JP2015129828A - Mos型光変調器及びグレーティングカプラの製造方法 - Google Patents

Mos型光変調器及びグレーティングカプラの製造方法 Download PDF

Info

Publication number
JP2015129828A
JP2015129828A JP2014000777A JP2014000777A JP2015129828A JP 2015129828 A JP2015129828 A JP 2015129828A JP 2014000777 A JP2014000777 A JP 2014000777A JP 2014000777 A JP2014000777 A JP 2014000777A JP 2015129828 A JP2015129828 A JP 2015129828A
Authority
JP
Japan
Prior art keywords
layer
optical modulator
type optical
forming
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014000777A
Other languages
English (en)
Inventor
藤方 潤一
Junichi Fujikata
潤一 藤方
重樹 高橋
Shigeki Takahashi
重樹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Photonics Electronics Technology Research Association
Original Assignee
Photonics Electronics Technology Research Association
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photonics Electronics Technology Research Association filed Critical Photonics Electronics Technology Research Association
Priority to JP2014000777A priority Critical patent/JP2015129828A/ja
Publication of JP2015129828A publication Critical patent/JP2015129828A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

【課題】従来、リブ型Si光導波路構造およびSiグレーティングカプラの作成には独立したエッチング加工が必要とされ、製造工程数増加、生産コスト上昇という課題があった。また、グレーティングの製造上のトレランスが小さいという問題があった。
【解決手段】MOS型光変調器形成領域(変調領域)のSi層120にpドープ処理したSOI基板を準備する。変調領域においてリブ型Si導波路140をエッチングし、pドープ領域104を形成する。導波路140の谷部を埋める酸化物クラッド層108を形成後、導波路140上面及びグレーティングカプラ形成領域(カプラ領域)に誘電体層112を形成後、基板全面に多結晶シリコン層130を形成し、変調領域においては上部電極形状、カプラ領域においては多数の溝150を形成する。なお、誘電体層112は、溝150を形成する際にエッチストッパとして機能する。その後変調領域に変調器残部を構成する。
【選択図】図1C

