JP2015118170A - 定着方法 - Google Patents

定着方法 Download PDF

Info

Publication number
JP2015118170A
JP2015118170A JP2013260376A JP2013260376A JP2015118170A JP 2015118170 A JP2015118170 A JP 2015118170A JP 2013260376 A JP2013260376 A JP 2013260376A JP 2013260376 A JP2013260376 A JP 2013260376A JP 2015118170 A JP2015118170 A JP 2015118170A
Authority
JP
Japan
Prior art keywords
magnetic
rotating body
fixing device
magnetic core
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013260376A
Other languages
English (en)
Inventor
森部 修平
Shuhei Moribe
修平 森部
岡本 直樹
Naoki Okamoto
直樹 岡本
聡司 三田
Satoshi Mita
聡司 三田
中村 邦彦
Kunihiko Nakamura
邦彦 中村
航助 福留
Kosuke Fukutome
航助 福留
宜良 梅田
Nobuyoshi Umeda
宜良 梅田
吉彬 塩足
Yoshiaki Shioashi
吉彬 塩足
井田 哲也
Tetsuya Ida
哲也 井田
橋口 伸治
Shinji Hashiguchi
伸治 橋口
西沢 祐樹
Yuki Nishizawa
祐樹 西沢
康治 内山
Yasuharu Uchiyama
康治 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013260376A priority Critical patent/JP2015118170A/ja
Publication of JP2015118170A publication Critical patent/JP2015118170A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Fixing For Electrophotography (AREA)

Abstract

【課題】 本発明の目的は、尾引きや飛び散りが抑制された高画質な画像が得られる定着方法を提供することにある。
【解決手段】 記録材上の画像の最大通過領域の一端から他端までの区間において、コアの磁気抵抗は、導電層の磁気抵抗と、導電層とコアとの間の領域の磁気抵抗と、の合成磁気抵抗の30%以下である定着装置と磁性トナーを組み合わせる。
【選択図】 図1

