JP2015132298A - Toroidal type stepless transmission - Google Patents

Toroidal type stepless transmission Download PDF

Info

Publication number
JP2015132298A
JP2015132298A JP2014003241A JP2014003241A JP2015132298A JP 2015132298 A JP2015132298 A JP 2015132298A JP 2014003241 A JP2014003241 A JP 2014003241A JP 2014003241 A JP2014003241 A JP 2014003241A JP 2015132298 A JP2015132298 A JP 2015132298A
Authority
JP
Japan
Prior art keywords
radial
roller
shafts
power
roller support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014003241A
Other languages
Japanese (ja)
Other versions
JP6221754B2 (en
Inventor
祥子 野地
Sachiko Noji
祥子 野地
寛孝 岸田
Hirotaka Kishida
寛孝 岸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2014003241A priority Critical patent/JP6221754B2/en
Publication of JP2015132298A publication Critical patent/JP2015132298A/en
Application granted granted Critical
Publication of JP6221754B2 publication Critical patent/JP6221754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To realize a structure capable of sufficiently positioning the radial direction of a retainer 24b constituting a radial needle bearing 20b for supporting each power roller 6, and suppressing the increase in a rotational resistance of each retainer 24b or the temperature rise of each radial needle bearing 20b at the time of transmitting a high torque.SOLUTION: The positional regulations on the radial directions of these individual retainers 24b are made by the inner ring guide to make the individual inner circumferences and the outer circumferences of the individual roller support shafts 12 proximately opposed. On the other hand, the differences in the non-transmission state between the internal diameter r of the center holes 19 of the individual power rollers 6 and the external diameter d of the individual retainers 24 are made larger than the maximum of the deformation quantity of the center hole 19 of those individual power rollers 6 on the basis of the power transmission.

Description

この発明は、例えば車両(自動車)用の自動変速機、建設機械(建機)用の自動変速機、航空機(固定翼機、回転翼機、飛行船等)等で使用されるジェネレータ(発電機)用の自動変速機、ポンプ等の各種産業機械の運転速度を調節する為の自動変速機として利用する、トロイダル型無段変速機の改良に関する。   The present invention relates to a generator (generator) used in, for example, an automatic transmission for a vehicle (automobile), an automatic transmission for a construction machine (construction machine), an aircraft (a fixed wing aircraft, a rotary wing aircraft, an airship, etc.), etc. The present invention relates to an improvement of a toroidal continuously variable transmission that is used as an automatic transmission for adjusting the operating speed of various industrial machines such as automatic transmissions and pumps.

自動車用変速装置としてハーフトロイダル型のトロイダル型無段変速機を使用する事が、特許文献1〜4等の多くの刊行物に記載されると共に一部で実施されていて周知である。又、トロイダル型無段変速機と遊星歯車機構とを組み合わせて変速比の調整幅を広くする構造も、特許文献5等、やはり多くの刊行物に記載されて、従来から広く知られている。図3〜4は、これら各特許文献に記載されて従来から広く知られているトロイダル型無段変速機の第1例を示している。この従来構造の第1例の場合、入力回転軸1の両端寄り部分の周囲に1対の入力ディスク2、2を、それぞれがトロイド曲面である内側面同士を互いに対向させた状態で、前記入力回転軸1と同期した回転を可能に支持している。又、この入力回転軸1の中間部周囲に出力筒3を、この入力回転軸1に対する回転を可能に支持している。又、この出力筒3の外周面には、軸方向中央部に出力歯車4を固設すると共に、軸方向両端部に1対の出力ディスク5、5を、スプライン係合により、前記出力筒3と同期した回転を可能に支持している。又、この状態で、それぞれがトロイド曲面である、前記両出力ディスク5、5の内側面を、前記両入力ディスク2、2の内側面に対向させている。   The use of a half-toroidal toroidal continuously variable transmission as a transmission for an automobile is described in many publications such as Patent Documents 1 to 4 and partially implemented, and is well known. Further, a structure in which a toroidal type continuously variable transmission and a planetary gear mechanism are combined to widen the adjustment range of the gear ratio is also described in many publications such as Patent Document 5 and has been widely known. 3 to 4 show a first example of a toroidal type continuously variable transmission described in each of these patent documents and widely known in the past. In the case of the first example of this conventional structure, a pair of input disks 2 and 2 are disposed around the portions near both ends of the input rotation shaft 1 in a state where the inner surfaces, each of which is a toroidal curved surface, face each other. The rotation synchronized with the rotating shaft 1 is supported. An output tube 3 is supported around the intermediate portion of the input rotary shaft 1 so as to be rotatable with respect to the input rotary shaft 1. Further, on the outer peripheral surface of the output cylinder 3, an output gear 4 is fixed at the center in the axial direction, and a pair of output disks 5 and 5 are connected to both ends in the axial direction by spline engagement. Supports the rotation synchronized with. In this state, the inner surfaces of the output disks 5 and 5, each of which is a toroidal curved surface, are opposed to the inner surfaces of the input disks 2 and 2.

又、前記両入力ディスク2、2と前記両出力ディスク5、5との間に、それぞれの周面を部分球状凸面とした複数個のパワーローラ6、6を挟持している。これら各パワーローラ6、6は、それぞれが特許請求の範囲に記載した支持部材であるトラニオン7、7に回転自在に支持されており、これら各トラニオン7、7は、それぞれ前記各ディスク2、5の中心軸に対し捩れの位置にある傾転軸8、8を中心とする揺動変位自在に支持されている。即ち、これら各トラニオン7、7は、それぞれの軸方向両端部に互いに同心に設けられた1対の傾転軸8、8と、これら各傾転軸8、8同士の間に存在する支持梁部9、9とを備えており、これら各傾転軸8、8が、支持板10、10に対し、ラジアル軸受11、11を介して枢支されている。   Further, a plurality of power rollers 6 and 6 each having a partially spherical convex surface are sandwiched between the input disks 2 and 2 and the output disks 5 and 5. Each of these power rollers 6 and 6 is rotatably supported by trunnions 7 and 7 which are support members described in the claims. These trunnions 7 and 7 are respectively connected to the respective disks 2 and 5. Is supported so as to be swingable and displaceable about the tilting shafts 8 and 8 that are in a twisted position with respect to the central axis. That is, each of the trunnions 7 and 7 includes a pair of tilting shafts 8 and 8 provided concentrically with each other at both axial ends, and a supporting beam existing between the tilting shafts 8 and 8. These tilting shafts 8 and 8 are pivotally supported with respect to the support plates 10 and 10 via radial bearings 11 and 11, respectively.

又、前記各パワーローラ6、6は、前記各トラニオン7、7を構成する支持梁部9、9の内側面に、基半部と先半部とが互いに偏心したローラ支持軸12、12と、複数の転がり軸受とを介して、これら各ローラ支持軸12、12の先半部回りの回転、及び、これら各ローラ支持軸12、12の基半部を中心とする若干の揺動変位可能に支持されている。   Each of the power rollers 6 and 6 has roller support shafts 12 and 12 whose base half and tip half are eccentric from each other on the inner side surfaces of the support beam portions 9 and 9 constituting the trunnions 7 and 7, respectively. The roller support shafts 12 and 12 can be rotated about the front half of the roller support shafts 12 through a plurality of rolling bearings, and can be slightly swung about the base half of the roller support shafts 12 and 12. It is supported by.

先ず、前記各パワーローラ6、6の外側面と、前記各トラニオン7、7を構成する支持梁部9、9の内側面との間には、スラスト玉軸受13、13と、スラストニードル軸受14、14とを、前記各パワーローラ6、6の側から順番に設けている。このうちのスラスト玉軸受13、13は、これら各パワーローラ6、6に加わるスラスト方向の荷重を支承しつつ、これら各パワーローラ6、6の回転を許容する。前記各スラスト玉軸受13、13は、これら各パワーローラ6、6の外側面に形成された内輪軌道15と、外輪16の内側面に形成された外輪軌道17との間に複数個の玉18、18を、転動可能に設けて成る。又、前記各スラストニードル軸受14、14は、前記各パワーローラ6、6から前記各スラスト玉軸受13、13を構成する外輪16、16に加わるスラスト荷重を支承しつつ、これら各外輪16、16及び前記各ローラ支持軸12、12の先半部が、これら各ローラ支持軸12、12の基半部を中心に揺動する事を許容するものである。   First, thrust ball bearings 13 and 13 and thrust needle bearings 14 are provided between the outer surfaces of the power rollers 6 and 6 and the inner surfaces of the support beam portions 9 and 9 constituting the trunnions 7 and 7. , 14 are provided in order from the power rollers 6 and 6 side. Of these, the thrust ball bearings 13 and 13 support the rotation of the power rollers 6 and 6 while supporting the load in the thrust direction applied to the power rollers 6 and 6. Each thrust ball bearing 13, 13 has a plurality of balls 18 between an inner ring raceway 15 formed on the outer side surface of each of the power rollers 6, 6 and an outer ring raceway 17 formed on the inner side surface of the outer ring 16. , 18 are provided to be able to roll. The thrust needle roller bearings 14, 14 support thrust loads applied to the outer rings 16, 16 constituting the thrust ball bearings 13, 13 from the power rollers 6, 6. In addition, the front half portions of the roller support shafts 12 and 12 are allowed to swing around the base half portions of the roller support shafts 12 and 12.