Description

本発明は、シリコンフォトニクス技術を用いた光インターコネクションに使用されるMOS型光変調器及びグレーティングカプラの製造方法に関する。
近年、ボード間、コンピュータ間、周辺機器間などの電子機器の接続において、電気配線による信号遅延、発熱、EMI(電磁放射ノイズ)の発生などの問題が表面化しており、電気配線で発生するこのような問題を解決するために、シリコンフォトニクス技術を用いた光インターコネクションが開発されつつある(特許文献1、非特許文献1〜3参照)。因みに、シリコンフォトニクスとは、シリコンを材料とする光素子技術を意味しており、光インターコネクションとは、外部機器などからの電気信号を光信号に、また、光信号を電気信号に変換して、変換された光信号又は電気信号を別の外部機器などに伝送し、信号のやり取りを行う技術を意味している。この光インターコネクションは、電気配線の場合のような寄生容量による信号遅延、グランドの不安定性からくる信号劣化、配線から放射されるEMIの放射などを解消する画期的な技術である。
シリコンフォトニクス技術を適用した光電気混載チップは、半導体プロセス工程によって作製される。例えば、光送信タイプの光電気混載チップにおいては、シリコン基板上にクラッド層やシリコン光導波路が形成され,シリコン光導波路の末端に外部光導波路(光ファイバ)と光結合を行うためのグレーティングカプラが形成されている。そして、シリコン光導波路を、MOS構造、PN構造の何れかに形成し、シリコンのキャリアプラズマ効果を利用してシリコン光導波路におけるキャリア密度を変化させることにより、当該導波路を伝搬する光の屈折率を変化させ、これにより、当該導波路を伝搬する光の位相を変化させる光変調器も各種のものが提案されている(例えば、特許文献2参照)。
特開2013−80188号公報 再表2011−30593号公報
"Demonstration of 12.5-Gbps optical interconnects integrated with lasers, optical splitters, optical modulators and photodetectors on a single silicon substrate", OPTICS EXPRESS Vol. 20, No, 26 (2012/12/10) B256−B263 "The Luxtera CMOS Integrated Photonic Chip in a Molex Cable",URL:http://www.chipworks.com/blog/technologyblog/2012/12/03/the-luxtera-cmos-integrated-photonic-chip-in-a-molex-cable/ "Blazar 40 Gbps Optical Active Cable",URL:http://www.datcominc.com/picture_library/upload/Luxtera/Blazar%2040Gbps%20Optical%20Active%20Cable.pdf
従来は、シリコンフォトニクス技術を用いたMOS型光変調器及びグレーティングカプラの製造に当って、リブ型Si光導波路構造の光変調効率の最適化とSiグレーティングカプラの回折効率の最適化とがそれぞれ独立に行われており、リブ型Si光導波路構造とSiグレーティングカプラの作成時にエッチング深さを異ならせる必要があることから、リブ型Si光導波路構造およびSiグレーティングカプラの作成において、それぞれ独立したエッチング加工が必要とされていた。その結果、製造工程数が増加し、生産コストが上昇するという課題があった。また、Siグレーティングカプラにおいては、グレーティングの深さ精度を高くする必要があるが、製造上のトレランスが小さく、特性のばらつきが大きくなるという問題があった。
上記課題を解決するための本発明の基本的構成は、概略以下のとおりである。
(1)光変調器形成領域において、リブ型Si光導波路のエッチング加工後に酸化物クラッド(SiO2等)を埋め込み、CMPプロセスなどによりリブ型Si光導波路のSi表面層を露出させるように平坦化を行うようにした後、光変調器形成領域及びグレーティングカプラ形成領域において、薄い誘電体層を形成し、その上に多結晶Si層を形成する。
(2)前記工程を終了後、光変調器形成領域及びグレーティングカプラ形成領域において、多結晶Si層をエッチング加工し、光変調器の上部電極及びグレーティングカプラのグレーティングを形成する。なお、グレーティングカプラ形成領域における多結晶Si層のエッチング加工の際、前記薄い誘電体層がエッチストッパーとして用いられる。
