JP2015121763A - 光学部品 - Google Patents

光学部品 Download PDF

Info

Publication number
JP2015121763A
JP2015121763A JP2014130155A JP2014130155A JP2015121763A JP 2015121763 A JP2015121763 A JP 2015121763A JP 2014130155 A JP2014130155 A JP 2014130155A JP 2014130155 A JP2014130155 A JP 2014130155A JP 2015121763 A JP2015121763 A JP 2015121763A
Authority
JP
Japan
Prior art keywords
main surface
optical component
ceramic member
dichroic film
component according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014130155A
Other languages
English (en)
Other versions
JP6364257B2 (ja
Inventor
野村 勝
Masaru Nomura
野村  勝
大橋 玄章
Haruaki Ohashi
玄章 大橋
柴田 和義
Kazuyoshi Shibata
和義 柴田
山口 省一郎
Shoichiro Yamaguchi
省一郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2014130155A priority Critical patent/JP6364257B2/ja
Priority to EP14192975.2A priority patent/EP2876485A1/en
Priority to US14/542,699 priority patent/US20150138643A1/en
Publication of JP2015121763A publication Critical patent/JP2015121763A/ja
Application granted granted Critical
Publication of JP6364257B2 publication Critical patent/JP6364257B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Filters (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)
  • Projection Apparatus (AREA)

Abstract

【課題】高い光学的精度を有しつつかつ剥離し難いダイクロイック膜を有する光学部品を提供する。
【解決手段】光学部品701はセラミック部材70およびダイクロイック膜71を有する。セラミック部材70には、第1の主面SD1と、第1の主面と反対の第2の主面SD2とが設けられている。セラミック部材70は透光性を有する。セラミック部材70は、粒界部を介して互いに結合した複数の結晶粒を有する。ダイクロイック膜71はセラミック部材の第1の主面SD1上に設けられている。
【選択図】図1

