JP2015115453A - 光通信モジュールの製造方法 - Google Patents

光通信モジュールの製造方法 Download PDF

Info

Publication number
JP2015115453A
JP2015115453A JP2013256208A JP2013256208A JP2015115453A JP 2015115453 A JP2015115453 A JP 2015115453A JP 2013256208 A JP2013256208 A JP 2013256208A JP 2013256208 A JP2013256208 A JP 2013256208A JP 2015115453 A JP2015115453 A JP 2015115453A
Authority
JP
Japan
Prior art keywords
optical
optical component
substrate
suction
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013256208A
Other languages
English (en)
Other versions
JP6225681B2 (ja
Inventor
宗高 黒川
Munetaka Kurokawa
宗高 黒川
智哉 佐伯
Tomoya Saeki
智哉 佐伯
三千男 鈴木
Michio Suzuki
三千男 鈴木
康 藤村
Yasushi Fujimura
康 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2013256208A priority Critical patent/JP6225681B2/ja
Publication of JP2015115453A publication Critical patent/JP2015115453A/ja
Application granted granted Critical
Publication of JP6225681B2 publication Critical patent/JP6225681B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

【課題】光学部品の切り出し精度によらず、光学部品を高精度に実装できる光通信モジュールの製造方法を提供する。【解決手段】光学部品1bの光学面2bを吸着コレット10により吸着し、吸着コレット10により吸着された光学部品1bを、基板3の所定位置まで移動させ、所定位置の上方で基板3に接触させることなく保持し、光学部品1bと基板3との隙間に充填された紫外線硬化樹脂4bを硬化させることにより、光学部品1bを基板3の所定位置に固定する。【選択図】図6