更に、これら各ローラ支持軸12、12の先端部外周面と前記各パワーローラ6、6の中心孔19、19の内周面との間に、それぞれラジアルニードル軸受20、20を設けている。これら各ラジアルニードル軸受20、20を構成する為に、前記各ローラ支持軸12、12の先端部外周面を内輪軌道21とし、前記各中心孔19、19の内周面を外輪軌道22としている。そして、これら内輪軌道21と外輪軌道22との間にそれぞれ複数本ずつのニードル23、23を、それぞれ保持器24に保持した状態で、転動自在に設けている。   Further, radial needle bearings 20 and 20 are provided between the outer peripheral surfaces of the tip portions of the roller support shafts 12 and 12 and the inner peripheral surfaces of the center holes 19 and 19 of the power rollers 6 and 6, respectively. In order to configure each of these radial needle bearings 20, 20, the outer peripheral surface of the tip of each of the roller support shafts 12, 12 is an inner ring raceway 21, and the inner peripheral surface of each of the center holes 19, 19 is an outer ring raceway 22. . A plurality of needles 23, 23 are respectively provided between the inner ring raceway 21 and the outer ring raceway 22 so as to be freely rollable while being held by the cage 24.

上述の様なトロイダル型無段変速機の運転時には、駆動軸25により一方(図3の左方)の入力ディスク2を、押圧装置26を介して回転駆動する。この結果、前記入力回転軸1の両端部に支持された1対の入力ディスク2、2が、互いに近づく方向に押圧されつつ同期して回転する。そして、この回転が、前記各パワーローラ6、6を介して前記両出力ディスク5、5に伝わり、前記出力歯車4から取り出される。前記入力回転軸1とこの出力歯車4との間の変速比を変える場合は、油圧式のアクチュエータ27、27により前記
各トラニオン7、7を前記各傾転軸8、8の軸方向に変位させる。この結果、前記各パワーローラ6、6の周面と前記各ディスク2、5の内側面との転がり接触部(トラクション部)に作用する、接線方向の力の向きが変化する(転がり接触部にサイドスリップが発生する)。そして、この力の向きの変化に伴って前記各トラニオン7、7が、自身の傾転軸8、8を中心に揺動し、前記各パワーローラ6、6の周面と前記各ディスク2、5の内側面との接触位置が変化する。これら各パワーローラ6、6の周面を、前記両入力ディスク2、2の内側面の径方向外寄り部分と、前記両出力ディスク5、5の内側面の径方向内寄り部分とに転がり接触させれば、前記入力回転軸1と前記出力歯車4との間の変速比が増速側になる。これに対して、前記各パワーローラ6、6の周面を、前記両入力ディスク2、2の内側面の径方向内寄り部分と、前記両出力ディスク5、5の内側面の径方向外寄り部分とに転がり接触させれば、前記入力回転軸1と前記出力歯車4との間の変速比が減速側になる。
During operation of the toroidal type continuously variable transmission as described above, one input disk 2 (left side in FIG. 3) is rotationally driven by the drive shaft 25 via the pressing device 26. As a result, the pair of input disks 2 and 2 supported at both ends of the input rotating shaft 1 rotate synchronously while being pressed in a direction approaching each other. The rotation is transmitted to the output disks 5 and 5 through the power rollers 6 and 6 and is taken out from the output gear 4. When changing the gear ratio between the input rotary shaft 1 and the output gear 4, the trunnions 7, 7 are displaced in the axial direction of the tilt shafts 8, 8 by hydraulic actuators 27, 27. . As a result, the direction of the tangential force acting on the rolling contact portion (traction portion) between the peripheral surface of each of the power rollers 6 and 6 and the inner surface of each of the disks 2 and 5 changes (in the rolling contact portion). Side slip occurs). As the direction of the force changes, the trunnions 7 and 7 swing around their tilting shafts 8 and 8, and the peripheral surfaces of the power rollers 6 and 6 and the disks 2 and 8. The contact position with the inner surface of 5 changes. The circumferential surfaces of the power rollers 6 and 6 are in rolling contact with the radially outer portions of the inner surfaces of the input disks 2 and 2 and the radially inner portions of the inner surfaces of the output disks 5 and 5. By doing so, the gear ratio between the input rotary shaft 1 and the output gear 4 is increased. On the other hand, the peripheral surfaces of the power rollers 6 and 6 are arranged radially inwardly on the inner side surfaces of the input disks 2 and 2 and radially outwardly on the inner side surfaces of the output disks 5 and 5. If it is brought into rolling contact with the portion, the gear ratio between the input rotary shaft 1 and the output gear 4 becomes the deceleration side.

上述の様なトロイダル型無段変速機の運転時には、動力の伝達に供される各部材、即ち、前記入力、出力各ディスク2、5と前記各パワーローラ6、6とが、前記押圧装置26が発生する押圧力に基づいて弾性変形する。そして、この弾性変形に伴って、前記入力、出力各ディスク2、5が軸方向に変位する。又、前記押圧装置26が発生する押圧力は、前記トロイダル型無段変速機により伝達するトルクが大きくなる程大きくなり、それに伴って前記各部材2、5、6の弾性変形量も多くなる。従って、前記トルクの変動に拘らず、前記入力、出力各ディスク2、5の内側面と前記各パワーローラ6、6の周面との接触状態を適正に維持する為に、前記各トラニオン7、7に対してこれら各パワーローラ6、6を、前記各ディスク2、5の軸方向に変位させる機構が必要になる。上述した従来構造の第1例の場合には、前記各パワーローラ6、6を支持した前記各ローラ支持軸12、12の先半部を、同じく基半部を中心として揺動変位させる事により、前記各パワーローラ6、6を前記軸方向に変位させる様にしている。   When the toroidal type continuously variable transmission as described above is operated, the members used for power transmission, that is, the input and output disks 2 and 5 and the power rollers 6 and 6 are connected to the pressing device 26. It is elastically deformed based on the pressing force generated. In accordance with this elastic deformation, the input and output disks 2 and 5 are displaced in the axial direction. Further, the pressing force generated by the pressing device 26 increases as the torque transmitted by the toroidal-type continuously variable transmission increases, and the amount of elastic deformation of the members 2, 5, 6 increases accordingly. Accordingly, in order to properly maintain the contact state between the inner surface of each of the input and output disks 2 and 5 and the peripheral surface of each of the power rollers 6 and 6 regardless of the fluctuation of the torque, the trunnions 7 and 7 7, a mechanism for displacing the power rollers 6 and 6 in the axial direction of the disks 2 and 5 is required. In the case of the first example of the conventional structure described above, the first half of each of the roller support shafts 12 and 12 that support each of the power rollers 6 and 6 is similarly oscillated and displaced about the base half. The power rollers 6, 6 are displaced in the axial direction.

又、部品製作、部品管理、組立作業の容易化を図る為の技術として前記特許文献3には、図5〜10に示す様な構造が記載されている。この従来構造の第2例を構成するトラニオン7aは、両端部に互いに同心に設けられた1対の傾転軸8a、8bと、これら両傾転軸8a、8b同士の間に存在し、少なくとも入力、出力各ディスク2、5(図3参照)の径方向(図6、9、10の上下方向)に関する内側(図6、9、10の上側)の側面を円筒状凸面28とした、支持梁部29とを備える。前記両傾転軸8a、8bは、それぞれラジアル軸受11a、11aを介して、支持板10、10(図4参照)に、揺動及び軸方向の変位を可能に支持する。   Further, as a technique for facilitating parts production, parts management, and assembling work, Patent Document 3 describes a structure as shown in FIGS. The trunnion 7a constituting the second example of this conventional structure exists between a pair of tilting shafts 8a, 8b concentrically provided at both ends, and between these tilting shafts 8a, 8b, and at least Support is provided with a cylindrical convex surface 28 on the inner side (upper side in FIGS. 6, 9, 10) of the input and output disks 2, 5 (see FIG. 3) in the radial direction (the vertical direction in FIGS. And a beam portion 29. The two tilting shafts 8a and 8b are supported on the support plates 10 and 10 (see FIG. 4) via radial bearings 11a and 11a, respectively, so as to be swingable and axially displaceable.