Description

本発明は、光学部品に関し、特に、ダイクロイック膜を有する光学部品に関するものである。
ダイクロイック膜は、特定の波長の光を反射しその他の波長の光を透過する機能、すなわちダイクロイックミラーの機能、を有する膜である。このような機能は光学系においてしばしば求められることから、ダイクロイック膜を含む光学部品は広く用いられている。
たとえば特開2011−197212号公報(特許文献1)によれば、上述した光学部品として、プロジェクタ用の照明装置が有する透過型回転蛍光板(カラーホイール)が開示されている。この回転蛍光板は、円板と、円板上に設けられたダイクロイック膜と、ダイクロイック膜上に設けられた蛍光層とを有する。ダイクロイック膜は、たとえば誘電体多層膜である。円板の材料としては、石英ガラス、水晶、サファイア、光学ガラスおよび透明樹脂が例示されている。
特開2011−197212号公報
従来の技術では、ダイクロイック膜が円板(より一般には透光性部材)から剥離することがしばしばあり得た。特に、光学部品の使用中に大きな温度変化がある場合、熱膨張収縮に起因してこのような剥離が生じ得る。
一般に、剥離を防止するために、膜が形成される表面を粗くする処理(表面粗化)が行われることがある。しかしながら、ダイクロイック膜が形成される表面が単純に粗くされると、その上に形成されるダイクロイック膜の構造が乱れることで、所望の光学的精度が得られないことがあった。
本発明は以上のような課題を解決するためになされたものであり、その目的は、高い光学的精度を有しつつかつ剥離し難いダイクロイック膜を有する光学部品を提供することである。
本発明の一の局面に従う光学部品は、セラミック部材およびダイクロイック膜を有する。セラミック部材には、第1の主面と、第1の主面と反対の第2の主面とが設けられている。セラミック部材は透光性を有する。セラミック部材は、粒界部を介して互いに結合した複数の結晶粒を有する。ダイクロイック膜はセラミック部材の第1の主面上に設けられている。
本発明の他の局面に従う光学部品は、セラミック部材とダイクロイック膜と蛍光層と反射防止膜とを有する。セラミック部材には、焼成(As-fired)面である第1の主面と、第1の主面と反対の、研磨面である第2の主面とが設けられている。セラミック部材は透光性を有する。ダイクロイック膜はセラミック部材の第1の主面上に設けられている。蛍光層はダイクロイック膜上に設けられている。反射防止膜はセラミック部材の第2の主面上に設けられている。
本発明のさらに他の局面に従う光学部品は、セラミック部材とダイクロイック膜と蛍光層と反射防止膜とを有する。セラミック部材には、焼成(As-fired)面である第1の主面と、第1の主面と反対の、焼成(As-fired)面である第2の主面とが設けられている。セラミック部材は透光性を有する。ダイクロイック膜はセラミック部材の第1の主面上に設けられている。蛍光層はダイクロイック膜上に設けられている。反射防止膜はセラミック部材の第2の主面上に設けられている。
本発明の光学部品によれば、ダイクロイック膜は、粒界部を介して互いに結合した複数の結晶粒を有するセラミック部材上に設けられる。各結晶粒の表面は、それが焼成(As-fired)面であっても比較的平坦であり、必要であれば研磨されることでさらに平坦化することも容易にできる。よってセラミック部材の上に形成されるダイクロイック膜の構造の乱れを抑制することができる。これによりダイクロイック膜は、高い光学的精度を有する。一方、焼成面の粒界部の表面には比較的大きな起伏が自然に生じ、それが研磨された場合でも粒界部の表面には容易に起伏が生じる。これらの起伏によるアンカー効果でダイクロイック膜の剥離が抑制される。以上から、ダイクロイック膜の光学的精度を維持しつつ、ダイクロイック膜の剥離を抑制することができる。
本発明の実施の形態1における光学部品の構成を概略的に示す断面図である。 図1のセラミック部材の第1の主面の構成の例を示す部分平面図である。 図2の線IIIA−IIIAに沿う概略部分断面図(A)、図2の線IIIB−IIIBに沿う概略部分断面図(B)、および図2の線IIIC−IIICに沿う概略部分断面図(C)である。 図1の変形例を示す断面図である。 本発明の実施の形態2における光学部品の構成を概略的に示す断面図である。 図5の光学部品の製造方法を概略的に示すフロー図である。 本発明の実施の形態3における光学部品の構成を概略的に示す断面図である。 図7の光学部品の製造方法を概略的に示すフロー図である。 本発明の実施の形態4における発光装置に用いられる光学部品の構成を概略的に示す平面図(A)、および図9(A)の線IXB−IXBに沿う視野での発光装置の構成を概略的に示す断面図(B)である。 本発明の実施の形態5における発光装置の構成を概略的に示す断面図である。 本発明の実施の形態6における発光装置の構成を概略的に示す断面図である。 図11の変形例を示す断面図である。 前方透過率の測定方法の例を示す模式図である。
以下、図面に基づいて本発明の実施の形態について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付しその説明は繰返さない。
(実施の形態1)
図1を参照して、光学部品701は、発光ダイオード(LED)、レーザまたはランプなどの光源からの光を扱う光学系に適用されるものである。セラミック板70(セラミック部材)およびダイクロイック膜71を有する。
セラミック板70には、主面SD1(第1の主面)と、主面SD2(第1の主面と反対の第2の主面)とが設けられている。セラミック板70は、図示されているように、平板形状を有することが好ましい。セラミック板70の厚さ(図中、縦方向の寸法)は、たとえば0.01mm以上5mm以下であり、面積は、四角相当の場合0.1mm×0.1mm以上程度であり、強度確保のため、面積が大きいほど厚さを大きくすることが好ましい。
なお図1においては平板形状を有するセラミック板70をセラミック部材として示すが、セラミック部材は平板形状を有するものに限定されるものではない。セラミック部材は、たとえば、その両主面または一方主面に3次元的な形状を有してもよい。このような形状として、たとえば、曲面形状(凹凸レンズ状)またはその集合体が用いられてもよい。また放熱を目的に、セラミック部材に、冷却フィンの形状が設けられたり、孔部または突起部が設けられてもよい。
