가 미리 알지 못하므로, AP는 Power Saving Poll (PS-Poll)을 위한 RAW를 선택적(optional)으로 Report RAW 이전에 할당할 수 있다. PS-Poll은 MCS(Modulation and Coding Scheme) 및 업링크(uplink) 전송을 위한 버퍼의 데이터 분량을 표시하는 UDI(User Data Indication) 정보를 기술할 수 있다. AP는 PS-Poll을 해당 STA별로 각각의 별도 슬롯에 할당한 PS-Poll RAW들을 선택적으로 Report RAW 이전에 할당할 수 있다. PS-Poll RAW의 시작 타이밍 정보도 비콘의 RPS IE에 포함될 수 있다. 도 11에서, "P" 프레임은 PS-Poll 프레임을 나타내고, "D" 프레임은 STA이 AP에 데이터를 전송하는 업링크 데이터 프레임을 나타내며, "A" 프레임은 ACK 프레임을 나타낸다.
<다른 실시예에 따른 SU/MU-MIMO 빔포밍을 위한 NDP 사운딩 수행 방법>
다른 실시예에 따른 SU/MU-MIMO 빔포밍을 위한 NDP 사운딩 수행 방법에서는, 사운딩 RAW의 개념을 확장하여 빔포밍 RAW를 설정할 수 있다. NDPA 전송, NDP 전송, 빔포밍 report feedback, 빔포밍 report Poll 및 추가적인 빔포밍 report feedback의 여러 조합에 관한 프로토로 시퀀스 전체가 빔포밍 RAW에 의해 보호될 수 있다. 빔포밍 RAW는 비콘의 RPS IE에 표현되는 별도의 RAW로 설정될 수 있으며, 수정된 개념의 사운딩 RAW의 하나의 종류로 분류될 수 있다. 빔포밍 RAW 동안에는 채널 feedback report의 전송 이외에는 STA의 전송이 금지될 수 있다. 빔포밍 RAW인지 여부는 비콘의 RPS IE에 포함된 Sounding RAW Indication 및 Sounding RAW Type Indication을 통해 식별할 수 있다. Sounding RAW Indication 및 Sounding RAW Type Indication에 대해서는 후술하도록 한다.
STA들은 빔포밍 RAW의 시작 경계에서 파워 세이빙 모드에서 깨어날 수 있다. 채널 사운딩의 대상이 되는 STA의 AID 범위는 비콘의 RPS IE에 표시될 수 있다. 채널 사운딩의 대상이 되는 STA들의 순서 조합은 NDPA에 특정한 순서로 표시될 수 있다. 또는, 빔포밍 RAW 내에서 NDPA, NDP, 빔포밍 Report, 빔포밍 Report Poll 및 추가적인 빔포밍 Report의 조합들에 대해 각각의 독립된 슬롯들을 추가로 설정하는 것에 의해, STA들은 자신들에 미리 결정되어 있는 슬롯의 경계에서 파워 세이빙 모드로부터 깨어날 수 있다. 이를 통해 보다 효율적으로 전력 소비를 절감할 수 있다.
각 STA들이 전송할 채널 Feedback Report의 데이터량 및 각 STA들의 피드백 전송 모드를 AP가 미리 알지 못하므로, AP는 채널 Feedback Report가 전송되도록 미리 설정된 MCS 및 대역폭(bandwidth)에 기초하여 채널 Feedback Report가 전송되는 시간 구간을 추정하고, 추정 결과에 기초하여 전체 빔포밍 RAW의 길이를 충분히 넉넉히 설정할 수 있다. 예를 들어, AP는 채널 Feedback Report의 전송 MCS로 BSS의 Basic Rate 또는 NDPA가 전송된 MCS를 사용할 수 있고, 채널 Feedback Report의 전송 대역폭은 NDPA 내지 NDP 신호의 대역폭에 대응되는 것으로 결정할 수 있다.
도 12는 본 발명의 일실시예에 따른 액세스 포인트에 의해 수행되는 채널 사운딩 방법의 동작을 도시한 흐름도이다.
사운딩 RAW 동안 STA는 SST를 위한 채널 사운딩 및 섹터화된 빔 운용을 위한 채널 사운딩에서 서로 유사하게 동작하기 때문에, SST를 위한 채널 사운딩 및 섹터화된 빔 운용을 위한 채널 사운딩을 통합적 방법으로 정의할 수 있다. 즉, 사운딩 RAW 동안, STA는 채널 사운딩을 안정적으로 수행하기 위해 데이터의 전송이 금지될 수 있다. 채널 사운딩은 모든 STA들에 대해 수행되거나, 또는 제한된 범위의 AID를 가지는 STA들에 대해 수행될 수 있다. 채널 사운딩의 대상이 되는 STA는 사운딩 RAW의 시작 시점에서 깨어나서 사운딩 RAW 전체를 들을 수 있다. 이러한 채널 사운딩의 통합적 수행 방법에 의해 공간 자원 및 주파수 자원의 효율적 사용을 가능하게 하고, 채널 사운딩의 성능을 개선시킬 수 있다.
또는, 사운딩 RAW 동안, STA는 채널 사운딩의 성능을 보장하기 위해, 일련의 NDP들을 수신한 이후에 섹터 ID 또는 선택된 부채널 정보를 보고하기 위한 리포트 패킷의 전송을 제외한 일체의 전송이 금지될 수 있다. 채널 사운딩은 모든 STA들 또는 제한된 범위의 AID를 가지는 STA들에 대해 수행될 수 있다. STA는 사운딩 RAW 시작 시점에서 깨어나서 사운딩 RAW가 끝나는 시점 또는 일련의 NDP의 전송이 끝나는 시점까지 들을 수 있다.
SST를 위한 채널 사운딩에서, 사운딩 RAW는 여러 주파수 채널을 sweeping하는 형태를 가지거나, 또는 그 이후의 선택된 부채널 정보의 리포트 패킷의 전송까지 포함하는 형태를 가질 수 있다. 섹터화된 빔 운용을 위한 채널 사운딩에서, 사운딩 RAW는 여러 섹터를 sweeping하는 형태를 가지거나, 또는 그 이후의 선택된 섹터 ID 정보에 관한 리포트 패킷의 전송까지 포함하는 형태를 가질 수 있다.
단계(1210)에서, AP는 채널 사운딩을 위한 RAW의 정보를 포함하는 비콘을 브로드캐스트(broadcast)할 수 있다. AP는 채널 사운딩을 위한 RAW 구간에서 STA의 데이터 전송을 제어할 수 있다. 예를 들어, AP는 채널 사운딩을 위한 RAW 구간에서, STA의 데이터 전송을 금지하도록 제어할 수 있다. 다른 예로, AP는 채널 사운딩을 위한 RAW 구간에서, NDP들이 전송된 이후에 추정된 채널 정보를 액세스 포인트에 전송하는 것만 허용하고, 다른 전송은 금지하도록 제어할 수 있다.
AP에 의해 전송되는 비콘은 해당 RAW를 통해 채널 사운딩이 수행되는지 여부를 나타내는 비트 값, 해당 RAW 구간에서 스테이션의 전송을 제어하는 비트 값 및 해당 액세스 포인트가 수행하려는 통신 타입을 나타내는 비트 값 중 적어도 하나를 포함할 수 있다.