Description

本発明は、高精度な実装が要求される光学部品を搭載する光通信モジュールの製造方法に関する。
光通信モジュールの一つである波長多重光送信モジュール(以下、単に光送信モジュールという)は、複数の発光素子(LD:Laser Diode)から出射された信号光を、光学レンズや波長選択フィルタ、反射ミラーなどの光学部品を用いて波長多重化して送信するものであり、複数のLDと共に、これらの光学部品が基板上に実装されている。
従来、上記の光学部品をピンセットなどで基板の所定位置に搬送する方法が取られていたが、光学部品の高密度化や、光送信モジュールの小型化などに伴い、基板上でピンセットを入れる面積を確保することが困難になってきた。そこで、吸着コレット(吸引コレット、真空コレットともいう)と呼ばれる保持具を用いて光学部品を吸引・吸着し、基板の所定位置に搬送する方法が提案されている。この吸着コレットとは、光学部品表面に当接される吸着面と、吸着面に開口する吸着口とを備え、吸着口を介して光学部品表面を吸着して、光学部品を基板の所定位置に搬送するものである。
上記の吸着コレットは、本来、半導体素子などの電子デバイスの搬送用に開発されたものであり、例えば、特許文献1に記載の吸着コレットは、略ニードル形状をなし、その軸線が鉛直方向に延び、先端の吸着面が水平面を基準に所定角度θ1で傾斜して設けられている。この傾斜角θ1は、20°〜70°の範囲内であればよいが、より望ましくは30°〜60°程度とされている。
特開2001−77454号公報
図8は、従来の吸着コレットの形状および部品の搬送方法を示す図で、図中、120は吸着コレット、121はmPD(モニタPD)、122は光学部品、123は光学面、124は切断面を示す。図8(A)は吸着コレット120によりmPD121を吸引搬送する従来の使用方法を示している。このような電子部品を搬送する場合、吸着コレット120の吸着口は電子部品のデバイス形成面に直接触れないようになっている。具体的には、吸着コレット120の先端に凹部が形成され、この凹部の最奥に吸着口が設けられている。吸着コレット120で電子部品を吸着すると、電子部品が凹部の縁に引っ掛かり、そのデバイス形成面が直接触れない構造となっている。このような吸着コレット120を、光学部品122に使用する場合、図8(B)に示すように、光学部品122の切断面124を吸着することとなり、光学面123と吸着コレット120の吸着面は、切り出しの垂直度の影響を受けてしまう。
かかる従来の吸着コレット120を光学部品の実装に応用しようとする場合、光学部品は1mm2に満たない寸法しかない。従来の吸着コレットは元々電子デバイス(半導体チップ)用に開発されたものであり、その吸着口をコレット先端に有している。あるいは、コレット先端にチップサイズに準じたアダプタ(断面U字型の平板)を有し、このU字の底辺側を吸着口とするのが常であった。
しかしながら、この吸着コレットを上記光学部品の搭載工程に適用する場合、次のような問題がある。各光学部品の光学面(光学基準面ともいう、例えば、WDMフィルタ,ミラー,PBCの場合には反射面、レンズの場合にはレンズ主面)は全て基板の主面に対して垂直である。すなわち、mPDのみはその光学面(受光面)が基板の主面に平行であるところ、他の全ての部品は押しなべて垂直な位置にその光学面がある。この場合、従来の吸着コレットを利用すると、mPD以外では部品の吸着面は光学面以外となるため、例えば、光学面と接する上面を吸着しなければならない。
光学部品について、その主面(光学面)とその反対の面についての平行度は厳密に規定されている。特に、WDMフィルタ、λ/2波長板、PBCでは両面が非平行になると、出射光が入射光と非平行となるので好ましくないため、製品の一仕様として厳密に規定されている。ところが、通常、光学部品の主面とその主面に接する上面との直交性(直角性)については規定されていない。この直角性を製品仕様に含めた場合には、製品価格が格段に上昇してしまう。従って、図8(B)に示すように、直角性が不確実な上面を吸着コレットの先端で吸着した場合には、部品の光学面と基板との直角性が全く維持されないことになる。
つまり、吸着コレットの先端で部品上面を吸着する場合、部品光学面のLD光軸に対する角度(向き)が全く補償されない。吸着コレットに吸着させる瞬間の部品の状態や、吸引速度等により、吸着コレットで吸着した直後の部品の角度は、たとえ吸着コレットに角度についての指標(index)やマークなどを設けていたとしても、その角度は不定になってしまう。しかし、光送信モジュールでは、この部品光学面のLD光軸に対する角度が最も厳密に規定されなくてはならない。
本発明は、上述のような実情に鑑みてなされたもので、光学部品の切り出し精度によらず、光学部品を高精度に実装できる光通信モジュールの製造方法を提供することを目的とする。
本発明は、