セラミック板70は透光性を有する。たとえば、透光性を重視する場合は、前方への前方透過率が30%程度以上であることが好ましく、70%程度以上であることがより好ましい。また透光性に比して、セラミック板70における光の拡散性を重視する場合は、前方透過率が50%程度以上であることが好ましい。ここで拡散性を、以下のように定義する。
拡散性 = 1−直線透過率/前方透過率
セラミック板70の材料としては、酸化アルミニウム、スピネル、PLZT(チタン酸ジルコン酸ランタン鉛)、YAG(イットリウムアルミニウムガーネット)などを利用することができる。なかでも、主成分として酸化アルミニウムを含有するものが好ましい。具体的には、酸化アルミニウムを90%以上含有することが好ましく、99%以上含有することがより好ましい。この場合、セラミック板70の屈折率は、たとえば1.73以上1.77以下程度、熱膨張係数は、たとえば6×10-6/K程度である。
なお上述した「前方透過率」の測定方法については、図13に示すように、入射口を有する積分球101と検出器102とを有する分光光度計(日立ハイテク製、U−4100)を用いて測定した。光源103から特定波長、たとえば波長555nmの単色光を積分球の入射口に固定した透光性基板100(測定試料)の表面に入射させ、測定試料を通過して背面側から積分球内に向かって放射される放射光を検出器によって検出した。前方透過率は、測定試料を通過する可視光を積分球で集光したときの光強度(I)と、測定試料を積分球に固定せずに測定したときの光強度(I0)との比率(=I/I0)より算出した。
ダイクロイック膜71はセラミック板70の主面SD1上に設けられている。ダイクロイック膜71は、具体的には、屈折率が相対的に高い膜(高屈折率膜)と低い膜(低屈折率膜)とが厚さ方向に積層されることによって構成された積層体である。積層体は無機物から作られている。積層体は、誘電体の多層膜とされることが好ましい。たとえば、高屈折率膜としてはTiO2膜(屈折率2.2〜2.5程度)またはTa23(屈折率2〜2.3程度)が用いられ、低屈折率膜としてはSiO2(屈折率1.45〜1.47程度)またはMgF2(屈折率1.38程度)が用いられる。各膜の厚さは、たとえば50nm以上500nm以下である。積層体は高屈折率膜および低屈折率膜の各々を、たとえば5層以上100層以下程度含む。このようにダイクロイック膜71は所望の光学特性を得る上で、通常、ナノメートルオーダーの厚さの多数の膜を有する。このため、ダイクロイック膜71が形成される主面SD1は、ダイクロイック膜71の構造を過度に乱さないものであることが望ましい。なお、多層構造を有するダイクロイック膜の最外層の材料は、その他の層と比べて、より高い硬度を有してもよい。これにより、耐磨耗性などの機械的強度を高めることができる。硬質の材料としてはSiO2が特に望ましい。
図2および図3を参照して、セラミック板70は多結晶構造を有する。すなわちセラミック板70は、図3に示すように、粒界部GBを介して互いに結合した結晶粒CG1〜CG6を含む結晶粒(総称して結晶粒CGともいう)を有する。
結晶粒の平均粒径は0.5〜50μmが好ましい。平均粒径の測定は、たとえば次のように行われる。試料の任意の箇所が光学顕微鏡によって200倍の倍率で観察される。観察された像において、0.7mmの線分上に位置する結晶数Nが数えられる。この場合、平均粒径は、
0.7×(4/π)/N
によって算出され得る。
次に、主面SD1の、特に好適な構成について、以下に説明する。ただし主面SD1の構成は、必ずしもこれに限定されるものではない。
主面SD1は、粒界部GBに沿って延在する粒界領域RBと、粒界領域RBに囲まれ結晶粒CGのそれぞれの上に位置する結晶領域RCとを有する。たとえば、結晶粒CG1〜CG6のそれぞれの上に、粒界領域RBに囲まれた結晶領域RC1〜RC6が位置している。
粒界領域RBの幅は粒界部GBの幅に比して大きい。粒界領域RBは、結晶領域RCの面積よりも小さい面積を有する。主面SD1において、結晶領域RCの面積が90%以上であり、粒界領域RBの面積は10%以下である。粒界領域RBは結晶粒の構成成分を含む非晶質相あるいは、空間(気孔)で構成されている。表面粗さは、Raによって定義し得る。結晶領域RCは、好ましくはRa2000nm以下の表面粗さを有し、より好ましくはRa500nm以下の表面粗さを有する。粒界領域RBは、たとえば、図3(A)〜(C)の3種類の構造に分類され得る。ただし主面SD1はこれら3種類の構造の全てを必ずしも含む必要はない。また、特異的に発生する脱粒部、微細クラックなどの異相部は、光学部品としての機能に悪影響しない範囲であれば存在してもよい。
図3(A)の構造においては、隣り合う結晶領域RC1およびRC2の表面高さはほぼ同じであり、それらの間で粒界領域RBは溝部TRを有する。言い換えると、主面SD1は、互いに隣り合う結晶粒CG1およびCG2の間に溝部TRを有する。溝部は10nm〜2000nmの深さを有することが好ましい。
図3(B)の構造においては、隣り合う結晶領域RC3およびRC4の表面高さがずれており、それらの間で粒界領域RBは側壁SWを有する。言い換えると、主面SD1は、互いに隣り合う結晶粒CG3およびCG4の間に側壁SWを有する。側壁は10nm〜2000nmの高さを有することが好ましい。
図3(C)の構造においては、上述した2つの構造が複合化されている。すなわち、互いに隣り合う結晶粒CG5およびCG6のうち結晶粒CG6の方に、溝部TRから突出した側壁SWが設けられている。
次にセラミック板70の製造方法について説明する。まずAl23の粉末が準備される。この粉末へ微量の焼結助剤が添加されてもよい。次にこの粉末が成形体とされる。成形方法としては、たとえば、テープ成形法、粉末プレス法、ゲルキャスト法、インプリント法または押し出し法などの成形方法を用いることができる。成形体の形状は、たとえば板状である。あるいは成形体の形状は、レンズ状などの3次元構造であってもよい。特に、板状形状の場合はテープ成形法が、単純な3次元構造の場合は粉末プレス法が、複雑または肉厚な構造の場合はゲルキャスト法またはインプリント法が適用されることが望ましい。次にこの成形体が焼成される。焼成は大気中で行い得るが、透光性を重視する場合は、好ましくは、予め大気中で70%程度の密度まで仮焼した後、水素雰囲気中で行うことが好ましい。また、結晶粒子径調整および焼結性制御の少なくともいずれかのために焼成工程において露点が管理されることが好ましく、特に−30℃〜+40℃に管理されることが好ましい。特に、水素雰囲気中焼成において、露点管理することがより好ましい。次に、必要に応じて、焼成された成形体の表面が研磨されることで、主面SD1が設けられる。またさらに、必要に応じて同様な研磨をすることで、主面SD2が設けられる。これによりセラミック板70が得られる。また、拡散性を重視する場合は、セラミック板70は内部にごく少量、たとえば体積で1ppm〜1000ppmの気孔を含有することが好ましい。