又、前記円筒状凸面28の中心軸イは、図6、9に示す様に、前記両傾転軸8a、8bの中心軸ロと平行で、これら両傾転軸8a、8bの中心軸ロよりも、前記各ディスク2、5の径方向に関して外側(図6、9、10の下側)に存在する。又、前記支持梁部29とパワーローラ6aの外側面との間に設けるスラスト玉軸受13aを構成する外輪16aの外側面に、部分円筒面状の凹部30を、この外側面を径方向に横切る状態で設けている。そして、この凹部30と、前記支持梁部29の円筒状凸面28とを係合させ、前記トラニオン7aに対して前記外輪16aを、前記各ディスク2、5の軸方向に関する揺動変位を可能に支持している。   Further, as shown in FIGS. 6 and 9, the center axis A of the cylindrical convex surface 28 is parallel to the center axis B of the both tilt axes 8a and 8b, and the center axis B of these tilt axes 8a and 8b. Rather than the outer side (the lower side of FIGS. 6, 9, 10) in the radial direction of the disks 2, 5. Further, a concave portion 30 having a partially cylindrical surface is radially crossed on the outer surface of the outer ring 16a constituting the thrust ball bearing 13a provided between the support beam portion 29 and the outer surface of the power roller 6a. It is provided in the state. And this recessed part 30 and the cylindrical convex surface 28 of the said support beam part 29 are engaged, The rocking | fluctuation displacement regarding the axial direction of each said disk 2 and 5 is enabled for the said outer ring 16a with respect to the said trunnion 7a. I support it.

又、スラスト玉軸受13aを構成する外輪16aの内側面中央部にローラ支持軸12aを、この外輪16aと一体に固設して、前記パワーローラ6aをこのローラ支持軸12aの周囲に、ラジアルニードル軸受20aを介して、回転自在に支持している。更に、前記トラニオン7aの内側面のうち、前記支持梁部29の両端部と1対の傾転軸8a、8bとの連続部に、互いに対向する1対の段差面31、31を設けている。そして、これら両段差面31、31と、前記スラスト玉軸受13aを構成する外輪16aの外周面とを、当接若しくは近接対向させて、前記パワーローラ6aからこの外輪16aに加わるトラクション力を、何れかの段差面31、31で支承可能としている。   Further, a roller support shaft 12a is fixed integrally with the outer ring 16a at the center of the inner surface of the outer ring 16a constituting the thrust ball bearing 13a, and the power roller 6a is disposed around the roller support shaft 12a with a radial needle. The bearing 20a is rotatably supported. Furthermore, a pair of stepped surfaces 31 and 31 facing each other are provided on the inner surface of the trunnion 7a at a continuous portion between both ends of the support beam portion 29 and the pair of tilting shafts 8a and 8b. . Then, these stepped surfaces 31, 31 and the outer peripheral surface of the outer ring 16a constituting the thrust ball bearing 13a are brought into contact with or in close proximity to each other, and the traction force applied from the power roller 6a to the outer ring 16a is It can be supported by the stepped surfaces 31, 31.

上述の様に構成する従来構造の第2例のトロイダル型無段変速機によれば、前記パワーローラ6aを前記各ディスク2、5の軸方向に変位させて、構成各部材の弾性変形量の変化に拘らず、このパワーローラ6aの周面と前記各ディスク2、5の内側面との接触状態を適正に維持できる構造を、簡単で低コストに構成できる。
即ち、トロイダル型無段変速機の運転時に、入力、出力各ディスク2、5、各パワーローラ6a等の弾性変形に基づき、これら各パワーローラ6aをこれら各ディスク2、5の軸方向に変位させる必要が生じると、これら各パワーローラ6aを回転自在に支持している前記スラスト玉軸受13aの外輪16aが、外側面に設けた部分円筒面状の凹部30と支持梁部29の円筒状凸面28との当接面を滑らせつつ、この円筒状凸面28の中心軸イを中心として揺動変位する。この揺動変位に基づき、前記各パワーローラ6aの周面のうちで、前記各ディスク2、5の軸方向片側面と転がり接触する部分が、これら各ディスク2、5の軸方向に変位し、前記接触状態を適正に維持する。
According to the toroidal type continuously variable transmission of the second example of the conventional structure configured as described above, the power roller 6a is displaced in the axial direction of each of the disks 2 and 5, and the amount of elastic deformation of each constituent member is increased. Regardless of the change, a structure capable of appropriately maintaining the contact state between the peripheral surface of the power roller 6a and the inner surfaces of the disks 2 and 5 can be configured simply and at low cost.
That is, during operation of the toroidal continuously variable transmission, the power rollers 6a are displaced in the axial direction of the disks 2 and 5 based on elastic deformation of the input and output disks 2 and 5 and the power rollers 6a. When necessary, the outer ring 16a of the thrust ball bearing 13a that rotatably supports each of the power rollers 6a is provided with a concave portion 30 having a partial cylindrical surface provided on the outer surface and a cylindrical convex surface 28 of the support beam portion 29. The cylindrical convex surface 28 is oscillated and displaced about the central axis A while sliding the contact surface. Based on this oscillating displacement, a portion of the peripheral surface of each power roller 6a that is in rolling contact with one axial side surface of each disk 2, 5 is displaced in the axial direction of each disk 2, 5; The contact state is properly maintained.

前述した通り、前記円筒状凸面28の中心軸イは、変速動作の際に各トラニオン7aの揺動中心となる傾転軸8a、8bの中心軸ロよりも、前記各ディスク2、5の径方向に関して外側に存在する。従って、前記円筒状凸面28の中心軸イを中心とする揺動変位の半径は、前記変速動作の際の揺動半径よりも大きく、前記両入力ディスク2、2と前記両出力ディスク5、5との間の変速比の変動に及ぼす影響は少ない(無視できるか、容易に修正できる範囲に留まる)。   As described above, the central axis A of the cylindrical convex surface 28 is larger in diameter than the central axes B of the tilting shafts 8a and 8b, which are the oscillation centers of the trunnions 7a during the shifting operation. Exists with respect to the direction. Therefore, the radius of the rocking displacement about the central axis A of the cylindrical convex surface 28 is larger than the rocking radius at the time of the speed change operation, and both the input disks 2 and 2 and the both output disks 5, 5 Has little effect on the change in the transmission ratio between (and can be neglected or remain within an easily modifiable range).

図3〜4に示した第1例にしても、図5〜10に示した第2例にしても、従来構造の場合には、前記各ローラ支持軸12、12aの周囲に前記各パワーローラ6、6aを回転自在に支持する為の、前記各ラジアルニードル軸受20、20aの構造に起因して、次の様な問題を生じる可能性がある。即ち、これら各ラジアルニードル軸受20、20aは、前記各パワーローラ6、6aが回転する事に対する抵抗(動トルク)を低く抑える為に、それぞれ複数本ずつのニードル23、23を保持器24、24aにより転動自在に保持して、隣り合うニードル23、23の転動面同士の擦れ合いを防止している。   Whether the first example shown in FIGS. 3 to 4 or the second example shown in FIGS. 5 to 10, the power rollers around the roller support shafts 12 and 12 a are used in the conventional structure. Due to the structure of each of the radial needle bearings 20 and 20a for rotatably supporting the 6 and 6a, the following problems may occur. That is, each of the radial needle bearings 20 and 20a is provided with a plurality of needles 23 and 23 in the cages 24 and 24a in order to keep resistance (dynamic torque) against the rotation of the power rollers 6 and 6a low. Therefore, the rolling surfaces of the adjacent needles 23 and 23 are prevented from rubbing with each other.

この様な構造を有する前記各ニードル軸受20、20aの運転に伴う振動及び騒音を抑える為には、前記各保持器24、24aの径方向に関する位置決めを図り、前記各パワーローラ6、6aが高速で回転した場合にも、前記各保持器24、24aが径方向に大きく変位しない様にする必要がある。この為に従来は、図11に示す様に、保持器24の外径Dをパワーローラ6の中心孔19の内径Rよりも僅かに小さくし、この保持器24の外周面と中心孔19の内周面とを、微小隙間32を介して近接対向させる、所謂外輪案内の構造により、前記保持器24の径方向に関する位置決めを図っていた。   In order to suppress vibration and noise associated with the operation of the needle bearings 20 and 20a having such a structure, positioning of the retainers 24 and 24a in the radial direction is attempted, and the power rollers 6 and 6a are operated at high speed. It is necessary to prevent the cages 24 and 24a from being greatly displaced in the radial direction even when they are rotated. For this reason, conventionally, as shown in FIG. 11, the outer diameter D of the retainer 24 is slightly smaller than the inner diameter R of the center hole 19 of the power roller 6. Positioning in the radial direction of the retainer 24 has been achieved by a so-called outer ring guide structure in which the inner peripheral surface is closely opposed to each other through a minute gap 32.