일실시예에 따르면, 다음의 표 1과 같은 정보가 비콘이 전송하는 RPS IE에 포함될 수 있다.
Figure PCTKR2014004214-appb-I000001
표 1에 따르면, 비콘은 사운딩 RAW 내에서 STA들의 전송을 금지할지 여부를 나타내는 비트 값을 포함할 수 있다. 또한, 비콘은 해당 사운딩 RAW가 SST를 위한 채널 사운딩, 섹터화된 빔 운용을 위한 채널 사운딩, 및 SU/MU-MIMO 빔포밍을 위한 채널 사운딩 중 어느 것을 위한 사운딩 RAW인지를 나타내는 비트 값을 포함할 수 있다.
다른 실시예에 따르면, 다음의 표 2와 같은 정보가 비콘이 전송하는 RPS IE에 포함될 수 있다.
Figure PCTKR2014004214-appb-I000002
표 2에 따르면, 비콘은 사운딩 RAW 내에서 리포트 패킷을 전송하는 것 이외에 STA들의 전송을 금지할지 여부를 나타내는 비트 값을 포함할 수 있다. 또한, 비콘은 해당 사운딩 RAW가 SST를 위한 채널 사운딩, 및 섹터화된 빔 운용을 위한 채널 사운딩 중 어느 것을 위한 사운딩 RAW인지를 나타내는 비트 값을 포함할 수 있다.
또 다른 실시예에 따르면, 다음의 표 3과 같은 정보가 비콘이 전송하는 RPS IE에 포함될 수 있다.
Figure PCTKR2014004214-appb-I000003
표 3에 따르면, 비콘은 사운딩 RAW 내에서 STA들의 전송을 금지할지 여부를 나타내는 비트 값을 포함할 수 있다. 또한, 비콘은 해당 사운딩 RAW가 SST를 위한 채널 사운딩, 및 섹터화된 빔 운용을 위한 채널 사운딩 중 어느 것을 위한 사운딩 RAW인지를 나타내는 비트 값을 포함할 수 있다. 그리고, 비콘은 추가적으로 해당 사운딩 RAW가 SU/MU-MIMO 빔포밍을 위한 채널 사운딩에 이용되는 사운딩 RAW인지 여부를 나타내는 비트 값을 포함할 수 있다.
또 다른 실시예에 따르면, 사운딩 RAW와 이에 대응하는 리포트 RAW를 조합하여 RAW type 및 sub-mode의 형태로 다음의 표 4와 같이 표현할 수 있다.
Figure PCTKR2014004214-appb-I000004
표 4에서 RAW type이 사운딩 RAW(Sounding RAW)이면 non-AP STA은 RAW 동안에 TXOP을 새로 개시할 수 없고, 다만 sector sounding이나 SST sounding을 듣는 것을 선택할 수 있다. Non-AP STA은 RXP 동안에 AP가 전송한 프레임에 대한 응답 프레임(response frame)을 전송하는 것은 허용될 수 있다.
표 4에서 RAW type이 리포트 RAW(Report RAW)이면, 선행하는 Sounding RAW에 대한 응답으로서, 단수 또는 복수 개의 Report RAW가 AP에 의해 스케줄링될 수 있으며, 해당 RAW 구간 동안에 Sector report 또는 SST report가 각 STA들에 해당하는 TIM bits의 세팅과 상관없이, 단수 또는 복수 개의 STA에 의해 수행될 수 있다.
Sector Sounding에 대한 Report RAW에서는, STA가 AP에 sector report frame (preferred Sector ID를 포함함)을 배정된 RAW slot 시작 시점보다 빠르지 않은 시점에 전송할 수 있으며, SIFS 간격 이후에 AP가 ACK, Block ACK, NDP ACK, short ACK 등의 응답 프레임을 전송함으로써 이를 추인할 수 있다. 이 때, AP가 전송하는 응답 프레임에는 해당 STA이 power saving을 지속할 수 있는 정보에 대한 duration 정보를 포함할 수 있다. Sector report frame 교환 시퀀스의 길이는 RPS element의 RAW Assignment field의 RAW Slot Definition subfield에서 주어진 정보에 의하여 계산된 배정된 slot duration보다 초과할 수 없다.
일실시예에 따르면, sector report frames에 대한 프레임 포맷으로는 NDP PS Poll 프레임 포맷을 다음의 표 5 또는 표 6과 같이 정의할 수 있다. 표 5는 NDP PS Poll의 MAC 프레임 body의 일례를 나타내고, 표 6은 NDP PS Poll의 MAC 프레임 body의 다른 예를 나타낸다. 아래의 표 5 및 표 6에 나타난 NDP PS Poll 프레임 포맷은 Preferred MCS field 또는 UDI 필드에 preferred sector ID 값 자체 또는 기준 sector ID에 대한 offset 값으로 대신 치환시킨 형태를 가질 수 있고, 이러한 형태의 변형된 NDP PS Poll frame format은 오직 SST Sounding 또는 Sector Sounding에 대한 Report RAW에서 사용할 수 있다.
Figure PCTKR2014004214-appb-I000005
Figure PCTKR2014004214-appb-I000006
SST Sounding에 대한 리포트 RAW에서는 STA가 AP에 SST report frame (preferred sub-channel index를 bitmap 형태 또는 coding 형태로 포함함)을 배정된 RAW slot 시작 시점보다 빠르지 않은 시점에 전송할 수 있으며, SIFS 간격 이후에 AP가 ACK, Block ACK, NDP ACK, short ACK 등의 응답 프레임을 전송함으로써 이를 추인할 수 있다. 이 때, AP가 전송하는 응답 프레임에는 해당 STA이 power saving을 지속할 수 있는 정보에 대한 duration 정보를 포함될 수 있다. SST report frame 교환 시퀀스의 길이는, RPS element의 RAW Assignment field의 RAW Slot Definition subfield에서 주어진 정보에 의하여 계산된 배정된 slot duration을 초과할 수 없다.
