JP2015135294A - 三次元形状計測装置、三次元形状計測方法 - Google Patents

三次元形状計測装置、三次元形状計測方法 Download PDF

Info

Publication number
JP2015135294A
JP2015135294A JP2014007271A JP2014007271A JP2015135294A JP 2015135294 A JP2015135294 A JP 2015135294A JP 2014007271 A JP2014007271 A JP 2014007271A JP 2014007271 A JP2014007271 A JP 2014007271A JP 2015135294 A JP2015135294 A JP 2015135294A
Authority
JP
Japan
Prior art keywords
pattern
image
captured image
projected
dimensional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014007271A
Other languages
English (en)
Other versions
JP6320051B2 (ja
JP2015135294A5 (ja
Inventor
小林 俊広
Toshihiro Kobayashi
俊広 小林
智昭 肥後
Tomoaki Higo
智昭 肥後
将由 山▲崎▼
Masayoshi Yamazaki
将由 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014007271A priority Critical patent/JP6320051B2/ja
Priority to US14/593,341 priority patent/US9557167B2/en
Priority to DE102015000386.0A priority patent/DE102015000386B4/de
Priority to CN201510021415.1A priority patent/CN104792277B/zh
Priority to GB1500627.3A priority patent/GB2522551B/en
Publication of JP2015135294A publication Critical patent/JP2015135294A/ja
Publication of JP2015135294A5 publication Critical patent/JP2015135294A5/ja
Application granted granted Critical
Publication of JP6320051B2 publication Critical patent/JP6320051B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2531Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object using several gratings, projected with variable angle of incidence on the object, and one detection device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2536Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object using several gratings with variable grating pitch, projected on the object with the same angle of incidence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/254Projection of a pattern, viewing through a pattern, e.g. moiré
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

【課題】半透明部分を含むような計測対象に対して、膨大な事前準備を要することなく、一般的な計測環境において高精度な三次元計測を安定的に行うための三次元形状計測装置、方法を提供する。
【解決手段】投影部101により、明部及び暗部から成る第1のパターンと、第1のパターンにより区分される空間のそれぞれの領域に投影される座標検出パターンと、が投影された空間の第1の画像を撮像部102で取得する。また、第1のパターンとは明部と暗部との境界位置が異なる第2のパターンと、第2のパターンにより区分される空間のそれぞれの領域に投影される座標検出パターンと、が投影された空間の第2の画像を撮像部102で取得する。第1の画像及び第2の画像のうち一方を選択し、選択画像に基づいて、空間に含まれている物体の三次元形状計測を行う。
【選択図】図1