(1)基板上に実装された複数の発光素子または受光素子と、前記基板上の前記複数の発光素子または受光素子のそれぞれに対応する位置に固定された複数の光学部品とを有する光通信モジュールの製造方法であって、前記光学部品の光学面を吸着手段により吸着する吸着工程と、前記吸着手段により吸着された前記光学部品を、前記基板の所定位置まで移動させ、該所定位置の上方で前記基板に接触させることなく保持する保持工程と、前記光学部品と前記基板との隙間に充填された樹脂を硬化させることにより、前記光学部品を前記基板の所定位置に固定する固定工程とを備える。
(2)基板上に実装された複数の発光素子または受光素子と、前記基板上の前記複数の発光素子または受光素子のそれぞれに対応する位置に固定された複数の光学部品とを有する光通信モジュールの製造方法に用いる吸着コレットであって、先端部分の長手方向側面に形成された基準平面と、該基準平面中に設けられた吸着口とを有する。
上記発明によれば、光学部品の光学面を吸着することで、光学部品の切り出し精度に依らない高精度でばらつきの少ない部品実装が可能となる。
光送信モジュールの光学系近傍の構成例を示す模式図である。 光送信モジュールの光学系近傍の構成例を示す鳥瞰図である。 光信号λ1〜λ4の透過率の一例を示す図である。 本発明による吸着コレットの先端部分の形状の一例を示す図である。 本発明による吸着コレットの先端部分の構造をさらに具体的に説明するための図である。 本発明による吸着コレットを用いた光送信モジュールの製造方法の一例を説明する図である。 本発明による調芯工程の一例を説明する図である。 従来の吸着コレットの形状および部品の搬送方法を示す図である。
まず、本発明にかかる光送信モジュールについて説明する。図1は光送信モジュールの光学系近傍の構成例を示す模式図で、図2はその鳥瞰図である。図中、100は光送信モジュール、101は4チャンネルドライバ、102はLD(Laser Diode×4)、103は集光レンズ(×4)、104はmPD(monitor Photo Diode×4)、105はBS(Beam Splitter)、106はコリメートレンズ、107は波長分割多重フィルタ(WDMフィルタ)、108はλ/2波長板、109はミラー、110はPBC(Polarization Beam Combiner)、111は基板(キャリアともいう)を示す。
上記の光送信モジュール100は、基板111上に、4チャンネルドライバ101で駆動される4個のLD102を搭載し、これら4個のLD102から出射される光信号(λ1〜λ4:波長がそれぞれ異なる)を多重化して出力する。出射光λ1〜λ4の波長はCWDM規格(1310nm,1330nm,…,以下20nm間隔)に準ずる。このような極めて小さな隣接波長間隔を有する複数の信号光を多重化するに際し、WDMフィルタ107では隣接する波長に対する選択比を確保するのが難しくなる。
4個のLD102から出射された信号光は、4個の集光レンズ103で一旦集光された後に、mPD104に入力される。図2を参照すると、mPD104は4連のBS105上に搭載されており、BS105は集光レンズ103からの光を二分し、一方を基板111の主面に垂直な方向、つまり、mPD104の方向に反射させ、他方を透過させる。BS105は二つのプリズムを貼り合わせたものであり、二つのビームの強度比は二つのプリズムの界面の特性で決定される。例えば、反射光:透過光は1:9の比となる。
上記において、透過光が主成分であり、これは次のコリメートレンズ106に入力される。集光レンズ103のmPD104側の焦点とコリメートレンズ106のmPD104側の焦点とは大概一致している。これにより、以下の光学系の結合効率が高まると同時に各光学部品のアライメントが容易となる。コリメートレンズ106を透過した光は実質コリメート光(平行光)に変換され、一方の一群の光信号λ3とλ4はミラー109で全反射され、その光軸がほぼ90°曲げられる。他の一群の光信号λ1とλ2はそれぞれWDMフィルタ107に入力される。WDMフィルタ107では、コリメートレンズ106を直進した光信号λ1,λ2と、その後ミラー109で反射された光信号λ3,λ4とを合成する。
すなわち、WDMフィルタ107は第1のWDMフィルタ107aと第2のWDMフィルタ107bとからなる。第1のWDMフィルタ107aに注目すると、λ1の光を透過し、λ3の光を反射する波長特性を有する多層膜からなる。第2のWDMフィルタ107bについても同様にλ2とλ4の関係において、透過/反射を有する光学多層膜からなる。このように、WDMフィルタ107を介することで、λ1とλ3の光、λ2とλ4の光が合波されその光軸を一致させる。
次いで、λ1とλ3を合波した光のみλ/2波長板108を通過させ、その偏光方向を90°回転させる。本光送信モジュール100では端面発光型のLDを想定している。この種のLDの出射光の偏光方向は実質活性層に平行である。すなわち、エピダウン/エピアップの実装形態に係らず、端面発光型LDでのその出射光の偏光方向はチップ表面(裏面)に平行となる。従って、本光送信モジュール100では基板111の主面に平行な方向にλ1〜λ4の光は偏光している。
