JP2015113916A - Eccentric oscillation type speed reducer and method of manufacturing eccentric body shaft gear - Google Patents

Eccentric oscillation type speed reducer and method of manufacturing eccentric body shaft gear Download PDF

Info

Publication number
JP2015113916A
JP2015113916A JP2013256532A JP2013256532A JP2015113916A JP 2015113916 A JP2015113916 A JP 2015113916A JP 2013256532 A JP2013256532 A JP 2013256532A JP 2013256532 A JP2013256532 A JP 2013256532A JP 2015113916 A JP2015113916 A JP 2015113916A
Authority
JP
Japan
Prior art keywords
eccentric
eccentric body
gear
body shaft
shaft gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013256532A
Other languages
Japanese (ja)
Other versions
JP6175361B2 (en
Inventor
哲三 石川
Tetsuzo Ishikawa
哲三 石川
慎一 西部
Shinichi Nishibe
慎一 西部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2013256532A priority Critical patent/JP6175361B2/en
Priority to CN201410382377.8A priority patent/CN104712731A/en
Priority to CN201811359600.1A priority patent/CN110030361A/en
Publication of JP2015113916A publication Critical patent/JP2015113916A/en
Application granted granted Critical
Publication of JP6175361B2 publication Critical patent/JP6175361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/17Toothed wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)
  • Heat Treatment Of Articles (AREA)
  • Gears, Cams (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an eccentric body shaft gear of an eccentric oscillation type speed reducer that can make finishing costs (while maintaining predetermined quality).SOLUTION: There is provided a method of manufacturing an eccentric body shaft gear of an eccentric oscillation type speed reducer 10 which includes an eccentric body shaft 18 having first and second eccentric bodies 20 and 22, and an eccentric body gear 30 for rotating the eccentric body shaft, the eccentric shaft gear having a fitting hole 30P, in which a gear fitting part 70 provided for the eccentric body shaft is fitted, at its radially center part. The method include: a process A of forming a tooth part 30T at an outer periphery of a raw material of the eccentric body shaft gear; a process B of forming the fitting hole in the radial center of the raw material of the eccentric body shaft gear; and a process C3 of subjecting the tooth part to high-frequency hardening to make tooth surfaces higher in hardness than an inner peripheral surface of the fitting hole.

Description

本発明は、偏心揺動型の減速装置およびその偏心体軸歯車の製造方法に関する。   The present invention relates to an eccentric oscillation type speed reducer and a method for manufacturing the eccentric body shaft gear.

特許文献1に、偏心揺動型の減速装置が開示されている。   Patent Document 1 discloses an eccentric rocking type speed reducer.

この減速装置では、外歯歯車が、揺動しながら内歯歯車に内接噛合している。そして、外歯歯車と内歯歯車との歯数差に依存して生じる相対回転を、減速出力として取り出している。   In this reduction gear, the external gear is in mesh with the internal gear while swinging. And the relative rotation which arises depending on the number-of-teeth difference of an external gear and an internal gear is taken out as a deceleration output.

外歯歯車を揺動させるために、この減速装置では、偏心体を備えた3本の偏心体軸と、各偏心体軸を回転させるための偏心体軸歯車と、を備えている。各偏心体軸歯車は、径方向中央部に、それぞれ偏心体軸に設けられた歯車嵌合部に嵌合する嵌合穴を有している。   In order to oscillate the external gear, this speed reduction device includes three eccentric body shafts provided with eccentric bodies and eccentric body shaft gears for rotating the eccentric body shafts. Each eccentric body shaft gear has a fitting hole that fits in a gear fitting portion provided on the eccentric body shaft in the central portion in the radial direction.

特許文献1においては、偏心体軸歯車の嵌合穴を、(スプラインではなく)多角形に形成するようにしている。特許文献1での開示によれば、これにより、偏心体軸歯車の嵌合穴の仕上げ加工を、高コストなハードブローチによる仕上げ加工に代え、比較的低コストなカム研削盤による仕上げ加工とすることができると謳われている。   In Patent Document 1, the fitting hole of the eccentric shaft gear is formed in a polygon (not a spline). According to the disclosure in Patent Document 1, this replaces the finishing process of the fitting hole of the eccentric shaft gear with the finishing process by a relatively low cost cam grinder instead of the finishing process by the high-cost hard broach. It is said that you can.

特開2013−96550号公報([0006]〜[0010])JP2013-96550A ([0006] to [0010])

しかしながら、それでも、なお偏心体軸歯車の仕上げ加工は高コストであり、仕上げ加工のコストを一層低減できる偏心体軸歯車の開発が求められていた。   However, the finishing process of the eccentric shaft gear is still expensive, and the development of an eccentric shaft gear that can further reduce the cost of the finishing process has been demanded.

本発明は、このような事情に鑑みてなされたものであって、(所定の品質を維持しつつ)仕上げ加工のコストを一層低減することのできる偏心揺動型の減速装置の偏心体軸歯車を得ることをその課題としている。   The present invention has been made in view of such circumstances, and the eccentric shaft gear of the eccentric oscillating speed reduction device capable of further reducing the cost of finishing (while maintaining a predetermined quality). The challenge is to obtain.

本発明は、偏心体を備えた偏心体軸と、該偏心体軸を回転させるための偏心体軸歯車と、を備え、該偏心体軸歯車は、径方向中央部に前記偏心体軸に設けられた歯車嵌合部に嵌合する嵌合穴を有している偏心揺動型の減速装置の前記偏心体軸歯車の製造方法であって、前記偏心体軸歯車の素材の外周に、歯部を形成する工程と、前記偏心体軸歯車の素材の径方向中央に、前記嵌合穴を形成する工程と、前記歯部に高周波焼き入れを施し、歯面の硬度を前記嵌合穴の内周面の硬度よりも高くする工程と、を含む構成とすることにより、上記課題を解決したものである。   The present invention includes an eccentric body shaft provided with an eccentric body and an eccentric body shaft gear for rotating the eccentric body shaft, and the eccentric body shaft gear is provided on the eccentric body shaft at a radial center portion. A method of manufacturing the eccentric shaft gear of an eccentric oscillating speed reducer having a fitting hole that fits into the gear fitting portion, wherein a tooth is provided on the outer periphery of the material of the eccentric shaft gear. A step of forming a fitting portion, a step of forming the fitting hole in the radial center of the material of the eccentric body gear, and induction hardening of the tooth portion, and the hardness of the tooth surface of the fitting hole The above-described problem is solved by including a step of making the hardness higher than the hardness of the inner peripheral surface.