なお、多結晶Si層に代えて、単結晶Si層を用いることができる。
本発明の基本的構成によれば、MOS型光変調器の上部電極層及びグレーティングカプラの回折格子部を多結晶Si層または単結晶Si層において形成する際、多結晶Si層または単結晶Si層の下層に設けた誘電体層をグレーティングカプラ形成領域においてエッチストッパとして用いることにより、グレーティングカプラの回折格子部のエッチング深さのばらつきを解消し得る。
図1Aは、本発明のMOS型光変調器及びグレーティングカプラの製造方法の一実施形態を説明するための断面工程図である。 図1Bは、本発明のMOS型光変調器及びグレーティングカプラの製造方法の一実施形態を説明するための断面工程図である。 図1Cは、本発明のMOS型光変調器及びグレーティングカプラの製造方法の一実施形態を説明するための断面工程図である。 図2は、光電気混載チップの一例の断面構造を模式的に示す断面図である。 図3は、MOS型光変調器の一例の断面構造を模式的に示す断面図である。 図4は、マッハ・ツェンダー干渉計型光強度変調器の構造の一例を模式的に示す平面図である。 図5は、グレーティングカプラの一例の断面構造を模式的に示す断面図である。 図6は、本発明の製造方法により形成されたグレーティングカプラの構造の一例の断面構造を模式的に示す断面図である。
本発明は、典型的には、MOS型光変調器及びグレーティングカプラを同時に加工するための手法に特徴を有するものであり、薄い誘電体層を活用してグレーティングカプラの回折格子部のエッチング深さのばらつきを解消し得るものである(詳細は後述)。
本発明の一実施形態を説明するに当り、シリコンフォトニクス技術を適用した光電気混載チップの一例を紹介した上で、MOS型光変調器及びグレーティングカプラについて、その構造、機能等の概要を説明し、最後に本発明の一実施形態のMOS型光変調器及びグレーティングカプラの製造方法について説明するとともに、本発明により形成されたグレーティングカプラの構造について説明する。
〔光電気混載チップ〕
図2は、光電気混載チップの一例の断面構造を模式的に示す断面図である。図2に基づき、光信号送信の際の作動態様を説明する。半導体レーザ226からの出力光は、不図示のスポットサイズ変換器、光導波路212を介して光変調器214に入力され、光変調器214により変調された光信号が出力される。該変調された光信号は、光導波路212を介してグレーティングカプラ216に到達し、該グレーティングカプラ216で回折により光軸が変換されて、光ピン218を介して外部に出力される。なお、導電ピン220及び電気配線222を介して外部より与えられる電気信号は、光変調器214を制御するドライバIC224に入力され、変調制御信号(電気信号)として、電気配線222を介して光変調器214に供給されるものである。なお、光導波路212、光変調器214、グレーティングカプラ216等は、シリコン基板210内に、シリコンフォトニクスト技術により作成されるものである。
〔MOS型光変調器〕
図3は、MOS型光変調器の一例の断面構造を模式的に示す断面図である。図3に示すとおり、このMOS型光変調器は、pドープ半導体シリコン309と、nドープ多結晶シリコン310と、誘電体層312と、複数の電極コンタクト層306とを含む。これらは、支持基板301の上面に埋め込み酸化層302が形成されたシリコン・オン・インシュレータ(SOI)基板の、埋め込み酸化層302上に配置されている。pドープ半導体シリコン309は、埋め込み酸化層2の上面全体に形成されており、その厚みは180〜220nm程度である。pドープ半導体シリコン309上の一部には、誘電体層312を介してnドープ多結晶シリコン310の一部が積層されている。pドープ半導体シリコン309の左右両方の端部は、pドープ半導体シリコン304を形成している。左右のpドープ半導体シリコン304の上面には、それぞれ、電極コンタクト層306が接合されている。nドープ多結晶シリコン310は、上記積層部分の左右両右側から突出している。前記突出部分の左右端部は、nドープ半導体シリコン311を形成している。nドープ半導体シリコン311の上面には、電極コンタクト層306が接合されている。各電極コンタクト層306の上面には、それぞれビア配線313が設けられている。各ビア配線313は、MOS型光変調器の上面まで達し、前記上面におけるビア配線の露出部分で、外部端子を介してこのMOS型光変調器と他の装置、電源、回路等との接続が可能である。