集光レンズ103、BS105、コリメートレンズ106、WDMフィルタ107、及びミラー109は偏光方向に作用しないので、WDMフィルタ107を出射した二つの合波光の偏光方向は基板111の主面に平行である。そして、λ1,λ3の合波光をλ/2波長板108を通過させることで、その偏光方向を基板111の主面に垂直な方向に変換する。
上記のような偏光成分を有する二つの合波光をPBC110に入射させることで、これらを合波することができる。具体的には、λ1,λ3の合波光はそのまま直進し、PBC110に入射する。一方、λ2,λ4の合波光はミラー109によりその進行方向が90°変換されて、PBC110に入射する。
図3は、光信号λ1〜λ4の透過率の一例を示す図で、図中、縦軸は透過率、横軸は波長を示す。この光学系において、λ1,λ3の合波光がp波であり、λ2,λ4の合波光がs波に相当する。PBC110は、s波、p波についてその反射/透過特性に大きな差を持たせることで、二つの合波光を効率よく合波することができる。すなわち、本例のPBC110は、s波(λ2+λ4)に大きな反射率(小さな透過率)、p波(λ1+λ3)に大きな透過率(小さな反射率)を持たせている。以上のような光学系により複数のLD102の出射光を効率良く合波して出力することができる。
しかしながら、上記光学系は多数の光学部品を基板111上に搭載する必要がある。すなわち、8個のレンズ(集光レンズ103及びコリメートレンズ106)、ミラー109、2個のWDMフィルタ107、λ/2波長板108、及びPBC110を全て基板111の上に搭載しなければならない。LD102を出射した光は5〜6個の光学部品を反射/透過して出力される。従って、個々の光学部品の調芯精度は、2〜3個の部品を介して出力される通常の光送信モジュールに対して1/2〜1/4程度の調芯尤度しか与えられない。
また、上記光学系を複雑にしているのは、ミラー109、WDMフィルタ107、PBC110について、LD102の光軸に対し45°の角度を維持しつつ、基板111上に搭載しなければならない点である。λ3,λ4の光に至っては45°傾けられた光学部品を2度通過する。
さらに、上記の光学部品は全て一の基板111上に搭載されている。この光学系の前提として、λ1〜λ4の光の光軸が全て基板111の主面に平行に維持される必要がある。各光学部品は樹脂、接着剤等により基板111上に固定される。光学部品を搭載する際にそのあおり角が適正に維持されない場合には、次の光学部品を搭載する際に、部品と主面との間隔が大きくなり過ぎ、樹脂でその隙間を埋めきれない、あるいは、部品寸法を上回って光軸が主面に近寄ってしまう、等の不都合を生ずる。
従来、このような光学系について各部品を基板上に搭載するに際しては、その大きさが1mm2に満たない光学部品を吸着コレットで吸着し、光学部品を部品トレーから予め接着樹脂(紫外線硬化樹脂)が塗布されている搭載箇所に搬送し、真空吸着している状態で光学調芯を行い、調芯後に紫外線を照射して樹脂を固化する、という方法が採用されていた。
以下、本発明の実施形態に係る光通信モジュールの製造方法の具体例を、図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
図4は、本発明による吸着コレットの先端部分の形状の一例を示す図で、図4(A)は吸着コレットに光学部品を吸着した状態を示す図で、図4(B)は吸着コレットの先端部分の拡大図である。図中、1は光学部品、2は光学面、10は吸着コレット、11は側面、12は基準平面、13は吸着口、14は段差を示す。
本発明による吸着手段の一例である吸着コレット10は、先端部分の長手方向側面11に形成された基準平面12と、基準平面12中に設けられた吸着口13とを有する。吸着コレット10の吸着口13に、光学部品1の光学面2を吸着するように構成される。また、基準平面12の吸着コレット10の先端から長手方向に所定距離離れた位置に段差14を有し、この所定距離の長さ、つまり、基準平面12における吸着コレット10の長手方向の長さが光学部品1の高さよりも短くなっている。
本発明による吸着コレット10では、光学部品1の角度を精密に決定するために、基準平面12を設ける必要がある。基準平面12で光学部品1の光学面2を把持することで光学部品1の角度が決定される。しかし、この場合、光学部品1の光学面2を直接吸引することになるため、光学面2に機械的損傷を与える虞がある。そこで、吸着コレット10では、吸着口13を比較的大きく設定し、光学部品1の光学面2のうち、光が実際の透過/反射する領域を全てこの吸着口13で覆われるように構成されている。これにより光学面2の機械的損傷を防止することが可能となる。