Description

本発明は、計測対象物の三次元形状を計測するための技術に関するものである。
空間符号化法などに代表される縞パターンをプロジェクタなどの投影部によって計測対象に投影し、その反射光が撮像部で観測された位置をもとに三角測量の原理によって三次元座標を求める三次元計測装置が広く知られている。このような装置では、三次元座標の計測精度が計測対象の材質に大きく依存するという課題があった。
一般的に、プラスチック等の材質で製造された計測対象においては、表面下散乱あるいは内部散乱と呼ばれる現象によって、計測精度の悪化や、そもそも計測自体が不能になる等の問題が発生していた。そのような対象の計測時には、白色のパウダー等を対象表面に事前に塗布するなどの処置が要求され、三次元計測装置の適用範囲を大きく制限する障害となっていた。
特許文献1には、光路上に直線偏光板を設けることによって、表面反射光と内部散乱光とを分離し、半透明を含む被計測物の三次元形状を正確に計測する方法が開示されている。
特許文献2には、計測対象にあらかじめパターンを投影することで参照輝度パターンを取得しておき、計測時にこの観測された輝度パターンと参照輝度パターンとを比較し、物体の反射位置座標を推定する方法が開示されている。この方法は半透明を含む物体に限られるものではなく、物体の反射特性によらない高精度な三次元形状計測が行えるとしている。
非特許文献1では、位相シフト法における正弦波パターンを高周波数の正弦波パターンで変調することによって、内部散乱の影響を受けにくい三次元形状計測方法が提案されている。
非特許文献2では、スリット光を高周波数成分を含むM系列によって変調し、内部散乱の影響を受けにくい三次元形状計測方法が提案されている。
特開2008−281399号公報 特開2012−251893号公報
Tongbo Chen, Hans-Peter Seidel, Hendrik P. A. Lensch, Modulated phase-shifting for 3D scanning, CVPR 2008 古瀬達彦、日浦慎作、佐藤宏介、スリット光の変調による相互反射と表面下散乱に頑健な三次元形状計測、MIRU2009 画像の認識・理解シンポジウム
しかしながら特許文献1に記載の方法では、偏光を用いて表面反射光と内部散乱光を分離するためには、光源と受光部と計測対象面との間の幾何的な関係が一定の条件を満たしている必要があり、この条件を満たすように計測を行うことは必ずしも容易ではない。
また、特許文献2に記載の方法では、輝度パターンの波形は、計測対象物の材質のみならず、対象物の形状や光源、受光部の幾何関係等、数多くのパラメータに依存する。そのため、広範な対象物を計測するためには、多様な組み合わせを網羅するべく事前に膨大な数の参照輝度パターンを取得する必要がある。
非特許文献1、2に記載の方法も同様に、対象物全体を計測するためには、数多くのパターン光を投影して撮影する必要があり、長い計測時間を要する。
本発明は、このような問題に鑑みてなされたものであり、半透明部分を含むような計測対象に対して、膨大な事前準備を要することなく、一般的な計測環境において高精度な三次元計測を安定的に行うための三次元形状計測技術を提供する。
本発明の一様態は、明部及び暗部から成る第1のパターンと、該第1のパターンの投影により区分される空間のそれぞれの領域に投影される座標検出用パターンと、が投影された該空間の第1の撮像画像を取得する手段と、明部及び暗部から成り且つ前記第1のパターンとは明部と暗部との境界位置が異なる第2のパターンと、該第2のパターンの投影により区分される前記空間のそれぞれの領域に投影される座標検出用パターンと、が投影された前記空間の第2の撮像画像を取得する手段と、前記第1の撮像画像中の輝度値と前記第2の撮像画像中の輝度値とに基づいて、該第1の撮像画像及び該第2の撮像画像のうち一方を選択画像として選択する選択手段と、前記選択手段によって選択された選択画像に基づいて、前記空間に含まれている物体の三次元形状計測を行う計測手段とを備えることを特徴とする。
本発明の構成によれば、半透明部分を含むような計測対象に対して、膨大な事前準備を要することなく、一般的な計測環境において高精度な三次元計測を安定的に行うことができる。
システムの構成例を示す図。 システムの機能構成例を示すブロック図。 空間分割パターン画像の一例を示す図。 符号誤りについて説明する図。 空間分割パターン画像の一例を示す図。 座標検出パターン画像の一例を示す図。 制御装置103が行う処理のフローチャート。 マスクパターンの一例を示す図。 マスク結果を示す図。 マスク結果を示す図。 座標検出パターンの一例を示す図。 複数の座標検出パターンを生成する処理を説明する図。 制御装置103が行う処理のフローチャート。 コンピュータ装置のハードウェア構成例を示すブロック図。
以下、添付図面を参照し、本発明の好適な実施形態について説明する。なお、以下説明する実施形態は、本発明を具体的に実施した場合の一例を示すもので、特許請求の範囲に記載の構成の具体的な実施例の1つである。
[第1の実施形態]
本実施形態では、符号の誤りを起こしにくい空間分割パターンを投影して、計測対象物を含む計測空間を所定数の領域に区分する。そして、区分されたそれぞれの領域に対して一意となるような座標検出パターン(座標検出用パターン)を投影することによって、計測対象物の三次元形状(計測対象物表面の三次元座標)を精密に算出する。
先ず、本実施形態に係るシステムの構成例について、図1を用いて説明する。本実施形態に係るシステム100は、計測対象物104に対してパターン光を投影する投影部101、パターン光が投影された計測対象物104を撮像する撮像部102、計測対象物104の三次元形状計測を行う制御装置103、を有する。
次に、三次元形状計測装置として機能する制御装置103と、その周辺機器(投影部101及び撮像部102)の機能構成例について、図2のブロック図を用いて説明する。
投影部101は、投影パターン生成部202から供給されたパターン画像に基づくパターン光を投影する(以下では単にパターン画像を投影すると表記する場合もある)。本実施形態では、投影部101によるパターン光の投影対象は、三次元形状計測の対象となる計測対象物104を含む空間である。以下では、投影部101は、水平方向に128画素の解像度を有するプロジェクタであるものとして説明する。しかし、これはあくまでも具体的な説明を行うために挙げた一例であり、以下の説明の本質がこれに限ることを示唆するものではない。
撮像部102は、投影部101によりパターン光が投影された計測対象物104を含む空間を撮像するものであり、該計測対象物104の表面で反射された光は、この撮像部102によって撮像される。そして撮像部102は、撮像した画像(撮像画像)を、制御装置103が有する画像入力部204に対して送出する。
後述するように、投影部101は、様々なパターン光を計測対象物104に対して投影するのであるが、撮像部102は、パターン光が投影されるたびに計測対象物104を含む空間を撮像する。すなわち、投影部101によるパターン光の投影と撮像部102による空間の撮像とは同期しており、撮像部102は、それぞれのパターン光が投影された撮像画像を撮像することになる。このような制御(パターン光の投影と計測対象物104の撮像とが同期するように投影部101及び撮像部102を制御すること)は、制御装置103が有する制御部210が行う。すなわち、撮像部102は、制御部210から送出される撮像制御信号を受信し、該受信したタイミングに基づき、あらかじめ指定されたシャッター速度、絞り、焦点位置で画像を撮像する。制御部210は、例えば、投影部101と撮像部102に制御信号を同時刻に送出することにより、投影と撮像が同期して実行されるように制御する。
投影パターン生成部202は、投影部101に供給するパターン画像を生成するものであり、本実施形態では、このパターン画像は、空間分割パターン画像と、座標検出パターン画像と、から成る。以下では説明を簡単にするために、空間分割パターン画像と座標検出パターン画像とは同サイズの画像であるものとして説明する。
空間分割パターン画像とは、投影部101が投影可能な空間(計測対象物104を含む空間)を複数の領域に区分するため、且つ座標検出パターン画像中の個々のパターンを識別して特定するために、投影部101によって投影されるパターン画像である。
座標検出パターン画像とは、計測対象物104の三次元形状をより詳細に計測するために、空間分割パターン画像と共に投影部101によって投影されるパターン画像である。
空間分割パターン画像の一例を図3に示す。図3の左側には、明部と暗部とが交互に配置され且つその配置パターンがそれぞれ異なる(明部と暗部の境界位置がそれぞれ異なる)パターン画像(グレイコード)P1〜P4が示されている。パターン画像P1〜P4をポジティブパターン(正画像)と呼称する場合もある。
投影部101は、パターン画像P1〜P4のそれぞれを(座標検出パターン画像と共に)順次計測対象物104に対して投影し、撮像部102はパターン画像P1〜P4のそれぞれが投影されるたびに撮像を行う。これにより、パターン画像P1が投影された計測対象物104の撮像画像、パターン画像P2が投影された計測対象物104の撮像画像が得られる。また、パターン画像P3が投影された計測対象物104の撮像画像、パターン画像P4が投影された計測対象物104の撮像画像が得られる。これら4枚の撮像画像上での明部及び暗部の組み合わせとしては16通り(2の4乗)が存在し、投影部101が投影する空間全体を16の領域に分割した際、これら撮像画像上の各位置がいずれの領域に属するのかを決定することができる。これは、撮像画像中の各画素が投影部101のいずれの箇所から照光されたものであるのかを特定することと等価である。上記の通り、投影部101の水平方向の解像度は128画素としているので、この場合、これを16で割った8画素単位で領域が特定される。
上記4枚の撮像画像が得られると画像処理部205により、撮像画像(上記4枚の撮像画像の何れでも良い)上の各画素位置に対し、上記4枚の撮像画像それぞれの該画素位置に明部及び暗部の何れが写っているのかを示すコードを並べた符号が割り当てられる。例えば、パターン画像P1が投影された計測対象物104の撮像画像中の画素位置(x、y)には明部が写っており、パターン画像P2が投影された計測対象物104の撮像画像中の画素位置(x、y)には暗部が写っているとする。また、パターン画像P3が投影された計測対象物104の撮像画像中の画素位置(x、y)には明部が写っており、パターン画像P4が投影された計測対象物104の撮像画像中の画素位置(x、y)には暗部が写っているとする。ここで、明部が写っている画素位置にはコード「1」を割り当て、暗部が写っている画素位置にはコード「0」を割り当てるとする。この場合、パターン画像P1が投影された計測対象物104の撮像画像中の画素位置(x、y)にはコード「1」が割り当てられ、パターン画像P2が投影された計測対象物104の撮像画像中の画素位置(x、y)にはコード「0」が割り当てられる。また、パターン画像P3が投影された計測対象物104の撮像画像中の画素位置(x、y)にはコード「1」が割り当てられ、パターン画像P4が投影された計測対象物104の撮像画像中の画素位置(x、y)にはコード「0」が割り当てられる。そして、パターン画像の投影順に、該パターン画像が投影された計測対象物104の撮像画像中の画素位置(x、y)に対するコードを並べると、二進数の符号「1010」が得られる。グレイコードにおいて2進数「1010」は10進数で「14」と解釈されるので、この画素位置(x、y)は、空間を16の領域に分割したときの14番目の領域に属することになる。この14番目の領域は、投影部101の画素において、同一のグレイコードを形成する場所によって定義される。この場合においては、パターン画像P1において明部、パターン画像P2において暗部、パターン画像P3において明部、パターン画像P4において暗部、を形成する、投影部101での画素である。