本発明によれば、偏心体軸歯車に歯部および嵌合穴を形成する工程を経た後、歯部に高周波焼き入れを施し、歯面の硬度を嵌合穴の内周面の硬度よりも高くする(嵌合穴の内周面の硬度を、歯面の硬度よりも低くする)ようにしている。   According to the present invention, after undergoing the step of forming the tooth portion and the fitting hole in the eccentric body shaft gear, the tooth portion is subjected to induction hardening, and the hardness of the tooth surface is higher than the hardness of the inner peripheral surface of the fitting hole. (The hardness of the inner peripheral surface of the fitting hole is made lower than the hardness of the tooth surface).

これにより、(歯部の硬度を維持しつつ)嵌合穴の周辺には、熱処理歪が大きく生じないようになるため、該嵌合穴の仕上げ加工自体を省略できるか、または、仕上げ加工を行うにしても、削り代の小さな(簡易な)仕上げ加工で済むようになり、加工時間を短縮でき、仕上げ加工のコストを低減できる。   As a result, heat treatment distortion does not occur in the vicinity of the fitting hole (while maintaining the hardness of the tooth portion), so that the finishing process itself of the fitting hole can be omitted or the finishing process can be performed. Even if it does, it will be sufficient to finish with a small (simple) machining allowance, the processing time can be shortened, and the cost of finishing can be reduced.

本発明によれば、(所定の品質を維持しつつ)仕上げコストを一層低減することのできる偏心揺動型の減速装置の偏心体軸歯車を得ることができる。   ADVANTAGE OF THE INVENTION According to this invention, the eccentric body shaft gear of the eccentric rocking | fluctuation type reduction gear which can further reduce finishing cost (while maintaining predetermined quality) can be obtained.

本発明の実施形態の一例に係る製造方法が適用される偏心揺動型の減速装置の全体断面図1 is an overall cross-sectional view of an eccentric oscillating speed reduction device to which a manufacturing method according to an example of an embodiment of the present invention is applied. 上記減速装置の入力歯車および偏心体軸歯車の噛合状態、および偏心体軸歯車と偏心体軸との嵌合関係を示す模式図The schematic diagram which shows the meshing state of the input gear and eccentric body shaft gear of the said reduction gear, and the fitting relationship of an eccentric body shaft gear and an eccentric body shaft 上記減速装置の偏心体軸歯車の仕上げ工程での温度設定を示す線図The diagram which shows the temperature setting in the finishing process of the eccentric body shaft gear of the said reduction gear

以下、図面に基づいて本発明の実施形態の一例を詳細に説明する。   Hereinafter, an example of an embodiment of the present invention will be described in detail based on the drawings.

図1は、本発明の実施形態の一例に係る製造方法が適用される偏心揺動型の減速装置の全体断面図、図2は、該減速装置の入力歯車および偏心体軸歯車の噛合状態、および偏心体軸歯車と偏心体軸との嵌合関係を示す模式図である。先ず、この減速装置の全体構成から説明する。   FIG. 1 is an overall cross-sectional view of an eccentric oscillation type reduction gear to which a manufacturing method according to an example of an embodiment of the present invention is applied, and FIG. It is a schematic diagram which shows the fitting relationship between the eccentric body shaft gear and the eccentric body shaft. First, the overall configuration of the reduction gear will be described.

減速装置10は、いわゆる振り分けタイプと称される偏心揺動型の減速装置である。減速装置10は、内歯歯車12と、該内歯歯車12に内接噛合する第1、第2外歯歯車14、16と、を備えるとともに、該内歯歯車12の軸心O1からR1だけオフセットした位置に、第1、第2外歯歯車14、16を揺動させるための複数(この例では3本)の偏心体軸18(18A〜18C:図1では18Aのみ図示)を備えている。   The speed reducer 10 is an eccentric oscillating type speed reducer called a so-called sort type. The reduction gear device 10 includes an internal gear 12 and first and second external gears 14 and 16 that are in mesh with the internal gear 12, and only the axis O1 to R1 of the internal gear 12 is provided. A plurality of (three in this example) eccentric shafts 18 (18A to 18C: only 18A is shown in FIG. 1) for swinging the first and second external gears 14 and 16 are provided at the offset positions. Yes.

この実施形態に係る減速装置10では、モータ(図示略)の動力は、入力軸26を介して入力される。入力軸26の反モータ側の端部には、入力歯車32が直切り形成されている。   In the reduction gear device 10 according to this embodiment, the power of a motor (not shown) is input via the input shaft 26. An input gear 32 is directly cut and formed at the end of the input shaft 26 on the side opposite to the motor.

入力歯車32は、複数(この例では3個)の偏心体軸歯車30(30A〜30C:図2参照、図1では30Aのみ図示)と同時に噛合している。各偏心体軸歯車30は、自身の嵌合穴30P(30Ap〜30Cp)および偏心体軸18の歯車嵌合部70(70A〜70C)を介して、それぞれ偏心体軸18に連結されている。偏心体軸歯車30の嵌合穴30Pと偏心体軸18の歯車嵌合部70の形状は、この実施形態においては、偏心体軸18の軸方向と直角の断面が正六角形の多角形形状とされている。偏心体軸18および偏心体軸歯車30の近傍の構成については、後に詳述する。   The input gear 32 meshes simultaneously with a plurality of (in this example, three) eccentric body shaft gears 30 (30A to 30C: see FIG. 2, only 30A is shown in FIG. 1). Each eccentric body shaft gear 30 is connected to the eccentric body shaft 18 via its own fitting hole 30P (30Ap to 30Cp) and the gear fitting portion 70 (70A to 70C) of the eccentric body shaft 18, respectively. In this embodiment, the shape of the fitting hole 30P of the eccentric body shaft gear 30 and the gear fitting portion 70 of the eccentric body shaft 18 is a polygonal shape in which the cross section perpendicular to the axial direction of the eccentric body shaft 18 is a regular hexagon. Has been. The configuration in the vicinity of the eccentric body shaft 18 and the eccentric body shaft gear 30 will be described in detail later.

3本の偏心体軸18は、内歯歯車12の軸心O1からR1だけオフセットした円周上において、それぞれ円周方向に120度の間隔で配置されている。各偏心体軸18には、それぞれの軸方向同位置に第1偏心体20が形成され、該第1偏心体20と隣接してそれぞれの軸方向同位置に第2偏心体22が形成されている。各偏心体軸18の第1偏心体20同士および第2偏心体22同士は、偏心位相が揃えられている。第1偏心体20と第2偏心体22の偏心位相差は180度である(互いに離反する方向に偏心している)。   The three eccentric body shafts 18 are arranged at intervals of 120 degrees in the circumferential direction on the circumference offset from the axis O1 of the internal gear 12 by R1. Each eccentric shaft 18 has a first eccentric body 20 formed at the same position in the axial direction, and a second eccentric body 22 formed adjacent to the first eccentric body 20 at the same position in the axial direction. Yes. The first eccentric bodies 20 and the second eccentric bodies 22 of the eccentric body shafts 18 have the same eccentric phase. The eccentric phase difference between the first eccentric body 20 and the second eccentric body 22 is 180 degrees (eccentric in a direction away from each other).