Description

本発明は、電子写真法に用いる定着方法に関する。
近年、デジタル複写機、デジタルプリンタといった画像形成装置は、テキスト文字などをプリントする事務処理用というだけでなく、例えば、グラフィックデザイン等の高細密画像の出力用に使われはじめている。そのため、出力画像に、より高精細、高画質な画像が要求されている。
これら画像形成装置の中でも、メンテナンスフリー化や、システムの小規模化に有利という観点から、磁性一成分現像方式を用いた画像形成装置が提案されている。
磁性一成分現像方式では、内部にマグネットロール等の磁界発生手段を設けたトナー担持体(以下、現像スリーブという)を用いて磁性トナーを現像領域に搬送し、現像する。この際、現像スリーブ上の磁性トナーは、磁界の磁力線に沿って、磁気穂を形成し、高密度に詰まった磁気穂の状態で感光体に現像され、その後、記録材へ転写、定着される。
この現像方式においては、潜像に対し、磁気穂でトナーが飛翔するために、トナーが潜像を忠実に再現できないという懸念がある。特に、感光体の回転方向の下流側に静電潜像部からトナーがはみ出る現象(尾引き)が発生する場合がある。
これが、より高精細、高画質な画像が要求される上述したような用途においては、問題となりうる場合がある。
この尾引きという画像弊害に対して、磁性トナーの磁気特性を最適化し、現像時の磁気穂の高さや太さを制御した設計もなされている。(例えば特許文献1)
磁気穂を短く、細くすることで、潜像に対し忠実に再現できる方向にはなるが、穂で現像されていることには変わらず、高画質が求められる用途で用いることを考慮すると、改善の余地は大きい。
特許文献2では、磁性トナーの誘電率および磁性トナー中に含有される磁性酸化鉄の磁化および保持力を規定することにより、磁気穂を制御し、尾引きを抑制させる提案がなされている。しかし、この場合でも、高画質が求められる用途で用いる場合には、さらなる改良の余地は多い。
また、磁性トナー粒子表面の外添剤により、穂を崩すという考え方もあるが、帯電バランスが崩れたり、現像時に、磁性トナー粒子表面から遊離した外添剤により、飛び散りが発生し、画質低下につながる可能性があるため、好ましくない。
このように、磁性一成分現像方式で、高画質が求められる用途においても、満足できる画像を得るには、未だ改善の余地が多い。
特開2006−350309号公報 特開2008−281697号公報
本発明の目的は上記問題点を解消した定着方法を提供することにある。
本発明の目的は、尾引きや飛び散りが抑制された高画質な画像が得られる定着方法を提供することにある。
本発明は、トナーにより形成される記録材上のトナー画像を、加熱加圧手段によって加熱加圧定着して、記録材に定着画像を形成する定着方法において、
前記加熱加圧手段は、加熱部材と、加圧部材とを有する加熱加圧手段であり、
前記加熱部材は、
導電層を有する筒状の回転体と、
前記回転体の内部に配置され、螺旋軸が前記回転体の母線方向と略平行である螺旋形状部を有し、前記導電層を電磁誘導発熱させる交番磁界を形成するためのコイルと、
前記螺旋形状部の中に配置され、前記交番磁界の磁力線を誘導するためのコアと、
を備え、
前記母線方向に関し、記録材上の画像の最大通過領域の一端から他端までの区間において、前記コアの磁気抵抗は、前記導電層の磁気抵抗と、前記導電層と前記コアとの間の領域の磁気抵抗と、の合成磁気抵抗の30%以下であって、
前記トナーは、結着樹脂、磁性体を含有する磁性トナー粒子を有する磁性トナーであることを特徴とする定着方法に関する。
本発明によれば、尾引きや飛び散りが抑制された高画質な画像を提供することができる。
定着フィルムと磁性コアとコイルの斜視図 定着装置1の画像形成装置の概略構成図 定着装置1の定着装置の断面模式図 駆動周波数と出力電力との関係図 ソレノイドコイルと磁性コア周辺の磁界の模式図 ソレノイドコイルの磁性コアの端部近傍の模式図 回路を貫く磁束が安定する領域の模式図 円筒形回転体と磁束が安定する領域の模式図 定着装置1の目的に沿わない磁力線形状の例 有限長ソレノイドを配置した構造体の模式図 単位長さ当たりのコア・コイル・円筒体を含む空間の磁気等価回路図 磁性コアとギャップの模式図 円筒形回転体内部の電流と磁場の断面模式図 渦電流E//の説明図 渦電流E⊥の説明図 定着装置1の構成において電力の変換効率を測定した結果 定着装置2としての誘導加熱方式の定着装置構成 定着装置2の発熱の模式図 定着装置5の定着装置の模式図 コイルとスリーブの等価回路 回路の効率に関する説明図 電力の変換効率の測定実験に用いる実験装置の図 円筒形回転体外部磁束の比率と変換効率の関係の図
従来の穂現像を利用した磁性一成分現像方式は、磁性トナーが、磁気穂で現像されるため、感光体の回転方向の下流側に、静電潜像部からトナーがはみ出る現象(尾引き)が発生しやすい。特に、この尾引きは、横ライン画像で顕著に生じる現象である。
この尾引きを改良するためには、磁性トナーの磁気穂を如何に崩すかが重要であるが、単に、磁性トナーの飽和磁化や残留磁化を低下させる方向は、現像スリーブでの磁気拘束力を低下させる方向でもあり、トナー飛散等の弊害につながる場合もある。
ところで、近年ウォームアップ時間を短縮するために、電磁誘導加熱方式の定着装置が使用されるようになってきた。
この定着装置は、磁界発生手段から発生した磁界で加熱回転体の導電層に誘導された渦電流によって導電層が発熱するものである。このような定着装置は、加熱回転体の導電層として、磁束を通しやすい、厚さが200μm〜1mmの鉄やニッケル等の磁性金属又はこれらが主体の合金を用いている。
通常、この方式の定着装置は、加熱回転体の導電層に、磁束を通す方式をとっている。しかし、この磁束を加熱回転体の外側を通る事ができれば、例え、現像時に尾引きが発生していた画像でも、定着装置から発生する磁束と、未定着画像中の磁気穂とが相互作用し、画質に何らかの影響を及ぼすのではないかと考えた。
そこで、本発明者らは、定着装置の外側を通る磁力線の状態と、磁性トナーの磁気穂との関連を精査し、加熱回転体の外側を通る交番磁界の量が一定量以上となった際に、未定着画像の画質が向上する事を突き止めた。この要因は定かではないが、定着装置の外側を通る、交番磁界が磁性トナーの磁気穂を崩すと同時に、記録材上で再配列させているためではないかと考えている。
定着装置から発生する磁力線の走査方向の詳細に関しては後述するが、本発明の定着装置において、加熱回転体の長手方向の一端を出た磁束は、円筒形回転体の外部を通って加熱回転体の他端に戻る。その際、磁束は記録材の進行方向に対し、ほぼ垂直方向、つまり横ライン画像と平行に磁力線が走る。そのため、横ラインからはみ出した磁気穂を崩し、横ライン上にトナーを再配列する事で、上述する効果につながったものと考えられる。
以下本発明に関して、詳細を説明する。
本発明の定着装置は、導電層を有する筒状の加熱回転体と、前記回転体の内部に配置され、螺旋軸が前記回転体の母線方向と略平行である螺旋形状部とを有する。更に、前記定着装置は、前記導電層を電磁誘導発熱させる交番磁界を形成するためのコイルと、前記螺旋形状部の中に配置され、前記交番磁界の磁力線を誘導するためのコアと、を備える定着装置において、前記母線方向に関し記録材上の画像の最大通過領域の一端から他端までの区間において、前記コアの磁気抵抗は、前記導電層の磁気抵抗と、前記導電層と前記コアとの間の領域の磁気抵抗と、の合成磁気抵抗の30%以下であることを特徴とする。
これは、磁性コアの長手方向の一端を出た磁束のうち円筒形回転体の外部を通って磁性コアの他端に戻る磁束の割合が70%以上である事を表している。
この外部に出る70%以上の磁束が、磁性トナーの磁気穂を再配列させ、画質を向上させるものと考えられる。また、上記のような定着装置構成にする事で、加熱回転体がより均一に発熱されるという効果も得られる。そのため、定着ムラのない均一な画像を得られ、高画質化という観点からもより好ましい形態といえる。
以下、図面に基づき本発明について説明する。
(1)画像形成装置
図2は本実施例に係る画像形成装置100の概略構成図である。本実施例の画像形成装置100は、電子写真プロセスを利用したレーザービームプリンタである。101は像担持体としての回転ドラム型の電子写真感光体(以下、感光体ドラムと記す)であり、所定の周速度にて回転駆動される。
感光体ドラム101は回転する過程において帯電ローラ102により所定の極性、所定の電位、に一様に帯電処理される。103は露光手段としてのレーザービームスキャナである。スキャナ103は、不図示のイメージスキャナやコンピュータ等の外部機器から入力される画像情報に応じて変調したレーザー光Lを出力して、感光体ドラム101の帯電処理した面を走査露光する。この走査露光により感光体ドラム101表面の電荷が除電され感光体ドラム101の表面に画像情報に応じた静電潜像が形成される。104は現像装置であり、現像スリーブ104aから感光体ドラム101表面に磁性トナーが供給されて静電潜像がトナー像として現像される。この際、磁性トナーは磁気穂として、現像される。105は、記録材Pが積載して収納される給紙カセットである。給紙開始信号に基づいて給紙ローラ106が駆動されて給紙カセット105内の記録材Pが一枚ずつ分離して給紙される。その記録材Pは、レジストレーションローラ107を介して、感光体ドラム101と転写ローラ108とで形成された転写部位108T所定のタイミングで導入される。すなわち、感光体ドラム101上のトナー像の先端部が転写部位108Tに到達するタイミングで、記録材Pの先端部が転写部位108Tに到達するようにレジストレーションローラ107で記録材Pの搬送が制御される。転写部位108Tに導入された記録材Pは、この転写部位108Tで搬送され、その間、転写ローラ108は不図示の転写バイアス印加電源によって転写バイアス電圧が印加される。転写ローラ108は磁性トナーと逆極性の転写バイアス電圧が印加されることで転写部位108Tにおいて感光体ドラム101の表面側のトナー像が記録材Pの表面に転写される。転写部位108Tにおいてトナー像が転写された記録材Pは感光体ドラム101の表面から分離されて搬送ガイド109を経由し定着装置Aで定着処理される。定着装置Aについては後述する。一方、記録材が感光体ドラム101から分離した後の感光体ドラム101の表面はクリーニング装置110でクリーニングされ、繰り返し画像形成動作に供される。定着装置Aを通った記録材Pは、排紙口111から排紙トレイ112上に排出される。
(2)定着装置
2−1)概略構成
図3は定着装置1の概略断面図である。定着装置1は、加熱部材と加圧部材とを有する加熱加圧手段により、記録材上の磁性トナーによって形成された画像を加熱加圧定着する定着装置である。具体的構成としては、筒状の加熱回転体しての定着フィルム1(加熱部材)と、定着フィルム1の内面と接触するニップ部形成部材としてのフィルムガイド9(ベルトガイド)と、対向部材としての加圧ローラ7(加圧部材)と、を有する。加圧ローラ7は、定着フィルム1を介してニップ部形成部材と共にニップ部Nを形成する。トナー像Tを担持した記録材Pをニップ部Nを通過させることによって、トナー像Tを加熱し、記録材Pに定着する。
ニップ部形成部材9は、不図示の軸受け手段及び付勢手段により総圧約50〜100N(約5kgf〜約10kgf)の押圧力で加圧ローラ7に対して定着フィルム1を挟んで押圧されている。そして、加圧ローラ7は、不図示の駆動源によって矢印方向に回転駆動され、ニップ部Nにおける摩擦力で定着フィルム1に回転力が作用し、定着フィルム1は加圧ローラ7に従動して回転する。ニップ部形成部材9は、定着フィルム1の内面をガイドするフィルムガイドとしての機能もあり、耐熱性樹脂であるポリフェニレンサルファイド(PPS)等で構成されている。
定着フィルム1(定着ベルト)は、直径(外径)が10〜100mmの金属製の導電層1a(基層)と、導電層1aの外側に形成した弾性層1bと、弾性層1bの外側に形成した表層1c(離型層)と、を有する。以後、導電層1aを「円筒形回転体」又は「円筒体」と記す。定着フィルム1は、可撓性を有する。
実施例1に用いた定着装置1においては、円筒形回転体1aは、比透磁率が1.0で、厚さが20μmのアルミニウムを用いる。円筒形回転体1aの材質としては、非磁性材料であるアルミニウム、銅(Cu)、Ag(銀)及び、オーステナイト系ステンレス(SUS)のうち、少なくとも一つで形成されていることが好ましい。
本定着装置の特徴の一つとして、円筒形回転体1aに使用できる材質の選択肢が広いこと挙げられる。これにより、加工性に優れた材質やコストの安い材質を使うことが出来るというメリットがある。
円筒形回転体1aの厚みは75μm以下、好ましくは50μm以下が良い。なぜなら、円筒形回転体1aに適度な可撓性を持たせ且つ熱容量を小さくしたいためである。直径が小さい方が、熱容量を小さくするのに有利である。
以上の理由により、熱容量の極小化を実現するためには、導電層1aの厚みを50μm以下で使いこなすことが重要である。本発明の定着装置は、後述するが、電磁誘導加熱方式の定着装置においても、導電層1aの厚みを50μm以下にできるというメリットがある。
弾性層1bは、硬度が20度(JIS−A、1kg加重)のシリコーンゴムで形成され、厚みが0.1〜0.3mmである。そして、弾性層1b上に表層1c(離型層)として厚みが10〜50μmのフッ素樹脂チューブを被覆している。磁性コア2は、定着フィルム1の中空部に、定着フィルム1の母線方向に挿通されている。その磁性コア2の外周に励磁コイル3が巻かれている。
2−2)磁性コア
図1は円筒形回転体1a(導電層)と、磁性コア2と、励磁コイル3の斜視図である。
磁性コア2は、円柱形状をしており、不図示の固定手段で定着フィルム1のほぼ中央に配置させている。磁性コア2は、励磁コイル3にて生成された交番磁界の磁力線(磁束)を円筒形回転体1aの内部(円筒形回転体1aと磁性コア2の間の領域)に誘導し、磁力線の通路(磁路)を形成する役割がある。この磁性コア2の材質は、ヒステリシス損が小さく比透磁率の高い材料、例えば、焼成フェライト、フェライト樹脂、非晶質合金(アモルファス合金)、やパーマロイ等の高透磁率の酸化物や合金材質で構成される強磁性体が好ましい。特に21kHz〜100kHz帯の高周波交流を励磁コイルに流す場合、高周波電流において損失の小さな焼成フェライトが好ましい。磁性コア2は、円筒形回転体1aの中空部に収納可能な範囲で、断面積をできるだけ大きくすることが好ましい。本実施例では磁性コアの直径は5mm〜40mmとし、長手方向の長さ230〜300mmとする。尚、磁性コア2の形状は円柱形状に限定されず、角柱形状などでも良い。また、磁性コアを長手方向に複数分割し、各コア間にギャップ(空隙)を設けても良いが、その際は後述する理由により分割した磁性コア同士のギャップを極力小さく構成することが好ましい。
この磁性コア2内部の磁路が適切に形成される事で、磁性コア2の長手方向の一端を出た磁束が、円筒形回転体の外部を通り、磁性コアの他端に戻る本発明の定着装置の磁路が形成されやすくなる。
2−3)励磁コイル
励磁コイル3は、耐熱性のポリアミドイミドで被覆した直径1〜2mmの銅線材(単一導線)を、磁性コア2に約10巻〜100巻で螺旋状に巻いて形成する。本実施例では励磁コイル3の巻き数は18回とする。励磁コイル3は、磁性コア2に定着フィルム1の母線方向に交差する方向に巻回されているため、この励磁コイルに高周波電流を流すと、定着フィルム1の母線方向に平行な方向に交番磁界を発生させることができる。
尚、励磁コイル3は、必ず磁性コア2に巻きつけられている必要はない。励磁コイル3は螺旋形状部を有し、その螺旋形状部の螺旋軸が円筒形回転体の母線方向と平行になるように螺旋形状部が円筒形回転体の内部に配置され、磁性コアが螺旋形状部の中に配置されていれば良い。例えば、円筒形回転体の内部に励磁コイル3が螺旋状に巻かれたボビンを有し、磁性コア2がそのボビンの内部に配置されている構成でも良い。
また、発熱原理的に螺旋軸と円筒形回転体の母線方向が平行である時に、発熱効率は最も高くなる。しかしながら、螺旋軸の円筒形回転体の母線方向に対する平行度がずれた場合、「回路を平行に貫く磁束の量」がわずかに減少し、その分発熱効率が減少するものの、数度程度傾くだけであれば、実用上全く問題はない。
この励磁コイル3によって、上述した磁性コア2内部の磁路が適切に形成される。
2−4)温度制御手段
図1における温度検知部材4は、定着フィルム1中央部の表面温度を検知するために設けられる。本実施例では、温度検知部材4として非当接型サーミスタを用いている。高周波コンバータ5は、励磁コイル3に、給電接点部3a、3bを介して高周波電流を供給する。なお、日本国内では電波法施行規則により電磁誘導加熱の利用周波数は20.05kHzから100kHzの範囲に定められている。また、電源の部品コスト上、周波数は低いことが好ましいため、利用周波数帯の下限付近21kHz〜40kHzの領域において周波数変調制御を行う。以下周波数変調制御について説明する。共振回路を用いて誘導発熱を行う電磁誘導方式においては図4のグラフのように、駆動周波数により出力電力が変化する。これは、駆動周波数が共振周波数と一致するときに電力は最大となり、駆動周波数が共振周波数から遠ざかると電力が下がるという性質を利用したものである。すなわち、目標温度と温度検知部材4の温度差に応じて、駆動周波数を21kHz〜100kHzまで変化させることにより、出力電力を調整するという方法である。制御回路6は、温度検知部材4によって検出された温度を基に高周波コンバータ5を制御する。これにより、定着フィルム1は電磁誘導加熱されて表面の温度が所定の目標温度(約150℃〜200℃)になるように電力が制御される。
(3)発熱原理
3−1)磁力線の形状と誘導起電力
図5(a)は、同形状のソレノイドコイル3の中心に磁性コア2を挿通して磁路を形成した場合の、コイル形状と磁界の対応図である。本磁力線の向きは、矢印Iの向きに電流が増加している瞬間である。磁性コア2は、ソレノイドコイル3にて生成された磁力線を内部に誘導し、磁路を形成する部材として機能する。定着装置1の磁性コア2は、環状になっているものではなく、長手方向にそれぞれ端部を有するものである。そのため、磁力線は、大多数がソレノイドコイル中央の磁路に集中して通って、磁性コア2の長手方向の端部において拡散する形状の開磁路となる。そのため、コイルの隙間Δdにおける磁力線の漏えいも少なく、両極から出た磁力線は、外周の遥か遠くで繋がる形状の開磁路となる(図の表記上は端部で途切れている)。
このコイルの隙間Δdにおける磁力線の漏えいの少ない開磁路によって、未定着画像の磁気穂が崩れやすい状況が生まれる。
図5(b)は、ソレノイド中心軸Xにおける磁束密度の分布を示す。磁束密度は、グラフ上の曲線B2に示すように、B1と比較してソレノイドコイル3の端部での磁束密度の減衰が少なくなっており、台形に近い形状となる。
3−2)誘導起電力
まず初めに、定着装置としての発熱原理に関して説明する。
発熱原理はファラデーの法則に従う。ファラデーの法則とは、「回路の中の磁界を変化させると、その回路の中に電流を流そうとする誘導起電力が生じ、誘導起電力は回路を垂直に貫く磁束の時間変化に比例する」というものである。図6(a)に示すソレノイドコイル3の磁性コア2の端部近傍に、コイルと磁性コアより直径の大きな回路Sを置き、コイル3には高周波交流を流す場合を考える。高周波交流を流した場合、ソレノイドコイル周辺には交番磁界(時間と共に大きさと方向が変化を繰り返す磁界)が形成される。その時、回路Sに発生する誘導起電力は、以下の式(1)に従い、ファラデーの法則より回路Sの中を垂直に貫く磁束の時間変化に比例する。
V:誘導起電力
N:コイル巻き数
ΔΦ/Δt:微小時間Δtでの回路を垂直に貫く磁束の変化
すなわち、励磁コイルに直流電流を流して静磁界を形成した状態において、回路Sの中を磁力線の垂直成分がより多く通過していると、高周波の交流電流を流して交番磁界を発生させた時の際の磁力線の垂直成分の時間変化も大きくなる。その結果、発生する誘導起電力も大きくなり、その磁束の変化を打ち消す方向に電流が流れる。すなわち、交番磁界を発生させた結果、電流が流れると、磁束の変化は打消されて静磁界を形成した際とは異なる磁力線形状となる。また、この誘導起電力Vは、交流電流の周波数が高い(すなわちΔtが小さい)ほど大きくなる傾向がある。したがって、50〜60Hzの低周波数の交流電流を励磁コイルに流した場合と、21kHz〜100kHzの高周波数の交流電流を励磁コイルに流した場合では、所定の磁束の量で発生させることのできる起電力は大きく異なる。交流電流の周波数を高周波数にすると、少ない磁束でも高い起電力を発生させることが出来るのである。従って、交流電流の周波数を高周波数することは、断面積の小さな磁性コアで大きい熱量を発生させることができるため、小さな定着装置に大きな熱量を発生させたい場合に非常に有効である。これは、交流電流の周波数を大きくすることによって、トランスを小型化できることと似ている。例えば、低周波数帯(50〜60Hz)で用いられるトランスは、Δtが大きい分だけ磁束Φを大きくする必要があり、磁性コアの断面積を大きくする必要がある。これに対して高周波数帯(kHz)で用いられるトランスは、Δtが小さい分だけ磁束Φを小さくすることが可能であり、磁性コアの断面積を小さく設計することができる。
以上述べたことから、交流電流の周波数を21kHz〜100kHzの高周波数帯で用いることで、磁性コアの断面積を小さくして画像形成装置の小型化を実現することができる。
交番磁界によって高効率で回路Sに誘導起電力を発生させるためには、回路Sの中を磁力線の垂直成分がより多く通過している状態を設計する必要がある。しかし、交番磁界においては、コイルに誘導起電力が発生した際の反磁界の影響等も考慮する必要があり、現象が複雑となってしまう。
本発明で用いられる定着装置については後述するが、定着装置を設計するためには、誘導起電力の発生していない静磁界の状態の磁力線の形によって議論を進めることによって、より簡単な物理モデルで設計を進めることが出来る。すなわち静磁界における磁力線形状を最適化することによって、交番磁界において高効率に誘導起電力を発生させる定着装置が設計できる。
図6(b)は、ソレノイド中心軸Xにおける磁束密度の分布を示す。コイルに直流電流を流して静磁界(時間的に変動しない磁界)を形成した場合を考えると、回路Sを位置X1に置いたときの磁束に対して、位置X2に置いたときに、回路Sを垂直に貫く磁束はB2に示すように増加する。そして位置X2において、磁性コア2に束縛された磁力線がほぼ全て回路Sの中に納まり、位置X2よりもX軸正方向の安定領域Mにおいては、回路を垂直に貫く磁束は飽和し、常に最大となる。同様のことは反対側端部にも言え、図7(b)の磁束密度の分布に示すように位置X2から、反対側端部のX3までの安定領域Mは、回路Sの中を垂直に貫く磁束密度は飽和し、安定している。図7(a)に示すように、この安定領域Mは、磁性コア2のある領域内に存在する。
図8(a)に示すように、本発明における磁力線構成としては、静磁界を形成した場合において円筒形回転体1aを、X2からX3の領域で覆せる。そして磁性コア2の一端(磁極NP)から他端(磁極SP)まで、円筒形回転体の外部を磁束が通る磁力線の形状を設計する。そうする事で、未定着画像の磁気穂が崩れやすい状況が生まれる。
また、本発明の定着装置では、安定領域Mを用いて記録材の画像を加熱している。従って、本発明の定着装置においては、少なくとも磁路を形成するための磁性コア2の長手方向の長さは、記録材Pの最大の画像加熱領域ZLよりも長い構成とする必要がある。
更に好ましい構成としては、磁性コア2と励磁コイル3の両方の長手方向の長さを最大の画像加熱領域ZLよりも長い構成とすると良い。そうすることによって、記録材P上のトナー像を端部まで均一に加熱することが可能となるからである。
また、円筒形回転体1aの長手方向の長さは、最大の画像加熱領域ZLより長く構成することが必要である。本定着装置において、図8(a)に示すソレノイド磁場を形成した際に、2つの磁極NPとSPが最大の画像加熱領域ZLよりも外側に出ていることが重要である。そうすることによって、ZLの範囲の磁性トナーの磁気穂に対し、均一な磁束を与えることができる。
尚、最大の画像加熱領域の代わりに記録材の最大搬送領域を用いても良い。