これにより、pドープ半導体シリコン309と誘電体層312とnドープ多結晶シリコン310との積層部分においては、前記左右両端のpドープ半導体シリコン304および前記左右両端のnドープ半導体シリコン311からの電気信号によって、pドープ半導体シリコン309およびnドープ多結晶シリコン310における誘電体層312との接触面付近の領域で自由キャリアが蓄積、除去、または反転される。これにより、光信号電界領域の前記自由キャリア濃度を変調可能である。前記自由キャリア濃度の変調により、前記光信号電界の位相速度が変化して光信号の位相変調ができる。なお、図3のMOS型光変調器は、シリコン・ベースのMOS型光変調器であるので、pドープ半導体シリコン309と誘電体膜312とnドープ多結晶シリコン310との積層部分は、SIS(silicon-insulator-silicon)接合を形成している。埋め込み酸化層302上に形成された前記各構成要素の空隙は、酸化物クラッド308で埋められている。pドープ半導体シリコン309およびnドープ多結晶シリコン310は、例えば、多結晶シリコン、アモルファスシリコン、歪シリコン、および単結晶Si、SiGe1−xからなる群から選択される少なくとも一層により形成されている。電極コンタクト層306の材質は特に制限されないが、例えば、シリコンと金属との合金であり、より具体的には、シリコンとニッケルとの合金、シリコンとチタンとの合金等が挙げられる。
なお、光変調器の構成として、図4に示されるように、上記のようなMOS型光変調器をそれぞれ含む第1のアーム414および第2のアーム415が平行に配置されているマッハ・ツェンダー干渉計型光強度変調器を採用してもよい。このマッハ・ツェンダー干渉計型光強度変調器においては、第1のアーム414および第2のアーム415に、それぞれ、MOS型光変調器駆動用電極パッド416が設けられており、第1のアーム414および第2のアーム415には、これに入力側で結合する光分岐路(光分岐構造)417と、出力側で結合する光結合路(光結合構造あるいは光合波構造)418が接続されている。これにより、前記第1のアームおよび第2のアームで光信号の位相変調が行われ、前記光結合路により位相干渉が行われることにより、光強度変調信号に変換される。
図4に示されるマッハ・ツェンダー干渉計型光強度変調器においては、例えば、入力側に配置された光分岐構造により、入力光が第1および第2のアームに等しいパワーとなるように分岐される。ここで、図3に断面構造が示されるMOS型光変調器を用いた場合には、第1のアームにマイナスの電圧を印加することにより、MOS型光変調器における前記pドープ半導体シリコン309および前記nドープ多結晶シリコン310の前記誘電体層312(薄い誘電体層)との接触面付近でキャリア蓄積が生じる。また、第2のアームにプラスの電圧を印加することにより、前記pドープ半導体シリコン309および前記nドープ多結晶シリコン310における前記誘電体層312の接触面付近のキャリアが除去される。これにより、キャリア蓄積モードでは、MOS型光変調器における光信号電界が感じる実効屈折率が小さくなり、キャリア除去(空乏化)モードでは、光信号電界が感じる実効屈折率が大きくなり、両アームでの光信号位相差が最大となる。この両アームを伝送する光信号を出力側の光結合構造により合波することにより、光強度変調が生じることになる。なお、図4に記載された「光変調長さ」Lと位相変化量Δθとの関係は、Δθ=(2π/λ)ΔneffLで表される(但し、Δneffは実効屈折率の変化を表す)。
光変調器を構成するに当たり、上記マッハ・ツェンダー干渉計型光強度変調器は、例えば複数連結させて用いてもよく、複数、並列、又は、直列に配置されていてもよい。また、直列と並列の両方の配置を併用しても良い。
〔グレーティングカプラ〕
図5は、グレーティングカプラ500の構造、機能等を説明するために、その断面構造を模式的に示す断面図である。外部から供給された電気信号はレーザダイオード及び光変調器より光信号に変換されるが、グレーティングカプラ500は、当該光信号を光導波路を介して受け取り回折により光軸を変換する作用を有するものである。図5(a)に例示された断面構造は、BOX層512と、BOX層512より屈折率の高いコア層514と、BOX層512と同じ屈折率の上部クラッド層516とを、この順に基板510に積層し、コア層514に回折格子部を形成したもので、導波路への回折格子形成加工のみで、光路変換を可能とするものである。なお、グレーティングカプラ500には、例えば、図5(b)に示されるような、(1)フォーカスなし一様GC、(2)フォーカス付一様GC、(3)フォーカス付非一様GC、等の各種の構造を有するものがあるが、何れの形態も使用可能である。