各偏心体軸18の第1偏心体20の外周には、ころで構成された第1偏心体軸受34を介して第1外歯歯車14が組み込まれている。各偏心体軸18の第2偏心体22の外周には、ころで構成された第2偏心体軸受36を介して第2外歯歯車16が組み込まれている。これにより、3本の偏心体軸18上の第1偏心体20が同期して回転することで第1外歯歯車14を揺動させ、同様に、3本の偏心体軸18上の第2偏心体22が同期して回転することで第2外歯歯車16を揺動させることができる。第1外歯歯車14と第2外歯歯車16の偏心位相差は、(第1偏心体20と第2偏心体22の偏心位相差を受けて)180度である。   The first external gear 14 is incorporated on the outer periphery of the first eccentric body 20 of each eccentric body shaft 18 via a first eccentric body bearing 34 formed of rollers. The second external gear 16 is incorporated on the outer periphery of the second eccentric body 22 of each eccentric body shaft 18 via a second eccentric body bearing 36 formed of rollers. As a result, the first eccentric body 20 on the three eccentric body shafts 18 rotates in synchronization with each other, thereby swinging the first external gear 14, and similarly, the second eccentric gear shaft 18 on the three eccentric body shafts 18. The second external gear 16 can be swung by the eccentric body 22 rotating synchronously. The eccentric phase difference between the first external gear 14 and the second external gear 16 is 180 degrees (in response to the eccentric phase difference between the first eccentric body 20 and the second eccentric body 22).

第1、第2外歯歯車14、16の軸方向両側には、第1、第2キャリヤ38、40が配置されており、各偏心体軸18は、第1、第2軸受配置部19、21において、一対の円錐ころ軸受で構成された第1、第2偏心体軸軸受44、46(偏心体軸18を支持する軸受)を介して第1、第2キャリヤ38、40に支持されている。第1、第2キャリヤ38、40は、一対のアンギュラ玉軸受48、50を介してケーシング52に支持されている。なお、第1、第2キャリヤ38、40は、第1キャリヤ38から一体的に突出され、第1、第2外歯歯車14、16を貫通するキャリヤピン38Pを介してボルト53等により連結・一体化されている。   First and second carriers 38 and 40 are disposed on both sides in the axial direction of the first and second external gears 14 and 16, and the eccentric body shafts 18 are respectively connected to the first and second bearing arrangement portions 19 and 19, respectively. 21, the first and second carriers 38 and 40 are supported by first and second eccentric shaft bearings 44 and 46 (bearings that support the eccentric shaft 18) configured by a pair of tapered roller bearings. Yes. The first and second carriers 38 and 40 are supported by the casing 52 via a pair of angular ball bearings 48 and 50. The first and second carriers 38 and 40 protrude integrally from the first carrier 38 and are connected by bolts 53 and the like via carrier pins 38P passing through the first and second external gears 14 and 16. It is integrated.

第1、第2外歯歯車14、16は、内歯歯車12に内接噛合している。内歯歯車12は、この実施形態ではケーシング52と一体化された内歯歯車本体12Aと、該内歯歯車本体12Aに回転自在に組み込まれ、該内歯歯車12の内歯を構成する外ピン12Bとで構成されている。内歯歯車12の歯数(外ピン12Bの本数)は、第1、第2外歯歯車14、16の歯数よりも僅かだけ(この例では1だけ)多い。   The first and second external gears 14 and 16 are in mesh with the internal gear 12. In this embodiment, the internal gear 12 is an internal gear main body 12A integrated with the casing 52, and an external pin that is rotatably incorporated in the internal gear main body 12A and constitutes internal teeth of the internal gear 12. 12B. The number of teeth of the internal gear 12 (the number of external pins 12B) is slightly larger (only 1 in this example) than the number of teeth of the first and second external gears 14 and 16.

本実施形態では、ケーシング52にはボルト(ボルト孔52Aのみ図示)を介してロボットの第1アーム(図示略)が連結され、第1キャリヤ38には、ボルト(タップ穴38Bのみ図示)を介してロボットの第2アーム(図示略)がそれぞれ連結される。なお、符号61は、オイルシールである。   In the present embodiment, a first arm (not shown) of the robot is connected to the casing 52 via a bolt (only the bolt hole 52A is shown), and the first carrier 38 is connected via a bolt (only the tap hole 38B is shown). The second arms (not shown) of the robot are connected to each other. Reference numeral 61 denotes an oil seal.

次に、この偏心揺動型の減速装置10の作用を説明しておく。   Next, the operation of the eccentric oscillating speed reduction device 10 will be described.

図示せぬモータが回転すると、入力軸26の先端に形成された入力歯車32が回転する。入力歯車32は、3個の偏心体軸歯車30と同時に噛合しているため、該入力歯車32の回転により3個の偏心体軸歯車30が同一の方向に同一の回転速度で同期して回転する。   When a motor (not shown) rotates, the input gear 32 formed at the tip of the input shaft 26 rotates. Since the input gear 32 is meshed with the three eccentric body shaft gears 30 simultaneously, the three eccentric body shaft gears 30 are rotated in the same direction and at the same rotational speed by the rotation of the input gear 32. To do.

各偏心体軸歯車30は、それぞれ偏心体軸歯車30の嵌合穴30Pおよび偏心体軸18の歯車嵌合部70の嵌合を介して偏心体軸18と連結されている。そのため、3本の偏心体軸18が入力歯車32と偏心体軸歯車30との歯数比に減速された状態で、同一の方向に同一の回転速度で同期して回転する。その結果、各偏心体軸18の軸方向同位置にそれぞれ形成された3個の第1偏心体20が同期して回転して第1外歯歯車14を揺動させると共に、各偏心体軸18の軸方向同位置にそれぞれ形成された3個の第2偏心体22が同期して回転して第2外歯歯車16を揺動させる。   Each eccentric body shaft gear 30 is connected to the eccentric body shaft 18 via the fitting hole 30P of the eccentric body shaft gear 30 and the fitting of the gear fitting portion 70 of the eccentric body shaft 18 respectively. Therefore, the three eccentric body shafts 18 are synchronously rotated at the same rotational speed in the same direction in a state where the gear ratio of the input gear 32 and the eccentric body shaft gear 30 is reduced. As a result, the three first eccentric bodies 20 formed at the same position in the axial direction of each eccentric body shaft 18 rotate synchronously to swing the first external gear 14 and each eccentric body shaft 18. The three second eccentric bodies 22 respectively formed at the same position in the axial direction rotate in synchronization with each other to swing the second external gear 16.