本定着装置では、磁性コア2の長手方向の両端部がそれぞれ、定着フィルム1の母線方向の端面から外側に突出している。これによって、定着フィルム1の母線方向全域の発熱量を安定させ、なおかつ、未定着画像全面に均一な磁束を与えることができる。
従来の電磁誘導加熱方式の定着装置は、円筒形回転体の材料内部に磁力線を注入するという技術思想で設計されている。これに対して、本定着装置の電磁誘導加熱方式は回路Sを垂直に貫く磁束が最大となる状態で、円筒形回転体の全域を発熱させる、つまり、円筒形回転体の外部を磁束が通るようにするという技術思想で設計されていることが特徴である。
以下に、本発明の目的に沿わない磁力線形状の例を3つ示す。
図9(a)は、磁力線が円筒形回転体の内側(円筒形回転体と磁性コアの間の領域)を通っている例を示す。この場合、磁力線は未定着画像に何ら影響を与えない。
さらに、円筒形回転体の内側を通る磁束は、図中で左方向に向かう磁束と右方向に向かう磁束とが混在するため、両者は打ち消し合ってファラデーの法則上、Φの積分値は減少してしまい、発熱効率が減少するため好ましくない。
このような磁力線形状は、磁性コアの断面積が小さい場合、磁性コアの比透磁率が小さい場合、磁性コアが長手方向に分割して大きなギャップを形成している場合、円筒形回転体の直径が大きい場合に生じる。
図9(b)は、磁力線が円筒形回転体の材料内部を通っている例を示す。このような状態は、円筒形回転体の材質がニッケルや鉄などの比透磁率の高い材質である場合に生じやすい。この場合は、定着ニップ部でのみ、磁力線の影響を未定着画像の磁性トナーに与える可能性はある。しかしながら、円筒回転体外部を通る磁力線がほとんどない事、さらに、定着ニップ部は、極短時間の上、同時に熱による定着も行われため、磁性トナーが再配列する前に、定着される事となり、画質改善にはつながらない。
以上述べたことから、本発明の目的に沿わない磁力線形状は、下記の(I)〜(V)の場合に形成され、これは円筒形回転体の材料内部に発生する渦電流損によるジュール熱で発熱する従来の定着装置である。
(I)円筒形回転体の材質の比透磁率が大きい
(II)円筒形回転体の断面積が大きい
(III)磁性コアの断面積が小さい
(IV)磁性コアの比透磁率が小さい
(V)磁性コアが長手方向に分割して大きなギャップを形成している
図9(c)は、磁性コアが長手方向に複数に分割されていて磁性コアの両端部NP、SP部分以外の箇所MPにおいても磁極ができている場合である。本発明の目的を達成するためには、NPとSPの2つのみを磁極とするよう磁路を形成するのが好ましく、磁性コアを長手方向で複数に分割して磁極MPを作ることは好ましくない。これは、磁極MP部で磁力線が途切れることで、この領域での磁力線の影響を磁性トナーに与えらず、磁性トナーの部分的な再配列にしかつながらないためである。
分割する場合は、磁性コアが十分磁路として働くよう、磁気抵抗を小さく、パーミアンスを大きく保てる範囲に限られる。
3−3)磁気回路とパーミアンス
次に、3−2に説明した磁力線形状を達成するための、具体的な設計指針について説明する。そのためには、定着装置の各構成部品の円筒形回転体の母線方向への磁気の通りやすさを、形状係数によって表現する必要がある。その形状係数は、「静磁界における磁気回路モデル」の「パーミアンス」を用いる。まず、一般的な磁気回路の考え方について説明する。磁束が主として通る磁路の閉回路を、電気回路に対して磁気回路という。磁気回路において磁束を計算する際、電気回路の電流の計算に準じて行うことが出来るものである。磁気回路の基礎計算式は、電気回路に関するオームの法則と同一であり、全磁束をΦ、起磁力をV、磁気抵抗をRとすると、この3つの要素は
全磁束Φ=起磁力V/磁気抵抗R・・・・・(2)
の関係にある(従って、電気回路における電流は磁気回路における全磁束Φと対応し、電気回路における起電力は磁気回路における起磁力Vと対応し、電気回路における電気抵抗は磁気回路における磁気抵抗と対応する)。しかし、ここでは原理をより理解しやすく説明するために磁気抵抗Rの逆数であるパーミアンスPを用いて説明する。従って上記(2)は
全磁束Φ=起磁力V×パーミアンスP・・・・・(3)
で置き換えられる。このパーミアンスPは、磁路の長さをB、磁路の断面積をS、磁路の透磁率をμとした時、
パーミアンスP=透磁率μ×磁路断面積S/磁路長B・・・・・(4)
で表される。パーミアンスPは、磁路長Bが短く、磁路断面積S及び透磁率μが大きい程大きくなることを示し、パーミアンスPが大きい部分に磁束Φがより多く形成される。
図8(a)に示すように、静磁界において磁性コアの長手方向の一端から出る磁力線の大部分が円筒形回転体の外部を通って磁性コアの他端まで戻るように設計する。その設計の際は、定着装置を磁気回路に見立て、「磁性コア2のパーミアンスは十分大きく、かつ円筒形回転体と円筒形回転体の内側のパーミアンスが十分小さい状態」にすれば良い。
図10において、円筒形回転体(導電層)を円筒体と記す。図10(a)は、円筒体1a内部に、半径:a1[m]、長さ:B[m]、比透磁率:μ1の磁性コア2に、巻き数:N[回]の励磁コイル3を巻いた有限長ソレノイドを配置した構造体である。ここで、円筒体は、長さ:B[m]、円筒内側半径:a2[m]、円筒外側半径:a3[m]、比透磁率:μ2の導体である。円筒体内側および外側の真空の透磁率:μ0[H/m]とする。ソレノイドコイルに電流:I[A]を流したときに、磁性コアの任意の位置の単位長さ当たりに発生する磁束8をφc(x)とした。
図10(b)は、磁性コア2の長手方向に垂直な断面を拡大した図である。図中の矢印は、ソレノイドコイルに電流:Iを流したときに、磁性コアの内部、円筒体内外の空気、及び、円筒内を通る磁性コアの長手方向に平行な磁束を表している。磁性コア中を通る磁束をφc(=φc(x))、円筒体の内側の空気中を通る磁束をφa_in、円筒体内を通る磁束をφcy、円筒体外側の空気中を通る磁束をφa_outとしている。
図11(a)に、図10(b)に示した単位長さ当たりのコア・コイル・円筒体を含む空間の磁気等価回路を示す。磁性コアを通る磁束φcにより生じる起磁力をVm、磁性コアのパーミアンスをPc、円筒体の内側の空気中のパーミアンスをPa_in、円筒体内のパーミアンスをPcy、円筒体外側の空気のパーミアンスをPa_outとしている。
円筒体内部または円筒体のパーミアンスPa_in、Pcyに比べて磁性コアのパーミアンスPcが十分大きい時、以下の関係が成り立つ。
φc=φa_in+φcy+φa_out ・・・・・(5)
すなわち、磁性コアの内部を通過した磁束は、φa_in、φcy、φa_outの何れかを必ず通過して磁性コアに戻ってくることを意味する。
φc=Pc・Vm ・・・・・(6)
φa_in=Pa_in・Vm ・・・・・(7)
φcy=Pcy・Vm ・・・・・(8)
φa_out=Pa_out・Vm ・・・・・(9)
よって、(5)に(6)〜(9)を代入すると下記のようになる。
Pc・Vm=Pa_in・Vm+Pcy・Vm+Pa_out・Vm
=(Pa_in+Pcy+Pa_out)・Vm
∴Pc−Pa_in−Pcy−Pa_out=0 ・・・・・(10)
図10(b)より、磁気コイルの断面積:Sc、円筒体内側空気の断面積:Sa_in、円筒体の断面積:Scyとすると、各領域の単位長さ当たりのパーミアンスは以下のように、「透磁率×断面積」で表すことができ、単位は[H・m]である。
Pc=μ1・Sc=μ1・π(a1) ・・・・・(11)
Pa_in=μ0・Sa_in=μ0・π・((a2)−(a1)) ・・・(12)
Pcy=μ2・Scy=μ2・π・((a3)−(a2)) ・・・・(13)
更に、Pc−Pa_in−Pcy−Pa_out=0であるから、円筒体外側空気中のパーミアンスは次のように表すことができる。
Pa_out=Pc−Pa_in−Pcy
=μ1・Sc−μ0・Sa_in−μ2・Scy
=π・μ1・(a1)
−π・μ0・((a2)−(a1)
−π・μ2・((a3)−(a2)) ・・・・・(14)
各領域を通る磁束は、式(5)〜式(10)に示すように、各領域のパーミアンスに比例する。式(5)〜(10)を用いれば、後述する表1のように各領域を通る磁束の比率を算出することができる。尚、円筒体の中空部に、空気以外の材質が存在していた場合も、その断面積と透磁率から、円筒体内の空気と同じ方法でパーミアンスを求めることが出来る。この場合のパーミアンスの計算の仕方は後述する。
本発明においては、「磁気の通りやすさを表現する形状係数」として、上記した「単位長さ当たりのパーミアンス」を利用する。まず、式(5)〜(10)を用いて磁性コア、フィルムガイド(ニップ部形成部材)、円筒体内空気、円筒体に対して、断面積と透磁率から単位長さ当たりのパーミアンスを計算する。そして、式(14)を用いて円筒体外空気のパーミアンスを計算する。本計算は、「円筒体に内包し、磁路になり得る部材」は全て考慮する。そして磁性コアのパーミアンスの値を100%として、各部分のパーミアンスの割合が何%になるかを示している。これによれば、どの部分において最も磁路が形成されやすいか、磁束がどの部分を通過するかについて磁気回路を用いて数値化することができる。つまり、円筒体外部にどの程度、磁路が存在するかを数値化することができる。
パーミアンスの代わりに磁気抵抗R(パーミアンスPの逆数)を用いても良い。なお、磁気抵抗を用いて議論する場合、磁気抵抗は単純にパーミアンスの逆数であるので、単位長さ当たりの磁気抵抗Rは「1/(透磁率×断面積)」で表すことができ、単位は「1/(H・m)」である。
次に、「磁束の比率」について、磁気等価回路を図11(b)を用いて説明する。
本発明において、静磁界における磁気回路モデル上で、磁性コア内部を通って磁性コアの一端から出た磁束100%が通る経路は次のような内訳である。磁性コアを通過して磁性コアの一端を出た磁束100%のうち0.0%がフィルムガイドを、0.1%が円筒体内の空気を、0.0%が円筒体を、99.9%が円筒体外の空気を通る。以後この状態を、「円筒体外部磁束の比率:99.9%」と表現する。なお、本発明の目的を達成するためには「静磁界における磁気回路モデル上、円筒体外部を通る磁束の比率」の値が100%に近い程良い。
「円筒体外部を通る磁束の比率」は、励磁コイルに直流電流を流し、静磁界を形成した際に磁性コアの内部をフィルムの母線方向に通過して磁性コアの長手方向の一端から出た磁束のうち円筒形回転体の外側を通って磁性コアの他端に戻る磁束の割合である。
式(5)〜(10)に記載したパラメータで表すと、「円筒体外部を通る磁束の比率」は、Pcに対するPa_outの比率(=Pa_out/Pc)である。
そして、「円筒体外部磁束の比率」の高い構成を作るためには、具体的には下記のような設計手段が好ましい。
手段1)磁性コアのパーミアンスを大きくする。(磁性コア断面積大、材質の比透磁率大)
手段2)円筒体内のパーミアンスを小さくする。(空気部分の断面積小)
手段3)円筒体内に鉄等のパーミアンスの大きい部材を配置しない。
手段4)円筒体のパーミアンスを小さくする。(円筒体の断面積小、円筒体に用いる材質の比透磁率小)
手段4より、円筒体は比透磁率μの低い材質が好ましい。円筒体として比透磁率μの高い材質を用いる際は、円筒体の断面積をより小さくする必要がある。これは、円筒体の断面積が大きい程、円筒体を貫く磁束が多くなり発熱効率が高くなる従来の定着装置とは反対である。また、円筒体内にはパーミアンスの大きい部材を配置しないことが望ましいものの、やむを得ず鉄等を配置しなければならない場合は、断面積を小さくする等によって、「円筒体外部を通る磁束の比率」をコントロールする必要がある。
尚、磁性コアを長手方向で複数に分割し、分割した各磁性コア同士の間に空隙(ギャップ)を設ける場合もある。その場合、この空隙が空気又は比透磁率が1.0とみなせるもの等の磁性コアの比透磁率よりも小さいもので満たされている場合、磁性コア全体の磁気抵抗は大きくなり磁路形成能力を減少させることになる。よって、本発明の定着装置を達成するためには、磁性コアのギャップを厳しく管理する必要がある。
磁性コアのパーミアンスの計算方法は複雑になる。以下に、磁性コアを複数分割し、空隙またはシート状非磁性体を挟んで等間隔に並べた場合の磁性コア全体のパーミアンスの計算方法について説明する。この場合長手全体の磁気抵抗を導出し、それを全体長さで割って単位長さ当たりの磁気抵抗を求め、その逆数を取って単位長さ当たりのパーミアンスを求める必要がある。
まず、磁性コアの長手構成図を図12に示す。磁性コアc1〜c10は、断面積:Sc、透磁率:μc、分割された磁性コア1個当たりの長手寸法:Lcとなっており、ギャップg1〜g9は、断面積:Sg、透磁率:μg、1ギャップ当たりの長手寸法:Lgとなっている。その時長手全体の磁気抵抗Rm_allは、以下の式で与えられる。
Rm_all=(Rm_c1+Rm_c2+・・・・・+Rm_c10)+
(Rm_g1+Rm_g2+・・・・・+Rm_g9)・・・(15)
本構成の場合は、磁性コアの形状と材質、ギャップ幅は一様であるので、Rm_cの足し合わせた合計をΣRm_c、Rm_gの足し合わせた合計をΣRm_gとすると、次のようになる。
Rm_all=(ΣRm_c)+(ΣRm_g)・・・・・(16)
磁性コアの長手:Lc、透磁率:μc、断面積:Sc、ギャップの長手:Lg、透磁率:μg、断面積:Sgとすると、
Rm_c=Lc/(μc・Sc)・・・・・(17)
Rm_g=Lg/(μg・Sg)・・・・・(18)
(16)式に代入して、長手全体の磁気抵抗Rm_allは
Rm_all=(ΣRm_c)+(ΣRm_g)
=(Lg/(μc・Sc))×10+(Lg/(μg・Sg))×9・・(19)
となる。単位長さ当たりの磁気抵抗Rmは、Lcの足し合わせた合計をΣLc、Lgの足し合わせた合計をΣLgとすると、
Rm=Rm_all/(ΣLc+ΣLg)
=Rm_all/(L×10+Lg×9)・・・・・(20)
となり、単位長さあたりのパーミアンスPmは、以下のように求められる。
Pm=1/Rm=(ΣLc+ΣLg)/Rm_all=(ΣLc+ΣLg)/[{ΣLc/(μc+Sc)}+{ΣLg/(μg+Sg)}]・・(21)
ΣLc:分割された磁性コアの長さの合計
μc:磁性コアの透磁率
Sc:磁性コアの断面積
ΣLg:ギャップの長さの合計
μg:ギャップの透磁率
Sg:ギャップの断面積
式(21)より、ギャップLgを大きくすることは、磁性コアの磁気抵抗の増加(パーミアンスの低下)につながる。本定着装置を構成する上で、磁性コアの磁気抵抗が小さく(パーミアンスが大きく)なるように設計することが望ましいため、ギャップを設けることはあまり好ましくない。しかし、磁性コアを割れにくくするために磁性コアを複数に分割してギャップを設ける場合がある。この場合ギャップLgは極力小さく(好ましくは50μm以下程度)構成し、後述するパーミアンス又は磁気抵抗の設計条件から外れないように設計することで、本発明の目的を達成することができる。
3−4)円筒形回転体内部の周回電流
図8(a)において、中心から磁性コア2、励磁コイル3、円筒形回転体(導電層1a)が同心円状に配置されており、励磁コイル3の中に矢印I方向に電流が増加している時は、概念図においては8本の磁力線が磁性コア2の中を通過している。
図13(a)は、図8(a)の位置Oにおける断面構成の概念図を示したものである。
磁路の中を通過する磁力線Binを、図中奥行き方向に向かう矢印(×印8個)で示す。そして図中手前方向に向かう矢印Bout(●印8個)は、静磁界を形成した時に磁路の外から戻ってくる磁力線を表している。これによると、円筒形回転体1aの中を紙面奥方向に向かう磁力線Binは8本であり、円筒形回転体1aの外を紙面手前方向に戻ってくる磁力線Boutも8本である。励磁コイル3の中に電流が矢印Iの向きに電流が増加している瞬間は、磁路の中に図中奥行き方向に向かう矢印(○の中に×印)のように磁力線が形成される。実際に交番磁界を形成した時には、このように形成されようとする磁力線を打ち消すように、円筒形回転体1aの周方向全域に誘導起電力がかかり、電流は矢印Jの方向に流れる。この、円筒形回転体1aに電流が流れると、円筒形回転体1aは金属なので電気抵抗によりジュール発熱する。
この電流Jが円筒形回転体1aを周回方向に流れることは、本発明の重要な特徴である。本発明の構成は、静磁界において磁性コアの内部を通過する磁力線Binが円筒形回転体1aの中空部を通過し、磁路コアの一端から出て磁性コアの他端に戻ってくる磁力線Boutが円筒形回転体1aの外部を通過する。これは、交番磁界において、円筒形回転体1a内部において周回電流が支配的となり、図14で示すような磁束が導電層の材料内部を貫いて発生する渦電流E//は発生しにくい。尚、以後、一般に誘導加熱の説明で使用される「渦電流」と区別するため本実施例の構成で円筒形回転体を矢印Jの方向(またはその逆方向)に一様に流れる電流を「周回電流」と呼ぶ。
ファラデーの法則に従う誘導起電力は、円筒形回転体1aの周回方向に生じているので、この周回電流Jは円筒形回転体1a内部を一様に流れる。そして磁力線は、高周波電流により生成消滅と方向反転を繰り返すため、周回電流Jは高周波電流と同期して生成消滅と方向反転を繰り返し、円筒形回転体の材料の厚み方向全域の抵抗値によってジュール発熱する。図13(b)は、磁性コアの磁路の中を通過する磁力線Binと、磁路の外から戻ってくる磁力線Boutと、円筒形回転体1a内部を流れる周回電流Jの方向を示す長手斜視図である。
周回電流による発熱は、定着装置として以下1)、2)のメリットを有する。
1)円筒形回転体の熱を奪い、大きく温度低下したとしても、図3のA→Bに至る回転中に発熱し、失われた熱を補給する時間が十分にある。従って、B点における温度低下は小さい。
2)また、(1)式によって誘起される誘導電流は、円筒形回転体の周回方向に、全周にわたって均一な熱を発生させる。従って、円筒形回転体の温度差が起き難い。
このように、本発明の定着装置は、周回電流によって、円筒形回転体全体を発熱させるために、定着温度が非常に安定する構成となっており、定着ムラのない均一な定着性を得られる。
3−5)電力の変換効率
定着フィルムの円筒形回転体(導電層)を発熱させる際は、励磁コイルに高周波交流電流を流し、交番磁界を形成する。その交番磁界は円筒形回転体に電流を誘導する。物理モデルとしては、トランスの磁気結合と良く似ている。そのため、電力の変換効率を考える際には、トランスの磁気結合の等価回路を用いることが出来る。その交番磁界によって励磁コイルと円筒形回転体が磁気結合して、励磁コイルに投入した電力が円筒形回転体に伝達される。ここで述べる「電力の変換効率」は、磁界発生手段である励磁コイルに投入する電力と、円筒形回転体により消費される電力の比率である。本実施例の場合、図1に示す励磁コイル3に対して高周波コンバータ5に投入した電力と、円筒形回転体1aで発生した熱として消費される電力の比率である。この電力の変換効率は以下の式で表すことができる。
電力の変換効率=円筒回転体で熱として消費される電力/励磁コイルに投入した電力
励磁コイルに投入して円筒回転体以外で消費される電力は、励磁コイルの抵抗による損失、磁性コア材料の磁気特性による損失などがある。
図20に回路の効率に関する説明図を示す。図20(a)において1aは円筒形回転体、2は磁性コア、3は励磁コイルであり、円筒形回転体1aに周回電流Jが流れる。図20(b)は、図20(a)に示した定着装置の等価回路である。
は励磁コイルおよび磁性コアの損失分、Lは磁性コアに周回した励磁コイルのインダクタンス、Mは巻き線と円筒形回転体との相互インダクタンス、Lは円筒形回転体のインダクタンス、R2は円筒回転体の抵抗である。円筒回転体を取り外した時の等価回路を図21のうち(a)に示す。インピーダンスアナライザやLCRメータといった装置により、励磁コイル両端からの直列等価抵抗はR、等価インダクタンスLを測定すると、励磁コイル両端から見たインピーダンスZ
=R+jωL ・・・・・(22)
とあらわされる。この回路に流れる電流は、Rにより損失する。即ちRはコイル及び磁性コアによる損失を表している。
円筒回転体を装荷したときの等価回路を図21のうち(b)に示す。この時の直列等価抵抗Rx及びLxを測定しておけば、図21のうち(c)のように等価変換することで以下のような関係式を得ることが出来る。
・・・・・(23)
・・・・(24)
Mは励磁コイルと円筒形回転体の相互インダクタンスを表す。
図21のうち(c)に示すように、Rに流れる電流をI、Rに流れる電流をIとおくと
・・・・(25)
が成り立つため、
・・・・・(26)
となる。
効率は抵抗Rの消費電力/(抵抗Rの消費電力+抵抗Rの消費電力)で表される為、
・・・・・(27)
となり、円筒形回転体を装荷する前の直列等価抵抗Rと、円筒形回転体を装荷した後の直列等価抵抗Rxを測定すると、励磁コイルに投入した電力のうち、どれだけの電力が円筒回転体で発生する熱として消費されるかを示す電力の変換効率を求めることができる。なお、実施例1の構成においては、電力の変換効率の測定には、Agilent Technologies社製のインピーダンスアナライザ4294Aを用いた。まず、円筒形回転体の無い状態において巻線両端からの直列等価抵抗Rを測定し、次に円筒形回転体に磁性コアを挿入した状態において巻線両端からの直列等価抵抗Rxを測定した。R=103mΩ、Rx=2.2Ωとなり、この時電力の変換効率は式(27)により、95.3%と求めることが出来る。以後この電力の変換効率を用いて、電磁誘導加熱方式の定着装置の性能を評価する。
3−6)「円筒体外部磁束の比率」に求められる条件
本実施例の定着装置においては、静磁界において円筒体外部を通る磁束の比率と、交番磁界において励磁コイルに投入した電力が円筒回転体に伝達される電力の変換効率(電力の変換効率)とは、相関がある。円筒体外部を通る磁束の比率が増加するほど電力の変換効率は高くなる。その理由は、トランスの場合に、漏れ磁束が十分少なく、トランスの1次巻線と2次巻線の中を通過する磁束の数が等しいと電力の変換効率は高くなることと同じ原理である。つまり、磁性コアの内部を通過する磁束と、円筒形回転体の外部を通過する磁束の数が近い程、周回電流への電力の変換効率は高くなる。これは、磁性コアの長手方向の一端から出て他端に戻る磁束(磁性コアの内部を通過する磁束と向きが反対の磁束)が、円筒形回転体の中空部を通過し磁性コアの内部を通過する磁束をキャンセルする割合が少ないということである。つまり、図11(b)の磁気等価回路に示すように、磁性コアの長手方向の一端から出て他端に戻る磁束が円筒形回転体の外(円筒体外空気)を通過するということある。故に本実施例の骨子は、円筒体外部磁束の比率を高くすることによって、励磁コイルに流した高周波電流を円筒形回転体内部の周回電流として効率よく誘導することである。具体的にはフィルムガイド、円筒体内空気、円筒体を通る磁束を減らすことである。
図22は、電力の変換効率の測定実験に用いる実験装置の図である。金属シート1Sは、面積230mm×600mm、厚み20μmのアルミニウムシートであり、磁性コア2と励磁コイル3を囲むように円筒上に丸め、太線1ST部分において導通することによって円筒形回転体と同じ導電経路を形成している。磁性コア2は、比透磁率が1800、飽和磁束密度が500mTのフェライトであり、断面積26mm、長さB=230mmの円柱形状をしている。磁性コア2は不図示の固定手段でアルミニウムシート1Sの円筒のほぼ中央に配置させており、長さB=230mmの円筒の中空部を貫通して、円筒の内部に磁路を形成する。励磁コイル3は円筒の中空部において、磁性コア2に巻数25回で螺旋状に巻き回して形成される。
ここで、金属シート1Sの端部を矢印1SZ方向に引くと、円筒の直径1SDを小さく出来る。この実験装置を用いて、円筒の直径1SDを191mmから18mmまで変化させながら、電力の変換効率を測定した。なお、1SD=191mmの時の円筒体外部磁束の比率の計算結果を下記の表1に示し、1SD=18mmの時の円筒体外部磁束の比率の計算結果を下記の表2に示す。