一方、撮像画像から明部及び暗部の組み合わせを読み取るために、パターン画像P1〜P4に加えて、パターン画像P1〜P4のそれぞれの明部及び暗部を反転させたパターン画像N1〜N4(図3右側)も投影することが、広く行われている。パターン画像N1〜N4をネガティブパターン(反転画像)と呼称する場合もある。
例えば、投影部101は、パターン画像P1とパターン画像N1とを順次投影し、撮像部102はそれぞれのパターン画像が投影された画像を撮像する。ここで、パターン画像P1を投影したときの撮像画像をIP1(u,v)、パターン画像N1を投影したときの撮像画像をIN1(u,v)とする(u,vはそれぞれ撮像画像中のx座標値、y座標値)。このとき、画像処理部205は、IP1(u,v)>IN1(u,v)を満たす画素位置(u,v)に対してはコード「1」を割り当て、IP1(u,v)≦IN1(u,v)を満たす画素位置(u,v)に対してはコード「0」を割り当てる。そして画像処理部205は、パターン画像P2〜P4及びN2〜N4についても同様にしてコード割り当てを行うので、以降は上記と同様にして、各画素位置に対して符号を割り当てる。
しかしながら、計測対象物104の材質がプラスチック等、一部若しくは全部が半透明であるような場合、投影部101の投影方向や計測対象物104の向きなどよっては、上記のような明暗の判定に誤りが生じることがある。より具体的には、計測対象物104表面での反射光に加えて、計測対象物104内部で散乱を生じた光が足し合わされることによって、撮像画像で観測されるパターンの波形が大きく歪むことになる。計測対象物104の内部で生じる散乱は、計測対象物104表面の向きと、計測対象物104に入射する光の方向と、に依存するため、ポジティブパターン又はネガティブパターンの何れかのみ投影光が大きく歪み、もう一方は歪みが少ないという現象が発生する。その結果、内部散乱を生じない場合に対して、上記条件を満たすための境界にずれを生じてしまうことになる。あるいは、システム100やその構成要素である投影部101、撮像部102が振動などを発生させるような場合にも、類似したずれを生じさせることがある。
この現象を図4を用いて詳しく説明する。図4(a)は、不透明物体に対してパターン画像P1、N1を投影したときに、撮像画像IP1、IN1において水平方向の同一ライン上の明暗境界部付近の輝度変化の例を表す。図4(b)は、半透明物体に対してパターン画像P1、N1を投影したときに、撮像画像IP1、IN1において水平方向の同一ライン上の明暗境界部付近の輝度変化の例を表す。図4(a)、(b)ともに実線は撮像画像IP1において水平方向ライン上の明暗境界部付近の輝度変化の例を表し、破線は撮像画像IN1において水平方向の同一ライン上の明暗境界部付近の輝度変化の例を表している。このとき、IP1(u,v)=IN1(u,v)となるuを境界とし、縦の実線として示している。図4(a)において縦の実線より左の領域は暗(コード「0」)、右の領域は明(コード「1」)と判定される。
一方、図4(b)は図4(a)と比較すると、実線で示される波形が大きく歪み、実線の波形と破線の波形との交点の位置にずれを生じている。図4(b)中で斜線で示されている領域400は、本来は暗(コード「0」)と判定されるべき領域であるが、内部散乱に伴う波形の歪みにより、誤って明(コード「1」)と判定されており、符号誤りを生じる領域を示している。
本実施形態では投影パターン生成部202は、パターン画像P1〜P4、N1〜N4のようなパターン画像に加え、これらのパターン画像における明部及び暗部の境界位置を変更したパターン画像を生成する。図3で示している空間分割パターンについて、上述のような符号誤りを生じるのは、明部と暗部の境界付近に限定される。しかるに本実施形態では、投影パターン生成部202は、この付近にパターンの明暗の境界を持たないような別の空間分割パターンを更に生成する。この空間分割パターンの例を図5に示す。
図5に示すパターン画像P1’〜P4’のそれぞれは、図3のパターン画像P1〜P4における明部と暗部の境界位置を変更したものである。すなわち、パターン画像P1〜P4における上記境界位置とパターン画像P1’〜P4’における上記境界位置とは異なる。より具体的には、パターン画像P1’〜P4’のそれぞれは、パターン画像P1〜P4における上記境界位置を、最小単位の半分の幅分だけシフトすることによって生成されるものである。例えばパターン画像P1〜P4の横幅が32画素であるとすると、パターン画像P1’〜P4’のそれぞれは、パターン画像P1〜P4内のパターンを左方向に1画素分シフトすることによって生成される。以下では、図3に示した空間分割パターン画像をグレイコードパターン、図5に示した空間分割パターン画像をシフトグレイコードパターンと呼称する。なお、パターン画像P1〜P4とパターン画像P1’〜P4’とは互いに上記境界位置が異なっている空間分割パターン画像であればよい。然るに、この条件を満たしていれば、パターン画像P1〜P4とパターン画像P1’〜P4’とはどのような空間分割パターン画像であっても良い。
なお、図3、図5に示した空間分割パターンについては、計測対象物104の実際の散乱の度合いに応じて、明部及び暗部の幅を調整することが望ましい。例えば、図4(b)における領域400の幅が広い場合には、明部及び暗部の幅を大きくすることにより、符号誤りが生じる確率を減少させることができる。パターン画像の解像度が同一であれば、それに伴いパターンのビット深度が減少し、空間分割数も減少することになるため、許容できる符号誤りの発生確率と、パターンの投影回数(撮影枚数)とに応じて、適切な値を設定する。
投影パターン生成部202は、以上説明した空間分割パターン画像に加えて、座標検出パターン画像も投影部101に供給する。座標検出パターン画像の一例を図6に示す。図6の座標検出パターン画像には、縦の実線(座標検出パターン)が複数含まれているが、個々の実線によって、計測対象物104の三次元座標を精密に計測する。一方、これらの実線は、本実施形態の場合、8画素間隔で引かれ、空間分割パターン画像によって区分された領域内に同時に1つのみ投影されることになる。そのため、図3、図5に示した空間分割パターン画像を投影し、明暗の組み合わせを復号することによって、空間中の領域が識別され、且つ個々の実線が特定されることになる。
なお、上記のような空間分割パターン画像及び座標検出パターン画像は、予め作成して不図示のメモリ内に格納しておき、必要に応じて投影パターン生成部202が読み出して投影部101に供給しても良い。また、投影パターン生成部202が空間分割パターン画像や座標検出パターン画像を適宜生成して投影部101に供給するようにしても構わない。
画像入力部204は、撮像部102から送出された撮像画像を受けると、これを画像処理部205に対して転送する。なお、転送形態はこれに限るものではない。例えば、画像入力部204は、撮像部102から送出された撮像画像を不図示のメモリに格納し、一回の三次元形状計測に必要な枚数分の撮像画像が格納された時点で、このメモリに格納した撮像画像群を画像処理部205に転送するようにしてもかまわない。
画像処理部205は、画像入力部204から転送された撮像画像に対して、該撮像画像に含まれるパターン光の復号処理、投影座標と画像座標の正規化処理などの画像処理を行う。また、画像処理部205は、撮像画像中に光学系に由来する歪みがある場合には、その歪みを補正して除去する処理も行う。そして画像処理部205は、撮像画像中の明部及び暗部を用いて、撮像画像上の各画素位置に対して上記符号を割り当てることで、撮像画像中の各画素について、パターン画像を投影した空間において対応する領域を復号(特定)する。
以下では、画像処理部205が行う処理について、より詳細に説明する。以下では、グレイコードパターンのポジティブパターンとしてパターン画像P1〜Pn(nは2以上の自然数)、グレイコードパターンのネガティブパターンとしてパターン画像N1〜Nnを用いるものとする。また、シフトグレイコードパターンのポジティブパターンとしてパターン画像P1’〜Pn’、シフトグレイコードパターンのネガティブパターンとしてパターン画像N1’〜Nn’を用いるものとする。
そして、パターン画像P1〜Pnのそれぞれを(座標検出パターン画像と共に)投影した計測対象物104の撮像画像をIP1〜IPnと表す。また、パターン画像N1〜Nnのそれぞれを(座標検出パターン画像と共に)投影した計測対象物104の撮像画像をIN1〜INnと表す。また、パターン画像P1’〜Pn’のそれぞれを(座標検出パターン画像と共に)投影した計測対象物104の撮像画像をIP1’〜IPn’と表す。また、パターン画像N1’〜Nn’のそれぞれを(座標検出パターン画像と共に)投影した計測対象物104の撮像画像をIN1’〜INn’と表す。
このとき、画像処理部205は、1≦k≦nを満たす全てのkについて、以下の(式1)に従って、dpk(u,v)、dpk’(u,v)を求める。
Figure 2015135294
IPk(u,v)は、撮像画像IPk中(正画像内)の画素位置(u,v)における画素の輝度値、INk(u,v)は、撮像画像INk中(反転画像内)の画素位置(u,v)における画素の輝度値を表す。また、dpk(u,v)は、撮像画像の明度を考慮した、IPk(u,v)とINk(u,v)との輝度差を示す。
また、IPk’(u,v)は、撮像画像IPk’中の画素位置(u,v)における画素の輝度値、INk’(u,v)は、撮像画像INk’中の画素位置(u,v)における画素の輝度値を表す。また、dpk’(u,v)は、撮像画像の明度を考慮した、IPk’(u,v)とINk’(u,v)との輝度差を示す。
そして画像処理部205は、以下の(式2)に従って、dp(u,v)、dp’(u,v)を求める。
Figure 2015135294
dp(u,v)は、dp1(u,v)〜dpn(u,v)のうちの最小値であり、dp’(u,v)は、dp1’(u,v)〜dpn’(u,v)のうちの最小値である。このdp、dp’が小さい場合には、撮像画像中の画素位置(u,v)が明部と暗部の境界位置により近いと考えられる。そこで、画像処理部205は、dp(u,v)とdp’(u,v)との大小比較を行う。dp(u,v)>dp’(u,v)であれば、画素位置(u,v)に対する符号を決定するために用いる撮像画像(選択画像)として、グレイコードパターンを投影した計測対象物104の撮像画像、即ち、撮像画像IP1〜IPn及びIN1〜INnを選択する。一方、dp(u,v)≦dp’(u,v)であれば、画素位置(u,v)に対する符号を決定するために用いる撮像画像(選択画像)として、シフトグレイコードパターンを投影した計測対象物104の撮像画像を選択する。即ち、撮像画像IP1’〜IPn’及びIN1’〜INn’を選択する。
いずれにせよ、この場合は、ポジティブパターンを投影したn枚の撮像画像とネガティブパターンを投影したn枚の撮像画像と、を用いて、上記のように撮像画像中の各画素位置に対する明暗判定を行い、各画素位置に対してコードを割り当てる。これにより、画素位置毎にn個のコードから成るnビットのビット列(=符号)が得られる。
ここで、上記のように、投影部101が空間分割パターン画像を投影する空間は、8画素の領域毎に区分される。然るに、撮像画像IP1〜IPn及びIN1〜INnを用いて符号を求めた画素位置に対応するパターン画像上の領域の位置は、該符号を10進数で表した値に8を乗じた値として求めることができる。例えば、符号を10進数で表した値が14の場合、該符号は、パターン画像を水平方向に16分割した領域のうちの14番目の領域に対応する。14番目の領域の位置(13番目の領域と14番目の領域との境界位置)は14×8=112となるので、該符号を求めた画素位置に対応するパターン画像上の領域の位置は112となる。