다른 실시예에 따르면, SST report frames에 대한 프레임 포맷으로는 NDP PS Poll 프레임 포맷을 위의 표 5 또는 표 6과 같이 정의할 수 있다. 표 5는 NDP PS Poll의 MAC 프레임 body의 일례를 나타내고, 표 6은 NDP PS Poll의 MAC 프레임 body의 다른 예를 나타낸다. 표 5 및 표 6에 나타난 NDP PS Poll 프레임 포맷은 Preferred MCS field 또는 UDI 필드에 preferred channel index 값을 그 값 자체나 기준 채널로부터의 offset 값을 가지고 대신 치환시킨 형태를 가질 수 있고, 이러한 형태의 변형된 NDP PS Poll frame format은 오직 Sector Sounding 또는 SST Sounding에 대한 Report RAW에서 사용할 수 있다.
AP가 채널 사운딩을 수행하는 경우, AP는 여러 STA들에 대한 채널 사운딩을 비콘 신호의 RAW를 이용하여 스케쥴링할 수 있다. 이 때, AP는 RPS IE에 있는 Sounding RAW Indication 비트를 1로 설정하고, Sounding RAW Type Indication을 채널 사운딩이 수행되는 타입에 상응하도록 설정할 수 있다. 예를 들어, AP는 Sounding RAW Type Indication은 해당 사운딩 RAW가 SST를 위한 채널 사운딩인지 또는 섹터화된 빔 운용을 위한 채널 사운딩인지 여부를 나타낼 수 있다. 비콘의 RPS IE에 있는 Sounding RAW Indication 비트가 0으로 설정된 경우, 이는 해당 RAW에서 채널 사운딩이 수행되지 않음을 나타낸다. 사운딩 RAW는 주기적인 방식 또는 즉흥적인 방식 모두를 통해 전송이 가능하다.
단계(1220)에서, AP는 채널 사운딩을 위한 RAW 내에서 복수의 NDP들을 STA에 전송할 수 있다. AP는 각 NDP들을 미리 설정된 시간 간격을 가지고 연속적으로 전송할 수 있다. 예를 들어, AP는 NDP들을 SIFS(Short Inter-Frame Space) 또는 PIFS(Point Inter-Frame Space)의 시간 간격을 가지고 전송할 수 있다. STA는 채널 사운딩을 위한 RAW의 시작 시점에서 깨어나서, 해당 RAW의 종료 시점 또는 일련의 NDP들의 전송이 완료되는 시점까지 깨어있을 수 있다.
AP가 부채널 선택적 전송을 위한 채널 사운딩("SST 사운딩"으로 지칭함)을 수행하는 경우, AP는 사운딩 RAW에서 NDPA를 전송하고, PIFS 간격으로 일련의 NDP들을 연이어 전송할 수 있다. 이 때, AP는 RPS IE에 있는 Sounding RAW Type Indication을 SST 사운딩에 상응하도록 설정할 수 있다. AP는 각각의 NDP들을 서로 다른 주파수 채널을 통하여 전송할 수 있다. 이 때, 가용한 주파수 채널 또는 전송될 주파수 채널을 표시하는데 있어서 기본 단위를 변경할 수 있으며, 기본 단위 설정에 대한 옵션을 표시할 수 있는 비트 필드가 정의될 수 있다. 해당 기본 단위에 따라 전체 주파수 대역에 대하여 가용한 주파수 채널 또는 전송될 주파수 채널이 비트맵 또는 암호화된 형태로 표시될 수 있다. AP는 채널 사운딩을 위한 RAW 구간에서, SST에 이용되는 각 주파수 채널별로 NDP들을 전송할 수 있다. 예를 들어, AP는 낮은 대역의 주파수 채널부터 시작하여 일련의 NDP들을 PIFS의 시간 간격을 두고 전송할 수 있다.
AP가 섹터화된 빔 운용 방법을 위한 채널 사운딩("섹터 사운딩"으로 지칭함)을 수행하는 경우, AP는 사운딩 RAW에서 NDPA를 전송하고, PIFS 간격으로 일련의 NDP들을 연이어 전송할 수 있다. 이 때, AP는 RPS IE에 있는 Sounding RAW Type Indication을 섹터 사운딩에 상응하도록 설정할 수 있다. AP는 각각의 NDP들을 서로 다른 섹터를 통하여 전송할 수 있다. AP는 채널 사운딩을 위한 RAW 구간에서 AP에 의해 설정된 각 섹터들별로 NDP들을 전송할 수 있다. 예를 들어, AP는 번호 0번의 섹터부터 시작하여 일련의 NDP들을 PIFS의 시간 간격을 두고 전송할 수 있다.
AP는 STA로부터 NDP에 기초하여 추정된 채널 정보를 수신하고, 수신한 채널 정보에 기초하여 STA와 무선 통신을 수행할 수 있다. AP는 피드백 리포트(feedback report)를 위한 RAW를 통해 채널 정보를 수신할 수 있다. 피드백 리포트를 위한 RAW는 채널 사운딩을 위한 RAW 이후에 할당될 수 있다. SST를 위한 채널 사운딩의 경우, AP는 채널 정보로서 STA이 결정한 최적의 주파수 채널 정보를 수신할 수 있다. 섹터화된 빔 운용을 위한 채널 사운딩의 경우, AP는 채널 정보로서 STA이 결정한 최적의 섹터 ID 정보를 수신할 수 있다.
도 13은 본 발명의 일실시예에 따른 스테이션에 의해 수행되는 채널 사운딩 방법의 동작을 도시한 흐름도이다.
단계(1310)에서, STA는 채널 사운딩을 위한 제한된 액세스 윈도우(사운딩 RAW)의 정보를 포함하는 비콘을 AP로부터 수신할 수 있다. STA는 비콘을 통해 채널 사운딩의 타입을 식별할 수 있다. 예를 들어, STA는 비콘의 RPS IE에 포함된 Sounding RAW Type 정보에 기초하여 채널 사운딩의 타입이 SST 사운딩인지 아니면 섹터 사운딩인지 여부를 판단할 수 있다.
단계(1320)에서, STA는 AP로부터 수신한 NDP에 기초하여 채널 정보를 추정할 수 있다. NDP는 채널 사운딩을 위한 RAW 내에서 전송될 수 있다. 예를 들어, 채널 정보는 SST를 위한 최적의 주파수 채널 또는 섹터화된 빔 운용을 위한 최적의 섹터 ID 정보를 포함할 수 있다. STA는 채널 사운딩을 위한 RAW 구간에서 데이터의 전송이 금지될 수 있다. 또는, STA는 채널 사운딩을 위한 RAW 구간에서, NDP들이 전송된 이후에 채널 정보를 AP에 전송하는 것만 허용되고, 다른 전송은 금지될 수 있다. STA는 AP로부터 수신한 비콘에 기초하여 AP가 수행하려는 통신 타입을 식별하고, 식별한 통신 타입을 지원하는지 여부를 판단할 수 있다. 식별한 통신 타입이 지원되는 경우, STA는 채널 사운딩을 위한 RAW 내에서 AP로부터 NDP를 수신하고, 수신한 NDP 및 식별한 통신 타입에 기초하여 채널 정보를 추정할 수 있다. 예를 들어, 통신 타입은 SST, 섹터화된 빔 운용, SU-MIMO 빔포밍, 또는 MU-MIMO 빔포밍 중 어느 하나일 수 있다.