図5は、本発明による吸着コレット10の先端部分の構造をさらに具体的に説明するための図である。図5(A)は吸着コレット10の先端部分の斜視図、図5(B)は吸着コレット10の先端部分の側面図である。吸着コレット10の先端部分は、側面11に形成された基準平面12と、その基準平面12に平行な裏面15とを有する。そして、基準平面12のほぼ中央に真空吸着ポートとして吸着口13が設けられている。
また、基準平面12と側面11との境界には段差14が設けられている。この段差14は吸着コレット10の底面16に対して平行である。光学部品1を吸着する際に、光学部品1の上面をこの段差14に突き当てることで、光学部品1の高さ方向の0点調整を行うことができる構造となっている。つまり、段差14はストッパとして機能する。なお、段差14と基準平面12との接続部分には、図5(B)に示すように、抉り部17が形成されている。段差14に抉り部17が無い場合、段差14と基準平面12との接続部分に、加工精度により斜面が形成されることが起こり得る。このような場合、この斜面に光学部品1が乗り上げて光学部品1の角度が基準平面12に沿ったものにならない可能性がある。そこで、これを防止するために、上記のように、段差14と基準平面12との接続部分に抉り部17を形成することが望ましい。
基準平面12のコレット先端から段差14までの長さは、吸着される光学部品1がコレット先端から突き出る長さとする。すなわち、吸着コレット10の先端から段差14までの長さが光学部品1の高さよりも短くなっている。ここで、光学部品1のコレット先端からの突き出し長は、光学部品1を基板(図示せず)に固定する時に使用する樹脂が、吸着コレット10に接触しない距離として定める。具体的には、約0.2〜0.5mm程度とする。なお、突き出し長が大き過ぎる場合には、吸着口13が光学部品1の光学面の中心を吸引できない可能性があり、吸着コレット10の基準平面を適切な長さに設定することが望ましい。
上記において、吸着コレット10は、円筒形状に限定されるものではなく、例えば、四角柱形状であってもよい。また、図5の例の場合、段差14は吸着コレット10の長手方向側面を切り欠いて形成されているが、吸着コレット10の先端から長手方向に所定距離離れた位置に突起を設けることで、段差14を形成してもよい。
以下の各実施形態では、光通信モジュールの一例として、複数の発光素子(LD)と、複数の光学部品とを備えた光送信モジュールを例示して説明するが、複数の受光素子(PD)と、複数の光学部品とを備えた光受信モジュールであっても同様に実施することができることは言うまでもない。
(第1の実施形態)
図6は、本発明による吸着コレット10を用いた光送信モジュールの製造方法の一例を説明する図である。図6(A)は吸着コレット10を用いて光学部品を基板に実装する様子を示す図で、図6(B)は吸着コレット10の近傍を拡大した図である。図中、1a,1bは光学部品、2a,2bは光学面、3は基板、4a,4bは樹脂の一例である紫外線硬化樹脂を示す。なお、本例では、光学部品1bを実装する場合を例に説明するが、光学部品1aおよびその他の光学部品についても同様である。
本発明による方法は、大きく分けて、光学部品1bの光学面2bを吸着コレット10により吸着する吸着工程と、吸着コレット10により吸着された光学部品1bを、基板3の所定位置まで移動させ、所定位置の上方で基板3に接触させることなく保持する保持工程と、光学部品1bと基板3との隙間に充填された紫外線硬化樹脂4bを硬化させることにより、光学部品1bを基板3の所定位置に固定する固定工程とを備える。
そして、保持工程にて光学部品1bを基板3の所定位置へ移動させる前に、さらに、光学部品1bの下面を基板3に押し付け、光学部品1bの上面を段差14に接触させる押付工程を含むようにしてもよい。また、後述の第2の実施形態として説明するように、固定工程にて紫外線硬化樹脂4bを硬化させる前に、さらに、光学部品1bの調芯を、吸着コレット10の基準平面12に対して調芯されたオートコリメータにより行う調芯工程を含むようにしてもよい。
上記方法についてより具体的に説明する。まず、吸着コレット10を備えた製造装置において、予め吸着コレット10の回転方向とあおり角を調整しておく。すなわち、吸着コレット10の可動方向はX,Y,Zの三方向のみとする(S1)。次に、吸着コレット10を図示しない部品パレットに移動させ、光学部品1bの光学面2bを吸着コレット10により吸着する(S2:吸着工程)。
そして、光学部品1bを吸着した吸着コレット10を基板3上に平行移動させ、任意の位置で下降させて光学部品1bの下面を基板3に押し付け、光学部品1bの上面を段差14に接触させる。これにより光学部品1bの高さ方向の0点(基準面)調整を行う(S3:押付工程)。
そして、光学部品1bを吸着した状態で吸着コレット10を、光学部品1bを搭載する所定位置上に移動させる(S4)。これは、例えば、基板3上にアライメントマーク(十字、L字、コの字等)を設けておくことで概略の位置を決定することができる。このアライメントマークのXY位置で吸着コレット10を上方に退避させる。