電力の変換効率の測定は、まず、円筒形回転体の無い状態において巻線両端からの直列等価抵抗Rを測定する。その次に、円筒形回転体の中空部に磁性コアを挿入した状態において巻線両端からの直列等価抵抗Rxを測定し、式(27)に従って電力の変換効率を測定する。図23は、円筒の直径に対応する円筒体外部磁束の比率[%]を横軸にとり、21kHzの周波数における電力の変換効率を縦軸にとったものである。プロットは、グラフ中のP1以降に電力の変換効率が急上昇して70%を超え、矢印で示す領域R1の範囲で電力の変換効率70%以上を維持している。P3付近において電力の変換効率は再度急上昇し、領域R2において80%以上となっている。P4以降の領域R3においては電力の変換効率が94%以上と高い値を維持している。この、電力の変換効率が急上昇し始めたことは、円筒体の内部に効率的に周回電流が流れ始めるようになったことに起因する。
電磁誘導加熱方式の定着装置を設計する上で、この電力の変換効率は極めて重要なパラメータである。例えば電力の変換効率80%であった場合、残り20%の電力は、円筒形回転体以外の箇所に熱エネルギーとして発生する。発生する箇所は、主に励磁コイル、磁性コア、円筒形回転体内部に磁性体等の部材を配置した場合はその部材に発生する。つまり電力の変換効率が低ければ、励磁コイルや磁性コアに発生する熱のための対策を講じなければならない。そしてその対策の程度は、発明者らの検討によると、電力の変換効率70%、80%を境界として大きく変化する。従って領域R1、R2、R3の構成において、定着装置としての構成が大きく異なる。設計条件R1、R2、R3の3種類と、いずれにも属さない定着装置の構成について説明する。以下に定着装置を設計する上で、必要な電力の変換効率について詳細を説明する。
下記の表3は、図23のP1〜P4に該当する構成を、実際に定着装置として設計し、評価した結果である。
(定着装置P1)
本構成は、磁性コアの断面積が5.75mm×4.5mmであり、円筒体(導電層)の直径が143.2mmの場合である。この時インピーダンスアナライザによって求められる電力の変換効率は54.4%であった。電力の変換効率は定着装置に投入した電力のうち、円筒(導電層)の発熱に寄与した分を示すパラメータである。従って最大1000W出力可能な定着装置として設計しても約450Wが損失となってしまい、その損失はコイル及び磁性コアの発熱となる。本構成の場合、立ち上げ時数秒間1000Wを投入しただけでもコイル温度は200℃を超える場合がある。コイルの絶縁体の耐熱温度が200℃後半であること、フェライトの磁性コアのキュリー点は通常200℃〜250℃程度であることを考えると、損失45%では励磁コイル等の部材を耐熱温度以下に保つことは難しくなる。また、磁性コアの温度がキュリー点を超えるとコイルのインダクタンスが急激に低下し、負荷変動となる。
定着装置に供給した電力の約45%が無駄になるので、円筒体に900W(1000Wの90%を想定)の電力を供給するためには約1636Wの電力供給する必要がある。これは100V入力時、16.36Aを消費する電源という事になる。商用交流のアタッチメントプラグから投入できる許容電流は15Aという制限がある場合、許容電流をオーバーする可能性がある。よって、円筒体外部磁束の比率64%、電力の変換効率54.4%の定着装置P1は、定着装置に供給する電力が不足する可能性がある。
(定着装置P2)
本構成は、磁性コアの断面積が5.75mm×4.5mmであり、円筒体の直径が127.3mmの場合である。この時インピーダンスアナライザによって求められる電力の変換効率は70.8%であった。この時、定着装置の印字動作によっては、励磁コイル等に定常的に大きな熱量が発生し、励磁コイルユニット、特に磁性コアの昇温が課題となる場合がある。本構成の定着装置を60枚/分の印字動作ができる高スペックな装置にすると、円筒形回転体の回転速度は330mm/secとなる。よって、円筒形回転体の表面温度を180℃に維持するケースがある。そうすると、磁性コアの温度は20秒間で240℃を超え、円筒体(導電層)の温度より高くなる場合が考えられる。磁性コアとして用いるフェライトのキュリー温度は通常200℃〜250℃程度であり、フェライトがキュリー温度を超えた場合、透磁率は急激に減少する。透磁率が急激に減少すると、磁性コアの中に磁路を形成することができない。磁路を形成することができなくなると、本実施例においては、周回電流を誘導して発熱することが難しくなる場合がある。
従って、設計条件R1の定着装置を、前述した高スペックの装置にすると、フェライトコアの温度を下げるために冷却手段を設けることが望ましい。冷却手段としては、空冷ファン、水冷、放熱板、放熱フィン、ヒートパイプ、または、ベルチェ素子などを用いることができる。もちろん、本構成においてそこまでの高スペックを要求しない場合は、冷却手段は不要である。
(定着装置P3)
本構成は、磁性コアの断面積が5.75mm×4.5mmであり、円筒体の直径が63.7mmの場合である。この時インピーダンスアナライザによって求められる電力の変換効率は83.9%であった。この時、励磁コイル等には定常的に熱量が発生したものの、熱伝達と自然冷却で放熱出来る熱量を大きく上回ることはなかった。本構成の定着装置を60枚/分の印字動作ができる高スペックな装置にすると、円筒体の回転速度は330mm/secとなる。従って、円筒体の表面温度を180℃に維持するケースであっても、フェライトの磁性コアの温度は220℃以上に上昇することはなかった。そのため本構成においては、定着装置を前述した高スペックする場合、キュリー温度220℃以上のフェライトを用いることが望ましい。設計条件R2の構成の定着装置を高スペックな定着装置として使用する場合は、フェライト等の耐熱設計を最適化することが望ましい。本構成に、前述した高スペックを要求しない場合は、そこまでの耐熱設計は不要である。
(定着装置P4)
本構成は、磁性コアの断面積が5.75mm×4.5mmであり、円筒体の直径が47.7mmの場合である。この時インピーダンスアナライザによって求められる電力の変換効率は94.7%であった。本構成の定着装置を60枚/分の印字動作ができる高スペックな装置にすると、円筒体の回転速度は330mm/secとなり、円筒体の表面温度を180℃に維持するケースにおいて励磁コイル等は、180℃以上に上昇することはなかった。これは、励磁コイルがほとんど発熱しないことを示す。円筒体外部磁束の比率94.7%、電力の変換効率94.7%(設計条件R3)は、電力の変換効率が十分高いため、更なる高スペックの定着装置として用いても、冷却手段は必要ない。
また、電力の変換効率が高い値で安定しているこの領域においては、円筒形回転体と磁性コアの位置関係が変動しても、電力の変換効率が変動しない。電力の変換効率が変動しない場合、円筒形回転体から常に安定した熱量を供給することができる。よって、可撓性を有する定着フィルムを用いる定着装置において、この電力の変換効率が変動しない領域R3を用いることは、大きなメリットがある。
以上、円筒形回転体に対してその軸方向に磁界を発生させ、円筒形回転体を電磁誘導発熱させる定着装置において、円筒体外部磁束の比率に求められる設計条件は、図23中矢印R1、R2、R3に領域分けすることができる。
R1:円筒体外部磁束の比率70%以上90%未満
R2:円筒体外部磁束の比率90%以上94%未満
R3:円筒体外部磁束の比率94%以上
3−7)「周回電流」による発熱の特徴
3−4で説明した「周回電流」は、図6の回路S内に生じる誘導起電力によって生じるものである。そのため、回路Sに内包する磁束と、回路Sの抵抗値に依存する。後述する「渦電流E//」とは異なり、材料内部の磁束密度とは関係しない。そのため、磁路とならない薄い磁性金属製の円筒形回転体でも、非磁性金属製の円筒回転体でも高い効率で発熱することが可能である。また、抵抗値が大きく変わらない範囲においては、材料の厚みにも依存しない。図16(a)は、厚さ20μmのアルミニウムの円筒形回転体における電力の変換効率の周波数依存性である。20kHz〜100kHzの周波数帯域において、電力の変換効率は90%以上を維持している。特に、21〜40kHzの周波数帯域を発熱に利用する場合において、高い電力の変換効率を持っている。次に図16(b)は、同形状の円筒形回転体における、周波数21kHzでの電力の変換効率の厚み依存性である。黒丸―実線はニッケル、白丸―点線はアルミニウムの実験結果を示している。両者は厚み20μm〜300μmの領域において、電力の変換効率は90%以上を維持しており、両者とも厚みに寄らず、定着装置用発熱材料として使用可能である。
よって、「周回電流による発熱」は、従来の渦電流損による発熱より、円筒形回転体の材質や厚み、そして、交流電流の周波数に対する設計自由度を広げることができる。
また、磁性コアの長手方向の一端を出た磁束のうち円筒形回転体の外部を通って磁性コアの他端に戻る割合が70%以上であることが本定着装置の特徴である。
磁性コアの長手方向の一端を出た磁束のうち円筒形回転体の外部を通って磁性コアの他端に戻る割合が70%以上であることは、円筒体のパーミアンスと円筒体内部(円筒体と磁性コアの間の領域)のパーミアンスとの和が磁性コアのパーミアンスの30%以下であることと等価である。従って、本発明の特徴的な構成の一つは、磁性コアのパーミアンスをPc、円筒体内部のパーミアンスをPa、円筒体のパーミアンスPsとした時に、0.30×Pc≧Ps+Paの関係を満足する構成である。
また、パーミアンスの関係式を磁気抵抗に置き換えて表現すると下記のようになる。
・・・・・(28)
ただし、RsとRaの合成磁気抵抗Rsaは以下のように計算する。
Rc:磁性コアの磁気抵抗
Rs:導電層の磁気抵抗
Ra:導電層と磁性コアとの間の領域の磁気抵抗
Rsa:RsとRaの合成磁気抵抗
上記の関係式を、定着装置の記録材の最大搬送領域全域で、円筒形回転体の母線方向に直交する方向の断面において満足するのが好ましい。
上記の関係式を、定着装置の記録材の最大搬送領域全域で、円筒形回転体の母線方向に直交する方向の断面において満足するのが好ましい。
この合成磁気抵抗の値が低い程、(1)式によって誘起される誘導電流による発熱の割合は高くなり、合成磁気抵抗が0%の構成では、ほぼ100%、(1)式の周回電流による発熱が起きていることになる。よって、合成磁気抵抗の値が低ければ低い程、先述したメリット1)、2)を出すことができる。
このように、上述したような定着装置構成とし、磁性コアの磁気抵抗を低く抑えることで、磁性コアの長手方向の一端を出た磁束のうち円筒形回転体の外部を通って磁性コアの他端に戻る磁束の割合が増える。その結果、定着前の磁性トナーに作用する磁束の割合が増え、磁性トナーの磁気穂を崩すことで、尾引き等のない高画質な画像が得られるものと考えられる。
本発明のトナー画像で用いる磁性トナーとしては公知の磁性トナーを用いることができる。その中でもある程度、磁性トナーの磁気特性を制御することが、磁気穂の形成状態を制御する上でも好ましい。
磁性トナーの、79.6kA/mにおける飽和磁化σsは、10.0Am/kg以上40.0Am/kg以下、好ましくは15.0Am/kg以上40.0Am/kg以下であることが、現像スリーブで均一な磁気穂を形成する上で好ましい。
また、79.6kA/mにおける残留磁化σrが、1.0Am/kg以上6.0Am/kg以下、好ましくは2.0Am/kg以上5.5Am/kg以下であることが定着前の磁気穂の再配列し易さという観点から好ましい。
本発明の磁性トナー粒子は、少なくとも結着樹脂、磁性体を含有する。
本発明の磁性トナーに使用される結着樹脂としては、以下のものが挙げられる。
ビニル系樹脂(例えば、スチレン系樹脂、スチレンアクリル系共重合樹脂)、ポリエステル樹脂、ポリオール樹脂、ポリ塩化ビニル樹脂、フェノール樹脂等である。中でも好ましく用いられる樹脂として、ビニル系樹脂、ポリエステル樹脂である。
本発明に用いられるポリエステル樹脂の成分は以下の通りである。
2価の酸成分としては、以下のジカルボン酸又はその誘導体が上げられる。フタル酸、テレフタル酸、イソフタル酸、無水フタル酸の如きベンゼンジカルボン酸類又はその無水物又はその低級アルキルエステル;コハク酸、アジピン酸、セバシン酸、アゼライン酸の如きアルキルジカルボン酸類又はその無水物又はその低級アルキルエステル;n−ドデセニルコハク酸、n−ドデシルコハク酸の如きアルケニルコハク酸類もしくはアルキルコハク酸類、又はその無水物又はその低級アルキルエステル;フマル酸、マレイン酸、シトラコン酸、イタコン酸の如き不飽和ジカルボン酸類又はその無水物又はその低級アルキルエステル。
2価のアルコール成分としては、以下のものが挙げられる。エチレングリコール、ポリエチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、1,6−ヘキサンジオール、ネオペンチルグリコール、1,4−シクロヘキサンジメタノール(CHDM)、水素化ビスフェノールA、式(1)で表されるビスフェノール及びその誘導体:
(式中、Rはエチレンまたはプロピレン基であり、x、yはそれぞれ0以上の整数であり、かつ、x+yの平均値は0乃至10である。)
本発明で使用される、ポリエステル樹脂は、上述の2価のカルボン酸化合物および2価のアルコール化合物以外に、1価のカルボン酸化合物、1価のアルコール化合物、3価以上のカルボン酸化合物、3価以上のアルコール化合物を構成成分として含有してもよい。
1価のカルボン酸化合物としては、安息香酸、p−メチル安息香酸等の炭素数30以下の芳香族カルボン酸や、ステアリン酸、ベヘン酸等の炭素数30以下の脂肪族カルボン酸等が挙げられる。
また、1価のアルコール化合物としては、ベンジルアルコール等の炭素数30以下の芳香族アルコールや、ラウリルアルコール、セチルアルコール、ステアリルアルコール、ベへニルアルコール等の炭素数30以下の脂肪族アルコール等が挙げられる。
3価以上のカルボン酸化合物としては、特に制限されないが、トリメリット酸、無水トリメリット酸、ピロメリット酸等が挙げられる。
また、3価以上のアルコール化合物としては、トリメチロールプロパン、ペンタエリスリトール、グリセリン等が挙げられる。
本発明のポリエステル樹脂の製造方法については、特に制限されるもではなく、公知の方法を用いることができる。
上記ビニル系樹脂に用いられるモノマーは、次のものが挙げられる。
スチレン;o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−メトキシスチレン、p−フェニルスチレンの如きスチレン誘導体;エチレン、プロピレンの如き不飽和モノオレフィン類;メタクリル酸メチル、メタクリル酸エチルの如きα−メチレン脂肪族モノカルボン酸エステル類;アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチルの如きアクリル酸エステル類等が挙げられる。
さらに、マレイン酸、フマル酸の如き不飽和二塩基酸;マレイン酸無水物、アルケニルコハク酸無水物の如き不飽和二塩基酸無水物等が挙げられる。
結着樹脂にビニル系樹脂を使用する場合は、上記アクリル酸エステル類や不飽和二塩基酸などの酸価を有するモノマーを添加し、酸価を1以上40mgKOH/g以下に適宜調整する必要がある。
上記ビニル系樹脂のビニル系重合体ユニットの重合に用いられる重合開始剤としては、例えば、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−メチルブチロニトリル)、等が挙げられる。
結着樹脂は、テトラヒドロフラン(THF)可溶分のゲルパーミエーションクロマトグラフィー(GPC)により測定される分子量分布において、以下の分子量分布を有することが好ましい。
結着樹脂の重量平均分子量(Mw)は5,000以上50,0000以下であることが好ましい。さらに、結着樹脂の酸価は、2mgKOH/g以上40mgKOH/g以下であることが、トナーの良好な帯電特性の観点から好ましい。
本発明の磁性トナーに用いられる磁性体は、磁性酸化鉄であることが好ましい。
磁性酸化鉄としては、マグネタイト、マグヘマイト、フェライト等の酸化鉄が用いられる。また、磁性酸化鉄はトナー粒子中への分散性を制御する目的で、製造時のスラリーにせん断をかけ、磁性酸化鉄を一旦ほぐす処理を施すことが好ましい。
磁性酸化鉄は、79.6kA/m印加での磁気特性として、飽和磁化σsが30.0Am/kg以上90.0Am/kg以下であることが好ましい。さらに、残留磁化σrは2.0Am/kg以上20.0Am/kg以下であることが好ましい。
また、これらの磁性酸化鉄は個数平均粒径が0.05μm以上0.50μm以下であることが好ましい。
また、磁性酸化鉄の形状は、球状及び八面体であることが好ましい。このような形状を呈する磁性酸化鉄は粒子同士が分離しやすく、凝集性が少なく、結着樹脂への分散制御がしやすいためである。
また、本発明において、磁性トナー粒子中における磁性体の含有量は、磁性トナー粒子の質量を基準として、5.0質量%以上60.0質量%以下、より好ましくは30.0質量%以上60.0質量%以下であることが、上記磁気特性を得る上で、好ましい。
さらに、離型性を高めるために、融点が60℃以上110℃以下であるワックスを含有することが好ましい。
ワックスとしては、トナー中での分散のしやすさ、離型性の高さの観点から、低分子量ポリエチレン、低分子量ポリプロピレン、マイクロクリスタリンワックス、パラフィンワックスの如き炭化水素系ワックスが好ましい。必要に応じて、二種以上のワックスを併用してもかまわない。
ワックスとしては、具体的には以下のものが挙げられる。ビスコール(登録商標)330−P、550−P、660−P、TS−200(三洋化成工業社)、ハイワックス400P、200P、100P、410P、420P、320P、220P、210P、110P(三井化学社)、サゾールH1、H2、C80、C105、C77(シューマン・サゾール社)、HNP−1、HNP−3、HNP−9、HNP−10、HNP−11、HNP−12、HNP−51(日本精鑞株式会社)、ユニリン(登録商標)350、425、550、700、ユニシッド(登録商標)、ユニシッド(登録商標)350、425、550、700(東洋アドレ株式会社)、木ろう、蜜ろう、ライスワックス、キャンデリラワックス、カルナバワックス(株式会社セラリカNODAにて入手可能)。
ワックスの添加量は、磁性トナー粒子の質量を基準として、1.0質量%以上10.0質量%以下であることが好ましい。
トナー粒子の表面には、無機微粉体等の流動性向上剤を存在させることが好ましい。流動性向上剤としては、以下のものが挙げられる。フッ化ビニリデン微粒子、ポリテトラフルオロエチレン微粒子の如きフッ素系樹脂微粒子;湿式製法シリカ、乾式製法シリカの如き微粒子シリカ、それらシリカをシランカップリング剤、チタンカップリング剤、又はシリコーンオイル等により表面処理を施した処理シリカ。好ましい流動性向上剤としては、ケイ素ハロゲン化合物の蒸気相酸化により生成された微粒子であり、乾式法シリカ又はヒュームドシリカとである。
その中でも、ケイ素ハロゲン化合物の気相酸化により生成されたシリカ微粒子に疎水化処理した処理シリカ微粒子が好ましく用いられる。処理シリカ微粒子は、メタノール滴定試験によって滴定された疎水化度が30以上、98以下であることが好ましい。
シリカ微粒子の疎水化方法としては、シリカ微粒子と反応あるいは物理吸着する有機ケイ素化合物で化学的に処理する方法が挙げられる。好ましい方法としては、ケイ素ハロゲン化合物の蒸気相酸化により生成されたシリカ微粒子を有機ケイ素化合物で処理する方法である。有機ケイ素化合物としては、以下のものが挙げられる。ヘキサメチルジシラザン、トリメチルシラン、トリメチルクロルシラン、トリメチルエトキシシラン、ジメチルジクロルシラン、メチルトリクロルシラン、アリルジメチルクロルシラン、アリルフエニルジクロルシラン、ベンジルジメチルクロルシラン、ブロムメチルジメチルクロルシラン、α−クロルエチルトリクロルシラン、β−クロルエチルトリクロルシラン、クロルメチルジメチルクロルシラン、トリオルガノシリルメルカプタン、トリメチルシリルメルカプタン、トリオルガノシリルアクリレート、ビニルジメチルアセトキシシラン、ジメチルエトキシシラン、ジメチルジメトキシシラン、ジフェニルジエトキシシラン、1−ヘキサメチルジシロキサン、1,3−ジビニルテトラメチルジシロキサン、1,3−ジフェニルテトラメチルジシロキサンおよび1分子当り2から12個のシロキサン単位を有し末端に位置する単位にそれぞれ1個当りのSiに結合した水酸基を含有するジメチルポリシロキサン。これらは1種あるいは2種以上の混合物で用いられる。
シリカ微粒子は、シリコーンオイルによって処理されても良く、また、シリコーンオイルと上記有機ケイ素化合物とを併用して処理されていても良い。シリコーンオイルとしては、25℃における粘度が30mm/s以上、1000mm/s以下であるものが好ましい。例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、α−メチルスチレン変性シリコーンオイル、クロルフェニルシリコーンオイル、フッ素変性シリコーンオイルが挙げられる。
シリコーンオイルによるシリカ微粒子の疎水化処理の方法としては、以下の方法が挙げられる。シランカップリング剤で処理されたシリカ微粒子とシリコーンオイルとをヘンシェルミキサーの如き混合機を用いて直接混合する方法;ベースとなるシリカ微粒子にシリコーンオイルを噴霧する方法。あるいは適当な溶剤にシリコーンオイルを溶解あるいは分散せしめた後、シリカ微粒子を加え混合し溶剤を除去する方法。シリコーンオイル処理シリカは、シリコーンオイルの処理後にシリカを不活性ガス中で温度200℃以上(より好ましくは250℃以上)で加熱し、表面のコートを安定化させたものがより好ましい。
流動性向上剤は、トナー粒子100.0質量部に対して0.1質量部以上8.0質量部以下用いることが好ましく、より好ましくは0.1質量部以上4.0質量部以下である。
トナーには、必要に応じて他の外部添加剤を添加しても良い。例えば、帯電補助剤、導電性付与剤、ケーキング防止剤、熱ローラ定着時の離型剤、滑剤、研磨剤の働きをする樹脂微粒子や無機微粉体である。
導電性付与剤としては酸化チタン微粒子、滑剤としては、ポリフッ化エチレン微粒子、ステアリン酸亜鉛微粒子、ポリフッ化ビニリデン微粒子が挙げられる。中でもポリフッ化ビニリデン微粒子が好ましい。研磨剤としては、酸化セリウム微粒子、炭化ケイ素微粒子、チタン酸ストロンチウム微粒子が挙げられる。
本発明のトナーを得るための製造方法は、特に限定されるものではない。以下、粉砕法及び懸濁重合法によって本発明のトナーを得るための方法を説明する。
まず、粉砕法に関して説明する。原料混合工程では、トナー粒子を構成する材料として、結着樹脂、磁性体、その他の添加剤等を、所定量秤量して配合し、混合する。混合装置の一例としては、ダブルコン・ミキサー、V型ミキサー、ドラム型ミキサー、スーパーミキサー、ヘンシェルミキサー、ナウターミキサー、メカノハイブリッド(日本コークス工業株式会社製)などが挙げられる。
次に、混合した材料を溶融混練して、結着樹脂中に着色剤等を分散させる。溶融混練工程では、加圧ニーダー、バンバリィミキサーの如きバッチ式練り機や、連続式の練り機を用いることができる。連続生産できる優位性から、1軸又は2軸押出機が主流となっている。例えば、KTK型2軸押出機(神戸製鋼所社製)、TEM型2軸押出機(東芝機械社製)、PCM混練機(池貝鉄工製)、2軸押出機(ケイ・シー・ケイ社製)、コ・ニーダー(ブス社製)、ニーデックス(日本コークス工業株式会社製)などが挙げられる。更に、溶融混練することによって得られる樹脂組成物は、2本ロール等で圧延され、冷却工程で水などによって冷却してもよい。
ついで、樹脂組成物の冷却物は、粉砕工程で所望の粒径にまで粉砕される。粉砕工程では、例えば、クラッシャー、ハンマーミル、フェザーミルの如き粉砕機で粗粉砕した後、更に、例えば、クリプトロンシステム(川崎重工業社製)、スーパーローター(日清エンジニアリング社製)、ターボ・ミル(ターボ工業製)やエアージェット方式による微粉砕機で微粉砕する。その後、必要に応じて慣性分級方式のエルボージェット(日鉄鉱業社製)、遠心力分級方式のターボプレックス(ホソカワミクロン社製)、TSPセパレータ(ホソカワミクロン社製)、ファカルティ(ホソカワミクロン社製)の如き分級機や篩分機を用いて分級し、トナー粒子を得る。