一方、既に説明したように、本実施形態のシフトグレイコードパターンはグレイコードパターンに対して、32分の1だけシフトしているため、投影部101の水平解像度128に対して4画素(128÷32=4)だけずれていることになる。そのため、撮像画像IP1’〜IPn’及びIN1’〜INn’を用いて符号を求めた画素位置に対応するパターン画像上の領域の位置は、該符号を10進数で表した値に8を乗じた値から4を引いた値として求めることができる。
なお、この乗算や減算の定数については、投影部101の解像度や、投影パターンの枚数(領域の分割数)、シフトグレイコードパターンの構成等によって異なるため、実施の形態に合わせて適切な値を設定する必要がある。
上記処理により、撮像画像中の各画素位置に割り当てた符号が、パターン画像上のどの領域の位置に対応しているのかを特定することができた。次に画像処理部205は、撮像画像中に写っているそれぞれの座標検出パターンに対応する、座標検出パターン画像中の座標検出パターンを特定することで、撮像画像内の座標検出パターンと座標検出パターン画像内の座標検出パターンとの対応関係を求める。
先ず画像処理部205は、撮像画像(以降、符号を求めるために使用した撮像画像)から、計測対象物104に投影されているそれぞれの座標検出パターンの画像座標を高精度に計算する。この画像座標の計算には、投影された座標検出パターン(線)の輝度の最大値から線の投影中心を推定する手法など、様々な手法が知られている。計測対象物104が半透明物体である場合、先に説明した理由によって線パターンが投影された波形に歪みが生ずるが、これは特許文献2に開示されている手法を適用することによって、線中心の座標を精度よく推定することが可能である。
次に画像処理部205は、撮像画像から求めた座標検出パターンZの画像座標に対応する符号に対応するパターン画像上の位置xに、座標検出パターン画像中の各座標検出パターンの位置の下位3ビットが表す値yを加えた位置(x+y)を求める。そして画像処理部205は、座標検出パターン画像においてこの位置(x+y)にある座標検出パターンZ’を、座標検出パターンZに対応する座標検出パターン画像上の座標検出パターンとして特定する。このように、撮像画像中に写っているそれぞれの座標検出パターンに対応する、座標検出パターン画像中の座標検出パターンを特定することができる。これにより、撮像画像内の座標検出パターンと座標検出パターン画像内の座標検出パターンとの対応関係を求めることができる。ここで、本実施形態では、座標検出パターンは8画素幅で投影されているため、yはすべての実線で共通である(座標検出パターンごとに定義される)。
そして画像処理部205は、このようにして求めた、撮像画像内の各座標検出パターンの位置(画像座標)と、該座標検出パターンに対応する座標検出パターン画像内の座標検出パターンの位置(投影座標)との対応関係を、三次元座標算出部208に送出する。
パラメータ記憶部206には、制御部210が撮像部102や投影部101を制御するために使用する制御パラメータや、三次元座標算出部208が三次元座標算出処理を実行するために使用するパラメータなどが格納されている。然るに制御部210や三次元座標算出部208は、このパラメータ記憶部206に格納されているパラメータを適宜読み出して使用する。
三次元座標算出部208は、画像処理部205から送出された画像座標と投影座標との対応関係と、パラメータ記憶部206に格納されている投影部101及び撮像部102の較正データと、を取得する。そして三次元座標算出部208は、取得したこれらの情報を用いて、周知の方法により、計測対象物104の三次元形状の計測を行い、その計測結果を結果出力部209に対して送出する。
結果出力部209は、三次元座標算出部208による計測結果を出力する。出力形態については、特定の出力形態に限るものではなく、計測結果を不図示の表示部に表示しても構わないし、本装置内若しくは本装置外に設けられているメモリや装置に対して出力しても構わない。また、計測対象物104を操作するロボットなどの機器に対して上記計測結果を出力しても構わない。
次に、以上説明した、制御装置103による計測対象物104の三次元形状計測処理について、同処理のフローチャートを示す図7を用いて説明する。なお、図7に示した各ステップにおける処理の内容については上述の通りであるので、以下では各ステップにおける処理を簡単に説明する。
制御装置103の電源が投入されるなど、制御装置103を起動した場合には、ステップS1000において制御部210は、システム100の様々な初期化処理を行う。この初期化処理では、投影部101及び撮像部102の起動を行ったり、投影部101及び撮像部102の較正データ等の各種のパラメータをパラメータ記憶部206に格納したりする。
ステップS1100では、投影パターン生成部202は、空間分割パターン画像及び座標検出パターン画像を生成し、各空間分割パターン画像を、座標検出パターン画像と共に順次投影部101に対して送出する。
ステップS1200では、投影部101による空間分割パターン画像及び座標検出パターン画像の投影及び撮像部102による撮像が行われるので、画像入力部204は、撮像部102が撮像を行うたびに得られる撮像画像を取得する。
ステップS1300では、画像処理部205は、撮像部102によるそれぞれの撮像画像を用いて、各画素位置における符号を生成する。ステップS1400では、画像処理部205は、それぞれの撮像画像から座標検出パターンの位置を求め、そして上記の処理によって、画像座標と投影座標との対応関係を求める。
ステップS1500で三次元座標算出部208は、ステップS1400で求めた画像座標と投影座標との対応関係と、パラメータ記憶部206に格納されている上記較正データと、を用いて周知の方法により、計測対象物104の三次元形状の計測を行う。そして三次元座標算出部208は、その計測結果を結果出力部209に対して送出するので、結果出力部209は、三次元座標算出部208による計測結果を出力する。
ステップS1600では、制御部210は、本処理の終了指示が入力されたりするなど、本処理の終了条件が満たされたか否かを判断する。この判断結果、終了条件が満たされた場合には、本処理は終了し、終了条件が満たされていない場合には、処理はステップS1100に戻り、以降の処理を行う。
なお、図7に示したステップS1200〜S1500の各処理ステップは、必ずしも図7に示した順序で実行しなくても良く、依存関係を含まない処理ステップについては、並行して実行しても良いし、適宜順序を入れ替えても構わない。
また、ステップS1200では、必ずしも全てのパターン画像の投影及び撮像を前もって行う必要はなく、次の処理に必要な画像が得られた段階で一度ステップS1200の投影及び撮像を中断し、次の処理に移ってもよい。処理完了後に不足するパターンの投影・撮像を再開するように構成することもできる。
このように、本実施形態によれば、符号誤りを抑制するような空間分割パターンを更に投影し、計測対象物を含む計測空間を所定の数の領域に区分する。また投影部は、区分された領域に対して一意となるような座標検出パターンを投影することによって、計測対象物表面の三次元座標を精密に算出することが可能となる。本実施形態では、計測対象物が内部散乱を引き起こす半透明部分を含む場合に特に効果が大きい。
本実施形態をまとめると、明部及び暗部から成る第1のパターンと、該第1のパターンの投影により区分される空間のそれぞれの領域に投影される座標検出用パターンと、が投影された該空間の第1の撮像画像を取得する。また、明部及び暗部から成り且つ第1のパターンとは明部と暗部との境界位置が異なる第2のパターンと、該第2のパターンの投影により区分される空間のそれぞれの領域に投影される座標検出用パターンと、が投影された空間の第2の撮像画像を取得する。そして、第1の撮像画像中の輝度値と第2の撮像画像中の輝度値とを用いて、該第1の撮像画像及び該第2の撮像画像のうち一方を選択画像として選択する。そして、選択画像中の座標検出用パターンと、該選択画像用に投影された座標検出用パターンと、の対応関係を用いて、空間に含まれている物体の三次元形状計測を行う。
[第2の実施形態]
本実施形態では、空間分割パターン画像の投影時に、明部と暗部の境界部分についてはマスクして投影しないようにする。これにより、空間分割時の符号誤りの可能性がさらに減少することとなり、計測対象物表面の三次元座標をより安定的に算出することが可能となる。
以下では、第1の実施形態との差分について重点的に説明し、第1の実施形態と同様の点については説明を省略する。すなわち、以下で特に触れない限りは、第1の実施形態と同様であるものとする。
投影部101が、投影するパターン画像をマスクするために使用するマスクパターンの一例を図8に示す。図8(a)には、グレイコードパターンをマスクするために使用するマスクパターンの一例を示しており、図8(b)には、シフトグレイコードパターンをマスクするために使用するマスクパターンの一例を示している。
グレイコードパターン(シフトグレイコードパターン)をマスクパターンを用いてマスクして投影すると、マスクパターンの白い部分についてはパターン光が投影され、黒い部分については、パターン光が遮断される。すなわち、投影部101は、投影パターン生成部202から供給されたグレイコードパターン(シフトグレイコードパターン)を、マスクパターンを用いてマスクしてから投影する。
これらのマスクパターンは、対応するグレイコードパターンあるいはシフトグレイコードパターンの明暗境界付近についてのみ、投影部101がパターン光を投影しないように設定されている。すなわち、本実施形態では、計測対象物104の材質が半透明であるような場合に符号誤りの原因となっていたパターン明暗の境界付近について、投影部101がパターンを投影しないことによって、復号の精度を向上させる。
図3に示したグレイコードパターンを図8(a)に示したマスクパターンを用いてマスクした結果を図9に示す。また、図5に示したシフトグレイコードパターンを図8(b)に示したマスクパターンを用いてマスクした結果を図10に示す。
図9において、PM1〜PM4はそれぞれ、図3のP1〜P4を図8(a)のマスクパターンを用いてマスクした結果であり、NM1〜NM4はそれぞれ、図3のN1〜N4を図8(a)のマスクパターンを用いてマスクした結果である。
図10において、PM1’〜PM4’はそれぞれ、図5のP1’〜P4’を図8(b)のマスクパターンを用いてマスクした結果であり、NM1’〜NM4’はそれぞれ、図5のN1’〜N4’を図8(b)のマスクパターンを用いてマスクした結果である。
なお、本実施形態では、上記の通り、投影部101は、投影パターン生成部202から供給されたグレイコードパターン(シフトグレイコードパターン)を、マスクパターンを用いてマスクしてから投影する。しかし、投影パターン生成部202が、グレイコードパターン(シフトグレイコードパターン)をマスクパターンを用いてマスクした結果を投影部101に供給するようにしても構わない。
本実施形態では、各画素位置に対する符号を決定するために、グレイコードパターンを投影した場合の撮像画像を用いるのか、シフトグレイコードパターンを投影した場合の撮像画像を用いるのかを決定するための処理が、第1の実施形態と異なる。
以下では、グレイコードパターンのポジティブパターンとしてパターン画像PM1〜PMn(例えば図9のPM1〜PM4)、グレイコードパターンのネガティブパターンとしてパターン画像NM1〜NMn(例えば図9のNM1〜NM4)を用いるものとする。また、シフトグレイコードパターンのポジティブパターンとして、パターン画像PM1’〜PMn’(例えば図10のPM1’〜PM4’)を用いるものとする。また、シフトグレイコードパターンのネガティブパターンとして、パターン画像NM1’〜NMn’(例えば図10のNM1’〜NM4’)を用いるものとする。