第1、第2外歯歯車14、16は、それぞれ内歯歯車12に内接噛合しているため、第1、第2外歯歯車14、16が1回揺動する毎に、該第1、第2外歯歯車14、16は、内歯歯車12に対して歯数差分(この実施形態では1歯分)円周方向の位相がずれる(自転する)。この自転成分は、各偏心体軸18の内歯歯車12の軸心O1周りの公転として第1、第2キャリヤ38、40に伝達される。第1、第2キャリヤ38、40は第1キャリヤ38と一体化されたキャリヤピン38Pおよびボルト53等を介して互いに連結されているため、結局、入力軸26の回転によって、ケーシング52に連結された第1アームに対して、第1キャリヤ38に連結された第2アームを相対的に回転させることができる。   Since the first and second external gears 14 and 16 are internally meshed with the internal gear 12, each time the first and second external gears 14 and 16 swing once, the first The second external gears 14 and 16 are out of phase (rotated) in the circumferential direction with respect to the internal gear 12 by a difference in the number of teeth (one tooth in this embodiment). This rotation component is transmitted to the first and second carriers 38 and 40 as revolutions around the axis O1 of the internal gear 12 of each eccentric body shaft 18. Since the first and second carriers 38 and 40 are connected to each other via a carrier pin 38P and a bolt 53 integrated with the first carrier 38, the first and second carriers 38 and 40 are eventually connected to the casing 52 by the rotation of the input shaft 26. The second arm connected to the first carrier 38 can be rotated relative to the first arm.

ここで、図2、図3を合わせて参照して、偏心体軸歯車30の周辺の構成について、該偏心体軸歯車30の製造方法の説明と共に、詳細に説明する。   Here, referring to FIG. 2 and FIG. 3 together, the configuration around the eccentric body shaft gear 30 will be described in detail together with the method of manufacturing the eccentric body shaft gear 30.

この種の偏心揺動型の減速装置10にあっては、偏心体軸18を安定して回転させるのは、第1、第2外歯歯車14、16を安定して揺動させるために必須の要件である。とりわけ、本実施形態のような、いわゆる振り分けタイプ(内歯歯車と、該内歯歯車に内接噛合する外歯歯車と、を備えるとともに、該内歯歯車の軸心から所定量だけオフセットした位置に、外歯歯車を揺動させるための複数の偏心体軸を備えるタイプ)の偏心揺動型の減速装置10にあっては、さらに、各偏心体軸18の位相特性も正確に揃っている必要がある。そのため、従来、偏心体軸18を回転させるための偏心体軸歯車30には、十分な硬度が必要であり、かつ、歯部30Tおよび嵌合穴30Pには、高精度な仕上げ加工が必要であるとされていた。   In this type of eccentric oscillating speed reduction device 10, it is essential to stably rotate the eccentric body shaft 18 in order to stably oscillate the first and second external gears 14 and 16. Is a requirement. In particular, as in this embodiment, a so-called sorting type (internal gear and an external gear internally engaged with the internal gear, and a position offset by a predetermined amount from the axis of the internal gear) In addition, in the eccentric oscillating speed reduction device 10 of a type including a plurality of eccentric body shafts for oscillating the external gear, the phase characteristics of the eccentric body shafts 18 are also accurately aligned. There is a need. Therefore, conventionally, the eccentric body shaft gear 30 for rotating the eccentric body shaft 18 needs to have sufficient hardness, and the tooth portion 30T and the fitting hole 30P need high-precision finishing. It was supposed to be.

このため、従来は、偏心体軸歯車(30)の素材は、該素材の外周に歯部(30T)を形成する工程と、該素材の径方向中央に嵌合穴(30P)を形成する工程を経た後に、偏心体軸歯車(30)全体に、浸炭・焼き入れによる熱処理を行って、素材全体に、十分な硬度を与えるように構成していた。   For this reason, conventionally, the material of the eccentric shaft gear (30) includes a step of forming a tooth portion (30T) on the outer periphery of the material and a step of forming a fitting hole (30P) in the radial center of the material. After passing through, the whole eccentric gear shaft gear (30) was subjected to heat treatment by carburizing and quenching to give sufficient hardness to the whole material.

しかし、浸炭・焼き入れによる熱処理を行うと、必然的に熱処理歪が増大してしまい、高度な寸法精度の確保が困難となってしまう。換言するならば、前述した、特許文献1における開示技術を含め、偏心体軸歯車の嵌合穴の仕上げ加工は、このような「偏心体軸歯車の素材は、十分な硬度を必要とするため浸炭・焼き入れの熱処理が必須である」という事情、および「浸炭・焼き入れの熱処理を行うと、大きな熱処理歪が発生するため、これを修正する仕上げ加工が必須である」という事情を背景として行われてきた工程と言うこともできる。   However, heat treatment by carburizing and quenching inevitably increases heat treatment strain, making it difficult to ensure high dimensional accuracy. In other words, the finishing process of the fitting hole of the eccentric shaft gear, including the technology disclosed in Patent Document 1 described above, is such that “the material of the eccentric shaft gear requires a sufficient hardness. Against the backdrop of the fact that carburizing / quenching heat treatment is indispensable, and the fact that, when carburizing / quenching heat treatment is performed, large heat treatment distortion is generated, and finishing processing is indispensable to correct it. It can also be said that it has been performed.

本実施形態では、しかし、この事情を逆に捉え、偏心体軸歯車30の「歯部30T」に高周波焼き入れを施し、該歯部30T(より具体的には歯面)の硬度を嵌合穴30Pの周辺(より具体的には嵌合穴30Pの内周面)の硬度よりも高くする工程を含むように構成している。この構成は、逆に言うならば、本実施形態に係る偏心体軸歯車30の嵌合穴30Pの周辺は、歯部30Tよりも硬度が低く(軟らかく)、また、従来のように偏心体軸歯車全体に浸炭・焼き入れ処理した場合と比較して、熱処理歪が小さいということである。   In the present embodiment, however, this situation is reversed, and the “tooth portion 30T” of the eccentric shaft gear 30 is subjected to induction hardening, and the hardness of the tooth portion 30T (more specifically, the tooth surface) is fitted. It is configured to include a step of making it higher than the hardness of the periphery of the hole 30P (more specifically, the inner peripheral surface of the fitting hole 30P). In other words, in this configuration, the periphery of the fitting hole 30P of the eccentric body shaft gear 30 according to the present embodiment is lower in hardness (softer) than the tooth portion 30T, and the eccentric body shaft as in the prior art. Compared to the case where the entire gear is carburized and quenched, the heat treatment distortion is small.

したがって、この製造方法を採用することにより、本実施形態に係る偏心体軸歯車30は、条件によっては、嵌合穴30Pの仕上げ加工そのものを省略することができる。また、仕上げ加工を行う場合であっても、熱処理歪が小さいため、該仕上げ加工における「削り代」が小さい。そのため、仕上げ加工自体が簡易であり、加工時間も短縮でき、結果として嵌合穴30Pの仕上げ加工のコストを低減できる。   Therefore, by adopting this manufacturing method, the eccentric body shaft gear 30 according to the present embodiment can omit the finishing process itself of the fitting hole 30P depending on conditions. Even when finishing is performed, since the heat treatment distortion is small, the “cutting allowance” in the finishing is small. Therefore, the finishing process itself is simple, the processing time can be shortened, and as a result, the cost of the finishing process of the fitting hole 30P can be reduced.