必要に応じて、粉砕後に、ハイブリタイゼーションシステム(奈良機械製作所製)、メカノフージョンシステム(ホソカワミクロン社製)、ファカルティ(ホソカワミクロン社製)、メテオレインボー MR Type(日本ニューマチック社製)を用いて、球形化処理の如きトナー粒子の表面処理を行うこともできる。
更に必要に応じて所望の添加剤をヘンシェルミキサー等の混合機により十分混合することができる。
次に、水系媒体中で重合性単量体組成物を造粒し、該重合性単量体組成物の粒子を形成する懸濁重合法について説明する。
重合性単量体としては、ラジカル重合が可能なビニル系モノマーが用いられる。前記ビニル系モノマーとしては、単官能性モノマー或いは多官能性モノマーを使用することができる。
単官能性モノマーとしては、スチレン;α−メチルスチレン、β−メチルスチレン、ο−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−メトキシスチレン、p−フェニルスチレンのようなスチレン誘導体;メチルアクリレート、エチルアクリレート、n−プロピルアクリレート、iso−プロピルアクリレート、n−ブチルアクリレート、ジブチルフォスフェートエチルアクリレート、2−ベンゾイルオキシエチルアクリレートのようなアクリル系重合性単量体;メチルメタクリレート、エチルメタクリレート、ジブチルフォスフェートエチルメタクリレートのようなメタクリル系重合性単量体;メチレン脂肪族モノカルボン酸エステル;酢酸ビニル、プロピオン酸ビニルのようなビニルエステル;ビニルメチルエーテル、ビニルエチルエーテル、ビニルイソブチルエーテルのようなビニルエーテル;ビニルメチルケトン、ビニルヘキシルケトン、ビニルイソプロピルケトンのようなビニルケトンが挙げられる。
本発明に用いる重合性単量体は、上記の中でも、スチレン又はスチレン誘導体を含むことが好ましい。
多官能性モノマーとしては、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、テトラメチロールメタンテトラメタクリレート、ジビニルベンゼン、ジビニルエーテル等が挙げられる。
本発明においては、前記した単官能性モノマーを単独で或いは2種以上組み合わせて、又は前記した単官能性モノマーと多官能性モノマーを組み合わせて使用する。多官能性モノマーは架橋剤として使用することも可能である。
本発明に用いられる重合開始剤としては、油溶性開始剤及び/又は水溶性開始剤が用いられる。好ましくは、重合反応時の反応温度における半減期が0.5時間以上30時間以下のものである。また重合性単量体100質量部に対し0.5質量部以上20質量部以下の添加量で重合反応を行うと、通常、分子量5000以上10万以下の間に極大を有する重合体が得られ、適当な強度と溶融特性を有するトナー粒子を得ることができるため好ましい。
重合開始剤としては、2,2’−アゾビス−(2,4−ジメチルバレロニトリル)、2,2’−アゾビスイソブチロニトリル、1,1’−アゾビス(シクロヘキサン−1−カルボニトリル)、2,2’−アゾビス−4−メトキシ−2,4−ジメチルバレロニトリル、アゾビスイソブチロニトリル如きのアゾ系またはジアゾ系重合開始剤;ベンゾイルパーオキサイド、t−ブチルパーオキシ2−エチルヘキサノエート、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソブチレート、t−ブチルパーオキシネオデカノエート、メチルエチルケトンパーオキサイド、ジイソプロピルパーオキシカーボネート、クメンヒドロパーオキサイド、2,4−ジクロロベンゾイルパーオキサイド、ラウロイルパーオキサイド如きの過酸化物系重合開始剤等が例示できる。
本発明においては、重合性単量体の重合度を制御する為に、公知の連鎖移動剤、重合禁止剤等を更に添加し用いることも可能である。
また、磁性トナーを重合法に適用する場合には、磁性体として使用される磁性酸化鉄微粒子は、疎水化処理されたものであることが好ましい。この疎水化処理を調整することで、磁性酸化鉄のトナー中での存在状態を厳密にコントロールできる。
磁性酸化鉄表面をカップリング剤等で処理する方法としては、乾式処理と湿式処理の二つがある。本発明ではどちらの方法で行っても良いが、水系媒体中での湿式処理方法は、気相中での乾式処理に比べ、酸化鉄粒子同士の合一が生じにくく、また疎水化処理による磁性酸化鉄間の帯電反発作用が働き、磁性酸化鉄はほぼ一次粒子の状態でカップリング剤による表面処理されるようになるため好ましい。
本発明において磁性酸化鉄の表面処理に使用できるカップリング剤としては、例えば、シランカップリング剤、チタンカップリング剤が挙げられる。シランカップリング剤を用いることが好ましく、一般式(A):
RmSiYn(A)
[式中、Rはアルコキシ基を示し、mは1〜3の整数を示し、Yはアルキル基、ビニル基、メタクリル基、フェニル基、アミノ基、エポキシ基、メルカプト基又はこれらの誘導体を示し、nは1〜3の整数を示す。]
で示されるものが特に好ましい。例えばビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリルオキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、イソブチルトリメトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、ヒドロキシプロピルトリメトキシシラン、フェニルトリメトキシシラン、n−ヘキサデシルトリメトキシシラン、n−オクタデシルトリメトキシシランを挙げることができる。
特に、式(B)
2p+1−Si−(OC2q+1(B)
[式中、pは2〜20の整数を示し、qは1〜3の整数を示す]
で示されるアルキルトリアルコキシシランカップリング剤を使用して磁性酸化鉄表面を疎水化処理するのが良い。
懸濁重合法のトナー粒子の製造方法において、上述した融点が60℃以上110℃以下であるワックスを含有することが好ましい。
また、それ以外に、上述した着色剤、ポリエステル樹脂、帯電制御剤等を添加しても良い。
懸濁重合トナー粒子は、これら添加材を、均一に溶解または分散せしめて重合性単量体組成物とする。その後この重合性単量体組成物を、分散安定剤を含有する水系媒体中に適当な撹拌機を用いて分散させ、そして必要に応じて、芳香族溶剤及び重合開始剤を添加して重合反応を行わせ、所望の粒径を有するトナー粒子を得るものである。
上記トナー粒子に対し重合終了後、公知の方法によって濾過、洗浄、乾燥を行い、必要により流動性向上剤を混合し表面に付着させることで、本発明のトナーを得ることができる。
結着樹脂、磁性体及び磁性トナー等に係る物性の測定方法は以下に示す通りである。後述の実施例においてもこれらの方法に基づいて物性値を測定している。
<GPCによる重量平均分子量の測定>
40℃のヒートチャンバー中でカラムを安定化させ、この温度におけるカラムに溶媒としてTHFを毎分1mLの流速で流し、THF試料溶液を約100μL注入して測定する。試料の分子量測定にあたっては試料の有する分子量分布を数種の単分散ポリスチレン標準試料により作成された検量線の対数値とカウント値との関係から算出する。検量線作成用の標準ポリスチレン試料としては例えば、東ソー社製あるいは昭和電工社製の分子量が10〜10程度のものを用い、少なくとも10点程度の標準ポリスチレン試料を用いるのが適当である。又、検出器はRI(屈折率)検出器を用いる。尚、カラムとしては市販のポリスチレンジェルカラムを複数本組み合わせるのが良く、例えば昭和電工社製のshodex GPC KF−801、802、803、804、805、806、807、800Pの組み合せや、東ソー社製のTSKgel G1000H(HXL)、G2000H(HXL)、G3000H(HXL)、G4000H(HXL)、G5000H(HXL)、G6000H(HXL)、G7000H(HXL)、TSKgurd columnの組み合せを挙げることができる。
また、試料は以下のようにして作製する。
試料をTHF中に入れ、25℃で数時間放置した後、十分振とうし、THFとよく混ぜ(試料の合一体が無くなるまで)、更に12時間以上静置する。その時THF中への放置時間が24時間となるようにする。その後、サンプル処理フィルター(ポアサイズ0.2μm以上0.5μm以下、例えばマイショリディスクH−25−2(東ソー社製)など使用できる。)を通過させたものをGPCの試料とする。又、試料濃度は、樹脂成分が0.5mg/mL以上5.0mg/mL以下となるように調整する。
<結着樹脂の軟化点の測定>
結着樹脂の軟化点の測定は、定荷重押し出し方式の細管式レオメータ「流動特性評価装置 フローテスターCFT−500D」(島津製作所社製)を用い、装置付属のマニュアルに従って行う。本装置では、測定試料の上部からピストンによって一定荷重を加えつつ、シリンダに充填した測定試料を昇温させて溶融し、シリンダ底部のダイから溶融された測定試料を押し出し、この際のピストン降下量と温度との関係を示す流動曲線を得ることができる。
「流動特性評価装置 フローテスターCFT−500D」に付属のマニュアルに記載の「1/2法における溶融温度」を軟化点とする。尚、1/2法における溶融温度とは、次のようにして算出されたものである。まず、流出が終了した時点におけるピストンの降下量Smaxと、流出が開始した時点におけるピストンの降下量Sminとの差の1/2を求める(これをXとする。X=(Smax−Smin)/2)。そして、流動曲線においてピストンの降下量がXとSminの和となるときの流動曲線の温度が、1/2法における溶融温度である。
測定試料は、約1.0gの試料を、25℃の環境下で、錠剤成型圧縮機(例えば、NT−100H、エヌピーエーシステム社製)を用いて約10MPaで、約60秒間圧縮成型し、直径約8mmの円柱状としたものを用いる。
CFT−500Dの測定条件は、以下の通りである。
試験モード:昇温法
昇温速度:4℃/min
開始温度:50℃
到達温度:200℃
<ワックスの融点の測定>
ワックスの融点は、示差走査熱量分析装置「Q2000」(TA Instruments社製)を用いてASTM D3418−82に準じて測定したDSC曲線において、最大吸熱ピークのピーク温度を融点とする。
装置検出部の温度補正はインジウムと亜鉛の融点を用い、熱量の補正についてはインジウムの融解熱を用いる。具体的には、試料約2mgを精秤し、これをアルミニウム製のパンの中に入れ、リファレンスとして空のアルミニウム製のパンを用い、測定温度範囲30〜200℃の間で、昇温速度10℃/minで測定を行う。尚、測定においては、一度200℃まで昇温させ、続いて30℃まで降温し、その後に再度昇温を行う。この2度目の昇温過程での温度30〜200℃の範囲におけるDSC曲線の最大の吸熱ピーク温度を、融点とする。
<結着樹脂の酸価の測定>
酸価は試料1gに含まれる酸を中和するために必要な水酸化カリウムのmg数である。ポリエステル樹脂の酸価はJIS K 0070−1992に準じて測定されるが、具体的には、以下の手順に従って測定する。
(1)試薬の準備
フェノールフタレイン1.0gをエチルアルコール(95vol%)90mLに溶かし、イオン交換水を加えて100mLとし、フェノールフタレイン溶液を得る。
特級水酸化カリウム7gを5mLの水に溶かし、エチルアルコール(95vol%)を加えて1Lとする。炭酸ガス等に触れないように、耐アルカリ性の容器に入れて3日間放置後、ろ過して、水酸化カリウム溶液を得る。得られた水酸化カリウム溶液は、耐アルカリ性の容器に保管する。前記水酸化カリウム溶液のファクターは、0.1モル/L塩酸25mLを三角フラスコに取り、前記フェノールフタレイン溶液を数滴加え、前記水酸化カリウム溶液で滴定し、中和に要した前記水酸化カリウム溶液の量から求める。前記0.1モル/L塩酸は、JIS K 8001−1998に準じて作成されたものを用いる。
(2)操作
(A)本試験
粉砕したポリエステル樹脂の試料2.0gを200mLの三角フラスコに精秤し、トルエン/エタノール(2:1)の混合溶液100mLを加え、5時間かけて溶解する。次いで、指示薬として前記フェノールフタレイン溶液を数滴加え、前記水酸化カリウム溶液を用いて滴定する。尚、滴定の終点は、指示薬の薄い紅色が約30秒間続いたときとする。
(B)空試験
試料を用いない(すなわちトルエン/エタノール(2:1)の混合溶液のみとする)以外は、上記操作と同様の滴定を行う。
(3)得られた結果を下記式に代入して、酸価を算出する。
A=[(C−B)×f×5.61]/S
ここで、A:酸価(mgKOH/g)、B:空試験の水酸化カリウム溶液の添加量(mL)、C:本試験の水酸化カリウム溶液の添加量(mL)、f:水酸化カリウム溶液のファクター、S:試料(g)である。
<磁性体の粒径及び形状>
透過型電子顕微鏡(TEM)H−700H、H−800、H−7500(いずれも日立製作所製)又は走査型電子顕微鏡(SEM)S−800又はS−4700(いずれも日立製作所製)を用い、磁性体を20,000倍以上100,000倍以下で撮影し、1倍以上5倍以下の焼き付け倍率として、任意の倍率で試料を観察することができる。粒径は、0.03μm以上の粒子100個をランダムに選び出して、各粒子の最大長(μm)を計測し、その平均をもって個数平均粒径とする。
<磁性体及び磁性トナーの磁気特性>
磁性体及び磁性トナーの磁気特性(残留磁化σr、飽和磁化σs)は、振動試料型磁力計VSM−3S−15(東英工業株式会社製)を用い、外部磁場を79.6kA/m(1kOe)として測定することができる。
<重量平均粒径(D4)の測定方法>
トナーの重量平均粒径(D4)は、100μmのアパーチャーチューブを備えた細孔電気抵抗法による精密粒度分布測定装置「コールター・カウンター Multisizer 3」(登録商標、ベックマン・コールター社製)と、測定条件設定及び測定データ解析をするための付属の専用ソフト「ベックマン・コールター Multisizer 3 Version3.51」(ベックマン・コールター社製)を用いて、実効測定チャンネル数2万5千チャンネルで測定し、測定データの解析を行ない、算出した。
測定に使用する電解水溶液は、特級塩化ナトリウムをイオン交換水に溶解して濃度が約1質量%となるようにしたもの、例えば、「ISOTON II」(ベックマン・コールター社製)が使用できる。
尚、測定、解析を行う前に、以下のように専用ソフトの設定を行った。
専用ソフトの「標準測定方法(SOM)を変更画面」において、コントロールモードの総カウント数を50000粒子に設定し、測定回数を1回、Kd値は「標準粒子10.0μm」(ベックマン・コールター社製)を用いて得られた値を設定する。閾値/ノイズレベルの測定ボタンを押すことで、閾値とノイズレベルを自動設定する。また、カレントを1600μAに、ゲインを2に、電解液をISOTON IIに設定し、測定後のアパーチャーチューブのフラッシュにチェックを入れる。
専用ソフトの「パルスから粒径への変換設定画面」において、ビン間隔を対数粒径に、粒径ビンを256粒径ビンに、粒径範囲を2μmから60μmまでに設定する。
具体的な測定法は以下の通りである。
1.Multisizer 3専用のガラス製250mL丸底ビーカーに前記電解水溶液約200mLを入れ、サンプルスタンドにセットし、スターラーロッドの撹拌を反時計回りで24回転/秒にて行う。そして、解析ソフトの「アパーチャーのフラッシュ」機能により、アパーチャーチューブ内の汚れと気泡を除去しておく。
2.ガラス製の100mL平底ビーカーに前記電解水溶液約30mLを入れ、この中に分散剤として「コンタミノンN」(非イオン界面活性剤、陰イオン界面活性剤、有機ビルダーからなるpH7の精密測定器洗浄用中性洗剤の10質量%水溶液、和光純薬工業社製)をイオン交換水で3質量倍に希釈した希釈液を約0.3mL加える。
3.発振周波数50kHzの発振器2個を位相を180度ずらした状態で内蔵し、電気的出力120Wの超音波分散器「Ultrasonic Dispersion System Tetora150」(日科機バイオス社製)の水槽内に所定量のイオン交換水を入れ、この水槽中に前記コンタミノンNを約2mL添加する。
4.前記2.のビーカーを前記超音波分散器のビーカー固定穴にセットし、超音波分散器を作動させる。そして、ビーカー内の電解水溶液の液面の共振状態が最大となるようにビーカーの高さ位置を調整する。
5.前記4.のビーカー内の電解水溶液に超音波を照射した状態で、トナー約10mgを少量ずつ前記電解水溶液に添加し、分散させる。そして、さらに60秒間超音波分散処理を継続する。尚、超音波分散にあたっては、水槽の水温が10℃以上40℃以下となる様に適宜調節する。
6.サンプルスタンド内に設置した前記1.の丸底ビーカーに、ピペットを用いてトナーを分散した前記5.の電解質水溶液を滴下し、測定濃度が約5%となるように調整する。そして、測定粒子数が50000個になるまで測定を行う。
7.側定データを装置付属の前記専用ソフトにて解析を行い、重量平均粒径(D4)を算出する。尚、専用ソフトでグラフ/体積%と設定したときの、分析/体積統計値(算術平均)画面の「平均径」が重量平均粒径(D4)である。
以上、本発明の基本的な構成と特色について述べたが、以下実施例にもとづいて具体的に本発明について説明する。しかしながら、これによって本発明の実施の態様がなんら限定されるものではない。
<定着装置1>
図3は本発明の定着装置の概略断面図であり、加圧ローラ7は、例えばφ14のアルミあるいは鉄製芯金の外側にシリコーンのソリッドあるいはスポンジゴム等の厚み3mmの弾性層と、PFA等の離型層を厚み30μmで積層している。そして、不図示の軸受け手段・付勢手段により総圧約200〜約100N(約20kgf〜約10kgf)の押圧力をもってフィルムガイド9との間に定着フィルムを挟ませて圧接させてある。そして、不図示の定着器回転制御手段は、加圧ローラ7を矢印方向に回転駆動し、5〜10mm程度の幅のニップ部Nにおける摩擦力で定着スリーブ1に回転力が作用し、従動回転状態になる。フィルムガイド9は、耐熱性樹脂PPS等で構成されている。定着フィルム1は、直径50〜10mmの、基層となる導電性部材でできた発熱層1aと、その外面に積層した弾性層1bと、その外面に積層した離型層1cの複合構造の円筒形回転体である。発熱層1aは、本装置では、厚さ20μmの比透磁率1、断面積1.5×10−6、直径は24mmのアルミの円筒形状部材である。弾性層1bは、硬度が20度(JIS−A、1kg加重)のシリコーンゴムを0.3〜0.1mmに成形している。そして、弾性層1b上に表層1c(離型層)として50〜10μmの厚さのフッ素樹脂チューブを被覆している。円筒形状部材である定着フィルム1の内部にて、この回転軸線方向に磁性コア2が挿通されている。その磁性コア2の周囲に励磁コイル3が巻き回されている。
磁性コア2は、分割されていない一体部品で円柱形状をしている。磁性コア2は、不図示の固定手段で定着フィルム1内に配置させており、励磁コイル3にて生成された交流磁界による磁力線(磁束)を定着フィルム1内部に誘導し、磁力線の通路(磁路)を形成する部材として機能する。この磁性コア2は、比透磁率が1800のフェライトであり、直径14mm、断面積1.5×10−4、長さB=230mmである。
フィルムガイド9は、比透磁率1のポリフェニレンサルファイド(PPS)であり、断面積1.0×10−4[m]である。詳細は表1に記載する。
定着フィルムの弾性層1b、定着フィルムの表層1cは、発熱層である円筒形回転体(導電層)1aより外側にあり、かつ発熱に寄与していない。従って、パーミアンス(または磁気抵抗)を計算する必要はなく、本磁気回路モデルにおいては「円筒体外空気」に含めて扱うことができる。
上記寸法と比透磁率から計算した定着装置1の各構成物の「単位長さ当たりのパーミアンスと磁気抵抗」を下記の表4にまとめる。
「単位長さ当たりのパーミアンス」に関して、図11(a)の磁気等価回路図と実機上の数値の対応関係について説明する。磁性コアの単位長さ当たりのパーミアンスPcは、次のように表される。
Pc=3.5×10−7[H・m]
導電層と磁性コアとの間の領域の単位長さ当たりのパーミアンスPa_inは、フィルムガイドの単位長あたりのパーミアンスと円筒体内の空気の単位長さ当たりのパーミアンスとの合成であるから次のように表される。
Pa_in=1.3×10−10+2.5×10−10[H・m]
導電層の単位長さ当たりのパーミアンスPcyは、表4に記載の円筒体であり、次のように表される。
Pcy=1.9×10−12[H・m]
Pa_outは、表4に記載された円筒体外空気であり、次のように表せる。
Pa_out=Pc−Pa_in−Pcy=3.5×10−7[H・m]
よって、定着装置1は下記のパーミアンスの関係式を満たしている。
Pcy+Pa_in≦0.30×Pc
次に、パーミアンスの逆数である、磁気抵抗を用いた場合について説明する。
磁性コアの単位長さ当たりの磁気抵抗は次のようになる。
Rc=2.9×10[1/(H・m)]
導電層と磁性コアとの間の領域の磁気抵抗は、フィルムガイドの抵抗Rfと円筒体内空気の抵抗Raの合成抵抗となるから、下記の式を用いて計算すると、
Ra=2.7×10[1/(H・m)]となる。
Rcyに該当するのは、表4に記載の円筒体であり、Rcy=Rs=5.3×1011[1/(H・m)]となっているから、RsとRaとの合成磁気抵抗Rsaは以下の式で計算できて、Rsa=2.7×10[1/(H・m)]となる。
なお、円筒体と磁性コアの間の領域のうち空気の断面積は、直径24[mm]の円筒体の中空部の断面積から磁性コアの断面積とフィルムガイドの断面積を差し引いて計算した。
従って、定着装置1は下記の磁気抵抗の式を満たしており、前記コアの磁気抵抗は、前記導電層の磁気抵抗と、前記導電層と前記コアとの間の領域の磁気抵抗と、の合成磁気抵抗の30%以下である。また、磁性コアの長手方向の一端を出た磁束のうち99.9%が円筒形回転体の外部を通って磁性コアの他端に戻っていることがわかる。
<定着装置2>
比較例として用いる定着装置2は、定着装置1の定着装置の構成に対して磁性コアの断面積と円筒形回転体の材質及び断面積が異なり、「コアの磁気抵抗は、前記導電層の磁気抵抗と、前記導電層と前記コアとの間の領域の磁気抵抗と、の合成磁気抵抗の30%以下」を満たしていない構成について説明する。特に、円筒形回転体が主磁路になっている構成について説明する。図17は定着装置2の定着装置の断面図であり、電磁誘導発熱回転体は定着フィルムではなく定着ローラ11を用いる。定着ローラ11と加圧ローラ7の押圧力をもってニップNを形成し、像担持体Pとトナー像Tを挟ませて矢印方向に回転する構成である。
定着ローラ11の円筒体(円筒形回転体)11aは比透磁率600、厚み100μm、直径は48mmのニッケル(Ni)を用いる。尚、円筒体の材質がニッケルに限られるわけではなく、鉄(Fe)、コバルト(Co)等の比透磁率の高い磁性金属を用いても良い。定着装置1の円筒体(円筒形回転体)が、非磁性材料であるアルミニウムであるのに対し、定着装置2では、磁性材料であるニッケルを用いている。
磁性コア2は、分割されていない一体部品で円柱形状をしている。磁性コア2は、不図示の固定手段で定着ローラ11内に配置させており、励磁コイル3にて生成された交流磁界による磁力線(磁束)を定着ローラ11内部に誘導し、磁力線の通路(磁路)を形成する部材として機能する。この磁性コア2は、比透磁率が1800、飽和磁束密度が500mTのフェライトであり、直径5mm、長さB=230mmである。
その他の構成は定着装置1と同一である。発熱の模式図(図18)に示すように、本構成では円筒体を磁路として通る磁力線が存在する。円筒体の内部を通る磁力線は、図中E//に示すように渦電流を流して発熱に寄与する。この磁力線の通り道は、スリーブとコアが近傍に位置している部分に集中し、図のようにコアに最も近い所に発熱集中を起こす。
定着装置2の各構成物のパーミアンスと磁気抵抗の計算結果を表5にまとめる。
また、定着装置2の各構成物のパーミアンスは下記のようになる。
磁性コアのパーミアンスPc=4.4×10−8[H・m]
円筒体内部のパーミアンスPa=1.3×10−10+2.1×10−9[H・m]
円筒体のパーミアンスPs=1.1×10−8 [H・m]
よって、定着装置2は下記のパーミアンスの関係式を満たしていない。
Ps+Pa≦0.30×Pc
これを磁気抵抗に置き換えると、
磁性コアの磁気抵抗Rc=2.3×10[1/(H・m)]