そして、パターン画像PM1〜PMnのそれぞれを(座標検出パターン画像と共に)投影した計測対象物104の撮像画像をIPM1〜IPMnと表す。また、パターン画像NM1〜NMnのそれぞれを(座標検出パターン画像と共に)投影した計測対象物104の撮像画像をINM1〜INMnと表す。また、パターン画像PM1’〜PMn’のそれぞれを(座標検出パターン画像と共に)投影した計測対象物104の撮像画像をIPM1’〜IPMn’と表す。また、パターン画像NM1’〜NMn’のそれぞれを(座標検出パターン画像と共に)投影した計測対象物104の撮像画像をINM1’〜INMn’と表す。
このとき、画像処理部205は、1≦k≦nを満たす全てのkについて、以下の(式3)に従って、dpmk(u,v)、dpmk’(u,v)を求める。
Figure 2015135294
IPMk(u,v)は、撮像画像IPMk中の画素位置(u,v)における画素の輝度値、INMk(u,v)は、撮像画像INMk中の画素位置(u,v)における画素の輝度値を表す。また、dpmk(u,v)は、IPMk(u,v)とINMk(u,v)との輝度差を示す。
また、IPMk’(u,v)は、撮像画像IPMk’中の画素位置(u,v)における画素の輝度値、INMk’(u,v)は、撮像画像INMk’中の画素位置(u,v)における画素の輝度値を表す。また、dpmk’(u,v)は、IPMk’(u,v)とINMk’(u,v)との輝度差を示す。
本実施形態では、パターン明暗の境界付近についてはマスクされており、投影部101からパターン光が投影されることがないため、すべてのkについて、dpmk、dpm’kのいずれかが小さい値を持つ。すなわち、すべてのkについてdpmk(u,v)>dpm’k(u,v)またはdpmk(u,v)<dpm’k(u,v)が必ず成立する。
然るに、あるkについて、dpmk(u,v)>dpm’k(u,v)またはdpmk(u,v)<dpm’k(u,v)の何れが成立するか否かを判断する。dpmk(u,v)>dpmk’(u,v)の場合、画素位置(u,v)に対する符号を決定する為に用いる撮像画像として、グレイコードパターンを投影した計測対象物104の撮像画像、即ち撮像画像IPM1〜IPMn及びINM1〜INMnを選択する。一方、dpmk(u,v)≦dpmk’(u,v)の場合、画素位置(u,v)に対する符号を決定するために用いる撮像画像として、シフトグレイコードパターンを投影した計測対象物104の撮像画像を選択する。即ち、撮像画像IPM1’〜IPMn’及びINM1’〜INMn’を選択する。
このように、本実施形態では、第1の実施形態より確実にグレイコードパターンあるいはシフトグレイコードパターンを選択することが可能となる。また、マスクパターンを適用することにより、すべての空間分割パターンが高い周波数で変調されることになり、非特許文献1に記述されているように、内部散乱の影響そのものを抑制する効果を得ることができる。すなわち、計測対象物104が半透明部分を含むような場合に、領域識別時の符号誤りの発生確率を低減させることができ、安定した三次元計測が実現可能となる。
このように、本実施形態によれば、投影する空間分割パターンに対し、明暗の境界部分について、これを投影しないようにマスクパターンを設定し、制御する。これにより、空間分割時の符号誤りの可能性がさらに減少することとなり、計測対象物表面の三次元座標をより安定的に算出することが可能となる。
[第3の実施形態]
第1の実施形態では、図6に示すような複数の線分から成る座標検出パターン画像を用いたが、本実施形態では、図11に示す如く、複数の破線から成る座標検出パターン画像を用いる。このような座標検出パターン画像を計測対象物104に対して投影することで、計測対象物104に生じる内部散乱の影響を取り除くことになり、結果として、計測対象物104表面上の三次元座標をより正確に算出する。
以下では、第1の実施形態との差分について重点的に説明し、第1の実施形態と同様の点については説明を省略する。すなわち、以下で特に触れない限りは、第1の実施形態と同様であるものとする。
本実施形態では、投影パターン生成部202は、図6に示したような複数の線分から成る座標検出パターン画像の代わりに、図11に示すような複数の破線から成る座標検出パターン画像を投影部101に供給する。投影部101は、投影パターン生成部202から供給された、複数の破線から成る座標検出パターン画像を、計測対象物104を含む空間に対して投影する。非特許文献2に記述されているように、本実施形態では、計測対象物104に対して破線様のパターンを投影し、計測対象物104の内部散乱の影響を取り除くことによって、より精密な投影座標を算出することが可能となる。
投影パターン生成部202は、図11のような破線様のパターンに対し、この破線を長手方向(座標検出パターン画像において垂直方向)に順次シフトさせたパターンを複数生成し、投影部101に送出する。図12は座標検出パターンを構成する破線の一部分のみを切り出して、複数の座標検出パターンを生成する処理を説明している図である。
投影パターン生成部202は、破線を縦方向に1画素ずつシフトさせたパターンを生成する。図12(a)では、投影部101の画素について、破線の長手方向に2画素分を明、2画素分を暗とした繰り返しパターンの破線である。投影パターン生成部202は、図12(a)の破線を1画素分下方向にシフトさせたパターン(図12(b))を新たに生成し、投影部101に送出する。投影部101は計測対象物104を含む空間に向けてこのパターンを投影し、投影の都度、撮像部102は計測対象物104を含む空間を撮像する。
次に投影パターン生成部202はさらに1画素分下方向にシフトさせたパターン(図12(c))を生成し、投影部101に送出する。投影パターン生成部202は、破線の1周期分だけこのシフトを繰り返して、座標検出パターンを生成する。この例の場合、投影パターン生成部202は破線を長手方向にシフトさせたパターンを4つ(図12(a)〜(d))生成し、投影部101に送出する。
画像処理部205は、座標検出パターンが投影された撮像画像から、座標検出パターンが計測対象物104上に観測された画像座標を高精度に計算する。本実施形態の場合、撮像部102は破線パターンをシフトさせて生成した4種類の座標検出パターンを投影した撮像画像(4枚)取得することになり、この4枚の撮像画像から画像座標を算出する。
画像処理部205は、画素位置(u,v)ごとに、4枚の撮像画像のそれぞれの該画素位置における輝度値のうち最大値T及び最小値Sを特定する。計測対象物104上の被計測点について、破線パターン投影時の暗部に対応する画素については、パターン光が直接投影されていないことになるため、内部散乱のみが観測される。一方、明部に対応する点については、パターン光が直接投影されているため、反射光と内部散乱の両方が観測されている。破線の周波数が十分に高い条件下では、最小値Sが内部散乱成分そのものを表していることになり、最大値Tから最小値Sを減算した値が計測対象物104表面で反射した反射光成分を表していることになる。画像処理部205は座標検出パターンが投影された複数の撮像画像から、反射光成分を算出する。即ち、画素位置ごとに、該画素位置について求めた最大値Tから最小値Sを引いた結果を、該画素位置に対する輝度値(反射光成分)として求める。そして、各画素位置における画素が該求めた反射光成分を有する画像(反射光成分の撮像画像)から、座標検出パターンの位置を検出する。反射光成分は既に内部散乱の影響が取り除かれたものであるから、第1の実施形態における座標検出パターンを投影した撮像画像に代えて、この反射光成分の撮像画像をそのまま用いることによって、高精度な画像座標を取得することができる。
次に、以上説明した、制御装置103による計測対象物104の三次元形状計測を処理について、同処理のフローチャートを示す図13を用いて説明する。図13に示したフローチャートは、図7に示したフローチャートにステップS1350を加えたものである。
ステップS1350では、画像処理部205は、上記のようにして、反射光成分を算出することで、反射光成分の撮像画像を生成する。然るにステップS1400では、画像処理部205は、反射光成分の撮像画像から座標検出パターンの位置を求め、画像座標と投影座標との対応関係を求める。
このように、本実施形態によれば、座標検出パターンとして破線様のパターンを投影し、計測対象物に生じる内部散乱の影響を取り除くことにより、計測対象物表面上の三次元座標をより正確に算出することが可能となる。なお、以上説明した各実施形態はその一部若しくは全部を適宜組み合わせて用いても構わない。
そして何れの実施形態においても、半透明部分を含む計測対象物に対してパターン光を照射したときの散乱等の影響を抑制し、高精度な三次元計測を安定的に行うことが可能となる。
[第4の実施形態]
図2に示した制御装置103を構成する各部は何れもハードウェアで構成しても構わない。しかし、画像入力部204、投影パターン生成部202、三次元座標算出部208、画像処理部205、結果出力部209等はソフトウェア(コンピュータプログラム)で構成しても構わない。この場合、制御部210、パラメータ記憶部206の機能を有し、且つこのコンピュータプログラムを実行可能な装置は、制御装置103に適用可能である。制御装置103に適用可能であるコンピュータ装置のハードウェア構成例を図14に示す。
CPU1401は、RAM1402やROM1403に格納されているコンピュータプログラムやデータを用いて各種の処理を実行することで、本コンピュータ装置全体の動作制御を行うと共に、制御装置103が行うものとして上述した各処理を実行する。然るにCPU1401は、制御部210としても機能することになる。
RAM1402は、外部記憶装置1406からロードされたコンピュータプログラムやデータ、I/F(インターフェース)1407を介して外部から受信したコンピュータプログラムやデータを一時的に記憶するためのエリアを有する。更に、RAM1402は、CPU1401が各種の処理を実行する際に用いるワークエリアも有する。即ち、RAM1402は、各種のエリアを適宜提供することができる。ROM1403には、本コンピュータ装置の設定データやブートプログラムなどが格納されている。
操作部1404は、マウスやキーボードなどにより構成されており、本コンピュータ装置のユーザが操作することで、各種の指示をCPU1401に対して入力することができる。例えば、処理の終了指示や本コンピュータ装置の起動指示などは、この操作部1404を操作することで入力することができる。
表示部1405は、CRTや液晶画面などにより構成されており、CPU1401による処理結果を画像や文字などでもって表示することができる。例えば、結果出力部209の出力先として使用することもできる。
外部記憶装置1406は、ハードディスクドライブ装置などの大容量情報記憶装置である。外部記憶装置1406には、OS(オペレーティングシステム)や、制御装置103が行うものとして上述した各処理をCPU1401に実行させるためのコンピュータプログラムやデータが保存されている。このコンピュータプログラムには、画像入力部204、投影パターン生成部202、画像処理部205、三次元座標算出部208、結果出力部209が行うものとして上述した各処理をCPU1401に実行させるためのコンピュータプログラムが含まれている。また、このデータには、パラメータ記憶部206に保存されているものとして上述した情報や、既知の情報として説明した様々な情報が含まれている。すなわち、外部記憶装置1406は、パラメータ記憶部206としても機能することになる。
外部記憶装置1406に保存されているコンピュータプログラムやデータは、CPU1401による制御に従って適宜RAM1402にロードされ、CPU1401による処理対象となる。
I/F1407は外部機器を本コンピュータ装置に接続するためのもので、撮像部102や投影部101を接続することができる。上述した各部は何れも、バス1408に接続されている。
(その他の実施例)
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。