また、嵌合穴30Pの周辺は、素材の硬度が高くないことから、加工機械として、高コストなハードブローチは、勿論不要であり、それよりも低コストなカム研削盤による加工さえ不要であり、さらに低コストな、通常のブローチ仕上げ加工(ロックウェル硬度HRC50以下の素材に対して行われるブローチ仕上げ加工)を採用することが可能な場面が多くなると考えられる。つまり、加工機械の更なる低コスト化が可能である。   In addition, since the hardness of the material is not high around the fitting hole 30P, an expensive hard broach is, of course, unnecessary as a processing machine, and even processing by a cam grinding machine at a lower cost is unnecessary. Further, it is considered that there are more scenes where it is possible to adopt a normal broach finishing process (broach finishing process performed on a material having a Rockwell hardness of HRC 50 or less) at a lower cost. That is, the cost of the processing machine can be further reduced.

さらに、歯部30Tの硬度に対して嵌合穴30Pの周辺の硬度が低い(一部が軟らかい)ことから、入力歯車(駆動源側の歯車)32と偏心体軸歯車30との噛合によって歯部30Tの近傍に生じた振動や騒音の一部を良好に吸収しながら偏心体軸18を回転させることができる(振動や騒音の低減効果)。また、硬度差があることから、偏心体軸歯車30全体が共振する現象をより回避でき、この点で、振動や騒音の増大を抑制する効果も得られる。   Further, since the hardness of the periphery of the fitting hole 30P is low (partially soft) with respect to the hardness of the tooth portion 30T, the teeth are engaged by the engagement of the input gear (drive source side gear) 32 and the eccentric shaft gear 30. The eccentric body shaft 18 can be rotated while satisfactorily absorbing part of vibration and noise generated in the vicinity of the portion 30T (vibration and noise reduction effect). In addition, since there is a difference in hardness, the phenomenon that the eccentric shaft gear 30 as a whole resonates can be avoided, and in this respect, an effect of suppressing an increase in vibration and noise can be obtained.

したがって、偏心体軸歯車30の歯部30Tの硬度を高く維持しつつ、結果として、より低振動でより低騒音の偏心揺動型の減速装置10を得ることができるようになる。これにより低振動でより低騒音という効果は、減速装置10が、上述したような振り分けタイプの偏心揺動型の減速装置とされている場合に、特に顕著に得られる。   Therefore, while maintaining the hardness of the tooth portion 30T of the eccentric body shaft gear 30 to be high, as a result, it is possible to obtain the eccentric oscillating speed reduction device 10 with lower vibration and lower noise. As a result, the effects of low vibration and lower noise can be obtained particularly conspicuously when the speed reducer 10 is a distributed type eccentric oscillating speed reducer as described above.

なお、本実施形態では、偏心体軸歯車30の歯部30Tと嵌合穴30Pの周辺との間の硬度差を、歯部30Tに対して高周波焼き入れを行うことによって得るようにしているが、歯部30Tに対する高周波焼き入れの影響によって、嵌合穴30Pの周辺もある程度硬くなってしまう現象は、許容される。要するに、歯部30Tに対する高周波焼き入れによって、歯部30Tの硬度を、嵌合穴30Pの周辺の硬度よりも、ロックウェル硬度HRCで、例えば10ポイント以上高く維持できれば足りる。つまり、歯部30Tと嵌合穴30Pの周辺との間で、結果として、硬度差、例えば、ロックウェル硬度HRCにおいて、10ポイント以上の硬度差が生じていればよい。どのようにしてこの硬度差を得るかという具体的工程については、「歯部に対する高周波焼き入れ」の工程以外は、特に限定されない。   In the present embodiment, the hardness difference between the tooth portion 30T of the eccentric body shaft gear 30 and the periphery of the fitting hole 30P is obtained by performing induction hardening on the tooth portion 30T. The phenomenon that the periphery of the fitting hole 30P becomes hard to some extent due to the influence of induction hardening on the tooth portion 30T is allowed. In short, it is sufficient that the hardness of the tooth portion 30T can be maintained at a Rockwell hardness HRC, for example, 10 points or more higher than the hardness around the fitting hole 30P by induction hardening of the tooth portion 30T. That is, as a result, a hardness difference of 10 points or more is required in the hardness difference, for example, Rockwell hardness HRC, between the tooth portion 30T and the periphery of the fitting hole 30P. The specific process of how to obtain this hardness difference is not particularly limited except for the process of “high-frequency quenching of teeth”.

より分かり易い例を上げるならば、例えば、偏心体軸歯車の仕様や用途によっては、嵌合穴の周辺を含めて、偏心体軸歯車全体に浸炭処理を施すようにしてもよい。但し、この場合は、浸炭処理の後、従来当然のように行われていた「焼き入れ処理」を行うと、歯部と嵌合穴の周辺の硬度差を得ることはできなくなってしまう。換言するならば、浸炭処理の後は、「焼き入れ処理」を行うべきではなく、「炉冷(浸炭処理を行った炉内での徐冷)」とすべきである。   For example, depending on the specification and application of the eccentric body shaft gear, the entire eccentric body shaft gear including the periphery of the fitting hole may be carburized. However, in this case, if the “quenching process”, which is conventionally performed after the carburizing process, is performed, it becomes impossible to obtain a hardness difference between the teeth and the periphery of the fitting hole. In other words, after the carburizing process, the “quenching process” should not be performed, but “furnace cooling (slow cooling in the carburized furnace)” should be performed.

この具体的な熱処理の工程例を、図3に示す。   A specific heat treatment process example is shown in FIG.

図3に示す工程例では、偏心体軸歯車30の素材の外周に歯部30Tを形成する工程Aと、該素材の径方向中央に嵌合穴30Pを形成する工程Bを経た後に、偏心体軸歯車30全体に、浸炭処理を施している(工程C1)。そして、浸炭処理を行った炉内で徐冷した後(工程C2)、前記歯部30Tに前記高周波焼き入れを施すようにしている(工程C3)。その後、焼き戻し処理を行う(工程C4)。   In the process example shown in FIG. 3, after passing through the process A which forms the tooth part 30T in the outer periphery of the raw material of the eccentric body shaft gear 30, and the process B which forms the fitting hole 30P in the radial direction center of the raw material, the eccentric body The entire shaft gear 30 is carburized (step C1). Then, after slow cooling in a carburized furnace (step C2), the induction hardening is performed on the tooth portion 30T (step C3). Thereafter, a tempering process is performed (step C4).