円筒体内部の磁気抵抗はフィルムガイドRfと円筒体内空気Rairの磁気抵抗の合成抵抗であるから、下記の式を用いて計算すると、Ra=4.5×10[1/(H・m)]となる。
円筒体の磁気抵抗Rs=8.8×10[1/(H・m)]であるから、RsとRaの合成磁気抵抗Rsaは以下のように求められ、Rsa=7.4×10[1/(H・m)]となる。
よって、定着装置2は下記の磁気抵抗の式を満たさず、定着装置2は、「前記コアの磁気抵抗は、前記導電層の磁気抵抗と、前記導電層と前記コアとの間の領域の磁気抵抗と、の合成磁気抵抗の30%以下」ではない。また、磁性コアの長手方向の一端を出た磁束のうち69.7%が円筒形回転体の外部を通って磁性コアの他端に戻っていることがわかる。
この場合、アルミニウムの円筒形回転体内部には、一部周回電流と、一部図15に示す方向の渦電流E⊥が流れ、両者が発熱に寄与していると考えられる。この渦電流E⊥について説明する。E⊥は材料の表面に近い程大きく、材料の内部に行くにつれて指数関数的に小さくなるという性質がある。その深さを浸透深さδと言い、以下の式で表される。
δ=503×(ρ/fμ)1/2 ・・・・・(22)
δ:浸透深さ〔m〕
f:励磁回路の周波数〔Hz〕
μ:透磁率〔H/m〕
ρ:抵抗率〔Ωm〕
浸透深さδは電磁波の吸収の深さを示しており、これより深いところでは電磁波の強度は1/e以下になるというものである。そしてその深さは周波数と透磁率、抵抗率に依存する。
<定着装置3>
本定着装置3は先に説明をした定着装置1に関する他の例であり、円筒形回転体(導電層)としてオーステナイト系のステンレス(SUS304)を用いた点が定着装置1と異なる。以下は参考として各種金属における抵抗率と比透磁率について纏め、式22に従い21kHz、40kHz、100kHzにおける浸透深さδを計算した結果である。
表6によると、SUS304は抵抗値が高く、比透磁率が低いため、浸透深さδが大きい。すなわち電磁波は透過しやすいため誘導加熱の発熱体として好適に用いられることは少ない。よって従来の電磁誘導加熱方式の定着装置においては、高い電力の変換効率を実現することが困難であった。しかし、本定着装置においては、高い電力の変換効率を実現することが可能であることを示す。
なお、定着装置3の構成は、円筒形回転体の材質としてSUS304を用いている以外は定着装置1の構成と同じである。定着装置の横断面形状も定着装置1と同様である。発熱層は、比透磁率1.0のSUS304を用い、膜厚30μm、直径Φ24mmとした。弾性層、表層は定着装置1と同様である。磁性コア、励磁コイル、温度検知部材、温度制御は定着装置1と同様である。
本定着装置3の各構成物のパーミアンスと磁気抵抗を下記の表7に示す。
表7から定着装置3の各構成物のパーミアンスは下記のようになる。
コアのパーミアンスPc=3.5×10−7[H・m]
円筒体内部のパーミアンスPa=1.3×10−10+2.5×10−10[H・m]
円筒体のパーミアンスPs=2.8×10−12[H・m]
よって、定着装置3は下記のパーミアンスの関係式を満たしている。
Ps+Pa≦0.30×Pc
これを磁気抵抗に置き換えると、
磁性コアの磁気抵抗Rc=2.9×10[1/(H・m)]
円筒体内部の磁気抵抗はフィルムガイドRfと円筒体内空気Rairの磁気抵抗の合成抵抗であるから、下記の式を用いて計算すると、Ra=2.7×10[1/(H・m)]となる。
円筒体の磁気抵抗Rsは、Rs=3.5×1011[1/(H・m)]となっているから、RsとRaとの合成磁気抵抗Rsaは以下の式で計算できて、
Rsa=2.7×10[1/(H・m)]となる。
以上から定着装置3の定着装置は、下記の磁気抵抗の式を満たしており、前記コアの磁気抵抗は、前記導電層の磁気抵抗と、前記導電層と前記コアとの間の領域の磁気抵抗と、の合成磁気抵抗の30%以下である。また、磁性コアの長手方向の一端を出た磁束のうち99.9%が円筒形回転体の外部を通って磁性コアの他端に戻っていることがわかる。
<定着装置4>
本定着装置4は、円筒形回転体として比透磁率の高い金属を用いる構成について解説する。本定着装置のように主に周回電流によって円筒形回転体を発熱させる構成は、円筒形回転体として必ずしも比透磁率の低い金属を用いなければならないものではなく、比透磁率の高い金属でも使用することができる。
従来の電磁誘導加熱方式の定着装置においては、円筒形回転体として比透磁率の高いニッケル等を用いた場合であっても、円筒形回転体の厚みを薄くすると、電力の変換効率が小さくなるという課題があった。そこで、本実施例において、ニッケルの厚みが薄い場合であっても円筒形回転体を高効率で発熱させることが可能であることを示す。円筒形回転体の厚みを薄くすることによって、繰り返し屈曲に対する耐久性向上や熱容量削減によるクイックスタート性向上などのメリットがある。
尚、円筒形回転体にニッケルを用いることを除いて、画像形成装置の構成は定着装置1と同じである。定着装置4においては、円筒形回転体として比透磁率が600のニッケルを用いる。円筒形回転体の厚みは75μmで、直径がΦ24mmとした。弾性層、表層は定着装置1と同じであるので説明を省略する。また、励磁コイル、温度検知部材、温度制御についても定着装置1と同様である。この磁性コア2は、比透磁率が1800、飽和磁束密度が500mTのフェライトであり、直径14mm、長さB=230mmである。
定着装置4の各構成物のパーミアンスと磁気抵抗の割合を下記の表8に示す。
表8から定着装置4の各構成物のパーミアンスは下記のようになる。
磁性コアのパーミアンス:Pc=3.5×10−7[H・m]
円筒体内部のパーミアンス:Pa=1.3×10−10+2.4×10−10[H・m]
円筒体のパーミアンス:Ps=4.2×10−9[H・m]
よって、下記のパーミアンスの関係式を満たす。
Ps+Pa≦0.30×Pc
ここで、上記のパーミアンスの関係式を磁気抵抗の関係式に置き換えると、下記のようになる。
磁性コアの磁気抵抗:Rc=2.9×10[1/(H・m)]
円筒体と磁性コアの間の領域の磁気抵抗:Ra=2.7×10[1/(H・m)]
円筒体の磁気抵抗:Rs=2.4×10[1/(H・m)]
RsとRaの合成磁気抵抗:Rsa=2.2×10[1/(H・m)]
よって、定着装置4は、下記の磁気抵抗の式を満たしており、前記コアの磁気抵抗は、前記導電層の磁気抵抗と、前記導電層と前記コアとの間の領域の磁気抵抗と、の合成磁気抵抗の30%以下である。また、磁性コアの長手方向の一端を出た磁束のうち98.7%が円筒形回転体の外部を通って磁性コアの他端に戻っている事がわかる。
<定着装置5>
本定着装置は定着装置4の変形例であり、磁性コアを長手方向で複数に分割し、分割した各コア間に空隙(ギャップ)を設けた点のみが定着装置4の構成と異なっている。
つまり、磁性コアを長手方向で複数に分割し、その分割した磁性コアの間に空隙を設けて、磁性コアのパーミアンスを小さく(磁気抵抗を高く)した構成である。磁性コアを分割することで、磁性コアを分割せずに一体部品で構成した時よりも磁性コアは外部の衝撃に対して破損しにくくなるというメリットがある。
例えば、磁性コアの長手方向に対して直交する方向に磁性コアに衝撃が加えられた時に、磁性コアが一体部品の場合割れやすいが、複数に分割されていると割れにくい。その他の構成は定着装置4と同じであるので省略する。
本定着装置の構成のうち、円筒形回転体1a、磁性コア3、及び、コイル2を有し、磁性コア3が10分割されている構成を、図19に示す。定着装置5においては分割コア同士のギャップの長さが20μmある。ギャップに比透磁率1、厚みG=20μmのポリイミド等の絶縁シート部材を挟んでいる。このように、その磁性コア同士の間に薄い絶縁シートを挟むことで分割された磁性コアのギャップを保証することができる。磁性コア全体の磁気抵抗の増加を極力抑えるために、分割コア同士のギャップを極力小さく設計している。この構成において、磁性コア3の単位長さ当たりのパーミアンスを求めると、下記の表9のようになる。
磁性コアの単位長さ当たりのパーミアンスは、式(15)〜(21)に表9に示した各パラメータを代入して算出した。
また、上記計算より磁性コアの単位長さ当たりのパーミアンスを1.9×10−7[H・m]として、各領域を通る磁束の比率を算出すると、下記の表10のようになる。
また、表10から定着装置5の各構成物のパーミアンスは下記のようになっている。
磁性コアのパーミアンス:Pc=1.9×10−7[H・m]
円筒体内部のパーミアンス:Pa=1.3×10−10+1.8×10−10[H・m]
円筒体のパーミアンス:Ps=4.3×10−9[H・m]
よって、定着装置5は、下記のパーミアンスの関係式を満たす。
Ps+Pa≦0.30×Pc
これを磁気抵抗に置き換えると、
磁性コアの磁気抵抗:Rc=5.2×10[1/(H・m)]
円筒体内部の磁気抵抗:Ra=3.2×10[1/(H・m)]
円筒体の磁気抵抗:Rs=2.4×10[1/(H・m)]
RsとRaの合成磁気抵抗:Rsa=2.2×10[1/(H・m)]
よって、定着装置5は、下記の磁気抵抗の式を満たしており、前記コアの磁気抵抗は、前記導電層の磁気抵抗と、前記導電層と前記コアとの間の領域の磁気抵抗と、の合成磁気抵抗の30%以下である。また、磁性コアの長手方向の一端を出た磁束のうち97.7%が円筒形回転体の外部を通って磁性コアの他端に戻っていることがわかる。
<定着装置6>
定着装置6として、定着装置1の構成に対して磁性コア2の断面積と円筒形回転体の材質及び断面積が異な構成について説明する。本構成は「コアの磁気抵抗は、前記導電層の磁気抵抗と、前記導電層と前記コアとの間の領域の磁気抵抗と、の合成磁気抵抗の30%以下」を満たしているものの円筒形回転体が一部、磁路になっている構成である。
定着ローラ11の円筒体(円筒形回転体)11aは比透磁率600、厚み0.2mm、直径は48mmのニッケル(Ni)を用いる。尚、円筒体の材質がニッケルに限られるわけではなく、鉄(Fe)、コバルト(Co)等の比透磁率の高い磁性金属を用いても良い。
磁性コア2は、分割されていない一体部品で円柱形状をしている。磁性コア2は、不図示の固定手段で定着ローラ11内に配置させており、励磁コイル3にて生成された交流磁界による磁力線(磁束)を定着ローラ11内部に誘導し、磁力線の通路(磁路)を形成する部材として機能する。この磁性コア2は、比透磁率が1800、飽和磁束密度が500mTのフェライトであり、直径12mm、長さB=230mmである。その他の構成は定着装置1と同一である。発熱の模式図に示すように、本構成では円筒体を磁路として通る磁力線が存在する。円筒体の内部を通る磁力線は、図中E//に示すように渦電流を流して発熱に寄与する。この磁力線の通り道は、スリーブとコアが近傍に位置している部分に一部集中し、図のようにコアに最も近い所は発熱量が約10%程度多くなる。
定着装置6の定着装置の各構成物のパーミアンスと磁気抵抗の計算結果を表11にまとめる。
表11から定着装置6の各構成物のパーミアンスは下記のようになっている。
磁性コアのパーミアンス:Pc=2.6×10−7[H・m]
円筒体内部のパーミアンス:Pa=1.3×10−10+2.0×10−9[H・m]
円筒体のパーミアンス:Ps=2.3×10−8[H・m]
よって、定着装置6は、下記のパーミアンスの関係式を満たす。
Ps+Pa≦0.30×Pc
これを磁気抵抗に置き換えると、
磁性コアの磁気抵抗:Rc=3.9×10[1/(H・m)]
円筒体内部の磁気抵抗:Ra=4.8×10[1/(H・m)]
円筒体の磁気抵抗:Rs=4.4×10[1/(H・m)]
RsとRaの合成磁気抵抗:Rsa=4.0×10[1/(H・m)]
よって、定着装置6は、下記の磁気抵抗の式を満たしており、前記コアの磁気抵抗は、前記導電層の磁気抵抗と、前記導電層と前記コアとの間の領域の磁気抵抗と、の合成磁気抵抗の30%以下である。また、磁性コアの長手方向の一端を出た磁束のうち90.4%が円筒形回転体の外部を通って磁性コアの他端に戻っていることがわかる。
次に、磁性トナーの製造例に関して説明する。以下の例において、部数は質量部基準である。
<ポリエステル樹脂の製造>
・テレフタル酸 46.0mol%
・無水トリメリット酸 1.0mol%
・エトキシ化ビスフェノールA(2.2mol付加物): 2.0mol%
・プロポキシ化ビスフェノールA(2.2mol付加物): 51.0mol%
上記のモノマーを、窒素導入管、脱水管、撹拌器及び熱電対を装備した反応槽中に入れた後、触媒としてジブチル錫をモノマー総量100.0質量部に対して1.5質量部添加した。次いで、窒素雰囲気下にて常圧で180℃まで素早く昇温した後、180℃から210℃まで10℃/時間の昇温速度で加熱しながら水を留去して重縮合を行った。210℃に到達してから反応槽内を5kPa以下まで減圧し、210℃、5kPa以下の条件下にて重縮合を行い、ポリエステル樹脂を得た。その際、得られるポリエステル樹脂の軟化点が120℃となるように重合時間を調整した。ポリエステル樹脂の重量平均分子量は250000であり、酸価は10mgKOH/gであった。
<磁性体1の製造>
硫酸第一鉄水溶液(1.5mol/L)中に、Fe2+に対して、0.965当量の水酸化ナトリウム水溶液(2.8mol/L)を混合して、Fe(OH)を含む第一鉄塩水溶液を生成した。
その後、ケイ酸ソーダをFe元素に対してSi元素換算で0.4質量%となるように添加した。次いで、Fe(OH)を含む第一鉄塩水溶液に温度90℃、流量80L/minで空気を通気して、pH6〜7の条件下で2時間酸化反応をすることにより、Si元素を含有する母体磁性体コアを生成した。
さらに、上記母体磁性体コアを含む懸濁液に、(全Fe元素に対してSi元素換算で)0.2質量%のケイ酸ソーダを溶解した水酸化ナトリウム水溶液(2.8mol/L)を、残存するFe2+に対して1.05当量添加して、さらに温度90℃で加熱しながら、pH8〜10.5の条件下で1時間酸化反応して、Si元素を含有した母体磁性体を生成させた。生成した磁性体を常法により洗浄、ろ過、乾燥後、乾式分級機により分級し、微粗粉をカットして母体磁性体を得た。
次いで、母体磁性体を水中に分散させて、100g/Lの濃度の懸濁水溶液を得た。この懸濁水溶液を80℃以上に保持し、水酸化ナトリウム水溶液を加えて懸濁水溶液のpHを9.8に調整した。この懸濁水溶液を攪拌しながら、これにケイ酸ナトリウム水溶液をSiO/Feとして、2.1質量%相当分添加した。ついで希硫酸を添加して、懸濁水溶液のpHを徐々に下げ、約4時間かけて最終的に懸濁水溶液のpHを6.5とした。
これを、常法により洗浄、ろ過、乾燥、解砕処理して、高密度のSiO被覆層が母体磁性体の表面に形成された磁性体1を得た。磁性体1の物性を表12に示す。
<磁性体2の製造>
磁性体1の製造において、酸化反応時の温度及び時間を変更し、生成した磁性体を常法により洗浄、ろ過、乾燥し、母体磁性体を生成させた。この母体磁性体の個数平均粒子径が0.19μmであることを確認したのち、特に粗粉をカットするように調整しながら、乾式分級機により分級し、個数平均粒子径が0.17μmの母体磁性体を得た。
この母体磁性体に対して、ケイ酸ナトリウム水溶液の量を変更した以外は磁性体1の製造と同様にして、SiO被覆処理を行って、磁性体2を得た。磁性体2の物性を表12に示す。
<磁性体3の製造>
磁性体1の製造において、酸化反応時の温度及び時間を変更し、反応途中に硫酸マンガンをFe元素に対してMn元素換算で4.0質量%となるように添加し、磁性体を生成させ、ろ過・乾燥した後の分級工程を省略した以外は同様にして、母体磁性体を得た。この母体磁性体に対して、SiO被覆層を形成することなく、磁性体1の製造と同様にして、磁性体3を得た。磁性体3の物性を表12に示す。
<磁性体4の製造>
硫酸第一鉄水溶液中に、鉄元素に対して1.00当量以上1.10当量以下の苛性ソーダ溶液、鉄元素に対して珪素元素換算で0.50質量%となる量のSiOを混合し、水酸化第一鉄を含む水溶液を調製した。水溶液のpHを8.0とし、空気を吹き込みながら85℃で酸化反応を行い、種晶を有するスラリー液を調製した。
次いで、このスラリー液に当初のアルカリ量(苛性ソーダのナトリウム成分)に対し0.90当量以上1.20当量以下となるよう硫酸第一鉄水溶液を加えた。その後、スラリー液をpH7.6に維持して、空気を吹込みながら酸化反応をすすめ、磁性酸化鉄を含むスラリー液を得た。濾過、洗浄した後、この含水スラリー液を一旦取り出した。この時、含水サンプルを少量採取し、含水量を計っておいた。次に、この含水スラリー液を乾燥せずに別の水系媒体中に投入し、撹拌すると共にスラリーを循環させながらピンミルにて再分散させ、再分散液のpHを4.8に調整した。そして、撹拌しながらn−ヘキシルトリメトキシシランカップリング剤を磁性体100質量部に対し1.6質量部(磁性体の量は含水サンプルから含水量を引いた値として計算した)添加し、加水分解を行った。その後、撹拌を十分行い、分散液のpHを8.6にして表面処理を行った。生成した疎水性磁性体をフィルタープレスにてろ過し、多量の水で洗浄した後に100℃で15分、90℃で30分乾燥し、得られた粒子を解砕処理して個数平均粒径が0.24μmの磁性体4を得た。磁性体4の物性を表12に示す。
<磁性体5及び6の製造>
磁性体4の製造において、酸化反応時の温度及び時間を変更した以外は、磁性体4と同様にして、磁性体5及び6を得た。磁性体5及び6の物性を表12に示す。
<磁性トナー製造例1>
・ポリエステル樹脂 100.0質量部
・磁性体1 88.0質量部
・フィッシャートロプシュワックス(DSCピーク温度:105℃) 5.0質量部
・電荷制御剤(T−77:保土ヶ谷化学社製) 2.0質量部
上記材料をヘンシェルミキサー(FM−75型、三井三池化工機(株)製)で混合した後、二軸混練機(池貝鉄工(株)製PCM−30型))にて回転数3.3s−1、混練温度130℃の条件で混練した。得られた混練物を冷却し、ハンマーミルにて1mm以下に粗粉砕し、粗砕物を得た。得られた粗砕物を、機械式粉砕機(ターボ工業(株)製T−250)にて微粉砕した。さらに、得られた微粉砕粉末をコアンダ効果を利用した多分割分級機を用いて分級し、重量平均粒径7.0μmの負摩擦帯電性の磁性トナー粒子を得た。
得られた磁性トナー粒子100.0質量部に、ヘキサメチルジシラザン20.0質量%で表面処理した一次平均粒子径16nmの疎水性シリカ微粒子1.0質量部を添加し、ヘンシェルミキサー(三井三池化工機(株)製FM−75型)で混合して、磁性トナー1を得た。
磁性トナー1の諸物性の関しては表14に記載したとおりである。
<磁性トナー製造例2〜7>
処方を表13に記載の様に変更した以外は、磁性トナー1の製造例と同様にして、磁性トナー2〜7を作成した。磁性トナー2〜7の物性を表14に示す。
<磁性トナー製造例8>
イオン交換水720質量部に0.1mol/L−NaPO水溶液450質量部を投入して60℃に加温した後、1.0mol/L−CaCl水溶液67.7質量部を添加して、分散安定剤を含む水系媒体を得た。
・スチレン 78.0質量部
・n−ブチルアクリレート 22.0質量部
・ジビニルベンゼン 0.6質量部
・磁性体4 495.0質量部
・ポリエステル樹脂 3.0質量部
・帯電制御剤ボントロンE−88(オリエント化学社製) 5.0質量部
上記処方を、ディスパー翼を用いて均一に分散混合して組成物を得た。この組成物を60℃に加温し、そこにエステルワックス(ベヘン酸ベヘニル)8.0質量部を添加混合し、溶解した後に重合開始剤としてジラウロイルパーオキサイド7.0質量部を溶解し、重合性単量体組成物を得た。
上記水系媒体中に上記重合性単量体組成物を投入し、60℃、N雰囲気下においてTK式ホモミキサー(特殊機化工業(株))にて12000rpmで10分間撹拌し、造粒した。その後パドル撹拌翼で撹拌しつつ74℃で6時間反応させた。反応終了後、懸濁液を冷却し、塩酸を加えて洗浄した後に濾過・乾燥して磁性トナー粒子8を得た。
この磁性トナー粒子8を100質量部と、ヘキサメチルジシラザン20.0質量%で表面処理した一次平均粒子径16nmの疎水性シリカ微粒子1.0質量部をヘンシェルミキサー(三井三池化工機(株))で混合し、重量平均粒径(D4)が7.0μmの磁性トナー8を得た。磁性トナー8の諸物性の関しては表14に記載したとおりである。
<磁性トナー製造例9及び10>
磁性トナー製造例8において、磁性体処方を表13に示すように変更したこと以外は磁性トナー製造例8と同様にして磁性トナー9及び10を得た。磁性トナー9及び10の諸物性の関しては表10に記載したとおりである。
<実施例1>
磁性トナー1を用いて、以下の評価を行った。評価結果を表15に示す。
[画だし評価]
市販のレーザープリンタ(Laser Jet P4515n、hp社製)の定着装置を取り出し、未定着画像を出力できるように改造を施した。記録材としては、レターサイズのHPレーザージェット紙(HP社製、90g/m)を使用した。
そして、市販のカートリッジから製品トナーを抜き取り、エアーブローにて内部を清掃した後、磁性トナー1を400g充填した。
<尾引き評価>
低温低湿環境(温度15℃、湿度10%)において、4ドット横線パターンで潜像ライン幅が約190μmの未定着画像を出力した。なお画像は、左右のそれぞれ80mm、上下それぞれ10mmの余白となるように調整した。
次に、上記未定着画像を、評価用の定着装置に通紙し、定着画像を評価した。前記した温度制御手段に基づき、定着器の投入電力を長手中央部のターゲット温度(180℃)に合わせて制御し、加圧ローラの回転速度250mm/secとした。
画像先端から10本の横ラインを観察し、尾引きレベルを評価した。尾引きの判断基準を以下に示す。
A:倍率25倍のルーペで観察した際、尾引き発生箇所は4箇所以下であり、目視で観察できる尾引きはない。
B:倍率25倍のルーペで観察した際、尾引き発生箇所は5箇所以上10箇所以下であり、目視で観察できる尾引きはない。
C:倍率25倍のルーペで観察した際、尾引き発生箇所は11箇所以上15箇所以下であり、目視で観察できる尾引きはない。
D:倍率25倍のルーペで観察した際、尾引き発生箇所は16箇所以上ある、或いは、目視でも確認できる尾引き発生箇所がある。
<飛び散り評価>
低温低湿環境(温度15℃、湿度10%)において、8ポイントの「A」の文字を縦5個、横5個の合計25個印字した原稿を出力した。なお画像は、左右のそれぞれ80mm、上下それぞれ10mmの余白となるように調整した。
次に、上記未定着画像を、評価を行う定着装置に通紙し、通紙画像を評価した。前記した温度制御手段に基づき、定着器の投入電力を長手中央部のターゲット温度(180℃)に合わせて制御し、加圧ローラの回転速度250mm/secとした。
発生した飛び散りレベルを8ポイントの「A」の文字、合計25個を観察し、評価した。飛び散りの判断基準を以下に示す。
A:倍率25倍のルーペで観察した際、画像周辺の飛び散り数合計が5個以下であり、目視で観察できる飛び散りはない。
B:倍率25倍のルーペで観察した際、画像周辺の飛び散り数合計が6個以上10個以下であり、目視で観察できる飛び散りはない。
C:倍率25倍のルーペで観察した際、画像周辺の飛び散り数合計が11個以上15個以下であり、目視で観察できる飛び散りはない。
D:倍率25倍のルーペで観察した際、画像周辺の飛び散り数合計が16個以上である、或いは、目視でも観察できる飛び散り発生箇所がある。
<実施例2〜14、比較例1〜5>
磁性トナー及び定着装置を表14に記載の様に変更した以外は、実施例1と同様にして、評価を行った。評価結果を表15に示す。
1 定着フィルム
1a 導電層(円筒形回転体)
1b 弾性層
1c 離型層
2 磁性コア
2c 閉磁路の磁性コア
3 励磁コイル
4 温度検知部材
7 加圧ローラ
9 ニップ部形成部材
N ニップ部
M 誘導起電力安定領域
Bin 円筒形回転体としてのローラ1の中を紙面奥方向に向かう磁力線
Bout 円筒形回転体としてのローラ1の外を紙面手前方向に戻ってくる磁力線
11a 導電層
11b 弾性層
11c 離型層
3a、3b、3c、3d、3e、3f、3g、3h、3i、3j 分割した磁性コア
100 本実施例に従う画像形成装置
200 円筒形回転体
200a 円筒形回転体の材料内部
B// 軸Xと平行方向に発生する磁場
E// B//によって発生する渦電流
B⊥ 軸Xと⊥方向に発生する磁場
E⊥ B⊥によって発生する渦電流