Claims (8)

  1. 明部及び暗部から成る第1のパターンと、該第1のパターンの投影により区分される空間のそれぞれの領域に投影される座標検出用パターンと、が投影された該空間の第1の撮像画像を取得する手段と、
    明部及び暗部から成り且つ前記第1のパターンとは明部と暗部との境界位置が異なる第2のパターンと、該第2のパターンの投影により区分される前記空間のそれぞれの領域に投影される座標検出用パターンと、が投影された前記空間の第2の撮像画像を取得する手段と、
    前記第1の撮像画像中の輝度値と前記第2の撮像画像中の輝度値とに基づいて、該第1の撮像画像及び該第2の撮像画像のうち一方を選択画像として選択する選択手段と、
    前記選択手段によって選択された選択画像に基づいて、前記空間に含まれている物体の三次元形状計測を行う計測手段と
    を備えることを特徴とする三次元形状計測装置。
  2. 前記第1の撮像画像及び前記第2の撮像画像のそれぞれは、明部及び暗部から成るパターンを投影した前記空間の撮像画像である正画像及び該パターンにおける明部及び暗部を反転させたパターンを投影した前記空間の撮像画像である反転画像から成り、
    前記選択手段は、所定の領域毎に
    前記第1の撮像画像としての正画像内の前記所定の領域における輝度値と、前記第1の撮像画像としての反転画像内の前記所定の領域における輝度値と、の差分を第1の差分として取得し、前記第2の撮像画像としての正画像内の前記所定の領域における輝度値と、前記第2の撮像画像としての反転画像内の前記所定の領域における輝度値と、の差分を第2の差分として取得し、
    前記第1の差分と前記第2の差分とに基づいて、前記第1の撮像画像及び前記第2の撮像画像のうち一方を選択画像として選択する
    ことを特徴とする請求項1に記載の三次元形状計測装置。
  3. 前記選択手段は、前記第1の差分が前記第2の差分よりも大きい領域に対しては、前記選択画像として前記第1の撮像画像を選択し、前記第1の差分が前記第2の差分よりも小さい領域に対しては、前記選択画像として前記第2の撮像画像を選択することを特徴とする請求項2に記載の三次元形状計測装置。
  4. 前記計測手段は、
    前記選択画像中のパターンの投影により区分された前記空間のそれぞれの領域のうち、該選択画像中の座標検出用パターンが投影された領域を特定し、該選択画像用に投影された座標検出用パターンのうち該特定された領域に投影された座標検出用パターンと、該選択画像中の座標検出用パターンと、の対応関係を用いて前記三次元形状計測を行う
    ことを特徴とする請求項1乃至3の何れか1項に記載の三次元形状計測装置。
  5. 前記第1のパターン及び前記第2のパターンは、明部と暗部の境界部分がマスクされたパターンであることを特徴とする請求項1乃至4の何れか1項に記載の三次元形状計測装置。
  6. 更に、前記選択画像から前記物体に生じる内部散乱の影響を除去した反射光成分の撮像画像を生成する手段を備え、
    前記計測手段は、前記反射光成分の撮像画像を前記選択画像として用いて前記三次元形状計測を行うことを特徴とする請求項1乃至5の何れか1項に記載の三次元形状計測装置。
  7. 三次元形状計測装置が行う三次元形状計測方法であって、
    前記三次元形状計測装置の第1の撮像画像の取得手段が、明部及び暗部から成る第1のパターンと、該第1のパターンの投影により区分される空間のそれぞれの領域に投影される座標検出用パターンと、が投影された該空間の第1の撮像画像を取得する工程と、
    前記三次元形状計測装置の第2の撮像画像の取得手段が、明部及び暗部から成り且つ前記第1のパターンとは明部と暗部との境界位置が異なる第2のパターンと、該第2のパターンの投影により区分される前記空間のそれぞれの領域に投影される座標検出用パターンと、が投影された前記空間の第2の撮像画像を取得する工程と、
    前記三次元形状計測装置の選択手段が、前記第1の撮像画像中の輝度値と前記第2の撮像画像中の輝度値とに基づいて、該第1の撮像画像及び該第2の撮像画像のうち一方を選択画像として選択する選択工程と、
    前記三次元形状計測装置の計測手段が、前記選択工程で選択された選択画像に基づいて、前記空間に含まれている物体の三次元形状計測を行う計測工程と
    を備えることを特徴とする三次元形状計測方法。
  8. コンピュータを、請求項1乃至6の何れか1項に記載の三次元形状計測装置の各手段として機能させるためのコンピュータプログラム。
JP2014007271A 2014-01-17 2014-01-17 三次元形状計測装置、三次元形状計測方法 Active JP6320051B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014007271A JP6320051B2 (ja) 2014-01-17 2014-01-17 三次元形状計測装置、三次元形状計測方法
US14/593,341 US9557167B2 (en) 2014-01-17 2015-01-09 Three-dimensional-shape measurement apparatus, three-dimensional-shape measurement method, and non-transitory computer-readable storage medium
DE102015000386.0A DE102015000386B4 (de) 2014-01-17 2015-01-13 Vorrichtung und Verfahren zum Messen einer dreidimensionalen Form und nichtflüchtiges computerlesbares Speichermedium
CN201510021415.1A CN104792277B (zh) 2014-01-17 2015-01-15 三维形状测量装置和三维形状测量方法
GB1500627.3A GB2522551B (en) 2014-01-17 2015-01-15 Three-dimensional-shape measurement apparatus, three-dimensional-shape measurement method, and non-transitory computer-readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014007271A JP6320051B2 (ja) 2014-01-17 2014-01-17 三次元形状計測装置、三次元形状計測方法