工程Aにおける歯部30Tの形成方法としては、公知の形成方法を適宜採用できるが、本実施形態においては、例えばホブ加工により形成している。   As a forming method of the tooth portion 30T in the process A, a known forming method can be appropriately adopted, but in the present embodiment, for example, it is formed by hobbing.

工程Bにおける嵌合穴30Pの形成方法としては、公知の形成方法を適宜採用できるが、本実施形態においては、例えばブローチ加工により形成している。なお、工程Aと工程Bを行う順序は逆でもよい。   As a forming method of the fitting hole 30P in the process B, a known forming method can be adopted as appropriate, but in the present embodiment, for example, it is formed by broaching. Note that the order of performing the process A and the process B may be reversed.

工程C1の浸炭処理では、歯部30Tおよび嵌合穴30Pの形成された偏心体軸歯車30の素材を浸炭炉内に配置し、炭素を含有するガスの雰囲気中で加熱し(時刻t1〜t2)、高温状態を保持する(時刻t2〜t3)。本実施形態においては、例えば800℃〜1000℃程度に、150分〜450分程度保持する。この保持温度や保持時間は特に限定されるものではなく、偏心体軸歯車30の素材の大きさや必要な浸炭深さに応じて適宜設定すればよい。本実施形態においては、その後、若干温度を下げて所定時間保持する(時刻t3〜t5)。ただし、時刻t3〜t5の部分の処理は行わなくてもよい。以上の処理により、偏心体軸歯車30の素材の表層部に炭素を含ませる。   In the carburizing process of the process C1, the material of the eccentric shaft gear 30 in which the tooth portion 30T and the fitting hole 30P are formed is placed in a carburizing furnace and heated in an atmosphere of a gas containing carbon (time t1 to t2). ), Maintaining a high temperature state (time t2 to t3). In the present embodiment, for example, the temperature is held at about 800 ° C. to 1000 ° C. for about 150 minutes to 450 minutes. The holding temperature and holding time are not particularly limited, and may be set as appropriate according to the size of the material of the eccentric body shaft gear 30 and the required carburizing depth. In this embodiment, after that, the temperature is slightly lowered and held for a predetermined time (time t3 to t5). However, the processing at the time t3 to t5 may not be performed. By the above processing, carbon is included in the surface layer portion of the material of the eccentric body gear 30.

この浸炭処理により、マルテンサイト構造を作り得る炭素濃度にまで素材の表面に炭素を拡散させることができる。すなわち、ここで焼き入れすると素材の組成をマルテンサイト化することができるが、本実施形態では、浸炭処理後、炉冷(徐冷)する(工程C2:時刻t5〜t6)。すなわち、ここで敢えて炉冷し、偏心体軸歯車30の組織のマルテンサイト化を避ける。   By this carburizing treatment, carbon can be diffused on the surface of the material up to a carbon concentration capable of forming a martensite structure. That is, when quenching is performed, the composition of the material can be martensite, but in this embodiment, after the carburizing treatment, furnace cooling (slow cooling) is performed (step C2: times t5 to t6). That is, here, the furnace is daringly cooled to avoid the martensitic structure of the eccentric body shaft gear 30.

工程C2の炉冷においては、浸炭炉の加熱終了後も偏心体軸歯車30の素材を炉内に留めておき、炉の冷却速度に合わせてゆっくりと冷却を行う。炉冷の冷却速度も特に限定されるものではなく、組織のマルテンサイト化を避ける冷却速度であればよく、通常、30℃〜100℃/時間の速度とされる。なお、本実施形態においては、浸炭処理を行った炉内において炉冷しているが、これに限定されるものではなく、組織のマルテンサイト化を避ける、あるいは100℃/時間よりも遅い速度で冷却するのであれば、浸炭炉以外で冷却しても構わない。   In the furnace cooling in step C2, the material of the eccentric body shaft gear 30 is kept in the furnace even after the heating of the carburizing furnace is finished, and the cooling is performed slowly in accordance with the cooling rate of the furnace. The cooling rate of the furnace cooling is not particularly limited as long as it is a cooling rate that avoids the martensite formation of the structure, and is usually 30 ° C. to 100 ° C./hour. In this embodiment, the furnace is cooled in the carburized furnace. However, the present invention is not limited to this, and avoids martensite of the structure or at a rate slower than 100 ° C./hour. If it is cooled, it may be cooled by other than a carburizing furnace.

次に、炉冷の完了した偏心体軸歯車30の素材を浸炭炉から取り出し、工程C3において、歯部30Tのみを対象として高周波焼き入れを行う。具体的には、歯部30Tに高周波の電磁波による電磁誘導を起こし、表面を加熱させ(時刻t11〜t12)、その状態を保持する(時刻t12〜t13)。保持温度や保持時間は特に限定されるものでなく、偏心体軸歯車の素材の大きさ、必要な硬さ、必要な硬化深さ等に応じて適宜設定すればよい。本実施形態においては、例えば浸炭処理時よりも若干低い温度に加熱している。その後、急冷して焼き入れする(本実施形態においては、水焼き入れする:時刻t13〜t14)。以上の処理により、歯部30Tの表層部組織がマルテンサイト化される。   Next, the material of the eccentric shaft gear 30 that has undergone furnace cooling is taken out from the carburizing furnace, and in step C3, induction hardening is performed only on the tooth portion 30T. Specifically, electromagnetic induction by high-frequency electromagnetic waves is caused in the tooth portion 30T, the surface is heated (time t11 to t12), and the state is maintained (time t12 to t13). The holding temperature and holding time are not particularly limited, and may be set as appropriate according to the size of the material of the eccentric shaft gear, the required hardness, the required curing depth, and the like. In the present embodiment, for example, the heating is performed at a temperature slightly lower than that during carburizing. Thereafter, quenching and quenching are performed (in this embodiment, quenching with water: times t13 to t14). By the above process, the surface layer structure of the tooth portion 30T is martensiticized.

次に、工程C4において焼き戻しを行う(時刻t21〜t24)。焼き戻し温度も特に限定されないが、本実施形態においては、例えば150℃〜300℃程度とされる。   Next, tempering is performed in step C4 (time t21 to t24). Although the tempering temperature is not particularly limited, in the present embodiment, for example, it is about 150 ° C. to 300 ° C.

炉冷(徐冷)すると炭素が内部に拡散して炭素濃度が低くなったり、結晶が大きくなったりする傾向となるため、嵌合穴30Pの周辺の硬度は高くなりにくい。一方、歯部30Tの表層部組織は、高周波焼き入れによってマルテンサイト化できる。これにより、浸炭処理無しで歯部30Tに高周波焼き入れを施す場合と比較して、嵌合穴30Pの周辺の熱歪みを増大させることなく、歯部30Tの硬度をより高めることができる。   When the furnace is cooled (slowly cooled), the carbon diffuses into the interior and the carbon concentration tends to decrease or the crystal becomes large. Therefore, the hardness around the fitting hole 30P is unlikely to increase. On the other hand, the surface layer structure of the tooth portion 30T can be martensite by induction hardening. Thereby, compared with the case where induction hardening is performed on the tooth part 30T without carburizing treatment, the hardness of the tooth part 30T can be further increased without increasing the thermal strain around the fitting hole 30P.