研磨方法としては、機械研磨をすることで平坦面を得た後、CMP(Chemical Mechanical Polishing)によって所定の表面粗さとすることが好ましい。CMP条件として、粒界部GBが削られやすい条件を用いることで、結晶領域RCの各々の平坦性を向上させつつ、粒界領域RBに十分に大きな起伏を容易に設けることができる。これら研磨を容易に行うことができる点で、セラミック板70は平板形状を有することが好ましい。
なお上記研磨は必ずしも必要ではなく、特に透光性部材の光の拡散性を重視する場合などにあっては、焼成(As-fired)面が適用されることが望ましい。また、焼成面の表面粗さは、セラミック組成、焼結助剤、または焼成条件などによって制御することができ、その表面粗さRaは0.01〜10μmとされることが好ましい。
本実施の形態によれば、ダイクロイック膜71は、粒界部GBを介して互いに結合した結晶粒CGを有するセラミック板70上に設けられる。粒界部GBの表面(粒界領域RB)は容易に起伏が生じるので、いわゆるアンカー効果により、ダイクロイック膜71の剥離が抑制される。特にダイクロイック膜71が設けられるセラミック板70の主面SD1が焼成面である場合、アンカー効果がより有効に作用することで、ダイクロイック膜71の剥離がより抑制される。一方、各結晶粒CGの表面(結晶領域RC)は、それが焼成(As-fired)面であっても比較的平坦であり、必要であれば研磨されることで容易にいっそう平坦化され得るものであり、かつ主面SD1のうち大きな割合を占める。よってその上に形成されるダイクロイック膜71の構造の乱れは小さい。よってダイクロイック膜71は、高い光学的精度を有し得る。以上から、ダイクロイック膜71の光学的精度を大きく損なうことなく、ダイクロイック膜71の剥離を抑制することができる。
上記の剥離の抑制作用は、図3(A)または(C)に示すように溝部TRが設けられることで特に高くなる。特に後者の場合、溝部TRに側壁SWがさらに付加されることで、効果がより高められる。このような構造を有する面は、適宜、CMP面、機械研磨面、焼成面およびそれらの組み合わせとした面によって形成され得る。
また本実施の形態によれば、主面SD1のほとんどが高い平坦性を有する結晶領域RCによって占められていても、セラミック板70の内部における粒界部GBに起因した散乱によって、セラミック板70を透過する光を適度に拡散させることができる。特に光源にレーザが用いられる場合、この拡散によってスペックルノイズを低減することができる。特に、拡散性を重視する場合は、平均結晶粒子径は0.5〜10μmとすることが好ましい。さらに、拡散性を重視する場合は、主面SD1およびSD2のうち一方の表面粗さをRaが0.001〜20μmの範囲において、他方の表面粗さよりも大きくすることが望ましい。殊に、ダイクロイック膜71などの膜が成膜されない方の主面の表面粗さを大きくすれば、膜の性能を損なうことが少ないので好ましい。
(変形例)
図4を参照して、光学部品701Vは、セラミック板70の主面SD2上に設けられた反射防止膜72を有する。主面SD2は、上記で詳述した主面SD1と同様のものとされる。反射防止膜72は、たとえばMgF2膜を含む。
本変形例によれば、剥離し難いダイクロイック膜71だけでなく、剥離し難い反射防止膜72も設けることができる。ここで、反射防止膜72とは、LED、LD(レーザダイオード)などの光源の出力波長に対して低反射となるように設計された膜のことをいう。
(実施の形態2)
図5を参照して、光学部品702は、ダイクロイック膜71上に配置された蛍光層73を有する。蛍光層73は蛍光体粒子を含むことが好ましい。蛍光層73の厚さは5〜500μmが好ましい。蛍光体粒子の平均粒子径は、50μm以下が好ましく、2〜30μmであることがより好ましく、5〜30μmであることがさらに好ましい。平均粒子径が過度に小さいと(たとえば2μm未満)粉末の取り扱いが困難となり、平均粒子径が過度に大きいと(たとえば30μm超)蛍光層70の均一性が劣ることで発光輝度分布が悪くなる。
蛍光層73に用いられる蛍光体は、無機蛍光体であることが好ましい。たとえば、YAGなどの酸化物蛍光体や、窒化物または硫化物蛍光体を用い得る。用いられる蛍光体は、1種類である必要は無く、目的とする発光色をうるため、複数の色からなる蛍光体を混合して利用できる。また、その混合の比率についても、設計する発光色により適宜調整され得る。
蛍光層73は、蛍光体粒子を結合する結合剤として、ガラスまたは樹脂を含有することが好ましく、耐久信頼性、耐熱性、耐光性または高放熱性の観点から無機ガラスを含有することが特に好ましい。低温度での焼成には、無機ガラスとしてPbO系を用いることが好ましい。非PbO系の無機ガラスとしては、たとえばBi23を用い得る。また耐湿性の観点からは、アルカリ金属酸化物およびBi23などを含まないガラスを用いることが望ましい。蛍光体粒子と結合剤との比率は、体積比で95:5から10:90までが好ましく、90:10から30:70までがより好ましい。結合剤の比率が過度に小さいと、蛍光体粒子間の結合力が不足し得る。蛍光体粒子の比率が過度に小さいと、所定の色度を得る為の蛍光層の厚さが過度に大きくなる。よってこれらを考慮して、所定の体積比率にすることが好ましい。蛍光層73は、蛍光層中での適度な光散乱を生じさせる観点で、蛍光層73の全体の体積に対して5〜40体積%の気孔を有することが好ましい。この気孔には、製造工程での熱処理および光学部品702の使用中での熱変化によって蛍光層73とセラミック板70との間に発生する熱歪に基づく応力の大きさを低減(換言すれば吸収)する効果がある。また、無機ガラスは、蛍光層の光散乱に対して有効に作用する。
図6を参照して、光学部品702の製造方法について、以下に説明する。