そして、光学部品1bと基板3との隙間に紫外線硬化樹脂4bを供給する(S5)。次に、吸着コレット10を下降させ、光学部品1bの下面を基板3から20〜30μm浮かせた状態で且つ基板3との隙間に紫外線硬化樹脂4bが満たされた状態で光学部品1bを保持する(S6:保持工程)。このように、光学部品1bの下面を基板3に押し付けないようにする。もし光学部品1bの下面を基板3に接触させてしまうと、光学部品1bの下面が基板3に平行に保持される場合が生ずる。
上記において、光学部品1bの光学面2bとその下面とは必ずしも直角が保たれているわけではない。前述したように、光学面2bとその裏面の平行度は部品性能として規定されているが、これら両面(光学面2bとその裏面)と下面との角度は規定外という場合が多い。従って、光学部品1bの下面を基板3に押し付けると、当該下面と基板主面が平行になってしまい、光学面2bと基板3との角度が維持されなくなる。つまり、吸着コレット10の基準平面12で規定されるべき光学部品1bのあおり角が維持されなくなってしまう。このため、上記S6のように、光学部品1bの下面を実行基板3に接触させることなく保持する。
最後に、図6(B)に示すように、光学部品1bを上記S6の状態で保持したまま紫外光(UV光)を照射し、紫外線硬化樹脂4bを硬化させ、光学部品1bを基板3の所定位置に固定する(S7:固定工程)。
このように、本実施形態によれば、光学部品の光学面を吸着することで、光学部品の切り出し精度に依らない高精度でばらつきの少ない部品実装が可能となる。また、光学部品の光学面を吸着することで、光学部品の切り出し精度に依らないため、予め吸着コレット自体の回転方向とあおり方向を調整しておくことで、光学部品ごとの調整が不要となり、実装時間を短縮することができる。
(第2の実施形態)
ここで、樹脂硬化する前に以下の光学調芯(調芯工程)を行うことがより好ましい。アライメントマークに対する調芯のみで光学部品の光学調芯が達成される場合が大概であるが、より精密な光学結合のためには、以下のような調芯を行うのが好ましい。
図7は、本発明による調芯工程の一例を説明する図で、図中、20はオートコリメータを示す。これにより、安定した実装状態の管理、および実装評価の短縮を可能とする。具体的には、上述の製造装置にオートコリメータ20を追加する。このオートコリメータ20は、内部に可視光源23、ハーフミラー22、受光部(2次元モニタ)21を少なくとも有し、被測定物に可視光を照射し、その反射光24を観測して、被測定物が回転、及びあおりずれを起こしていない位置を基準として、それとの反射光24の位置ずれから、回転(あおり)ずれ量を評価する装置である。つまり、受光部21には2次元モニタ25が設けられており、マーカ26の交点となるモニタ中央27に反射光24が見えるように調整される。
まず、吸着コレット10の基準平面12に基準ミラー(図示せず)を吸着させ、反射光24を2次元モニタ25上のモニタ中央(十字の中央)27に結像するようにオートコリメータ20を調整する(S11)。これにより、オートコリメータ20は、吸着コレット10の基準平面12に対して調芯される。なお、このオートコリメート20の調芯処理は、光学部品を吸着コレット10で吸着する前に予め行っておく。
次に、上記の基準ミラーに代えて実際の光学部品を、上記の手順にてその搭載位置上で保持した状態で、2次元モニタ25により反射光24の結像位置を観測し、その結像位置がモニタ中央27に位置するように、吸着コレット10の回転角、あおり角を調整する(S12)。
基板3を光送信モジュール内部に搭載する前に、上記の方法により、基板3上でPBC、ミラー、二つのWDMフィルタの調芯をこの順序に従って行う。これらはLDの光軸に対して45°の角度をもって搭載する必要のある部品である。次いで、同様にして、基板3上にLD、コリメートレンズ等を搭載する。
このように、本実施形態によれば、光学部品の光学面に可視光を照射し、その反射光を常にモニタリングすることで、予期せぬ突発的な光学部品のずれに対して、吸着コレットを調整して規格に収めることが可能となり、歩留りを向上することができる。
また、光学部品の実装時に、光学面に可視光を照射し、その反射光をモニタリングすることで、部品の実装時に測定・評価が可能となり、実装時間を短縮することができる。
1,1a,1b…光学部品、2,2a,2b…光学面、3…基板、4a,4b…紫外線硬化樹脂、10…吸着コレット、11…側面、12…基準平面、13…吸着口、14…段差、15…裏面、16…底面、17…抉り部、20…オートコリメータ、21…受光部、22…ハーフミラー、23…可視光源、24…反射光、25…2次元モニタ、26…マーカ、27…モニタ中央、100…光送信モジュール、101…4チャンネルドライバ、102…LD、103…集光レンズ、104…mPD、105…BS、106…コリメートレンズ、107…波長分割多重フィルタ(WDMフィルタ)、108…λ/2波長板、109…ミラー、110…PBC、111…基板。