Claims (6)

  1. トナーにより形成される記録材上のトナー画像を、加熱加圧手段によって加熱加圧定着して、記録材に定着画像を形成する定着方法において、
    前記加熱加圧手段は、加熱部材と、加圧部材とを有する加熱加圧手段であり、
    前記加熱部材は、
    導電層を有する筒状の回転体と、
    前記回転体の内部に配置され、螺旋軸が前記回転体の母線方向と略平行である螺旋形状部を有し、前記導電層を電磁誘導発熱させる交番磁界を形成するためのコイルと、
    前記螺旋形状部の中に配置され、前記交番磁界の磁力線を誘導するためのコアと、
    を備え、
    前記母線方向に関し、記録材上の画像の最大通過領域の一端から他端までの区間において、前記コアの磁気抵抗は、前記導電層の磁気抵抗と、前記導電層と前記コアとの間の領域の磁気抵抗と、の合成磁気抵抗の30%以下であって、
    前記トナーは、結着樹脂、磁性体を含有する磁性トナー粒子を有する磁性トナーであることを特徴とする定着方法。
  2. 前記導電層は、銀と、アルミニウムと、オーステナイト系ステンレスと、銅と、のうち少なくとも一つで形成されていることを特徴とする請求項1に記載の定着方法。
  3. 前記回転体が筒状のフィルムであることを特徴とする請求項1または2に記載の定着方法。
  4. 前記磁性トナーは、79.6kA/mにおける、飽和磁化σsが10.0Am/kg以上40.0Am/kg以下であることを特徴とする請求項1乃至3のいずれか一項に記載の定着方法。
  5. 前記磁性トナーの79.6kA/mにおける、残留磁化σrが1.0Am/kg以上6.0Am/kg以下であることを特徴とする請求項1乃至4のいずれか一項に記載の定着方法。
  6. 前記磁性トナー粒子中における該磁性体の含有量が、5.0質量%以上60.0質量%以下であることを特徴とする請求項1乃至5いずれか一項に記載の定着方法。
JP2013260376A 2013-12-17 2013-12-17 定着方法 Pending JP2015118170A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013260376A JP2015118170A (ja) 2013-12-17 2013-12-17 定着方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013260376A JP2015118170A (ja) 2013-12-17 2013-12-17 定着方法