以下、グレーティングカプラの動作原理等について概略説明する。
図5(a)に示されるように、グレーティングカプラ500の導波路の厚さ方向(x方向)に薄い回折格子を形成すると、導波光と放射光は、伝搬方向(z方向)の位相整合を満たす必要があり、整合条件は、導波光の伝搬定数をβ、放射光の伝搬定数をβとすると、β=β+qKである。但し、Λを回折格子の周期とし、K=2π/Λで、qは放射光の次数(0、±1、±2、・・・)に相当する値である。
この場合、回折格子の法線に対し、角度θで出射する放射光と導波路との結合条件は、λを使用する波長、Nを導波路の実効屈折率、nを上部クラッド層の屈折率、Λを回折格子の周期とすると、nsinθ=N+qλ/Λとなる。
N>nであることを考慮すると、放射は、q≦−1の次数に限られることになるが、最もパワー分配比が高い−1次放射光を使用すると、放射光の高効率利用が図られることになる。なお、上記−1次放射光等の他、導波路方向への戻り光Pref、コア層透過光Ptrans、BOX層512を介した基板510側への放射光Pdownも存在する。
ここで、出射角度θは、図5(a)に示される格子の周期Λ、幅w、深さd、光導波路の厚さDによって任意に設計できるが、それらの数値範囲を例示すれば、以下のとおりである。
Λ:530〜550nm
FF(=1−w/Λ):0.3〜0.6
d:60〜80nm
D:180〜200nm
〔MOS型光変調器及びグレーティングカプラの製造方法〕
図1A〜図1Cは、MOS型光変調器及びグレーティングカプラの製造方法の一実施形態を説明するための断面工程図であり、この製造方法は、工程(a)〜(j)を含む。
まず、工程(a)に示すとおり、MOS型光変調器及びグレーティングカプラを形成するために用いるSOI基板を準備する。このSOI基板は、支持基板103の上面に形成された埋め込み酸化層(BOX層)102上面に、さらにSi層120が形成されている。また、MOS型光変調器形成領域において、所望の導電型を呈するようにイオン注入法などにより、PあるいはBを表面層にドープ処理した後、SOI基板に対し熱処理を行う。なお、MOS型光変調器形成領域に予めドープ処理が施されたSOI基板を用いてもよい。
次に、MOS型光変調器形成領域において、レジストパターンを形成した後、工程(b)に示すように、反応性エッチング法によりリブ型Si導波路140の形状に加工する。
さらに、MOS型光変調器形成領域において、レジストパターンをマスクとして、pドープ領域(pドープ半導体シリコン104)をイオン注入により形成し、熱処理を行う。
なお、上記工程においては、レジストパターンをマスクとして用いたが、レジストパターンに代えてSiN等のハードマスクを用いることもできる。以下の工程においても同様である。
次に、工程(c)に示すように、SiO2膜を酸化物クラッド層108として積層して形成し、CMP(chemical−mechanicalpolishing process)などにより、MOS型光変調器形成領域においてリブ型Si導波路140の表面層が露出するように平坦化を行う。
なお、前工程においてSiN等のハードマスクを使用した場合には、SiN等のハードマスクをCMPのエッチストッパとして利用することができ、好適である。
次に、工程(d)に示すように、MOS型光変調器形成領域及びグレーティングカプラ形成領域において、比較的薄い誘電体層112を、例えば熱酸化処理により、MOS型光変調器形成領域のpドープ半導体シリコン109上、及び、グレーティングカプラ形成領域のSi層120上に形成する。前記誘電体層112は、例えば、シリコン酸化層、窒化シリコン層、他の絶縁層等から選択される少なくとも一層でも良い。
次に、工程(e)に示すように、MOS型光変調器形成領域及びグレーティングカプラ形成領域において、多結晶シリコン層130を形成する。
次に、工程(f)に示すように、MOS型光変調器形成領域及びグレーティングカプラ形成領域において、レジストパターンを形成した後、反応性エッチング法により多結晶Si層130をエッチングし、MOS型光変調器形成領域においては、上部電極に相応する部分を形成するとともに、グレーティングカプラ形成領域においては、グレーティングに相応する多数の溝150を形成する。なお、グレーティングカプラ形成領域における誘電体層112は、溝をエッチングする際のエッチングストッパーとして機能する。さらに、MOS型光変調器形成領域において、多結晶Si層130の表面層に、イオン注入法などにより、Pをドープして、nドープ多結晶シリコン110を形成し、その後、nドープ多結晶シリコン110の表面層にレジストパターンを形成し、イオン注入法などにより、Pをドープして、nドープ多結晶シリコン111を形成する。