Claims (4)

  1. 基板上に実装された複数の発光素子または受光素子と、前記基板上の前記複数の発光素子または受光素子のそれぞれに対応する位置に固定された複数の光学部品とを有する光通信モジュールの製造方法であって、
    前記光学部品の光学面を吸着手段により吸着する吸着工程と、
    前記吸着手段により吸着された前記光学部品を、前記基板の所定位置まで移動させ、該所定位置の上方で前記基板に接触させることなく保持する保持工程と、
    前記光学部品と前記基板との隙間に充填された樹脂を硬化させることにより、前記光学部品を前記基板の所定位置に固定する固定工程とを備えた、光通信モジュールの製造方法。
  2. 前記吸着手段は、先端部分の長手方向側面に形成された基準平面と、該基準平面中に設けられた吸着口とを有する吸着コレットであり、
    前記吸着工程は、前記吸着口に前記光学部品の光学面を吸着する、請求項1に記載の光通信モジュールの製造方法。
  3. 前記基準平面は前記吸着コレットの先端から長手方向に所定距離離れた位置に段差を有し、前記所定距離は前記光学部品の高さよりも短く、
    前記吸着工程の後、前記光学部品を前記基板の所定位置へ移動させる前に、さらに、前記光学部品の下面を前記基板に押し付け、前記光学部品の上面を前記段差に接触させる工程を含む、請求項2に記載の光通信モジュールの製造方法。
  4. 前記固定工程にて前記樹脂を硬化させる前に、さらに、前記光学部品の調芯を、前記吸着コレットの基準平面に対して調芯されたオートコリメータにより行う調芯工程を含む、請求項2または3に記載の光通信モジュールの製造方法。
JP2013256208A 2013-12-11 2013-12-11 光通信モジュールの製造方法 Active JP6225681B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013256208A JP6225681B2 (ja) 2013-12-11 2013-12-11 光通信モジュールの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013256208A JP6225681B2 (ja) 2013-12-11 2013-12-11 光通信モジュールの製造方法