일실시예에 따르면, Sounding RAW Type이 SST 사운딩으로 설정된 경우, STA는 사운딩 RAW 동안에 데이터의 전송이 금지되고, 단지 해당 STA이 SST 기능을 지원하는 경우에 한하여 사운딩 RAW 전체를 들을 수 있도록 허용될 수 있다. STA는 NDP에 기초하여 최적의 주파수 채널을 결정할 수 있다. STA는 AP와의 통신에 이용되는 주파수 채널 중 미리 설정된 기준을 만족시키는 주파수 채널을 탐색하고, 탐색된 주파수 채널에 관한 정보를 채널 정보로 결정할 수 있다. 단계(1330)에서, STA는 추정한 채널 정보를 AP로 전송할 수 있다. 예를 들어, STA는 결정 최적의 주파수 채널을 AP에게 직접 보고할 수 있다. 다른 예로, STA는 결정된 최적의 주파수 채널을 이용하여 데이터를 전송함으로써 AP에 간접적으로 최적의 주파수 채널에 관한 정보를 알릴 수 있다. 즉, STA는 NDP에 기초하여 복수의 주파수 채널 중 미리 설정된 기준을 만족시키는 주파수 채널을 결정하고, 결정된 주파수 채널을 이용하여 채널 정보를 AP로 전송할 수 있다. 또는, STA는 사운딩 RAW 동안에 일련의 NDP들을 수신한 이후에 최적의 주파수 채널을 보고하는 경우 이외에는 전송이 금지되고, 단지 해당 STA이 SST 기능을 지원하는 경우에 한하여 사운딩 RAW 전체 또는 일련의 NDP들의 전송 종료 시점까지 들을 수 있도록 허용될 수 있다. STA는 결정된 최적의 주파수 채널 정보를 리포트 패킷을 통해 AP에 전송할 수 있다. 다수의 STA들이 각각의 최적의 주파수 채널을 AP에 피드백하는 경우, 최적의 주파수 채널의 피드백을 위한 프레임들이 다른 신호들과 충돌하는 것을 방지하기 위해, AP는 최적의 주파수 채널의 피드백을 위한 프레임들이 리포트 RAW를 통하여 전송될 수 있도록 제어할 수 있다. 이 때, 리포트 RAW의 시작 시점 및 일련의 정보는 AP가 전송하는 비콘의 RPS IE에 포함될 수 있다. 추정된 채널 정보가 AP로 전송되는 경우, 채널 정보를 전송하는 STA를 제외한 다른 STA들의 전송이 금지될 수 있다.
다른 실시예에 따르면, Sounding RAW Type이 섹터 사운딩으로 설정된 경우, STA는 사운딩 RAW 동안에 데이터의 전송이 금지되고, 단지 해당 STA이 섹터화된 빔 운용 기능을 지원하는 경우에 한하여 사운딩 RAW 전체를 들을 수 있도록 허용될 수 있다. 또는, STA는 사운딩 RAW 동안에 일련의 NDP들을 수신한 이후에 최적의 섹터 ID를 보고하는 경우 이외에는 전송이 금지되고, 단지 해당 STA이 섹터화된 빔 운용 기능을 지원하는 경우에 한하여 사운딩 RAW 전체 도는 일련의 NDP들의 전송 종료 시점까지 들을 수 있도록 허용될 수 있다. STA는 AP에 의해 설정된 복수의 섹터들 중 자기가 속하는 섹터를 탐색하고, 탐색된 섹터의 식별 정보를 채널 정보로 결정할 수 있다. 단계(1330)에서, STA는 추정한 채널 정보를 AP로 전송할 수 있다. STA는 섹터 사운딩 이후에, 결정된 최적의 섹터 ID를 선택적으로 AP에 피드백할 수 있다. STA는 결정된 최적의 섹터 ID 를 리포트 패킷을 통해 AP에 전송할 수 있다. 다수의 STA들이 각각의 최적의 섹터 ID를 AP에 피드백하는 경우, 섹터 ID의 피드백을 위한 프레임들이 다른 신호들과 충돌하는 것을 방지하기 위해, AP는 섹터 ID의 피드백을 위한 프레임들이 리포트 RAW를 통하여 전송될 수 있도록 제어할 수 있다. 이 때, 리포트 RAW의 시작 시점 및 일련의 정보는 AP가 전송하는 비콘의 RPS IE에 포함될 수 있다. 추정된 채널 정보가 AP로 전송되는 경우, 채널 정보를 전송하는 STA를 제외한 다른 STA들의 전송이 금지될 수 있다.
도 14는 본 발명의 실시예가 구현될 수 있는 무선 장치(1410)의 세부 구성을 도시한 도면이다.
도 14를 참조하면, 무선 장치(1410)는 프로세서(1430), 메모리(1440) 및 트랜스시버(1420)(transceiver)를 포함할 수 있다. 무선 장치(1410)은 본 발명의 AP 또는 STA에 해당할 수 있다.
트랜스시버(1420)는 무선 신호를 전송하거나 또는 수신할 수 있다. 프로세서(1430)는 트랜스시버(1420)와 기능적으로 연결되어 동작하도록 설정될 수 있다. 프로세서(1430)는 도 7, 도9, 도 11 내지 도 13을 기반으로 한 본 발명의 실시예에 따른 채널 사운딩 방법을 수행하도록 무선 장치(1410)를 제어할 수 있다.
프로세서(1430) 및 트랜스시버(1420) 중 적어도 하나는 ASIC(Application-Specific Integrated Circuit), 다른 칩셋, 논리 회로, 데이터 처리 장치 중 적어도 하나를 포함할 수 있다. 실시예가 소프트웨어로 구현될 때, 상술한 기법은 상술한 기능을 수행하는 모듈(과정, 기능 등)으로 구현될 수 있다. 모듈은 메모리(1440)에 저장되고, 프로세서(1430)에 의해 실행될 수 있다. 메모리(1440)는 프로세서(1430) 내부에 포함될 수 있으며, 외부에 별도로 위치하여 알려진 다양한 수단으로 프로세서(1430)와 기능적으로 연결될 수 있다.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되었지만, 실시예의 범위가 본 발명의 단계들의 순서에 의해 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순성도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
실시예에 따른 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록되거나 적어도 하나의 프로세서(processor)에 의해 수행될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예를 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 실시예의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 실시예들이 비록 한정된 실시예와 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기의 기재로부터 다양한 수정 및 변형이 가능하다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 특허청구범위의 범위에 속한다.