ステップS10にて、実施の形態1で説明した方法と同様に、セラミック粉末を板形状に成形して焼成工程を経ることで、セラミック板70が形成される。
ステップS20にて、セラミック板70の主面SD1上にダイクロイック膜71が形成される。たとえば、SiO2の蒸着と、TiO2の蒸着とが交互に繰り返される。ステップS30にて、たとえばダイクロイック膜71の形成と同様の方法によって、セラミック板70の主面SD2上に反射防止膜72が形成される。なおステップS20およびS30の順番は逆であってもよい。
ステップS40にて、ダイクロイック膜71上に蛍光層73が形成される。たとえば、蛍光層73の原料としての蛍光体ペーストの層がダイクロイック膜71上にスクリーン印刷またはスピンコートによって形成される。蛍光体ペーストは、有機樹脂を有機溶剤で溶解した有機ビヒクル中に蛍光体粉末およびガラス粉末を分散させることによって準備し得る。
ステップS50にて、この蛍光体ペーストが焼成される。焼成温度は、利用するガラスの軟化点以上であって、蛍光体粒子を互いに結合させるガラス溶融状態を経る温度が望ましい。また、ダイクロイック膜71へ過度の熱ダメージが加わらないように300℃以上900℃以下とすることが好ましい。焼成工程における昇降温速度は、構成膜成分相互間に大きな熱ストレスが加わらないよう、過度に大きくされないことが望ましい。適宜、ガラスへかかる応力が緩和される昇降温速度が選定される。
以上により光学部品702が得られる。
なお上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
本実施の形態によれば、ダイクロイック膜71および蛍光層73がセラミック板70の主面SD1上に配置される。これにより、蛍光層73からダイクロイック膜71の方へ発せられた蛍光は、セラミック板70を透過することなく、ダイクロイック膜71によって蛍光層73の方へ戻される。よって、セラミック板70を透過することによる減衰なしに、上記蛍光を蛍光層73の方へ戻すことができる。
たとえば、青色の入射光を利用して、蛍光体で黄色を発光させて白色を取り出すLEDの場合を想定して、以下においてより詳細に説明する。
ダイクロイック膜71は、青色以外を高率に反射するように設計される。主面SD2から入る青色の入射光は、セラミック板70によって入射光が拡散し光散乱されて広がりながらダイクロイック膜71を透過して蛍光層73中の蛍光体粒子に到達する。蛍光体粒子に到達した青色光により励起されることで、蛍光体粒子は黄色光を発光する。仮にダイクロイック膜71がないとすると、蛍光体からの発光のうち一部が、セラミック板70を透過して無駄になる。これに対して本実施の形態のようにダイクロイック膜71が設けられる場合、それによって再度蛍光層73側に光が戻される。この戻された黄色光は、青色の入射光と混合されて白色光をなし、蛍光層73のダイクロイック膜71と反対側に出射される。これにより、白色となるトータル発光量が大幅に改善される。
またダイクロイック膜71が形成されるセラミック板70の主面SD1が焼成(As-fired)面とされる場合は、蛍光層73で発光する光が全方向に向かうため、焼成面上に形成されたダイクロイック膜71は、研磨面ではなく焼成面上に形成されることに起因したダイクロイック膜71の構造の乱れを有しつつも、研磨面上に形成されたダイクロイック膜71と実質的に同程度に機能し得る。この理由は、ダイクロイック膜71の構造の乱れによる影響が、光の反射に対してと、光の透過に対してとで異なり、反射に対しての影響の方がより小さいから、と考え得る。
一方、反射防止膜72が形成される主面SD2は、反射防止膜72の本来の機能を十分に発現させるためには、研磨面であることが好ましい。なぜならば、光が透過する面となる主面SD2への入射光の方向は一定とされる場合が多く、主面SD2はこの一定方向に対して所定の角度(たとえば90°)をなす鏡面に近いことが望ましいためである。
以上から、主面SD1を焼成面とし、かつ主面SD2を研磨面とする組み合わせが、多くの場合、好ましい組み合わせである。これにより、ダイクロイック膜71、反射防止膜72および蛍光層73の各々の実質的な光学的性能を十分に確保しつつ、従来より高い付着強度を確保することができる。
むろん主面SD2は研磨面に限定されるものではなく、焼成面であってもよい。この場合、反射防止膜72の付着強度がさらに向上する。なお、焼成面上に形成された反射防止膜72も、研磨面上に形成されたものに比して性能面でやや劣ることはあり得るにしても、反射防止効果を発現させることができる。殊に、セラミック板70の両主面に対して入出射する光の角度が一定ではなくランダムな場合は、焼成面上の膜と研磨面上の膜との性能の差は小さくなる。
(実施の形態3)
図7を参照して、光学部品703は、セラミック板70の主面SD2上に配置された蛍光層73を有する。
図8を参照して、光学部品703の製造方法について、以下に説明する。
ステップS10にて、実施の形態1で説明した方法と同様に、セラミック粉末を板形状に成形して焼成工程を経ることで、セラミック板70が形成される。
ステップS40にて、セラミック板70の主面SD2上に蛍光層73が形成される。具体的には、蛍光層73の原料としての蛍光体ペーストが主面SD2上にスクリーン印刷される。ステップS50にて、このガラスペーストが焼成される。
ステップS20にて、セラミック板70の主面SD1上にダイクロイック膜71が形成される。たとえば、SiO2の蒸着と、TiO2の蒸着とが交互に繰り返される。これにより、光学部品703が得られる。
上記以外の構成については、上述した実施の形態1の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
本実施の形態によれば、ダイクロイック膜71の形成は、蛍光層73の焼成の後に行われる。これにより、蛍光層73の焼成が、ダイクロイック膜71に直接影響を及ぼすことを避けることができる。よって、ダイクロイック膜71の光学特性のばらつきを抑制することができる。また上記焼成に起因したダイクロイック膜71の剥離を避けることができる。
上述したように、本実施の形態においては、ダイクロイック膜71への熱ダメージを考慮することなく、蛍光層73の焼成温度を選択することができる。
(実施の形態4)