なお、前述したように、この浸炭処理(工程C1)は、必ずしも行う必要はない。偏心体軸歯車30の素材に浸炭処理を施さない場合は、図3における、偏心体軸歯車30の素材の外周に歯部30Tを形成する工程Aと、該素材の径方向中央に嵌合穴30Pを形成する工程Bの後に、(工程C1、C2を省略して)直接工程C3を実施することになる。用途によっては、あるいはもともと素材に含まれている炭素濃度によっては、これで十分に実用に耐えられる場合がある。   As described above, this carburizing process (step C1) is not necessarily performed. When the carburizing process is not performed on the material of the eccentric body shaft gear 30, the process A in FIG. 3 for forming the tooth portion 30T on the outer periphery of the material of the eccentric body shaft gear 30 and the fitting hole in the radial center of the material After Step B for forming 30P, Step C3 is performed directly (omitting Steps C1 and C2). Depending on the application, or depending on the carbon concentration originally contained in the material, this may be sufficient for practical use.

また、既に述べたように、嵌合穴については、仕上げ加工自体を省略してもよい。つまり、高周波焼き入れ後には、例えば、歯部のみに対して熱処理歪を除去する仕上げ加工(例えば研削加工)を行うようにしてもよい。もちろん、嵌合穴の仕上げ加工は、行っても良い。仮に仕上げ加工を行う場合であっても、嵌合穴の周辺は、熱処理歪が小さいため、該仕上げ加工における「削り代」が小さく、仕上げ加工自体が簡易で済み、加工時間も短縮できる。また、(嵌合穴の内周面の硬度が低いことから)例えばロックウェル硬度HRC50以下の素材に対して行われる通常の(低コストの)ブローチ仕上げ加工を行うことができることも多くなると考えられる。   Further, as already described, the finishing process itself may be omitted for the fitting hole. That is, after induction hardening, for example, a finishing process (for example, a grinding process) for removing the heat treatment strain may be performed only on the tooth portion. Of course, the finishing of the fitting hole may be performed. Even in the case of finishing, since the heat treatment strain is small around the fitting hole, the “cutting allowance” in the finishing is small, the finishing itself is simple, and the processing time can be shortened. In addition, it is considered that the usual (low-cost) broach finishing process performed on a material having a Rockwell hardness of HRC50 or less, for example, can be performed (because the hardness of the inner peripheral surface of the fitting hole is low). .

しかし、歯部については、高周波焼き入れによる熱処理歪が発生するため、この種の偏心揺動型の減速装置の偏心体軸歯車に必要な寸法精度を確保するためには、仕上げ加工を省略しない方が好ましい。特に、上記熱処理例のように、偏心体軸歯車の素材に、浸炭処理を施し、炉内で徐冷した後、歯部に高周波焼き入れを施すような工程C1〜C4を採用した場合等にあっては、歯部での熱処理歪がより大きくなる傾向となるため、仕上げ加工を行うべきである。   However, since the heat treatment distortion due to induction hardening occurs in the tooth portion, the finishing process is not omitted in order to ensure the dimensional accuracy required for the eccentric body shaft gear of this type of eccentric oscillating speed reducer. Is preferred. In particular, as in the above heat treatment example, when the materials of the eccentric body shaft gear are subjected to carburizing treatment, gradually cooled in the furnace, and then subjected to induction quenching on the tooth portion, etc. In such a case, the heat treatment strain at the tooth portion tends to be larger, and finishing should be performed.

なお、偏心体軸歯車の嵌合穴と偏心体軸の歯車嵌合部の形状は、上記実施形態においては、軸と直角の断面が正六角形の多角形形状とされていたが、本発明においては、偏心体軸歯車の嵌合穴と偏心体軸の歯車嵌合部の形状は、これに限定されるものではなく、例えばスプラインであってもよいし、Dカット形状であってもよい。   The shape of the fitting hole of the eccentric body shaft gear and the gear fitting portion of the eccentric body shaft was a polygonal shape having a regular hexagonal cross section perpendicular to the shaft in the above embodiment. The shapes of the fitting hole of the eccentric body shaft gear and the gear fitting portion of the eccentric body shaft are not limited to this, and may be, for example, a spline or a D-cut shape.

また、この偏心体軸歯車の嵌合穴と偏心体軸の歯車嵌合部の嵌合は、「締まり嵌め」とするのが好ましい。これにより、例えば以下のようなメリットが得られる。   Further, it is preferable that the fitting between the fitting hole of the eccentric body shaft gear and the gear fitting portion of the eccentric body shaft is “tight fit”. Thereby, for example, the following merits are obtained.

a)偏心体軸歯車の嵌合穴の周辺は素材が軟らかいことから、締まり嵌めとすることにより、嵌合穴の形状を、(浸炭・焼き入れ、あるいは浸炭・高周波焼き入れされた)より硬い偏心体軸側の歯車嵌合部に倣わせることができる。これにより、仮に、嵌合穴の仕上げ加工を省略した場合であっても、つまり、寸法的に多少誤差が残っていても、嵌合穴の寸法上の誤差による悪影響が顕在化するのを、より防止することができる。   a) Since the material around the fitting hole of the eccentric shaft gear is soft, the fitting hole shape is harder (carburized / quenched or carburized / high-frequency quenched) by using an interference fit. It is possible to follow the gear fitting portion on the eccentric body shaft side. As a result, even if the finishing process of the fitting hole is omitted, that is, even if there is a slight error in the dimension, the adverse effect due to the error in the dimension of the fitting hole becomes obvious. More can be prevented.

b)締まり嵌めによって、嵌合穴と歯車嵌合部との「がたつき」がなくなるため、この部分でのバックラッシをほぼ零とすることができる。この種の偏心揺動型の減速装置は、例えばロボットの関節駆動のように、バックラッシを嫌う用途で用いられることも多いため、バックラッシを小さくできるというメリットは大きい。   b) Since the interference fit eliminates “rattle” between the fitting hole and the gear fitting portion, the backlash at this portion can be made substantially zero. This type of eccentric oscillating speed reduction device is often used in applications that do not like backlash, such as robot joint drive, for example, and thus has a great merit that backlash can be reduced.

c)締まり嵌めによって、嵌合穴と歯車嵌合部との「がたつき」がなくなることから、該がたつきに起因する振動や騒音を低減できる。この効果は、特に、偏心揺動型の減速装置の構成が、上述したような「振り分けタイプの構成」とされている場合に顕著である。それは、振り分けタイプの偏心揺動型の減速装置の場合、偏心体軸歯車の「がたつき」が、騒音発生の大きな要因となることが多いためである。   c) Since the interference fit eliminates the “rattle” between the fitting hole and the gear fitting portion, it is possible to reduce vibration and noise caused by the rattling. This effect is particularly remarkable when the configuration of the eccentric oscillating type reduction gear is the “distribution type configuration” as described above. This is because, in the case of a distributed type eccentric oscillating speed reduction device, the “shaking” of the eccentric shaft gear is often a major factor in noise generation.