Publications (3)

Publication Number Publication Date
JP2015135294A true JP2015135294A (ja) 2015-07-27
JP2015135294A5 JP2015135294A5 (ja) 2017-02-16
JP6320051B2 JP6320051B2 (ja) 2018-05-09

Family

ID=53497939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014007271A Active JP6320051B2 (ja) 2014-01-17 2014-01-17 三次元形状計測装置、三次元形状計測方法

Country Status (5)

Country Link
US (1) US9557167B2 (ja)
JP (1) JP6320051B2 (ja)
CN (1) CN104792277B (ja)
DE (1) DE102015000386B4 (ja)
GB (1) GB2522551B (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160102972A1 (en) * 2014-10-10 2016-04-14 Canon Kabushiki Kaisha Three-dimensional coordinate measuring apparatus and three-dimensional coordinate measuring method
JP2016224035A (ja) * 2015-06-01 2016-12-28 キヤノン株式会社 計測装置、システム、物品の製造方法、算出方法及びプログラム
JP2021060326A (ja) * 2019-10-09 2021-04-15 興和株式会社 表面検査装置

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8908995B2 (en) 2009-01-12 2014-12-09 Intermec Ip Corp. Semi-automatic dimensioning with imager on a portable device
US9779546B2 (en) 2012-05-04 2017-10-03 Intermec Ip Corp. Volume dimensioning systems and methods
US10007858B2 (en) 2012-05-15 2018-06-26 Honeywell International Inc. Terminals and methods for dimensioning objects
US10321127B2 (en) 2012-08-20 2019-06-11 Intermec Ip Corp. Volume dimensioning system calibration systems and methods
US9939259B2 (en) 2012-10-04 2018-04-10 Hand Held Products, Inc. Measuring object dimensions using mobile computer
US9841311B2 (en) 2012-10-16 2017-12-12 Hand Held Products, Inc. Dimensioning system
US9080856B2 (en) 2013-03-13 2015-07-14 Intermec Ip Corp. Systems and methods for enhancing dimensioning, for example volume dimensioning
US10228452B2 (en) 2013-06-07 2019-03-12 Hand Held Products, Inc. Method of error correction for 3D imaging device
US9759553B2 (en) * 2013-07-09 2017-09-12 Auburn University Determining geometric characteristics of reflective surfaces
JP6434788B2 (ja) * 2014-03-06 2018-12-05 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 計測システム、計測方法およびビジョンチップ
US9823059B2 (en) 2014-08-06 2017-11-21 Hand Held Products, Inc. Dimensioning system with guided alignment
US10775165B2 (en) 2014-10-10 2020-09-15 Hand Held Products, Inc. Methods for improving the accuracy of dimensioning-system measurements
US9779276B2 (en) 2014-10-10 2017-10-03 Hand Held Products, Inc. Depth sensor based auto-focus system for an indicia scanner
US10810715B2 (en) 2014-10-10 2020-10-20 Hand Held Products, Inc System and method for picking validation
US9897434B2 (en) 2014-10-21 2018-02-20 Hand Held Products, Inc. Handheld dimensioning system with measurement-conformance feedback
US10060729B2 (en) 2014-10-21 2018-08-28 Hand Held Products, Inc. Handheld dimensioner with data-quality indication
US9752864B2 (en) 2014-10-21 2017-09-05 Hand Held Products, Inc. Handheld dimensioning system with feedback
US9557166B2 (en) 2014-10-21 2017-01-31 Hand Held Products, Inc. Dimensioning system with multipath interference mitigation
US9762793B2 (en) 2014-10-21 2017-09-12 Hand Held Products, Inc. System and method for dimensioning
US10281264B2 (en) * 2014-12-01 2019-05-07 Canon Kabushiki Kaisha Three-dimensional measurement apparatus and control method for the same
US10032279B2 (en) * 2015-02-23 2018-07-24 Canon Kabushiki Kaisha Information processing apparatus, information processing method, and storage medium
US9786101B2 (en) 2015-05-19 2017-10-10 Hand Held Products, Inc. Evaluating image values
US10066982B2 (en) 2015-06-16 2018-09-04 Hand Held Products, Inc. Calibrating a volume dimensioner
US20160377414A1 (en) 2015-06-23 2016-12-29 Hand Held Products, Inc. Optical pattern projector
US9857167B2 (en) * 2015-06-23 2018-01-02 Hand Held Products, Inc. Dual-projector three-dimensional scanner
US9835486B2 (en) 2015-07-07 2017-12-05 Hand Held Products, Inc. Mobile dimensioner apparatus for use in commerce
EP3118576B1 (en) * 2015-07-15 2018-09-12 Hand Held Products, Inc. Mobile dimensioning device with dynamic accuracy compatible with nist standard
US20170017301A1 (en) 2015-07-16 2017-01-19 Hand Held Products, Inc. Adjusting dimensioning results using augmented reality
US10094650B2 (en) 2015-07-16 2018-10-09 Hand Held Products, Inc. Dimensioning and imaging items
US10249030B2 (en) 2015-10-30 2019-04-02 Hand Held Products, Inc. Image transformation for indicia reading
KR102368597B1 (ko) * 2015-11-11 2022-03-02 삼성전자주식회사 영상 촬영 장치 및 이의 제어 방법
US10225544B2 (en) 2015-11-19 2019-03-05 Hand Held Products, Inc. High resolution dot pattern
CN105588511A (zh) * 2015-12-15 2016-05-18 中核(天津)机械有限公司 激光测量透明件尺寸的辅助方法
US10025314B2 (en) 2016-01-27 2018-07-17 Hand Held Products, Inc. Vehicle positioning and object avoidance
US10171730B2 (en) 2016-02-15 2019-01-01 Canon Kabushiki Kaisha Information processing apparatus, method of controlling information processing apparatus, and storage medium
US10685490B2 (en) 2016-03-10 2020-06-16 Canon Kabushiki Kaisha Information processing apparatus, information processing method, and storage medium
US10339352B2 (en) 2016-06-03 2019-07-02 Hand Held Products, Inc. Wearable metrological apparatus
US9940721B2 (en) 2016-06-10 2018-04-10 Hand Held Products, Inc. Scene change detection in a dimensioner
US10163216B2 (en) 2016-06-15 2018-12-25 Hand Held Products, Inc. Automatic mode switching in a volume dimensioner
US10192311B2 (en) * 2016-08-05 2019-01-29 Qualcomm Incorporated Methods and apparatus for codeword boundary detection for generating depth maps
EP3309616A1 (en) * 2016-10-14 2018-04-18 ASML Netherlands B.V. Method of inspecting a substrate, metrology apparatus, and lithographic system
US10909708B2 (en) 2016-12-09 2021-02-02 Hand Held Products, Inc. Calibrating a dimensioner using ratios of measurable parameters of optic ally-perceptible geometric elements
JP6702171B2 (ja) * 2016-12-22 2020-05-27 カシオ計算機株式会社 投影制御装置、投影制御方法及びプログラム
JP6673266B2 (ja) * 2017-03-08 2020-03-25 オムロン株式会社 相互反射検出装置、相互反射検出方法、およびプログラム
US11047672B2 (en) 2017-03-28 2021-06-29 Hand Held Products, Inc. System for optically dimensioning
US10262428B2 (en) * 2017-04-07 2019-04-16 Massachusetts Institute Of Technology System and method for adaptive range 3D scanning
JP7029654B2 (ja) * 2017-07-12 2022-03-04 パナソニックIpマネジメント株式会社 投影撮像システム、計測装置および投影撮像方法
US10733748B2 (en) 2017-07-24 2020-08-04 Hand Held Products, Inc. Dual-pattern optical 3D dimensioning
US10584962B2 (en) 2018-05-01 2020-03-10 Hand Held Products, Inc System and method for validating physical-item security
JP7178803B2 (ja) 2018-06-04 2022-11-28 キヤノン株式会社 情報処理装置、情報処理装置の制御方法およびプログラム
WO2020127828A1 (de) * 2018-12-21 2020-06-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung, vermessungssystem und verfahren zur erfassung einer zumindest teilweise spiegelnden oberfläche unter verwendung zweier spiegelungsmuster
WO2020262389A1 (ja) * 2019-06-28 2020-12-30 キヤノン株式会社 計測装置、撮像装置、計測システム、制御方法及びプログラム
JP2021022807A (ja) * 2019-07-26 2021-02-18 セイコーエプソン株式会社 プロジェクターの制御方法、及び、プロジェクター
US11639846B2 (en) 2019-09-27 2023-05-02 Honeywell International Inc. Dual-pattern optical 3D dimensioning
JP2021076531A (ja) * 2019-11-12 2021-05-20 Juki株式会社 3次元計測装置及び3次元計測方法
CN113155053A (zh) * 2020-01-22 2021-07-23 株式会社三丰 三维几何形状测量装置和三维几何形状测量方法
WO2021258273A1 (zh) * 2020-06-23 2021-12-30 广东省航空航天装备技术研究所 基于三维成像的加工方法、装置、设备及存储介质
CN112414301B (zh) * 2020-10-22 2021-09-03 光华临港工程应用技术研发(上海)有限公司 一种用于线结构光三维测量的设备
CN112762860B (zh) * 2020-12-28 2022-03-15 电子科技大学 一种高帧率正弦条纹场投射模块
WO2022172227A1 (en) * 2021-02-13 2022-08-18 Gupta Arbind Measurement of position and orientation of an object
CN113256798B (zh) * 2021-06-04 2023-05-05 猫岐智能科技(上海)有限公司 光幕遮挡区域生成系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003409A (ja) * 2003-06-10 2005-01-06 Kokan Keisoku Kk 3次元曲面形状の測定装置及び測定方法
US20100225927A1 (en) * 2007-11-01 2010-09-09 Dimensional Photonics International, Inc. Optical fiber-based three-dimensional imaging system
JP2012103239A (ja) * 2010-10-12 2012-05-31 Canon Inc 三次元計測装置、三次元計測方法及びプログラム
JP2012132727A (ja) * 2010-12-20 2012-07-12 Canon Inc 三次元計測装置及び三次元計測方法
JP2013019890A (ja) * 2011-06-13 2013-01-31 Canon Inc 情報処理装置及び情報処理方法
JP2013120092A (ja) * 2011-12-06 2013-06-17 Canon Inc 情報処理装置、情報処理装置の制御方法、およびプログラム