図9(A)および(B)を参照して、発光装置901は、プロジェクタ(図示せず)に内蔵されるものであり、カラーホイール701W(光学部品)を有する。カラーホイール701Wは、セラミック板70と、ダイクロイック膜71R、71Gおよび71Bと、反射防止膜72とを有する。本実施の形態においてはセラミック板70は円形形状を有する。ダイクロイック膜71R、71Gおよび71Bの各々は、セラミック板70上に配置されており、ダイクロイック膜71(実施の形態1)とほぼ同様の構成を有する。またダイクロイック膜71R、71Gおよび71Bの各々は、この円形の一部をなす扇形形状を有する。
発光装置901は、上述したカラーホイール701Wに加えて、光源91と、回転駆動部92とを有する。回転駆動部92は、カラーホイール701Wを、その円形形状の中心周りに回転駆動するものであり、たとえば電気モータである。光源91は、カラーホイール701Wの円形形状の中心からずれた位置へ光を入射するものであり、たとえば、LED、レーザまたはランプである。ダイクロイック膜71R、71Gおよび71Bは、互いに異なる反射特性を有している。たとえば、ダイクロイック膜71R、71Gおよび71Bは、そのそれぞれからの透過光が赤、緑および青の3原色となるように構成されている。これによりプロジェクタが必要とする3原色の光を発生することができる。
カラーホイール701Wには、光源91のオン・オフに起因した熱膨張収縮が生じる。このため、仮にダイクロイック膜71R、71Gおよび71Bの各々とセラミック板70との密着性が低いと、ダイクロイック膜71R、71Gおよび71Bが剥離し得る。本実施の形態によれば、実施の形態1で説明したように、ダイクロイック膜71R、71Gおよび71Bの剥離が防止される。
また光源91にレーザが用いられる場合、レーザ光がセラミック板70の粒界によって拡散される。これによりスペックルノイズを低減することができる。
(実施の形態5)
図10を参照して、本実施の形態の発光装置902は、実施の形態2の光学部品702と、実装基板93と、LED94と、ケース95と、充填部96とを有する。実装基板93は、回路パターンおよび外部端子(図示せず)を有する。LED94は、実装基板93に実装されており、たとえば青色LEDである。ケース95は、実装基板93上のLED94を囲んでいる。充填部96は、ケース95内に充填されたものであり、たとえば透明樹脂または不活性ガスである。
光学部品702は、LED94からの光が充填部96を経由して入射するように、ケース95上に設けられている。光学部品702は、セラミック板70の主面SD2がLED94に面するように配置されている。光学部品702の蛍光層73は、その蛍光作用によって、LED94が発する光の波長を変換して発光装置902の外部へ(図中、上方へ)発する機能を有する。ただし、変換された光の一部はLED94の方へ(図中、下方へ)逆行する。ダイクロイック膜71は、この光を発光装置902の外部へ(図中、上方へ)向けて反射することによって、発光装置902の効率を向上させる。たとえば、LED94は青色ダイオードであり、蛍光層73は青色を黄色などのより長波長の光に変換する層である。この構成により発光装置902は白色光を発し得る。
本実施の形態によれば、蛍光層73からの発光(たとえば黄色光)のうち出射方向に対して逆行するものが、ダイクロイック膜71によって出射方向へと反射される。これにより、蛍光層73での発光を発光装置902の外部へ効率よく発射することができる。
(実施の形態6)
図11を参照して、本実施の形態の発光装置903は、実施の形態3の光学部品703と、実装基板93と、LED94と、ケース95と、充填部96とを有する。光学部品703は、セラミック板70の主面SD1がLED94に面するように配置されている。
上記以外の構成については、上述した実施の形態5の構成とほぼ同じであるため、同一または対応する要素について同一の符号を付し、その説明を繰り返さない。
光学部品703には、LED94のオン・オフに起因した熱膨張収縮が生じる。このため、仮にダイクロイック膜71とセラミック板70との密着性が低いと、ダイクロイック膜71が剥離し得る。本実施の形態によれば、実施の形態1で説明したように、ダイクロイック膜71の剥離が防止される。
また本実施の形態によれば、蛍光層73からの発光(たとえば黄色光)のうち出射方向に対して逆行するものが、ダイクロイック膜71によって出射方向へと反射される。これにより、蛍光層73での発光を発光装置902の外部へ効率よく発射することができる。
また実施の形態3で説明した理由により、ダイクロイック膜71の光学特性のばらつきを抑制することができる。これにより発光装置903の発光特性のばらつきを抑制することができる。
(変形例)
図12を参照して、本変形例の発光装置903Vは、ケース95(図11)の代わりにケース95Vを有する。ケース95Vは、光学部品703の縁部を囲むように厚さ方向に突出した部分(図12におけるケース95Vの右上部および左上部)を有する。言い換えれば、ケース95Vは、光学部品703が収められるざぐり部を有する。本変形例によれば、光学部品703がケース95Vにより安定的に保持される。
また本変形例は、図11の構造においてセラミック板70の厚みによって横方向へ出射していた光成分を、縁部の囲み部によりセラミック板70の内部へ戻し発光装置903Vの前方方向に有効に出射することが可能な構造である。
なお図10〜図12の構造にあっては、LED94で発光した光が、光学部品702または703とケース95または95Vの内壁とで多数回反射を繰り返した後にダイクロイック膜71に入射する場合がある。その場合、ダイクロイック膜71への入射光がダイクロイック膜71となす角度は、一定ではなくランダムとなる。
本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。たとえば、LEDは青色に限定されず、緑色、赤色などを利用することが可能であり、また、蛍光体粒子の変換発光波長についても限定されるものではない。
70 セラミック板(セラミック部材)
701,701V,702,703 光学部品
701W カラーホイール(光学部品)
71,71R,71G,71B ダイクロイック膜
72 反射防止膜
73 蛍光層
901〜903 発光装置
91 光源
92 回転駆動部
93 実装基板
94 LED
95 ケース
96 充填部
CG,CG1〜CG6 結晶粒
GB 粒界部
RB 粒界領域
RC,RC1〜RC6 結晶領域
SD1 主面(第1の主面)
SD2 主面(第2の主面)
SW 側壁
TR 溝部