トロイダル型無段変速機の運転時に於ける、前記パワーローラ6の弾性変形量や温度上昇量が限られていれば(小さければ)、上述の様な外輪案内の構造で前記保持器24の径方向の位置決めを図っても、特に問題を生じる事はない。ところが、トロイダル型無段変速機の運転時に前記パワーローラ6は、押圧装置26(図3参照)が発生する大きなスラスト荷重に基づき、図12の(A)に示した停止状態から、同図の(B)に誇張して示した運転状態の様に、軸方向から見た形状が楕円形となる方向に弾性変形する。そして、この様な弾性変形に基づいて、前記保持器24が振れ回ったり、この保持器24の外周面と前記中心孔19の内周面とが強く擦れ合う(衝突する)可能性がある。この様な振れ回りや擦れ合いが発生すると、前記保持器24の回転抵抗、延いては、前記パワーローラ6の動トルクが著しく増大する。この結果、トロイダル型無段変速機の伝達効率が低下するだけでなく、著しい場合には焼き付き等の重大な故障の原因となる。前記振れ回りや擦れ合いを防止する為に、前記保持器24の外径Dと前記中心孔19の内径Rとの差(R−D)を大きくして、トロイダル型無段変速機が大きなトルクを伝達し、前記パワーローラ6が最も大きく弾性変形した状態でも、前記保持器24の外周面と前記中心孔19の内周面とが、全周に亙って隙間を介して対向する様にする事が考えられる。但し、この様な構造を採用すると、前記保持器24の径方向に関する位置決めが必ずしも十分に行われず、トロイダル型無段変速機の運転に伴って前記保持器24が振動し易くなる。   If the elastic deformation amount and temperature rise amount of the power roller 6 during operation of the toroidal type continuously variable transmission are limited (if they are small), the diameter of the cage 24 can be increased with the outer ring guide structure as described above. There is no particular problem with positioning in the direction. However, during operation of the toroidal-type continuously variable transmission, the power roller 6 starts from the stop state shown in FIG. 12A based on the large thrust load generated by the pressing device 26 (see FIG. 3). Like the driving state exaggerated in (B), the shape seen from the axial direction is elastically deformed in an elliptical direction. Then, based on such elastic deformation, there is a possibility that the retainer 24 swings around, or the outer peripheral surface of the retainer 24 and the inner peripheral surface of the center hole 19 are strongly rubbed (collised). When such whirling or rubbing occurs, the rotational resistance of the cage 24 and, consequently, the dynamic torque of the power roller 6 increases significantly. As a result, not only the transmission efficiency of the toroidal-type continuously variable transmission is lowered, but also a serious failure such as seizure occurs in a remarkable case. In order to prevent the swirling and rubbing, the difference between the outer diameter D of the cage 24 and the inner diameter R of the center hole 19 is increased (RD), so that the toroidal continuously variable transmission has a large torque. Even when the power roller 6 is most elastically deformed, the outer peripheral surface of the retainer 24 and the inner peripheral surface of the central hole 19 are opposed to each other with a gap over the entire periphery. It is possible to do. However, when such a structure is adopted, the radial positioning of the cage 24 is not necessarily performed sufficiently, and the cage 24 is likely to vibrate with the operation of the toroidal continuously variable transmission.

又、前記トロイダル型無段変速機の運転時には、前記パワーローラ6の周面と各ディスク2、5(図3参照)の内側面との転がり接触部(トラクション部)でのトルク伝達に伴って前記パワーローラ6の温度(表面温度)が上昇する。即ち、このパワーローラ6の周面と前記各ディスク2、5の内側面とは、1μm程度の微小隙間を介して近接対向し、この微小隙間にトラクションオイルの薄膜を介し転がり接触させる事で、前記トラクション部としている。前記トロイダル型無段変速機の運転時には、このトラクション部に存在するトラクションオイルの薄膜に発生する剪断力に基づき、前記パワーローラ6の前記各ディスク2、5の軸方向側面との間で大きなトルクを伝達する。この様なトロイダル型無段変速機の運転時に前記各ディスク2、5の回転に伴って前記各トラクション部では、不可避的なスピン滑りが発生し、接触楕円の方向が変化する。この為、前記トロイダル型無段変速機の運転時に前記トラクション部の発熱量が相当に多くなり、前記パワーローラ6の温度上昇も著しくなる。このパワーローラ6の温度上昇に伴い、このパワーローラ6の中心孔19の内周面である外輪軌道22の温度が上昇する。そして、この外輪軌道22の温度が上昇すると、この外輪軌道22と、ローラ支持軸12の外周面である内輪軌道21との間に設けたラジアルニードル軸受20の転がり疲れ寿命を確保し難くなり、前記トロイダル型無段変速機の耐久性確保の面から不利になる。前記外輪軌道22の温度上昇は、前記パワーローラ6の中心孔19に、クーラント(冷却液)として機能するトラクションオイルを流通させる事により、或る程度抑えられる。但し、前記保持器24の径方向位置決めを、図11に示す様な、この保持器24の外周面と前記外輪軌道22とを、微小隙間32を介して汽船就対向させる外輪案内により行った場合、前記中心孔19のうち、前記保持器24の外径側を通過するトラクションオイルの量が、同じく内径側を通過するトラクションオイルの量よりも少なくなり、前記外輪軌道22の冷却を十分に行えない可能性がある。   During operation of the toroidal continuously variable transmission, torque is transmitted at the rolling contact portion (traction portion) between the peripheral surface of the power roller 6 and the inner surface of each of the disks 2 and 5 (see FIG. 3). The temperature (surface temperature) of the power roller 6 increases. That is, the peripheral surface of the power roller 6 and the inner surface of each of the disks 2 and 5 are closely opposed to each other through a minute gap of about 1 μm, and the minute gap is brought into rolling contact with a thin film of traction oil. The traction unit. When the toroidal continuously variable transmission is operated, a large torque is generated between the power rollers 6 and the axial side surfaces of the disks 2 and 5 based on the shearing force generated in the thin film of traction oil existing in the traction section. To communicate. During operation of such a toroidal-type continuously variable transmission, inevitable spin slip occurs in each traction portion as the disks 2 and 5 rotate, and the direction of the contact ellipse changes. For this reason, during the operation of the toroidal type continuously variable transmission, the amount of heat generated in the traction section is considerably increased, and the temperature of the power roller 6 is also significantly increased. As the temperature of the power roller 6 rises, the temperature of the outer ring raceway 22 that is the inner peripheral surface of the center hole 19 of the power roller 6 rises. When the temperature of the outer ring raceway 22 rises, it becomes difficult to ensure the rolling fatigue life of the radial needle bearing 20 provided between the outer ring raceway 22 and the inner ring raceway 21 that is the outer peripheral surface of the roller support shaft 12. This is disadvantageous in terms of ensuring the durability of the toroidal continuously variable transmission. The temperature rise of the outer ring raceway 22 can be suppressed to some extent by circulating traction oil functioning as a coolant (coolant) through the center hole 19 of the power roller 6. However, in the case where the radial positioning of the cage 24 is performed by an outer ring guide that causes the outer circumferential surface of the cage 24 and the outer ring raceway 22 to face each other through a small gap 32 as shown in FIG. In the center hole 19, the amount of traction oil passing through the outer diameter side of the cage 24 is smaller than the amount of traction oil passing through the inner diameter side, and the outer ring raceway 22 can be sufficiently cooled. There is no possibility.

特開2003−214516号公報JP 2003-214516 A 特開2007−315595号公報JP 2007-315595 A 特開2008−25821号公報JP 2008-25821 A 特開2008−275088号公報JP 2008-275088 A 特開2004−169719号公報JP 2004-169719 A

本発明は、上述の様な事情に鑑みて、各パワーローラを支持する為のラジアルニードル軸受を構成する保持器の径方向に関する位置決めを十分に図れ、しかも、大きなトルクを伝達する際にもこの保持器の回転抵抗の増大を抑えられ、且つ、前記各パワーローラの内周面である、前記各ラジアルニードル軸受の外輪軌道の温度上昇を抑えてトロイダル型無段変速機の耐久性を確保し易い構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention can sufficiently position the radial direction of the cage constituting the radial needle bearing for supporting each power roller, and also when transmitting a large torque. The durability of the toroidal continuously variable transmission can be ensured by suppressing an increase in the temperature of the outer ring raceway of each radial needle bearing, which is the inner peripheral surface of each power roller, while suppressing an increase in the rotational resistance of the cage. It was invented to realize an easy structure.