次に工程(g)に示すように、MOS型光変調器形成領域及びグレーティングカプラ形成領域において、上部クラッド(Upper clad)116を形成して、CMPにより平坦化を行う。なお、この際、グレーティングカプラ形成領域において、上部クラッド116により、グレーティングに相応する溝が埋められる。
次に工程(h)に示すように、MOS型光変調器形成領域において、pドープ半導体シリコン104およびnドープ多結晶シリコン111上の上部クラッド116に電極取り出しのためのコンタクトホール114を形成する。
次に、工程(i)に示すように、MOS型光変調器形成領域において、pドープ半導体シリコン104およびnドープ多結晶シリコン111上面にNiを成膜して電極コンタクト層106を形成する。そして、工程(j)に示すように、前記コンタクトホール内にTaN/Al(Cu)などからなるビア配線115を形成して、本実施形態のMOS型光変調器及びグレーティングカプラの製造が完了する。駆動回路との接続は、ビア配線115のMOS型光変調器上面に露出した部分を介して外部端子との接触により行う。
上記説明においては、MOS型光変調器の形成に当たり、下部電極層をp型、上部電極層をn型として記述してきたが、下部電極層をn型、上部電極層をp型としてもMOS型光変調器を形成できることから、下部電極層をn型、上部電極層をp型としてもよい。
また、pドープ処理あるいはnドープ処理時のpドーピング濃度あるいはnドーピング濃度は、5×1017〜5×1018/cmの範囲にとるとよい。
なお、比較的薄い誘電体層の上に積層される層を、多結晶シリコン層に代えて単結晶シリコン層としてもよい。このような単結晶シリコン層は、SOIリブ構造の突起部(電極コンタクト部になる領域)から横方向成長という方法で作成することも可能であり、好適である。
〔本発明により形成されたグレーティングカプラの構造〕
図6は、本発明により形成されたグレーティングカプラの一実施形態の断面構造を模式的に示す断面図である。
図6に例示された断面構造は、BOX層602とBOX層602より屈折率の高いSi層620とを基板601に積層して形成されたSOI基板上に、薄い誘電体層612、Si層620と略等しい屈折率を有し回折格子部が形成された多結晶Si層630を積層し、さらにその上に多結晶Si層630の回折格子部の溝を埋める上部クラッド層616を形成した積層構造を示すものである。
図5(a)に示される断面構造との対比でいえば、Si層620、薄い誘電体層612、Si層620と略等しい屈折率を有し回折格子部が形成された多結晶Si層630からなる積層構造が、図5(a)のコア層514に相応する導波路機能を有するものであり、この場合の導波路の実効屈折率Nは、上記積層構造の合成屈折率に相当するものとなる。
前述したように、グレーティングカプラには、例えば、図5(b)に示されるような、(1)フォーカスなし一様GC、(2)フォーカス付一様GC、(3)フォーカス付非一様GC、等の各種のタイプのものが存在するが、いずれのタイプも本発明により形成されるグレーティングカプラとして採用し得る。
以上、本発明の実施の形態を図面を参照しつつ説明してきたが、当業者であれば、他の類似する実施形態を使用することができること、また、本発明から逸脱することなく適宜形態の変更又は追加を行うことができることに留意すべきである。なお、本発明は、上記の実施形態に限定されるべきではなく、特許請求の範囲の記載に基き解釈されるべきである。
101,303,501、601:支持基板
102,302,502、602:BOX層
104:pドープ半導体シリコン
106,306:電極コンタクト層
108,308:酸化物クラッド層
109,309:pドープ半導体シリコン
110,310:nドープ多結晶シリコン
111,311:nドープ多結晶シリコン
112,312、612:誘電体層
114,314:コンタクトホール
115,315:ビア配線
116,516,616:上部クラッド層
120:Si層
130、630:多結晶Si層
140:リブ型Si導波路
150,650:溝
210:シリコン基板
212:光導波路
214:光変調器
216:グレーティングカプラ
224:ドライバIC
226:半導体レーザ
414:第1のアーム
415:第2のアーム
416:MOS型光変調器駆動用電極パッド
417:光分岐路
418:光結合路
514:コア層