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5848188A (en) * 1994-09-08 1998-12-08 Ckd Corporation Shape measure device
JP2002164066A (ja) 2000-11-22 2002-06-07 Mitsubishi Heavy Ind Ltd 積層型熱交換器
JP2005293075A (ja) 2004-03-31 2005-10-20 Brother Ind Ltd 3次元形状検出装置、3次元形状検出方法、3次元形状検出プログラム
JP4501587B2 (ja) 2004-08-18 2010-07-14 富士ゼロックス株式会社 3次元画像測定装置および方法
WO2006109308A1 (en) 2005-04-12 2006-10-19 Sharon Ehrlich Real-time imaging method and system using structured light
JP4917351B2 (ja) * 2006-05-16 2012-04-18 ローランドディー.ジー.株式会社 3次元形状測定装置におけるキャリブレーション方法
KR20080043047A (ko) 2006-11-13 2008-05-16 주식회사 고영테크놀러지 새도우 모아레를 이용한 3차원형상 측정장치
US8538166B2 (en) 2006-11-21 2013-09-17 Mantisvision Ltd. 3D geometric modeling and 3D video content creation
JP2008281399A (ja) 2007-05-09 2008-11-20 Konica Minolta Sensing Inc 三次元測定装置及び携帯型計測器
JP2009216650A (ja) * 2008-03-12 2009-09-24 Aisin Seiki Co Ltd 三次元形状測定装置
JP5486182B2 (ja) * 2008-12-05 2014-05-07 キヤノン株式会社 情報処理装置および情報処理方法
EP2459960B1 (en) * 2009-07-29 2019-11-13 Canon Kabushiki Kaisha Measuring apparatus, measuring method, and computer program
JP5698465B2 (ja) * 2010-04-22 2015-04-08 キヤノン株式会社 眼科装置、表示制御方法及びプログラム
JP5576726B2 (ja) * 2010-06-29 2014-08-20 キヤノン株式会社 三次元計測装置、三次元計測方法、及びプログラム
US20120141544A1 (en) * 2010-12-03 2012-06-07 Fuisz Richard C Solid Dosage Form That Promotes Reliable Oral, Esophageal and GI Transit
JP5815940B2 (ja) 2010-12-15 2015-11-17 キヤノン株式会社 距離計測装置、距離計測方法、およびプログラム
JP2012208005A (ja) * 2011-03-29 2012-10-25 Hiroshima Univ 計測装置、検査装置及び計測方法
JP5995408B2 (ja) * 2011-04-01 2016-09-21 キヤノン株式会社 情報処理装置、撮影システム、情報処理方法および情報処理をコンピュータに実行させるためのプログラム
US9482529B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
JP2012251893A (ja) 2011-06-03 2012-12-20 Seiko Epson Corp 形状計測装置、形状計測装置の制御方法、およびプログラム
JP6238521B2 (ja) * 2012-12-19 2017-11-29 キヤノン株式会社 3次元計測装置およびその制御方法
JP6104662B2 (ja) * 2013-03-25 2017-03-29 株式会社東芝 計測装置、方法及びプログラム
JP6101134B2 (ja) * 2013-04-01 2017-03-22 キヤノン株式会社 情報処理装置及び情報処理方法
CN103438832B (zh) * 2013-08-30 2016-01-20 解则晓 基于线结构光的三维影像测量方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003409A (ja) * 2003-06-10 2005-01-06 Kokan Keisoku Kk 3次元曲面形状の測定装置及び測定方法
US20100225927A1 (en) * 2007-11-01 2010-09-09 Dimensional Photonics International, Inc. Optical fiber-based three-dimensional imaging system
JP2012103239A (ja) * 2010-10-12 2012-05-31 Canon Inc 三次元計測装置、三次元計測方法及びプログラム
JP2012132727A (ja) * 2010-12-20 2012-07-12 Canon Inc 三次元計測装置及び三次元計測方法
JP2013019890A (ja) * 2011-06-13 2013-01-31 Canon Inc 情報処理装置及び情報処理方法
JP2013120092A (ja) * 2011-12-06 2013-06-17 Canon Inc 情報処理装置、情報処理装置の制御方法、およびプログラム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160102972A1 (en) * 2014-10-10 2016-04-14 Canon Kabushiki Kaisha Three-dimensional coordinate measuring apparatus and three-dimensional coordinate measuring method
US10240913B2 (en) * 2014-10-10 2019-03-26 Canon Kabushiki Kaisha Three-dimensional coordinate measuring apparatus and three-dimensional coordinate measuring method
JP2016224035A (ja) * 2015-06-01 2016-12-28 キヤノン株式会社 計測装置、システム、物品の製造方法、算出方法及びプログラム
JP2021060326A (ja) * 2019-10-09 2021-04-15 興和株式会社 表面検査装置

Also Published As

Publication number Publication date
GB2522551A (en) 2015-07-29
GB2522551B (en) 2018-06-27
US9557167B2 (en) 2017-01-31
JP6320051B2 (ja) 2018-05-09
DE102015000386A1 (de) 2015-07-23
CN104792277A (zh) 2015-07-22
DE102015000386B4 (de) 2018-06-07
CN104792277B (zh) 2018-04-10
GB201500627D0 (en) 2015-03-04
US20150204662A1 (en) 2015-07-23

Similar Documents

Publication Publication Date Title
JP6320051B2 (ja) 三次元形状計測装置、三次元形状計測方法
US9714826B2 (en) Measurement apparatus and method thereof
EP2909575B1 (en) Systems and methods for marking images for three-dimensional image generation
EP3594618B1 (en) Three-dimensional shape measurement device, three-dimensional shape measurement method, and program
US20120176380A1 (en) Forming 3d models using periodic illumination patterns
US10430962B2 (en) Three-dimensional shape measuring apparatus, three-dimensional shape measuring method, and storage medium that calculate a three-dimensional shape of an object by capturing images of the object from a plurality of directions
TW201520975A (zh) 產生場景深度圖之方法及裝置
CN110268222B (zh) 三维形状计测装置、三维形状计测方法及存储介质
WO2012096747A1 (en) Forming range maps using periodic illumination patterns
US20150271466A1 (en) Measuring device, measuring method, and computer program product
JP6418884B2 (ja) 三次元計測装置、三次元計測方法及びプログラム
US20160037121A1 (en) Stereo matching method and device for performing the method
JP2022092004A (ja) 計算装置、処理方法、プログラム、及び記憶媒体
US20210254968A1 (en) Method and System for Automatic Focusing for High-Resolution Structured Light 3D Imaging
JP2019215811A (ja) 投影システム、画像処理装置および投影方法
US20190325593A1 (en) Image processing apparatus, system, method of manufacturing article, image processing method, and non-transitory computer-readable storage medium
JP2020004085A (ja) 画像処理装置、画像処理方法及びプログラム
JP6425406B2 (ja) 情報処理装置、情報処理方法、プログラム
JP4382430B2 (ja) 頭部の三次元形状計測システム
WO2022254854A1 (ja) 3次元計測装置
JP6590489B2 (ja) 情報処理装置および方法
KR102070540B1 (ko) 그레이 패턴 및 위상 시프트 패턴을 이용한 3차원 스캐닝 방법 및 그 시스템
JP2018077168A (ja) シミュレーション装置、シミュレーション方法およびシミュレーションプログラム
JP2022022326A (ja) 3次元形状計測装置、3次元形状計測方法、プログラム及び記録媒体
US20200088508A1 (en) Three-dimensional information generating device and method capable of self-calibration

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180403

R151 Written notification of patent or utility model registration

Ref document number: 6320051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151