本発明のトロイダル型無段変速機は、少なくとも1対のディスクと、複数の支持部材と、それぞれがこれら各支持部材と同数のローラ支持軸及びパワーローラと、同じく同数組のラジアルニードル軸受及びスラスト転がり軸受と、押圧装置とを備える。
このうちの各ディスクは、それぞれが断面円弧形のトロイド曲面である互いの軸方向片側面同士を対向させた状態で、互いに同心に、相対回転を可能に支持している。
又、前記各支持部材は、それぞれの両端部に互いに同心に設けられた1対の傾転軸を備える。そして、軸方向に関して前記各ディスクの軸方向側面同士の間位置の周方向に関して複数箇所に、これら各ディスクの中心軸に対し捩れの位置にある前記各傾転軸を中心とする揺動変位を自在に設けている。
又、前記各ローラ支持軸は、前記各傾転軸の軸方向に関して、前記各トラニオンの中間部から前記各ディスクの径方向に関して内方に向かう方向に突出する状態で設けている。
又、前記各パワーローラは、前記各支持部材の一部で前記各ローラ支持軸の周囲に回転自在に支持され、球状凸面としたそれぞれの周面を、前記各ディスクの軸方向片側面にそれぞれ当接させている。
又、前記各ラジアルニードル軸受は、複数本のニードルとこれら各ニードルを保持する保持器とを備える。そして、これら各ニードルの転動面を、前記各パワーローラの内周面に設けた外輪軌道及び前記各ローラ支持軸の外周面に設けた内輪軌道に転がり接触させている。
又、前記各スラスト転がり軸受は、前記各トラニオンの内側面に前記各ディスクの軸方向の変位を可能に支持された外輪の内側面に形成した外輪軌道と、前記各パワーローラの外側面に形成した内輪軌道との間に、複数個の転動体を転動可能に設けて成る。
更に、前記押圧装置は、前記各ディスクを互いに近づく方向に押圧する。
A toroidal continuously variable transmission according to the present invention includes at least a pair of disks, a plurality of support members, the same number of roller support shafts and power rollers as the support members, and the same number of sets of radial needle bearings and thrusts. A rolling bearing and a pressing device are provided.
Each of these disks is supported concentrically with each other in such a manner that relative rotation is possible with the respective axial side surfaces facing each other, each of which is a toroidal curved surface having an arc cross section.
Each support member includes a pair of tilting shafts provided concentrically with each other at both ends. Then, with respect to the axial direction, swing displacements about the respective tilting shafts that are twisted with respect to the central axis of each disk are provided at a plurality of locations in the circumferential direction between the axial side surfaces of each disk. It is provided freely.
The roller support shafts are provided so as to protrude in the inward direction with respect to the radial direction of the discs from the intermediate portions of the trunnions with respect to the axial direction of the tilt shafts.
Each of the power rollers is rotatably supported around each of the roller support shafts by a part of each of the support members, and each peripheral surface having a spherical convex surface is provided on one axial side surface of each of the disks. It is in contact.
Each radial needle bearing includes a plurality of needles and a cage for holding the needles. The rolling surfaces of these needles are in rolling contact with the outer ring raceway provided on the inner peripheral surface of each power roller and the inner ring raceway provided on the outer peripheral surface of each roller support shaft.
Further, each thrust rolling bearing is formed on an outer ring raceway formed on the inner side surface of the outer ring supported on the inner side surface of each trunnion so as to be capable of axial displacement of each disk, and on the outer side surface of each power roller. A plurality of rolling elements are provided between the inner ring raceway and the inner ring raceway.
Further, the pressing device presses the disks in a direction approaching each other.

特に、本発明のトロイダル型無段変速機に於いては、前記各ラジアルニードル軸受を構成する前記各保持器を、それぞれの内周面と前記各ローラ支持軸の外周面に設けた内輪軌道とを近接対向させる内輪案内により、それぞれの径方向位置を規制している。更に、動力の非伝達状態での、前記各パワーローラの中心孔の内径と前記各保持器の外径との差を、動力伝達に基づくこれら各パワーローラの中心孔の変形量の最大値よりも大きくしている。   In particular, in the toroidal-type continuously variable transmission of the present invention, each of the cages constituting each of the radial needle bearings includes an inner ring raceway provided on each of the inner peripheral surface and the outer peripheral surface of each of the roller support shafts. Each of the radial positions is regulated by the inner ring guides that are closely opposed to each other. Furthermore, the difference between the inner diameter of the center hole of each power roller and the outer diameter of each cage in the non-transmission state of power is determined from the maximum deformation amount of the center hole of each power roller based on power transmission. It is also bigger.

又、本発明を実施する場合に、例えば請求項2に記載した発明の様に、前記各ローラ支持軸を、基半部と先半部とを互いに偏心させた偏心軸とする。又、これら各ローラ支持軸の基半部を、前記各トラニオンの中間部に形成した支持孔の内側に、揺動支持用ラジアル軸受を介して揺動変位可能に支持する。又、前記各スラスト転がり軸受を構成するの外輪を、前記各ローラ支持軸の先半部のうち基端側部分に外嵌支持する。更に、これら各外輪の外側面と前記各トラニオンの内側面との間に、前記各ディスクの軸方向に関するこれら各外輪の変位を許容する為の第二スラスト軸受を設ける。この様な請求項2に記載した発明は、前述の図3〜4に記載した従来構造の第1例に関して、本発明を適用する場合に相当する。   When carrying out the present invention, for example, as in the invention described in claim 2, each of the roller support shafts is an eccentric shaft in which the base half portion and the front half portion are eccentric from each other. In addition, the base half of each roller support shaft is supported inside a support hole formed in the intermediate portion of each trunnion via a swing support radial bearing so as to be swingable and displaceable. In addition, the outer ring constituting each thrust rolling bearing is externally fitted and supported on the base end side portion of the front half of each roller support shaft. Further, a second thrust bearing is provided between the outer side surface of each outer ring and the inner side surface of each trunnion to allow displacement of each outer ring in the axial direction of each disk. The invention described in claim 2 corresponds to the case where the present invention is applied to the first example of the conventional structure described in FIGS.

或いは、例えば請求項3に記載した発明の様に、前記各トラニオンを、これら各トラニオン毎に1対ずつ設けられた前記各傾転軸同士の間に存在し、少なくとも前記各ディスクの径方向に関する内側の側面を、前記両傾転軸の中心軸と平行でこれら両傾転軸の中心軸よりも前記各ディスクの径方向に関して外側に存在する中心軸を有する、円筒状凸面とした支持梁部を有するものとする。そして、前記各スラスト転がり軸受を構成する前記各外輪の外側面に設けられた凹部と、前記各支持梁部の円筒状凸面とを係合させる。この様な請求項3に記載した発明は、前述の図5〜10に記載した従来構造の第2例に関して、本発明を適用する場合に相当する。   Alternatively, for example, as in the invention described in claim 3, each trunnion exists between the respective tilting shafts provided for each trunnion, and at least relates to the radial direction of each disk. A support beam portion having a cylindrical convex surface whose inner side surface has a central axis that is parallel to the central axes of the two tilt axes and that is present outside the central axes of the two tilt axes in the radial direction of each disk. It shall have. And the recessed part provided in the outer surface of each said outer ring | wheel which comprises each said thrust rolling bearing and the cylindrical convex surface of each said support beam part are engaged. The invention described in claim 3 corresponds to the case where the present invention is applied to the second example of the conventional structure described in FIGS.

上述の様に構成する本発明のトロイダル型無段変速機によれば、各パワーローラを支持する為の各ラジアルニードル軸受を構成する各保持器の径方向に関する位置決めを十分に図れ、しかも、大きなトルクを伝達する際にもこれら各保持器の回転抵抗の増大を抑えられ、且つ、前記各パワーローラの内周面である、前記各ラジアルニードル軸受の外輪軌道の温度上昇を抑えて、これら各ラジアルニードル軸受の転がり疲れ寿命、延いてはトロイダル型無段変速機の耐久性を確保し易い構造を実現できる。
即ち、トロイダル型無段変速機により大きなトルクを伝達する場合には、押圧装置が大きな力で各ディスクを互いに近づく方向に押圧し、前記各パワーローラが、軸方向に見た形状が楕円形となる状態に弾性変形する。この場合でも、これら各パワーローラの中心孔に挿通された各ローラ支持軸は殆ど弾性変形する事はない。従って、前記各保持器が径方向にがたつくのを十分に抑えるべく、これら各保持器の内径と前記各ローラ支持軸の外径との差を僅少に抑えた場合でも、これら各保持器が振れ回ったり、これら各保持器の内周面とこれら各ローラ支持軸の外周面とが強く擦れ合う事を防止できる。
又、前記各保持器の径方向に関する位置決めの為に、これら各保持器の外周面と前記各パワーローラの中心孔の内周面とを近接させる必要がない。この為、大きなトルク伝達に伴ってこれら各パワーローラの中心孔が弾性変形しても、前記各保持器が振れ回ったり、これら各中心孔の内周面とこれら各保持器の外周面とが擦れ合う事を防止できる。この結果、上述の様に、各保持器の径方向に関する位置決めを十分に図れ、しかも、大きなトルクを伝達する際にもこれら各保持器の回転抵抗の増大を抑えられる。
According to the toroidal-type continuously variable transmission of the present invention configured as described above, the radial positioning of each cage constituting each radial needle bearing for supporting each power roller can be sufficiently achieved, and the large When transmitting torque, the increase in rotational resistance of each of these cages can be suppressed, and the temperature increase of the outer ring raceway of each of the radial needle bearings, which is the inner peripheral surface of each of the power rollers, can be suppressed. It is possible to realize a structure that can easily ensure the rolling fatigue life of the radial needle bearing and thus the durability of the toroidal type continuously variable transmission.
That is, when a large torque is transmitted by the toroidal-type continuously variable transmission, the pressing device presses each disk in a direction approaching each other with a large force, and each of the power rollers has an elliptical shape when viewed in the axial direction. It is elastically deformed into a state. Even in this case, the roller support shafts inserted through the center holes of the power rollers are hardly elastically deformed. Therefore, even when the difference between the inner diameter of each of these cages and the outer diameter of each of the roller support shafts is kept small in order to sufficiently suppress the radial shaking of each of the cages, the cages will not shake. It can be prevented that the inner peripheral surface of each of these cages and the outer peripheral surface of each of these roller support shafts rub against each other.
Further, it is not necessary to bring the outer peripheral surface of each retainer close to the inner peripheral surface of the center hole of each power roller for positioning in the radial direction of each retainer. For this reason, even if the center holes of these power rollers are elastically deformed with a large torque transmission, the cages are swung around, or the inner peripheral surfaces of the center holes and the outer peripheral surfaces of the cages are It can prevent rubbing. As a result, as described above, each cage can be sufficiently positioned in the radial direction, and an increase in rotational resistance of each cage can be suppressed even when a large torque is transmitted.