Publications (2)

Publication Number Publication Date
JP2015115453A true JP2015115453A (ja) 2015-06-22
JP6225681B2 JP6225681B2 (ja) 2017-11-08

Family

ID=53528990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013256208A Active JP6225681B2 (ja) 2013-12-11 2013-12-11 光通信モジュールの製造方法

Country Status (1)

Country Link
JP (1) JP6225681B2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090255A1 (en) * 2015-11-27 2017-06-01 Sumitomo Electric Industries, Ltd. Optical receiver and method of assembling the same
JP2018160520A (ja) * 2017-03-22 2018-10-11 日本オクラロ株式会社 サブマウント、光送信モジュール、光モジュール、光伝送装置、並びに、それらの制御方法
JP2019186472A (ja) * 2018-04-16 2019-10-24 三菱電機株式会社 光学装置の製造装置および光学装置の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026462A (ja) * 2006-07-19 2008-02-07 Sumitomo Electric Ind Ltd 光モジュール
JP2010141179A (ja) * 2008-12-12 2010-06-24 Akebono Brake Ind Co Ltd 半導体吸着用コレット

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008026462A (ja) * 2006-07-19 2008-02-07 Sumitomo Electric Ind Ltd 光モジュール
JP2010141179A (ja) * 2008-12-12 2010-06-24 Akebono Brake Ind Co Ltd 半導体吸着用コレット

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017090255A1 (en) * 2015-11-27 2017-06-01 Sumitomo Electric Industries, Ltd. Optical receiver and method of assembling the same
CN108292020A (zh) * 2015-11-27 2018-07-17 住友电气工业株式会社 光学接收器及其装配方法
CN108292020B (zh) * 2015-11-27 2019-12-06 住友电气工业株式会社 光学接收器及其装配方法
JP2018160520A (ja) * 2017-03-22 2018-10-11 日本オクラロ株式会社 サブマウント、光送信モジュール、光モジュール、光伝送装置、並びに、それらの制御方法
JP2019186472A (ja) * 2018-04-16 2019-10-24 三菱電機株式会社 光学装置の製造装置および光学装置の製造方法

Also Published As

Publication number Publication date
JP6225681B2 (ja) 2017-11-08

Similar Documents

Publication Publication Date Title
JP6380069B2 (ja) 光送信モジュール
JP2003255166A (ja) 立体光導波路、その製造方法、光モジュール、および光伝送システム
US20230152537A1 (en) Optical Coupler Comprising a Molded Optical Interposer Together with a PIC and 2 Polarization Selective Elements Enabling Isolation and/or Polarization Management
JP4008649B2 (ja) 光学装置
JP2019066739A (ja) 光受信モジュールの製造方法
JP6225681B2 (ja) 光通信モジュールの製造方法
JP2020533632A (ja) 単一側面で結合を行うフォトニックチップのハイブリッド集積化
JP2002169042A (ja) 光導波路結合構造、光導波路及びその製造方法、並びに光導波路付き光素子部品及びその製造方法
US10359572B2 (en) Device and method for detecting optical signal
US11454768B2 (en) Assembly method for coherent receiver
US10989885B2 (en) Semiconductor package structure and method for manufacturing the same
JP5819874B2 (ja) 光機能素子の作製方法
KR20170143069A (ko) 두께 측정 장치 및 두께 측정 방법
KR102076885B1 (ko) 검출 디바이스, 노광 디바이스 및 물품의 제조 방법
US6904067B2 (en) Back facet wavelength locker tuning and assembly method
CN108292020B (zh) 光学接收器及其装配方法
US9784931B2 (en) Optical waveguide module
JP2021043304A (ja) 光学部品の移載機および光通信モジュールの製造方法
WO2010095499A1 (ja) 光送受信モジュールと分光素子の製造方法及び光送受信モジュールの製造方法
JP6641931B2 (ja) 光モジュールの組立方法および光受信器の組立方法
KR20100074704A (ko) 다파장 분리용 광모듈
US20050169634A1 (en) Bi-directional optical transceiver module and bi-directional optical transceiver package using the same
JP2014137411A (ja) 光モジュールの製造方法
JP7394307B2 (ja) 光学調整装置、及び、光学調整方法
JP2009192816A (ja) 双方向光送受信モジュール及びこれに用いる受光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170925

R150 Certificate of patent or registration of utility model

Ref document number: 6225681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250