Claims (22)

  1. 액세스 포인트(Access Point)에 의해 수행되는 채널 사운딩 방법에 있어서,
    채널 사운딩을 위한 제한된 액세스 윈도우(Restricted Access Window; RAW)의 정보를 포함하는 비콘을 브로드캐스트(broadcast)하는 단계; 및
    상기 제한된 액세스 윈도우 내에서 복수의 NDP(Null Data Packet)들을 스테이션(Station)에 전송하는 단계
    를 포함하는 무선랜 시스템에서의 채널 사운딩 방법.
  2. 제1항에 있어서,
    상기 액세스 포인트는,
    상기 채널 사운딩을 위한 RAW 구간에서 상기 스테이션의 데이터 전송을 제어하는 것을 특징으로 하는 무선랜 시스템에서의 채널 사운딩 방법.
  3. 제2항에 있어서,
    상기 액세스 포인트는,
    상기 채널 사운딩을 위한 RAW 구간에서, 상기 스테이션의 데이터 전송을 금지하도록 제어하는 것을 특징으로 하는 무선랜 시스템에서의 채널 사운딩 방법.
  4. 제2항에 있어서,
    상기 액세스 포인트는,
    상기 채널 사운딩을 위한 RAW 구간에서, 상기 NDP들이 전송된 이후에 상기 채널 정보를 상기 액세스 포인트에 전송하는 것만 허용하고, 다른 전송은 금지하도록 제어하는 것을 특징으로 하는 무선랜 시스템에서의 채널 사운딩 방법.
  5. 제1항에 있어서,
    상기 비콘은,
    상기 RAW를 통해 채널 사운딩이 수행되는지 여부를 나타내는 비트 값, 상기 RAW 구간에서 스테이션의 전송을 제어하는 비트 값 및 상기 액세스 포인트가 수행하려는 통신 타입을 나타내는 비트 값 중 적어도 하나를 포함하는 것을 특징으로 하는 무선랜 시스템에서의 채널 사운딩 방법.
  6. 제1항에 있어서,
    상기 전송하는 단계는,
    상기 채널 사운딩을 위한 RAW 구간에서, 상기 액세스 포인트에 의해 설정된 각 섹터들별로 상기 NDP들을 전송하는 단계
    를 포함하는 것을 특징으로 하는 무선랜 시스템에서의 채널 사운딩 방법.
  7. 제1항에 있어서,
    상기 전송하는 단계는,
    상기 채널 사운딩을 위한 RAW 구간에서, 부채널 선택적 전송(sub-channel selective transmission)에 이용되는 각 주파수 채널별로 상기 NDP들을 전송하는 단계
    를 포함하는 것을 특징으로 하는 무선랜 시스템에서의 채널 사운딩 방법.
  8. 제1항에 있어서,
    상기 전송하는 단계는,
    각 NDP들을 미리 설정된 시간 간격을 가지고 연속적으로 전송하는 단계
    를 포함하는 무선랜 시스템에서의 채널 사운딩 방법.
  9. 제1항에 있어서,
    상기 스테이션으로부터 상기 NDP에 기초하여 추정된 채널 정보를 수신하는 단계
    를 더 포함하는 무선랜 시스템에서의 채널 사운딩 방법.
  10. 제9항에 있어서,
    상기 수신하는 단계는,
    피드백 리포트(feedback report)를 위한 RAW를 통해 상기 채널 정보를 수신하는 단계를 포함하고,
    상기 피드백 리포트를 위한 RAW는, 상기 채널 사운딩을 위한 RAW 이후에 할당되는 것을 특징으로 하는 무선랜 시스템에서의 채널 사운딩 방법.
  11. 제1항에 있어서,
    상기 전송하는 단계는,
    각 NDP들을 SIFS(Short Inter-Frame Space) 또는 PIFS(Point Inter-Frame Space)의 시간 간격을 가지고 전송하는 단계
    를 포함하는 무선랜 시스템에서의 채널 사운딩 방법.
  12. 제1항에 있어서,
    상기 스테이션은,
    상기 채널 사운딩을 위한 제한된 액세스 윈도우의 시작 시점에서 깨어나서, 상기 제한된 액세스 윈도우의 종료 시점 또는 상기 NDP들의 전송이 완료되는 시점까지 깨어있는 것을 특징으로 하는 무선랜 시스템에서의 채널 사운딩 방법.
  13. 스테이션에 의해 수행되는 채널 사운딩 방법에 있어서,
    채널 사운딩을 위한 제한된 액세스 윈도우(Restricted Access Window; RAW)의 정보를 포함하는 비콘을 액세스 포인트로부터 수신하는 단계;
    상기 액세스 포인트로부터 수신한 NDP(Null Data Packet)에 기초하여 채널 정보를 추정하는 단계; 및
    상기 추정한 채널 정보를 상기 액세스 포인트로 전송하는 단계를 포함하고,
    상기 NDP는, 상기 제한된 액세스 윈도우 내에서 상기 스테이션에 전송되는 것을 특징으로 하는 무선랜 시스템에서의 채널 사운딩 방법.
  14. 제13항에 있어서,
    상기 스테이션은,
    상기 채널 사운딩을 위한 RAW 구간에서, 데이터의 전송이 금지되는 것을 특징으로 하는 무선랜 시스템에서의 채널 사운딩 방법.
  15. 제13항에 있어서,
    상기 스테이션은,
    상기 채널 사운딩을 위한 RAW 구간에서, 상기 NDP들이 전송된 이후에 상기 채널 정보를 상기 액세스 포인트에 전송하는 것만 허용되고, 다른 전송은 금지되는 것을 특징으로 하는 무선랜 시스템에서의 채널 사운딩 방법.
  16. 제13항에 있어서,
    상기 추정하는 단계는,
    상기 수신한 비콘에 기초하여 상기 액세스 포인트가 수행하려는 통신 타입을 식별하는 단계;
    상기 스테이션이 상기 통신 타입을 지원하는 경우, 상기 제한된 액세스 윈도우 내에서 상기 액세스 포인트로부터 NDP를 수신하는 단계; 및
    상기 수신한 NDP 및 상기 식별한 통신 타입에 기초하여 채널 정보를 추정하는 단계
    를 포함하는 것을 특징으로 하는 무선랜 시스템에서의 채널 사운딩 방법.
  17. 제13항에 있어서,
    상기 추정하는 단계는,
    상기 액세스 포인트와의 통신에 이용되는 주파수 채널 중 미리 설정된 기준을 만족시키는 주파수 채널을 탐색하고, 상기 탐색된 주파수 채널에 관한 정보를 채널 정보로 결정하는 단계
    를 포함하는 것을 특징으로 하는 무선랜 시스템에서의 채널 사운딩 방법.
  18. 제13항에 있어서,
    상기 추정하는 단계는,
    상기 액세스 포인트에 의해 설정된 복수의 섹터들 중 상기 스테이션이 속하는 섹터를 탐색하고, 상기 탐색된 섹터의 식별 정보를 채널 정보로 결정하는 단계
    를 포함하는 것을 특징으로 하는 무선랜 시스템에서의 채널 사운딩 방법.
  19. 제13항에 있어서,
    상기 추정된 채널 정보가 상기 액세스 포인트로 전송되는 경우, 상기 채널 정보를 전송하는 스테이션을 제외한 다른 스테이션의 전송이 금지되는 것을 특징으로 하는 무선랜 시스템에서의 채널 사운딩 방법.
  20. 제13항에 있어서,
    상기 추정하는 단계는,
    상기 NDP에 기초하여 복수의 주파수 채널 중 미리 설정된 기준을 만족시키는 주파수 채널을 결정하는 단계를 포함하고,
    상기 전송하는 단계는,
    상기 결정된 주파수 채널을 이용하여 상기 채널 정보를 상기 액세스 포인트로 전송하는 단계
    를 포함하는 무선랜 시스템에서의 채널 사운딩 방법.
  21. 프레임을 송신 및 수신하는 트랜스시버(transceiver); 및
    상기 트랜스시버와 기능적으로 결합된 프로세서(processor)를 포함하고,
    상기 프로세서는,
    채널 사운딩을 위한 제한된 액세스 윈도우의 정보를 포함하는 비콘을 브로드캐스트하고,
    상기 제한된 액세스 윈도우 내에서 복수의 NDP(Null Data Packet)들을 스테이션에 전송하는 무선 장치.
  22. 프레임을 송신 및 수신하는 트랜스시버; 및
    상기 트랜스시버와 기능적으로 결합된 프로세서를 포함하고,
    상기 프로세서는,
    채널 사운딩을 위한 제한된 액세스 윈도우의 정보를 포함하는 비콘을 액세스 포인트로부터 수신하고,
    상기 액세스 포인트로부터 수신한 NDP(Null Data Packet)에 기초하여 채널 정보를 추정하고,
    상기 추정한 채널 정보를 상기 액세스 포인트로 전송하는 무선 장치.
PCT/KR2014/004214 2013-05-10 2014-05-12 무선랜 시스템에서의 채널 사운딩 방법 및 이를 지원하는 장치 WO2014182137A1 (ko)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201480026142.3A CN105230108B (zh) 2013-05-10 2014-05-12 在无线局域网系统的信道探测方法及支援其装置
EP14795263.4A EP2996427B1 (en) 2013-05-10 2014-05-12 Channel sounding method in wireless lan system and device for supporting same
US14/890,303 US10375682B2 (en) 2013-05-10 2014-05-12 Channel sounding method in wireless LAN system and device for supporting same
CN201910181638.2A CN110234150B (zh) 2013-05-10 2014-05-12 在无线局域网系统的信道探测方法及支援其装置
JP2016512843A JP6511436B2 (ja) 2013-05-10 2014-05-12 無線lanシステムにおけるチャネルサウンディング方法及びこれをサポートする装置
EP19197779.2A EP3614743B1 (en) 2013-05-10 2014-05-12 Method and apparatus for channel sounding in a wireless lan system
US16/455,385 US11304186B2 (en) 2013-05-10 2019-06-27 Channel sounding method in wireless LAN system and device for supporting same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20130053442 2013-05-10
KR10-2013-0053442 2013-05-10
KR20130055733 2013-05-16
KR10-2013-0055733 2013-05-16
KR10-2014-0056368 2014-05-12
KR1020140056368A KR102188645B1 (ko) 2013-05-10 2014-05-12 무선랜 시스템에서의 채널 사운딩 방법 및 이를 지원하는 장치