又、前記各中心孔の内周面と、前記各保持器の外周面との間に、径方向に関する幅寸法が大きい環状隙間を介在させられる為、これら各保持器の外径側を通過するトラクションオイルの量を十分確保できる。この結果、前記各中心孔の内周面に設けた前記各ラジアルニードル軸受の外輪軌道の冷却を十分に行え、これら各ラジアルニードル軸受の転がり疲れ寿命、延いては前記トロイダル型無段変速機の耐久性の確保を図り易くできる。   Further, an annular gap having a large width in the radial direction is interposed between the inner peripheral surface of each center hole and the outer peripheral surface of each retainer, so that it passes through the outer diameter side of each retainer. A sufficient amount of traction oil can be secured. As a result, the outer ring raceway of each radial needle bearing provided on the inner peripheral surface of each center hole can be sufficiently cooled, and the rolling fatigue life of each radial needle bearing can be increased. It is easy to ensure durability.

本発明の実施の形態の1例を示す部分断面図。The fragmentary sectional view which shows one example of embodiment of this invention. ローラ支持軸と保持器とパワーローラとの径方向に関する位置関係を、トルクの非伝達状態(A)と大きなトルクの伝達状態(B)とで、図1の下方から見た状態で示す端面図。1 is an end view showing the positional relationship in the radial direction among the roller support shaft, the cage, and the power roller when viewed from below in FIG. 1 in a torque non-transmission state (A) and a large torque transmission state (B). . 従来構造の第1例を示す断面図。Sectional drawing which shows the 1st example of a conventional structure. 図3のa−a断面図。FIG. 4 is a cross-sectional view taken along the line aa in FIG. 3. 従来構造の第2例を示す、スラスト玉軸受を介してパワーローラを支持したトラニオンを、各ディスクの径方向外側から見た斜視図。The perspective view which looked at the trunnion which supported the power roller via the thrust ball bearing which shows the 2nd example of the conventional structure from the radial direction outer side of each disk. 同じく、ディスクの周方向から見た状態で示す正面図。Similarly, the front view shown in the state seen from the circumferential direction of the disk. 図6の上方から見た平面図。The top view seen from the upper part of FIG. 図7の右方から見た側面図。The side view seen from the right side of FIG. 図7のb−b断面図。Bb sectional drawing of FIG. 図6のc−c断面図。Cc sectional drawing of FIG. 従来構造の問題点を説明する為の部分断面図。The fragmentary sectional view for demonstrating the problem of conventional structure. 同じくローラ支持軸と保持器とパワーローラとの径方向に関する位置関係を、トルクの非伝達状態(A)と大きなトルクの伝達状態とで、図11の下方から見た状態で示す断面図。Sectional drawing which similarly shows the positional relationship regarding the radial direction of a roller support shaft, a holder | retainer, and a power roller in the state seen from the downward direction of FIG. 11 in the torque non-transmission state (A) and the transmission state of a big torque.

図1〜2は、本発明の実施の形態の1例を示している。尚、本例を含めて本発明の特徴は、各ローラ支持軸12の周囲に各パワーローラ6を回転自在に支持する為の各ラジアルニードル軸受20bを構成する各保持器24bの径方向に関する位置決めを、内輪案内により図る点にある。その他の部分の構成及び作用は、前述の図3〜4に示した従来構造の第1例、或いは図5〜10に示した従来構造の第2例を含め、従来から知られているトロイダル型無段変速機と同様であるから、重複する図示並びに説明は、省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。   1 and 2 show an example of an embodiment of the present invention. The feature of the present invention including this example is that the radial positions of the cages 24b constituting the radial needle bearings 20b for rotatably supporting the power rollers 6 around the roller support shafts 12 are determined. This is because the inner ring guide is used. The structure and operation of the other parts are known toroidal types including the first example of the conventional structure shown in FIGS. 3 to 4 or the second example of the conventional structure shown in FIGS. Since it is the same as the continuously variable transmission, overlapping illustrations and descriptions will be omitted or simplified, and the following description will focus on the features of this example.

前記各ラジアルニードル軸受20bを構成する前記各保持器24bの径方向位置を、それぞれの内周面と前記各ローラ支持軸12の外周面とを、微小隙間32aを介し近接対向させる、所謂内輪案内により、それぞれ規制している。即ち、前記各保持器24bの内径rを、前記各ローラ支持軸12の外径dよりも僅かに大きく(r>d)する事で、これら各ローラ支持軸12の周囲に前記各保持器24bを、回転自在に、且つ、径方向に関する変位を抑えた状態で配置している。   A so-called inner ring guide in which the radial positions of the cages 24b constituting the radial needle bearings 20b are opposed to each other with the inner circumferential surface and the outer circumferential surface of the roller support shaft 12 in close proximity via a minute gap 32a. Respectively. That is, the inner diameter r of each retainer 24b is slightly larger than the outer diameter d of each roller support shaft 12 (r> d), so that each retainer 24b is placed around each roller support shaft 12. Are arranged in a state of being freely rotatable and suppressing displacement in the radial direction.

これに対して、前記各パワーローラ6の中心孔19の内径Rを、前記各保持器24bの外径Dよりも十分に大きくしている。具体的には、動力の非伝達状態での、前記各パワーローラ6の中心孔19の内径Rと前記各保持器24bの外径Dとの差「R−D」を、動力伝達に基づく前記各パワーローラ6の中心孔の変形量δの最大値よりも大きくしている。 In contrast, the inner diameter R 1 of the center hole 19 of the power rollers 6, is sufficiently larger than said outer diameter D 1 of the respective retainer 24b. Specifically, the difference “R 1 −D 1 ” between the inner diameter R 1 of the center hole 19 of each of the power rollers 6 and the outer diameter D 1 of each of the retainers 24 b in the non-transmission state of the power, The maximum deformation amount δ of the center hole of each power roller 6 based on transmission is set larger.

上述の様に構成する本例のトロイダル型無段変速機によれば、前記各パワーローラ6を前記各ローラ支持軸12の周囲に支持する為の、前記各ラジアルニードル軸受20bを構成する前記各保持器24bの径方向に関する位置決めを十分に図れ、しかも、大きなトルクを伝達する際にも、これら各保持器24bの回転抵抗の増大を抑えられ、且つ、前記各ラジアルニードル軸受20bの外輪軌道21の温度上昇を抑えて、これら各ラジアルニードル軸受20bの転がり疲れ寿命、延いてはトロイダル型無段変速機の耐久性を確保し易い構造を実現できる。
即ち、トロイダル型無段変速機により大きなトルクを伝達する場合には、押圧装置26が大きな力で各ディスク2、5(図3参照)を互いに近づく方向に押圧する。この結果、前記各パワーローラ6の中心孔19の端面形状が、トルクの非伝達時には、図2の(A)に示す様な正円形であったのが、大きなトルク伝達時には、図2の(B)に示す様な楕円形に、弾性変形する。この場合でも、前記各パワーローラ6の中心孔19に挿通された前記各ローラ支持軸12は殆ど弾性変形する事はない。
According to the toroidal type continuously variable transmission of the present example configured as described above, each of the radial needle bearings 20b for supporting the power rollers 6 around the roller support shafts 12 is provided. Positioning of the cage 24b in the radial direction can be sufficiently achieved, and even when a large torque is transmitted, an increase in rotational resistance of each of the cages 24b can be suppressed, and the outer ring raceway 21 of each radial needle bearing 20b. Thus, it is possible to realize a structure in which the rolling fatigue life of each of the radial needle bearings 20b and the durability of the toroidal type continuously variable transmission can be easily secured.
That is, when a large torque is transmitted by the toroidal type continuously variable transmission, the pressing device 26 presses the disks 2 and 5 (see FIG. 3) in a direction approaching each other with a large force. As a result, the end face shape of the center hole 19 of each power roller 6 was a perfect circle as shown in FIG. 2A when torque was not transmitted. It is elastically deformed into an ellipse as shown in B). Even in this case, the roller support shafts 12 inserted through the center holes 19 of the power rollers 6 are hardly elastically deformed.