Publications (1)

Publication Number Publication Date
JP2015118170A true JP2015118170A (ja) 2015-06-25

Family

ID=53530960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013260376A Pending JP2015118170A (ja) 2013-12-17 2013-12-17 定着方法

Country Status (1)

Country Link
JP (1) JP2015118170A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3501285A1 (en) * 2017-12-20 2019-06-26 Shanghai Terin Co., Ltd. One type of pasta roller with a built-in motor for manual and electric pasta roller machine
JP2020132709A (ja) * 2019-02-15 2020-08-31 富士電機株式会社 粉体塗料、粉体塗料の混合体、塗装品、粉体塗装装置、並びに、粉体塗装方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3501285A1 (en) * 2017-12-20 2019-06-26 Shanghai Terin Co., Ltd. One type of pasta roller with a built-in motor for manual and electric pasta roller machine
JP2020132709A (ja) * 2019-02-15 2020-08-31 富士電機株式会社 粉体塗料、粉体塗料の混合体、塗装品、粉体塗装装置、並びに、粉体塗装方法
JP7426169B2 (ja) 2019-02-15 2024-02-01 富士電機株式会社 粉体塗料の混合体、塗装品、粉体塗装装置、並びに、粉体塗装方法

Similar Documents

Publication Publication Date Title
KR101238502B1 (ko) 화상 형성 방법, 자성 토너 및 프로세스 유닛
KR101171033B1 (ko) 자성 토너
JP6261307B2 (ja) 定着方法
KR100796076B1 (ko) 자성 토너
JP7069915B2 (ja) 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置及び画像形成方法
JP5678713B2 (ja) 二成分現像剤用キャリア、二成分現像剤、画像形成方法、及び、画像形成装置
JP2019028239A (ja) トナー用外添剤、静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び画像形成方法
JP6218581B2 (ja) 定着方法
JP2007034224A (ja) 静電荷像現像用トナーおよび画像形成方法
JP5807438B2 (ja) 二成分現像剤用キャリア、二成分現像剤、画像形成方法、及び、画像形成装置
JP2010039263A (ja) 磁性トナー及びプロセスカートリッジ
KR101016520B1 (ko) 현상 장치 및 프로세스 카트리지
JP2015045861A (ja) トナー
JP2015118170A (ja) 定着方法
JP4401904B2 (ja) 静電荷現像用トナー及び画像形成方法
JP2007034223A (ja) 静電荷像現像用トナーおよび画像形成方法
JP6271997B2 (ja) 定着方法
JP2015118169A (ja) 定着方法
JP2017009959A (ja) 現像装置及び画像形成方法
JP4968892B2 (ja) 二成分現像剤
JP2017058465A (ja) 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、画像形成方法、及び、画像形成装置
JP2009205048A (ja) 画像形成方法
JP2015118168A (ja) 画像形成方法
JP6271998B2 (ja) 定着方法
JP2002023533A (ja) 定着装置