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/890,303 A-371-Of-International US10375682B2 (en) 2013-05-10 2014-05-12 Channel sounding method in wireless LAN system and device for supporting same
US16/455,385 Continuation US11304186B2 (en) 2013-05-10 2019-06-27 Channel sounding method in wireless LAN system and device for supporting same

Publications (1)

Publication Number Publication Date
WO2014182137A1 true WO2014182137A1 (ko) 2014-11-13

Family

ID=52454101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/004214 WO2014182137A1 (ko) 2013-05-10 2014-05-12 무선랜 시스템에서의 채널 사운딩 방법 및 이를 지원하는 장치

Country Status (6)

Country Link
US (2) US10375682B2 (ko)
EP (2) EP2996427B1 (ko)
JP (2) JP6511436B2 (ko)
KR (2) KR102188645B1 (ko)
CN (2) CN110234150B (ko)
WO (1) WO2014182137A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016089059A1 (ko) * 2014-12-05 2016-06-09 엘지전자(주) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
CN105682134A (zh) * 2016-03-28 2016-06-15 上海物联网有限公司 一种基于wifi的智能终端实时嗅探方法及系统
WO2016146061A1 (en) * 2015-03-16 2016-09-22 Mediatek Inc. Methods of beacon transmission for measurements in opportunistic spectrum access
WO2016167609A1 (ko) * 2015-04-16 2016-10-20 엘지전자(주) 무선 통신 시스템에서 채널 사운딩 방법 및 이를 위한 장치
WO2016171434A1 (ko) * 2015-04-22 2016-10-27 삼성전자주식회사 빔포밍 제어를 위한 방법 및 장치
CN111512677A (zh) * 2018-01-11 2020-08-07 松下电器(美国)知识产权公司 用于低功率多用户传输的通信装置和通信方法
TWI808928B (zh) * 2015-07-10 2023-07-21 美商內數位專利控股公司 存取點、其所執行方法、及接收空資料封包公告的站