従って、前記各保持器24bが径方向にがたつくのを十分に抑えるべく、これら各保持器24bの内径rと前記各ローラ支持軸12の外径dとの差「r−d」を僅少に抑えた場合でも、これら各保持器24bが振れ回ったり、前記各ローラ支持軸12の外周面と前記各保持器24bの内周面とが強く擦れ合う事を防止できする。
又、前記各保持器24bの径方向に関する位置決めは、前記各保持器24bの内周面と前記各ローラ支持軸12の外周面とを近接対向させる事のみで図れ、これら各保持器24bの外周面と前記各パワーローラ6の中心孔19の内周面とを近接させる必要はない。この為、大きなトルク伝達に伴ってこれら各パワーローラ6の中心孔19が弾性変形しても、前記各保持器24bが振れ回ったり、これら各中心孔19の内周面と前記各保持器24bの外周面とが擦れ合う事はない。
この結果、上述の様に、これら各保持器24bの径方向に関する位置決めを十分に図れ、しかも、大きなトルクを伝達する際にもこれら各保持器24bの回転抵抗の増大を抑えられる。
Accordingly, the difference “rd” between the inner diameter r of each of the cages 24b and the outer diameter d of the roller support shafts 12 is slightly suppressed in order to sufficiently restrain the cages 24b from shaking in the radial direction. Even in this case, it is possible to prevent each of the cages 24b from swinging around or from rubbing the outer peripheral surface of each of the roller support shafts 12 with the inner peripheral surface of each of the cages 24b.
The positioning of each cage 24b in the radial direction can be achieved only by making the inner circumferential surface of each cage 24b and the outer circumferential surface of each roller support shaft 12 close to each other, and the outer circumference of each cage 24b. It is not necessary to bring the surface close to the inner peripheral surface of the center hole 19 of each power roller 6. For this reason, even if the center hole 19 of each of the power rollers 6 is elastically deformed with a large torque transmission, each of the cages 24b swings around, or the inner peripheral surface of each of the center holes 19 and each of the cages 24b. There is no rubbing with the outer peripheral surface.
As a result, as described above, each of the cages 24b can be sufficiently positioned in the radial direction, and an increase in rotational resistance of the cages 24b can be suppressed even when a large torque is transmitted.

更に、前記各保持器24の径方向に関する位置決めを、これら各保持器24の内周面と前記各ローラ支持軸12の外周面とを、微小隙間32aを介し近接させる内輪案内により行っている。この為、トロイダル型無段変速機の運転に伴う前記各パワーローラ6の弾性変形に拘らず、これら各パワーローラ6の中心孔19の内周面と前記各保持器24bの外周面との間に、径方向に関する幅寸法が十分に大きな環状隙間を介在させられる。従って、前記各中心孔19のうち、前記各保持器24の外径側を通過するトラクションオイルの量を十分確保できて、前記各中心孔19の内周面である外輪軌道22部分の冷却を十分に行える。この結果、前記各外輪軌道22を含む、前記各ラジアルニードル軸受20bの転がり接触部の温度上昇を抑え、これら各ラジアルニードル軸受20bの転がり疲れ寿命を確保し易くでき、前記トロイダル型無段変速機の耐久性を確保し易くできる。   Further, the positioning of each cage 24 in the radial direction is performed by an inner ring guide that brings the inner circumferential surface of each cage 24 and the outer circumferential surface of each roller support shaft 12 close to each other via a minute gap 32a. Therefore, regardless of the elastic deformation of each power roller 6 accompanying the operation of the toroidal continuously variable transmission, the space between the inner peripheral surface of the center hole 19 of each power roller 6 and the outer peripheral surface of each retainer 24b. In addition, an annular gap having a sufficiently large width in the radial direction can be interposed. Accordingly, a sufficient amount of traction oil passing through the outer diameter side of each retainer 24 among each center hole 19 can be secured, and the outer ring raceway 22 portion, which is the inner peripheral surface of each center hole 19, can be cooled. Can do enough. As a result, the temperature rise of the rolling contact portion of each radial needle bearing 20b including each outer ring raceway 22 can be suppressed, and the rolling fatigue life of each radial needle bearing 20b can be easily secured. The toroidal continuously variable transmission It is easy to ensure the durability.

本発明は、トロイダル型無段変速機単独で実施できる構造は勿論、トロイダル型無段変速機と遊星歯車式変速機とを組み合わせて大きな変速比を実現できる無段変速装置でも実施できる。又、図示の様なハーフトロイダル型のトロイダル型無段変速機に限らず、フルトロイダル型のトロイダル型無段変速機でも実施できるフルトロイダル型のトロイダル型無段変速機で実施する場合、各パワーローラを回転自在に支持する為の支持部材は、トラニオンに代えてキャリアとする.   The present invention can be implemented not only in a structure that can be implemented by a toroidal type continuously variable transmission alone, but also in a continuously variable transmission that can realize a large gear ratio by combining a toroidal type continuously variable transmission and a planetary gear type transmission. In addition, not only the half-toroidal continuously variable transmission as shown in the figure but also the full toroidal toroidal continuously variable transmission that can be implemented with a full toroidal toroidal continuously variable transmission, each power The support member for rotatably supporting the roller is a carrier instead of the trunnion.

1 入力回転軸
2 入力ディスク
3 出力筒
4 出力歯車
5 出力ディスク
6、6a パワーローラ
7、7a、7b トラニオン
8、8a、8b 傾転軸
9 支持梁部
10 支持板
11、11a、11b ラジアル軸受
12、12a ローラ支持軸
13、13a スラスト玉軸受
14 スラストニードル軸受
15 内輪軌道
16、16a 外輪
17 外輪軌道
18 玉
19 中心孔
20、20a、20b ラジアルニードル軸受
21 内輪軌道
22 外輪軌道
23 ニードル
24、24a、24b 保持器
25 駆動軸
26 押圧装置
27 アクチュエータ
28 円筒状凸面
29 支持梁部
30 凹部
31 段差面
32、32a 微小隙間
DESCRIPTION OF SYMBOLS 1 Input rotating shaft 2 Input disk 3 Output cylinder 4 Output gear 5 Output disk 6, 6a Power roller 7, 7a, 7b Trunnion 8, 8a, 8b Tilt axis 9 Support beam part 10 Support plate 11, 11a, 11b Radial bearing 12 , 12a Roller support shaft 13, 13a Thrust ball bearing 14 Thrust needle bearing 15 Inner ring raceway 16, 16a Outer ring 17 Outer ring raceway 18 Ball 19 Center hole 20, 20a, 20b Radial needle bearing 21 Inner ring raceway 22 Outer ring raceway 23 Needles 24, 24a, 24b Cage 25 Drive shaft 26 Press device 27 Actuator 28 Cylindrical convex surface 29 Support beam portion 30 Recess portion 31 Step surface 32, 32a Minute gap

Claims (3)