Claims (7)

  1. 支持基板、BOX層、Si層の3層からなり、MOS型光変調器形成領域およびグレーティングカプラ形成領域を含み、MOS型光変調器形成領域において前記Si層にpドープ処理またはnドープ処理を施したSOI基板を準備する第1工程と、
    前記MOS型光変調器形成領域において、マスクを形成して、エッチングにより、リブ型Si導波路の形状に加工するとともに、前記pドープまたはnドープされたSi層の両端にpドープ領域またはnドープ領域を形成する第2工程と、
    前記MOS型光変調器形成領域におけるリブ型Si導波路の谷部を埋める酸化物クラッド層を形成する第3工程と、
    前記リブ型Si導波路の上面および前記グレーティングカプラ形成領域に誘電体層を形成する第4工程と、
    前記MOS型光変調器形成領域および前記グレーティングカプラ形成領域において、多結晶シリコン層を形成した後、マスクを形成して、エッチングにより、前記多結晶シリコン層を、前記MOS型光変調器形成領域においては上部電極に相応する形状に加工するとともに、前記グレーティングカプラ形成領域においてはグレーティングに相応する多数の溝を形成するよう加工する第5工程と、
    前記MOS型光変調器形成領域において、前記上部電極に相応する形状に加工された多結晶シリコン層をドープ処理してnドープ多結晶シリコンまたはpドープ多結晶シリコンを形成し、前記nドープ多結晶シリコンまたはpドープ多結晶シリコンの表面層にマスクを形成しドープ処理してnドープ多結晶シリコンまたはpドープ多結晶シリコンを形成する第6工程と、
    前記MOS型光変調器形成領域および前記グレーティングカプラ形成領域において、上部クラッド層を形成し、前記上部クラッド層により前記グレーティングカプラ形成領域における前記グレーティングに相応する多数の溝を埋める第7工程と、
    前記MOS型光変調器形成領域において、前記pドープ領域およびnドープ多結晶シリコン上あるいは前記nドープ領域およびpドープ多結晶シリコン上の前記上部クラッド層に電極取り出しのためのコンタクトホールを形成し、前記コンタクトホール内に電極コンタクト層及びビア配線を形成する第8工程と、
    を含むことを特徴とするMOS型光変調器及びグレーティングカプラの製造方法。
  2. 請求項1に記載の製造方法において、前記比較的薄い誘電体層の上に積層される層を、多結晶シリコン層に代えて単結晶シリコン層としたことを特徴とする製造方法。
  3. 請求項1または2に記載の製造方法において、前記第3工程は、MOS型光変調器形成領域において、SiO膜を酸化物クラッド層として積層し、CMP(chemical−mechanicalpolishing process)により、リブ型Si導波路の表面層が露出するように平坦化を行うことを特徴とする製造方法。
  4. 請求項3に記載の製造方法において、前記マスクとして用いられるSiN等のハードマスクを前記CMPのエッチストッパとして用いることを特徴とする製造方法。
  5. 請求項1〜4のいずれか1項に記載の製造方法において、前記MOS型光変調器形成領域に、複数のMOS型光変調器を含むマッハ・ツェンダー干渉計型光強度変調器を形成することを特徴とする製造方法。
  6. 請求項5記載の製造方法において、前記マッハ・ツェンダー干渉計型光強度変調器は、MOS型光変調器をそれぞれ含む第1のアームおよび第2のアームが平行に配置され、前記第1のアーム4および第2のアームに、それぞれ、MOS型光変調器駆動用電極パッドが設けられており、前記第1のアームおよび第2のアームには、入力側で結合する光分岐路と、出力側で結合する光結合路が接続され、これにより、前記第1のアームおよび第2のアームで光信号の位相変調が行われ、前記光結合路により位相干渉が行われることにより、光強度変調信号に変換されることを特徴とする製造方法。
  7. 請求項5または6に記載の製造方法において、上記マッハ・ツェンダー干渉計型光強度変調器は、複数連結されるか、複数、並列、又は、直列に配置されるか、または、直列と並列の両方の配置を併用されていることを特徴とする製造方法。
JP2014000777A 2014-01-07 2014-01-07 Mos型光変調器及びグレーティングカプラの製造方法 Pending JP2015129828A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014000777A JP2015129828A (ja) 2014-01-07 2014-01-07 Mos型光変調器及びグレーティングカプラの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014000777A JP2015129828A (ja) 2014-01-07 2014-01-07 Mos型光変調器及びグレーティングカプラの製造方法