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102099249B1 (ko) * 2013-09-06 2020-04-09 한국전자통신연구원 무선랜에서 간섭 정렬을 이용하는 통신 방법
EP3161972A1 (en) * 2014-06-26 2017-05-03 Intel Corporation Apparatus, system and method of steering a directional antenna
US9907073B2 (en) * 2014-12-08 2018-02-27 Newracom, Inc. Efficient DL OFDMA frequency selectivity harvesting
EP3243354A1 (en) * 2015-01-09 2017-11-15 Interdigital Patent Holdings, Inc. Methods, apparatuses and systems for supporting multi-user transmissions in a wireless local area network (wlan) system
KR102372357B1 (ko) 2015-06-15 2022-03-10 한국전자통신연구원 프레임 전송 방법 및 상기 방법을 수행하는 통신 장치
US20170064695A1 (en) * 2015-08-25 2017-03-02 Qualcomm Incorporated Transmission parameter control for immediate response frames
US10651916B2 (en) * 2015-11-03 2020-05-12 Intel IP Corporation Uplink and downlink sounding for wireless networks
US11131743B2 (en) 2016-02-28 2021-09-28 Qualcomm Incorporated Unicast and broadcast protocol for wireless local area network ranging and direction finding
US10104635B2 (en) 2016-02-28 2018-10-16 Qualcomm Incorporated Unicast and broadcast protocol for wireless local area network ranging and direction finding
US20170325210A1 (en) * 2016-05-09 2017-11-09 Qualcomm Incorporated Location guided vehicular channel management
WO2018040046A1 (zh) * 2016-08-31 2018-03-08 华为技术有限公司 一种信道测量的方法和装置
CN107888256B (zh) * 2016-09-30 2022-12-02 中兴通讯股份有限公司 数据传输、接收方法、装置、基站及终端
US10750395B2 (en) 2017-03-11 2020-08-18 Qualcomm Incorporated Identifying nulling wireless nodes for distributed MIMO communication in a wireless node cluster
US10820333B2 (en) 2017-03-11 2020-10-27 Qualcomm Incorporated Distributed MIMO communication scheduling in an access point cluster
US10820332B2 (en) * 2017-03-11 2020-10-27 Qualcomm Incorporated Sounding scheduling for distributed MIMO communication in an access point cluster
US10805940B2 (en) 2017-03-11 2020-10-13 Qualcomm Incorporated Triggering distributed MIMO communication in a wireless node cluster
WO2018195354A1 (en) * 2017-04-19 2018-10-25 Intel IP Corporation Addressing for short feedback
CN108738114B (zh) * 2017-04-24 2022-06-07 珠海市魅族科技有限公司 无线局域网的通信方法、装置、接入点设备和站点设备
US10432330B2 (en) 2017-08-15 2019-10-01 At&T Intellectual Property I, L.P. Base station wireless channel sounding
US10638340B2 (en) 2017-08-15 2020-04-28 At&T Intellectual Property I, L.P. Base station wireless channel sounding
US11343124B2 (en) 2017-08-15 2022-05-24 At&T Intellectual Property I, L.P. Base station wireless channel sounding
US10834689B2 (en) 2017-08-15 2020-11-10 At&T Intellectual Property I, L.P. Base station wireless channel sounding
US10091662B1 (en) 2017-10-13 2018-10-02 At&T Intellectual Property I, L.P. Customer premises equipment deployment in beamformed wireless communication systems
US11032721B2 (en) 2017-10-13 2021-06-08 At&T Intellectual Property I, L.P. Minimization of drive tests in beamformed wireless communication systems
US11166212B2 (en) * 2018-07-26 2021-11-02 Qualcomm Incorporated Elevation based mode switch for 5G based aerial UE
US11082265B2 (en) 2019-07-31 2021-08-03 At&T Intellectual Property I, L.P. Time synchronization of mobile channel sounding system
WO2021246807A1 (ko) * 2020-06-05 2021-12-09 엘지전자 주식회사 무선랜 시스템에서 센싱을 수행하는 방법 및 장치
CN117203906A (zh) * 2021-04-30 2023-12-08 华为技术有限公司 多用户无线无小区大规模多输入多输出网络中的波束对准
WO2023120757A1 (ko) * 2021-12-21 2023-06-29 엘지전자 주식회사 무선 오디오 수신 장치, 무선 오디오 전송 장치 및 이를 구비하는 무선 오디오 출력 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100138692A (ko) * 2009-06-23 2010-12-31 엘지전자 주식회사 링크 적응 절차 수행 방법
KR101099345B1 (ko) * 2010-12-01 2011-12-26 엘지전자 주식회사 무선랜 시스템에서 채널 사운딩 방법 및 장치
WO2012093794A2 (en) * 2011-01-03 2012-07-12 Lg Electronics Inc. Channel sounding method in wireless local area network system and apparatus for supporting the same
KR20130039669A (ko) * 2011-10-12 2013-04-22 한국전자통신연구원 무선랜 시스템에서 채널 사운딩 방법 및 이를 지원하는 장치
KR20130042582A (ko) * 2010-09-24 2013-04-26 인텔 코오퍼레이션 무선 네트워크들에서 멀티 사용자 mimo 사운딩을 위한 기법들