Claims (17)

  1. 第1の主面と前記第1の主面と反対の第2の主面とが設けられ、透光性を有し、粒界部を介して互いに結合した複数の結晶粒を有するセラミック部材と、
    前記セラミック部材の前記第1の主面上に設けられたダイクロイック膜と、
    を備える、光学部品。
  2. 前記第1の主面は、前記粒界部に沿って延在する粒界領域と、前記粒界領域に囲まれ前記結晶粒のそれぞれの上に位置する複数の結晶領域とを有し、前記粒界領域は、前記結晶領域の面積よりも小さい面積を有する、請求項1に記載の光学部品。
  3. 前記第1の主面の前記結晶領域はRa2000nm以下の表面粗さを有する、請求項2に記載の光学部品。
  4. 前記第1の主面の前記結晶領域はRa500nm以下の表面粗さを有する、請求項2に記載の光学部品。
  5. 前記第1の主面は、前記結晶粒のうち互いに隣り合う結晶粒の間に溝部を有する、請求項1〜4のいずれか1項に記載の光学部品。
  6. 前記溝部は10nm〜2000nmの深さを有する、請求項5に記載の光学部品。
  7. 前記互いに隣り合う結晶粒のうちの一方に、前記溝部から突出した側壁が設けられている、請求項5または6に記載の光学部品。
  8. 前記セラミック部材は主成分として酸化アルミニウムを含有する、請求項1〜7のいずれか1項に記載の光学部品。
  9. 前記セラミック部材の前記第2の主面上に設けられた反射防止膜をさらに備える、請求項1〜8のいずれか1項に記載の光学部品。
  10. 前記セラミック部材の前記第2の主面上に設けられた蛍光層をさらに備える、請求項1〜8のいずれか1項に記載の光学部品。
  11. 前記ダイクロイック膜上に設けられた蛍光層をさらに備える、請求項1〜9のいずれか1項に記載の光学部品。
  12. 前記蛍光層は無機ガラスを含有する、請求項10または11に記載の光学部品。
  13. 前記蛍光層は、前記蛍光層の全体の体積に対して5〜40体積%の気孔を有する、請求項10〜12のいずれか1項に記載の光学部品。
  14. 前記蛍光層は、5μm〜30μmの平均粒子径を有する蛍光体粒子を含む、請求項10〜13のいずれか1項に記載の光学部品。
  15. 前記セラミック部材の前記第1の主面は焼成(As-fired)面である、請求項11〜14のいずれか1項に記載の光学部品。
  16. 焼成(As-fired)面である第1の主面と、前記第1の主面と反対の、研磨面である第2の主面とが設けられ、透光性を有するセラミック部材と、
    前記セラミック部材の前記第1の主面上に設けられたダイクロイック膜と、
    前記ダイクロイック膜上に設けられた蛍光層と、
    前記セラミック部材の前記第2の主面上に設けられた反射防止膜とを備える、光学部品。
  17. 焼成(As-fired)面である第1の主面と、前記第1の主面と反対の、焼成(As-fired)面である第2の主面とが設けられ、透光性を有するセラミック部材と、
    前記セラミック部材の前記第1の主面上に設けられたダイクロイック膜と、
    前記ダイクロイック膜上に設けられた蛍光層と、
    前記セラミック部材の前記第2の主面上に設けられた反射防止膜とを備える、光学部品。
JP2014130155A 2013-11-20 2014-06-25 光学部品 Active JP6364257B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014130155A JP6364257B2 (ja) 2013-11-20 2014-06-25 光学部品
EP14192975.2A EP2876485A1 (en) 2013-11-20 2014-11-13 Dichroic film on a ceramic substrate
US14/542,699 US20150138643A1 (en) 2013-11-20 2014-11-17 Optical component