少なくとも1対のディスクと、複数の支持部材と、それぞれがこれら各支持部材と同数のローラ支持軸及びパワーローラと、同じく同数組のラジアルニードル軸受及びスラスト転がり軸受と、押圧装置とを備え、
このうちの各ディスクは、それぞれが断面円弧形のトロイド曲面である互いの軸方向片側面同士を対向させた状態で、互いに同心に、相対回転を可能に支持されたものであり、
前記各支持部材は、それぞれの両端部に互いに同心に設けられた1対の傾転軸を備えたもので、軸方向に関して前記各ディスクの軸方向側面同士の間位置の周方向に関して複数箇所に、これら各ディスクの中心軸に対し捩れの位置にある前記各傾転軸を中心とする揺動変位を自在に設けられており、
前記各ローラ支持軸は、前記各傾転軸の軸方向に関して、前記各支持部材の一部から前記各ディスクの径方向に突出する状態で設けられており、
前記各パワーローラは、円形の中心孔を有する環状に形成されたもので、前記各支持部材の一部で前記各ローラ支持軸の周囲に回転自在に支持され、球状凸面としたそれぞれの周面を、前記各ディスクの軸方向片側面にそれぞれ当接させており、
前記各ラジアルニードル軸受は、複数本のニードルとこれら各ニードルを保持する保持器とを備えたもので、これら各ニードルの転動面を前記各パワーローラの内周面及び前記各ローラ支持軸の外周面に転がり接触させており、
前記各スラスト転がり軸受は、前記各トラニオンの内側面に前記各ディスクの軸方向の変位を可能に支持された外輪の内側面に形成した外輪軌道と、前記各パワーローラの外側面に形成した内輪軌道との間に、複数個の転動体を転動可能に設けたものであり、
前記押圧装置は、前記各ディスクを互いに近づく方向に押圧するものであるトロイダル型無段変速機に於いて、
前記各ラジアルニードル軸受を構成する前記各保持器が、それぞれの内周面と前記各ローラ支持軸の外周面とを近接対向させる内輪案内により、それぞれの径方向位置を規制しており、動力の非伝達状態での、前記各パワーローラの中心孔の内径と前記各保持器の外径との差が、動力伝達に基づくこれら各パワーローラの中心孔の変形量の最大値よりも大きい事を特徴とするトロイダル型無段変速機。
At least a pair of disks, a plurality of support members, each of which includes the same number of roller support shafts and power rollers as each of the support members, the same number of sets of radial needle bearings and thrust rolling bearings, and a pressing device,
Each of these disks is supported to be capable of relative rotation concentrically with each other in a state in which each side surface in the axial direction is a toroidal curved surface having an arc cross section.
Each of the supporting members includes a pair of tilting shafts provided concentrically with each other at both ends, and at a plurality of locations in the circumferential direction between the axial side surfaces of the disks in the axial direction. Oscillating displacement about each tilting shaft that is in a twisted position with respect to the central axis of each disk is freely provided,
Each of the roller support shafts is provided in a state of projecting in a radial direction of each of the disks from a part of each of the support members with respect to the axial direction of each of the tilt shafts.
Each of the power rollers is formed in an annular shape having a circular center hole, and is supported by a part of each of the support members so as to be rotatable around each of the roller support shafts. Are in contact with one axial side surface of each disk,
Each of the radial needle bearings includes a plurality of needles and a cage for holding the needles. The rolling surfaces of the needles are arranged on the inner peripheral surface of the power rollers and the roller support shafts. Rolling contact with the outer peripheral surface,
Each thrust rolling bearing includes an outer ring raceway formed on the inner side surface of the outer ring supported on the inner side surface of each trunnion so as to be capable of axial displacement of each disk, and an inner ring formed on the outer side surface of each power roller. A plurality of rolling elements are provided so as to be able to roll between the track,
In the toroidal-type continuously variable transmission that presses the disks in a direction approaching each other,
Each of the cages constituting each of the radial needle bearings regulates the radial position thereof by an inner ring guide that makes each inner peripheral surface and the outer peripheral surface of each of the roller support shafts face each other. The difference between the inner diameter of the center hole of each power roller and the outer diameter of each cage in the non-transmission state is larger than the maximum deformation amount of the center hole of each power roller based on power transmission. A toroidal-type continuously variable transmission.
前記各ローラ支持軸が、基半部と先半部とを互いに偏心させた偏心軸であり、これら各ローラ支持軸の基半部が前記各支持部材であるトラニオンの中間部に形成された支持孔の内側に、揺動支持用ラジアル軸受を介して揺動変位可能に支持されており、前記各スラスト転がり軸受を構成する外輪が、前記各ローラ支持軸の先半部のうち基端側部分に外嵌支持されており、これら各外輪の外側面と前記各トラニオンの内側面との間に、前記各ディスクの軸方向に関するこれら各外輪の変位を許容する為の第二スラスト軸受が設けられている、請求項1に記載したトロイダル型無段変速機。   Each of the roller support shafts is an eccentric shaft in which a base half and a front half are eccentric from each other, and the base half of each of the roller support shafts is formed at an intermediate portion of the trunnion as each of the support members. Inside the hole is supported so as to be swingable and displaceable via a swing support radial bearing, and the outer ring constituting each thrust rolling bearing is a proximal end portion of the front half of each roller support shaft. A second thrust bearing is provided between the outer side surface of each outer ring and the inner side surface of each trunnion to allow displacement of each outer ring in the axial direction of each disk. The toroidal continuously variable transmission according to claim 1. 前記各トラニオンが、これら各トラニオン毎に1対ずつ設けられた前記各傾転軸同士の間に存在し、少なくとも前記各ディスクの径方向に関する内側の側面を、前記両傾転軸の中心軸と平行でこれら両傾転軸の中心軸よりも前記各ディスクの径方向に関して外側に存在する中心軸を有する、円筒状凸面とした支持梁部を有するものであり、前記各スラスト転がり軸受を構成する前記各外輪の外側面に設けられた凹部と、前記各支持梁部の円筒状凸面とを係合させている、請求項1に記載したトロイダル型無段変速機。   Each trunnion exists between the respective tilting shafts provided in a pair for each trunnion, and at least the inner side surface in the radial direction of each disc is defined as the central axis of the two tilting shafts. The thrust rolling bearing comprises each of the thrust rolling bearings having a cylindrical convex surface having a central axis that is parallel and has a central axis that exists outside the central axis of the two tilting axes in the radial direction of each disk. The toroidal continuously variable transmission according to claim 1, wherein a concave portion provided on an outer surface of each outer ring and a cylindrical convex surface of each support beam portion are engaged.
JP2014003241A 2014-01-10 2014-01-10 Toroidal continuously variable transmission Active JP6221754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014003241A JP6221754B2 (en) 2014-01-10 2014-01-10 Toroidal continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014003241A JP6221754B2 (en) 2014-01-10 2014-01-10 Toroidal continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2015132298A true JP2015132298A (en) 2015-07-23
JP6221754B2 JP6221754B2 (en) 2017-11-01

Family

ID=53899662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014003241A Active JP6221754B2 (en) 2014-01-10 2014-01-10 Toroidal continuously variable transmission

Country Status (1)

Country Link
JP (1) JP6221754B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH094689A (en) * 1995-06-21 1997-01-07 Nippon Seiko Kk Toroidal type continuously variable transmission
JPH0942403A (en) * 1995-07-24 1997-02-14 Nissan Motor Co Ltd Toroidal type continuously variable transmission
JP2000205359A (en) * 1999-01-11 2000-07-25 Nsk Ltd Half troidal type continuously variable transmission
JP2002031204A (en) * 2000-07-14 2002-01-31 Nsk Ltd Toroidal type continuously variable transmission
JP2003301910A (en) * 2002-04-11 2003-10-24 Nsk Ltd Toroidal continuously variable transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH094689A (en) * 1995-06-21 1997-01-07 Nippon Seiko Kk Toroidal type continuously variable transmission
JPH0942403A (en) * 1995-07-24 1997-02-14 Nissan Motor Co Ltd Toroidal type continuously variable transmission
JP2000205359A (en) * 1999-01-11 2000-07-25 Nsk Ltd Half troidal type continuously variable transmission
JP2002031204A (en) * 2000-07-14 2002-01-31 Nsk Ltd Toroidal type continuously variable transmission
JP2003301910A (en) * 2002-04-11 2003-10-24 Nsk Ltd Toroidal continuously variable transmission

Also Published As

Publication number Publication date
JP6221754B2 (en) 2017-11-01

Similar Documents

Publication Publication Date Title
JP5720781B2 (en) Continuously variable transmission
JP4905012B2 (en) Toroidal continuously variable transmission
JP2012172685A (en) Toroidal type continuously variable transmission
JP6221754B2 (en) Toroidal continuously variable transmission
JP5007600B2 (en) Toroidal continuously variable transmission
JP5990921B2 (en) Toroidal continuously variable transmission
JP5857473B2 (en) Toroidal continuously variable transmission
JP4968082B2 (en) Toroidal continuously variable transmission
JP4706920B2 (en) Toroidal continuously variable transmission
JP5126206B2 (en) Toroidal continuously variable transmission
JP5834525B2 (en) Toroidal continuously variable transmission
JP5673205B2 (en) Toroidal continuously variable transmission
JP4587120B2 (en) Toroidal continuously variable transmission
JP2013044412A (en) Toroidal continuously variable transmission
JP5862335B2 (en) Toroidal continuously variable transmission
JP5796308B2 (en) Toroidal continuously variable transmission
JP2007146873A (en) Toroidal type continuously variable transmission
JP5696586B2 (en) Toroidal continuously variable transmission
JP2018091490A (en) Power roller unit for toroidal type continuously variable transmission
JP2012117569A (en) Toroidal continuously variable transmission
JP5830999B2 (en) Toroidal continuously variable transmission
JP2005299752A (en) Toroidal type continuously variable transmission
JP2006258228A (en) Toroidal continuously variable transmission
JP2004162857A (en) Toroidal continuously variable transmission
JP2000291758A (en) Toroidal type continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170918

R150 Certificate of patent or registration of utility model

Ref document number: 6221754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150