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101056135B (zh) 2006-06-15 2010-05-12 华为技术有限公司 无线区域网络系统及调整小区同步的方法
FR2905045B1 (fr) * 2006-08-17 2011-09-02 Cit Alcatel Dispositif de traitement pour la transmission de mesures effectuees par des terminaux radio
JP5671344B2 (ja) * 2007-11-07 2015-02-18 アップル インコーポレイテッド チャネリゼーションのための方法および装置
US9088393B2 (en) * 2010-07-30 2015-07-21 Lg Electronics Inc. Method and apparatus for reporting channel state information of multi-channel in wireless local area network system
AU2012295079B2 (en) * 2011-08-07 2015-09-17 Lg Electronics Inc. Method and apparatus for transmitting and receiving frame on the basis of frequency selection transmission
US9204371B2 (en) * 2011-11-23 2015-12-01 Marvell World Trade Ltd. 802.11 restricted access windows
US9295033B2 (en) * 2012-01-31 2016-03-22 Qualcomm Incorporated Systems and methods for narrowband channel selection
JP6355621B2 (ja) * 2012-04-15 2018-07-11 エルジー エレクトロニクス インコーポレイティド 無線lanシステムにおいてフィードバックトリガーフレーム送受信方法及び装置
US9900865B2 (en) * 2012-09-26 2018-02-20 Lg Electronics Inc. Method and apparatus for sub-channel selective access in wireless LAN system
US9179455B2 (en) * 2012-10-05 2015-11-03 Intel Corporation Methods and arrangements for frequency selective transmission
US20140192694A1 (en) * 2013-01-08 2014-07-10 Broadcom Corporation Triggering downlink traffic with timing indication
US20140334387A1 (en) * 2013-05-08 2014-11-13 Nokia Corporation Method, apparatus, and computer program product for protecting shared transmission opportunity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100138692A (ko) * 2009-06-23 2010-12-31 엘지전자 주식회사 링크 적응 절차 수행 방법
KR20130042582A (ko) * 2010-09-24 2013-04-26 인텔 코오퍼레이션 무선 네트워크들에서 멀티 사용자 mimo 사운딩을 위한 기법들
KR101099345B1 (ko) * 2010-12-01 2011-12-26 엘지전자 주식회사 무선랜 시스템에서 채널 사운딩 방법 및 장치
WO2012093794A2 (en) * 2011-01-03 2012-07-12 Lg Electronics Inc. Channel sounding method in wireless local area network system and apparatus for supporting the same
KR20130039669A (ko) * 2011-10-12 2013-04-22 한국전자통신연구원 무선랜 시스템에서 채널 사운딩 방법 및 이를 지원하는 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2996427A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10986660B2 (en) 2014-12-05 2021-04-20 Lg Electronics Inc. Data transmission method in wireless communication system and device therefor
WO2016089059A1 (ko) * 2014-12-05 2016-06-09 엘지전자(주) 무선 통신 시스템에서 데이터 전송 방법 및 이를 위한 장치
US10405338B2 (en) 2014-12-05 2019-09-03 Lg Electronics Inc. Data transmission method in wireless communication system and device therefor
US10251067B2 (en) 2015-03-16 2019-04-02 Hfi Innovation Inc. Methods of beacon transmission for measurements in opportunistic spectrum access
WO2016146061A1 (en) * 2015-03-16 2016-09-22 Mediatek Inc. Methods of beacon transmission for measurements in opportunistic spectrum access
WO2016167609A1 (ko) * 2015-04-16 2016-10-20 엘지전자(주) 무선 통신 시스템에서 채널 사운딩 방법 및 이를 위한 장치
US20180359761A1 (en) * 2015-04-16 2018-12-13 Lg Electronics Inc. Channel sounding method in wireless communication system and device for same
US10548146B2 (en) 2015-04-16 2020-01-28 Lg Electronics Inc. Channel sounding method in wireless communication system and device for same
WO2016171434A1 (ko) * 2015-04-22 2016-10-27 삼성전자주식회사 빔포밍 제어를 위한 방법 및 장치
US10763928B2 (en) 2015-04-22 2020-09-01 Samsung Electronics Co., Ltd Method and apparatus for controlling beamforming
TWI808928B (zh) * 2015-07-10 2023-07-21 美商內數位專利控股公司 存取點、其所執行方法、及接收空資料封包公告的站
CN105682134A (zh) * 2016-03-28 2016-06-15 上海物联网有限公司 一种基于wifi的智能终端实时嗅探方法及系统
CN111512677A (zh) * 2018-01-11 2020-08-07 松下电器(美国)知识产权公司 用于低功率多用户传输的通信装置和通信方法
CN111512677B (zh) * 2018-01-11 2023-10-03 松下电器(美国)知识产权公司 用于低功率多用户传输的通信装置和通信方法

Also Published As

Publication number Publication date
EP3614743B1 (en) 2021-05-05
KR102226524B1 (ko) 2021-03-11
KR102188645B1 (ko) 2020-12-08
EP2996427A1 (en) 2016-03-16
KR20200138699A (ko) 2020-12-10
EP3614743A1 (en) 2020-02-26
JP6511436B2 (ja) 2019-05-15
EP2996427B1 (en) 2019-11-06
KR20140133480A (ko) 2014-11-19
CN110234150B (zh) 2022-04-05
CN105230108A (zh) 2016-01-06
CN110234150A (zh) 2019-09-13
US20190349903A1 (en) 2019-11-14
EP2996427A4 (en) 2016-12-28
JP2016521515A (ja) 2016-07-21
CN105230108B (zh) 2019-04-05
JP2019165452A (ja) 2019-09-26
US11304186B2 (en) 2022-04-12
US20160119902A1 (en) 2016-04-28
JP6820373B2 (ja) 2021-01-27
US10375682B2 (en) 2019-08-06

Similar Documents

Publication Publication Date Title
WO2014182137A1 (ko) 무선랜 시스템에서의 채널 사운딩 방법 및 이를 지원하는 장치
US20200213870A1 (en) Methods for wifi sectorization mac enhancement
US10687342B2 (en) Method and apparatus for wireless communication based on frequency selective transmission in wireless local area network
EP3154213B1 (en) Uplink multi-user transmission method in wireless lan system and apparatus therefor
KR101024874B1 (ko) Wlan 시스템에서 효율적인 다수 모드 동작을 제공하는방법 및 시스템
CA2772476C (en) Method for power saving in wireless local area network and apparatus for the same
WO2018048202A1 (ko) 무선랜에서 액세스 포인트의 탐색 방법 및 장치
US11219038B2 (en) Method and apparatus for wireless communication based on frequency selective transmission in wireless local area network
WO2016028117A1 (ko) 무선랜에서 상향링크 데이터를 트리거하는 방법 및 장치
US10050746B2 (en) System and method for orthogonal frequency division multiple access power-saving poll transmission
WO2017043820A1 (ko) 무선랜 시스템에서 빔포밍 전송을 위한 사운딩 방법 및 이를 위한 장치
WO2017026807A1 (ko) 타겟 웨이크 타임 기반의 전력 절약을 위한 무선 통신 방법 및 무선 통신 단말
WO2016186476A1 (ko) 무선랜 시스템에서 유휴 채널 정보에 기반한 스케줄링 방법 및 이를 위한 장치
WO2022216086A1 (ko) 무선랜에서 mlsr 동작을 위한 방법 및 장치
WO2016195211A1 (ko) 무선랜에서 파워 세이브 모드로 동작하는 sta에 대한 txop 설정 방법 및 장치
US20240107604A1 (en) Network allocation vector (nav) operation in multi-access point (ap) coordination

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480026142.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14795263

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016512843

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14890303

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2014795263

Country of ref document: EP