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013239505 2013-11-20
JP2013239505 2013-11-20
JP2014130155A JP6364257B2 (ja) 2013-11-20 2014-06-25 光学部品

Publications (2)

Publication Number Publication Date
JP2015121763A true JP2015121763A (ja) 2015-07-02
JP6364257B2 JP6364257B2 (ja) 2018-07-25

Family

ID=51893910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014130155A Active JP6364257B2 (ja) 2013-11-20 2014-06-25 光学部品

Country Status (3)

Country Link
US (1) US20150138643A1 (ja)
EP (1) EP2876485A1 (ja)
JP (1) JP6364257B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017519240A (ja) * 2014-05-13 2017-07-13 深▲ちぇん▼市繹立鋭光科技開発有限公司 波長変換装置、光源システム及び投影システム
CN107450261A (zh) * 2016-05-31 2017-12-08 佳能株式会社 波长转换元件、光源装置和图像投影装置
WO2018084140A1 (ja) * 2016-11-02 2018-05-11 京セラ株式会社 カラーホイール用基板、カラーホイールおよびプロジェクタならびにカラーホイール用基板の製造方法
US20230176275A1 (en) * 2019-02-15 2023-06-08 Intematix Corporation Color Liquid Crystal Displays and Display Backlights

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230084323A (ko) * 2016-03-02 2023-06-12 마테리온 코포레이션 광적으로 강화된 광 컨버터
WO2020218350A1 (ja) * 2019-04-25 2020-10-29 京セラ株式会社 光学部品
CN114811526A (zh) * 2021-01-18 2022-07-29 深圳市绎立锐光科技开发有限公司 波长转换装置及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261648A (ja) * 1990-03-09 1991-11-21 Agency Of Ind Science & Technol 多結晶アルミナ焼結体の製造方法
US6730421B1 (en) * 1999-05-11 2004-05-04 Hitachi, Maxell, Ltd. Magnetic recording medium and its production method, and magnetic recorder
JP2004146029A (ja) * 2002-08-26 2004-05-20 Hitachi Ltd 垂直磁気記録媒体及びその製造方法ならびにそれを用いた磁気記憶装置
JP2006319149A (ja) * 2005-05-13 2006-11-24 Sony Corp 光源装置およびその製造方法並びに光源装置を用いた表示装置
WO2012014439A1 (ja) * 2010-07-26 2012-02-02 株式会社小糸製作所 発光モジュール
JP2012238654A (ja) * 2011-05-10 2012-12-06 Ngk Insulators Ltd 透光性配線基板およびその製造方法
JP2013203822A (ja) * 2012-03-28 2013-10-07 Nichia Corp 色変換用無機成形体及びその製造方法、並びに発光装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1943459A1 (en) * 2005-10-26 2008-07-16 Koninklijke Philips Electronics N.V. Electric lamp/reflector unit with a moulded reflector
US20080047599A1 (en) * 2006-03-18 2008-02-28 Benyamin Buller Monolithic integration of nonplanar solar cells
JP2010182844A (ja) * 2009-02-05 2010-08-19 Seiko Epson Corp 半導体装置の製造方法、半導体装置、および電気光学装置
JP5617288B2 (ja) 2010-03-18 2014-11-05 セイコーエプソン株式会社 照明装置及びプロジェクター

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03261648A (ja) * 1990-03-09 1991-11-21 Agency Of Ind Science & Technol 多結晶アルミナ焼結体の製造方法
US6730421B1 (en) * 1999-05-11 2004-05-04 Hitachi, Maxell, Ltd. Magnetic recording medium and its production method, and magnetic recorder
JP2004146029A (ja) * 2002-08-26 2004-05-20 Hitachi Ltd 垂直磁気記録媒体及びその製造方法ならびにそれを用いた磁気記憶装置
JP2006319149A (ja) * 2005-05-13 2006-11-24 Sony Corp 光源装置およびその製造方法並びに光源装置を用いた表示装置
WO2012014439A1 (ja) * 2010-07-26 2012-02-02 株式会社小糸製作所 発光モジュール
JP2012238654A (ja) * 2011-05-10 2012-12-06 Ngk Insulators Ltd 透光性配線基板およびその製造方法
JP2013203822A (ja) * 2012-03-28 2013-10-07 Nichia Corp 色変換用無機成形体及びその製造方法、並びに発光装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017519240A (ja) * 2014-05-13 2017-07-13 深▲ちぇん▼市繹立鋭光科技開発有限公司 波長変換装置、光源システム及び投影システム
CN107450261A (zh) * 2016-05-31 2017-12-08 佳能株式会社 波长转换元件、光源装置和图像投影装置
US10775686B2 (en) 2016-05-31 2020-09-15 Canon Kabushiki Kaisha Wavelength conversion element, light source apparatus and image projection apparatus
CN107450261B (zh) * 2016-05-31 2021-02-05 佳能株式会社 波长转换元件、光源装置和图像投影装置
WO2018084140A1 (ja) * 2016-11-02 2018-05-11 京セラ株式会社 カラーホイール用基板、カラーホイールおよびプロジェクタならびにカラーホイール用基板の製造方法
US20230176275A1 (en) * 2019-02-15 2023-06-08 Intematix Corporation Color Liquid Crystal Displays and Display Backlights

Also Published As

Publication number Publication date
EP2876485A1 (en) 2015-05-27
US20150138643A1 (en) 2015-05-21
JP6364257B2 (ja) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6364257B2 (ja) 光学部品
CN109154425B (zh) 光源装置以及照明装置
JP6253392B2 (ja) 発光装置及びそれを用いたプロジェクター用光源
TWI491061B (zh) 冷光裝置
JP6089686B2 (ja) 発光装置
JP2014207436A (ja) 波長変換体
KR20110031994A (ko) 발광 장치를 위한 광학 소자 및 그 제조 방법
KR20170065552A (ko) 난반사 재료, 난반사층, 파장 변환 장치 및 광원 시스템
JP5971148B2 (ja) 蛍光光源装置
JP2017198983A (ja) 波長変換部材および投光器
TWM531657U (zh) 波長轉換裝置
US11474422B2 (en) Reflective color correction for phosphor illumination systems
JP2012064484A (ja) 光源装置
KR20190071671A (ko) 파장 변환 부재, 발광 디바이스 및 파장 변환 부재의 제조 방법
JP2011107508A (ja) 蛍光体フィルタ、蛍光体フィルタの製造方法およびランプ
JP6225663B2 (ja) 光源装置
TWI757521B (zh) 波長轉換構件及發光裝置
JP2017090625A (ja) 光学部品及びその製造方法
JP7090842B2 (ja) 波長変換部材及び発光装置
JP2016062014A (ja) 光学部品
JP2008277341A (ja) 光変換用セラミックス複合体を用いた発光装置
US20220173280A1 (en) Light-transmissive member and method of manufacturing the same, optical member, and light emitting device
WO2020189405A1 (ja) 光学素子、車両用前照灯具、光源装置、および投影装置
JP2017098095A (ja) 発光装置、車両用灯具、ディスプレイ装置、および波長変換装置
JPWO2014010211A1 (ja) 発光モジュール

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180612

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R150 Certificate of patent or registration of utility model

Ref document number: 6364257

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150