Publications (1)

Publication Number Publication Date
JP2015129828A true JP2015129828A (ja) 2015-07-16

Family

ID=53760600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014000777A Pending JP2015129828A (ja) 2014-01-07 2014-01-07 Mos型光変調器及びグレーティングカプラの製造方法

Country Status (1)

Country Link
JP (1) JP2015129828A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032708A (ja) * 2015-07-30 2017-02-09 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
JP2018180332A (ja) * 2017-04-14 2018-11-15 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032708A (ja) * 2015-07-30 2017-02-09 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN106405970A (zh) * 2015-07-30 2017-02-15 瑞萨电子株式会社 半导体器件及其制造方法
US10466415B2 (en) 2015-07-30 2019-11-05 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
CN106405970B (zh) * 2015-07-30 2021-04-30 瑞萨电子株式会社 半导体器件及其制造方法
JP2018180332A (ja) * 2017-04-14 2018-11-15 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法

Similar Documents

Publication Publication Date Title
CN102741720B (zh) 具有采用水平电场的调制器的光学器件
JP6628028B2 (ja) 半導体発光装置及び光送受信器
US9176291B2 (en) Grating coupler for inter-chip optical coupling
KR101591847B1 (ko) 효율적인 실리콘-온-인슐레이터 격자 결합기
JP5455955B2 (ja) リング光変調器
TWI480605B (zh) 光波導與耦合器裝置和方法以及其製造方法
US10466415B2 (en) Semiconductor device and method of manufacturing the same
Beals et al. Process flow innovations for photonic device integration in CMOS
JP5752629B2 (ja) アサーマル・リング光変調器
US9880405B2 (en) Slow-light silicon optical modulator
KR20130137448A (ko) 반도체 패키지 및 이를 포함하는 반도체 장치
JPWO2011092861A1 (ja) 光素子
JP6206878B2 (ja) 光半導体装置
US11106061B2 (en) Method and system for a low-voltage integrated silicon high-speed modulator
JP2019215488A (ja) 電気光学変調器
JP2014146002A (ja) 光デバイスおよびその製造方法
JP5477148B2 (ja) 半導体光配線装置
Kimerling et al. Scaling computation with silicon photonics
JP6409299B2 (ja) 光変調用素子および光変調器
JP2015129828A (ja) Mos型光変調器及びグレーティングカプラの製造方法
JP2019219619A (ja) 半導体装置およびその製造方法
JP2015129827A (ja) Mos型光変調器及びグレーティングカプラの製造方法
CN110031931B (zh) 半导体器件
CA3145846A1 (en) Assembly of an active semiconductor component and of a silicon-based passive optical component
JP2013047721A (ja) 光変調器および光導波路素子