なお、素材が軟らかいことから、上記a)〜c)の効果が得られる締まり嵌めを、従来の浸炭・焼き入れがなされた偏心体軸歯車よりも、容易に実現することができる。すなわち、該締まり嵌めを、焼き嵌めや、高圧力の圧入等を行うことなく、より低圧力の圧入によって実現することができる。この締まり嵌めを簡素化できるという効果は、実際の製造工程上においては、非常に大きなメリットとなる。   In addition, since the material is soft, it is possible to easily achieve an interference fit that can achieve the effects a) to c) as compared with the conventional eccentric shaft gear that has been carburized and quenched. That is, the interference fit can be realized by press fitting at a lower pressure without performing shrink fit or press fitting at a high pressure. The effect that the interference fit can be simplified is a very significant merit in the actual manufacturing process.

なお、偏心揺動型の減速装置には、上述したような振り分けタイプの減速装置に適用した場合に、多くの顕著な作用効果が得られるが、偏心揺動型の減速装置には、ほかに、内歯歯車の軸心位置に1本の偏心体軸を有する、いわゆるセンタクランクタイプの減速装置も知られている。本発明は、このようなセンタクランクタイプの偏心揺動型の減速装置の偏心体軸を回転させるための偏心体軸歯車の製造にも同様に適用することができ、同様の作用効果が得られる。   The eccentric oscillating type speed reducer has many remarkable effects when applied to the sort type speed reducer as described above. A so-called center crank type speed reducer having one eccentric body shaft at the axial center position of the internal gear is also known. The present invention can be similarly applied to the manufacture of an eccentric body shaft gear for rotating the eccentric body shaft of such a center crank type eccentric oscillating speed reducer, and the same operational effects can be obtained. .

10…減速装置
12…内歯歯車
14、16…第1、第2外歯歯車
18…偏心体軸
20、22…第1、第2偏心体
30…偏心体軸歯車
30T…歯部
30P…嵌合穴
70…歯車嵌合部
DESCRIPTION OF SYMBOLS 10 ... Reduction gear 12 ... Internal gear 14, 16 ... 1st, 2nd external gear 18 ... Eccentric body shaft 20, 22 ... 1st, 2nd eccentric body 30 ... Eccentric body shaft gear 30T ... Tooth part 30P ... Fit Joint hole 70 ... gear fitting part

Claims (8)

偏心体を備えた偏心体軸と、該偏心体軸を回転させるための偏心体軸歯車と、を備え、該偏心体軸歯車は、径方向中央部に前記偏心体軸に設けられた歯車嵌合部に嵌合する嵌合穴を有している偏心揺動型の減速装置の前記偏心体軸歯車の製造方法であって、
前記偏心体軸歯車の素材の外周に、歯部を形成する工程と、
前記偏心体軸歯車の素材の径方向中央に、前記嵌合穴を形成する工程と、
前記歯部に高周波焼き入れを施し、歯面の硬度を前記嵌合穴の内周面の硬度よりも高くする工程と、
を含むことを特徴とする偏心揺動型の減速装置の偏心体軸歯車の製造方法。
An eccentric body shaft provided with an eccentric body, and an eccentric body shaft gear for rotating the eccentric body shaft, the eccentric body shaft gear being fitted to a gear fitted to the eccentric body shaft at a radial center portion. A manufacturing method of the eccentric body shaft gear of the eccentric oscillating type reduction gear having a fitting hole to be fitted to a joint part,
Forming a tooth portion on the outer periphery of the material of the eccentric body shaft gear; and
Forming the fitting hole in the radial center of the material of the eccentric body shaft gear;
Subjecting the teeth to induction hardening, and making the tooth surface hardness higher than the hardness of the inner peripheral surface of the fitting hole;
The manufacturing method of the eccentric body shaft gear of the eccentric rocking | fluctuation type reduction gear characterized by including these.
請求項1において、
前記歯面の硬度を、前記嵌合穴の内周面の硬度よりも、ロックウェル硬度HRCで、10ポイント以上高くする
ことを特徴とする偏心揺動型の減速装置の偏心体軸歯車の製造方法。
In claim 1,
The manufacture of an eccentric shaft gear of an eccentric rocking type reduction gear characterized in that the hardness of the tooth surface is higher by 10 points or more in Rockwell hardness HRC than the hardness of the inner peripheral surface of the fitting hole. Method.
請求項1または2において、
前記高周波焼き入れ後に、前記歯部に対して熱処理歪を除去する仕上げ加工を行うが、前記嵌合穴に対しては熱処理歪を除去する仕上げ加工は行わない
ことを特徴とする偏心揺動型の減速装置の偏心体軸歯車の製造方法。
In claim 1 or 2,
After the induction hardening, the toothed portion is subjected to finishing processing to remove heat treatment strain, but the fitting hole is not subjected to finishing processing to remove heat treatment strain. Of manufacturing eccentric shaft gear of reduction gear of this invention.
請求項1または2において、
前記嵌合穴に対して、ロックウェル硬度HRC50以下の素材に対して行われるブローチ仕上げを施す
ことを特徴とする偏心揺動型の減速装置の偏心体軸歯車の製造方法。
In claim 1 or 2,
A broaching finish performed on a material having a Rockwell hardness of HRC 50 or less is performed on the fitting hole. A method of manufacturing an eccentric shaft gear of an eccentric rocking type reduction gear.
請求項1〜4のいずれかにおいて、
前記偏心体軸歯車の素材に、浸炭処理を施さない
ことを特徴とする偏心揺動型の減速装置の偏心体軸歯車の製造方法。
In any one of Claims 1-4,
A material for the eccentric body shaft gear is not subjected to carburizing treatment. An eccentric body shaft gear manufacturing method for an eccentric oscillating type speed reducer.
請求項1〜4のいずれかにおいて、
前記偏心体軸歯車の素材に、浸炭処理を施し、当該浸炭処理を行った炉内で徐冷した後、前記歯部に前記高周波焼き入れを施す
ことを特徴とする偏心揺動型の減速装置の偏心体軸歯車の製造方法。
In any one of Claims 1-4,
An eccentric oscillating type speed reducer characterized by subjecting the material of the eccentric body shaft gear to carburizing treatment, gradually cooling in the furnace subjected to the carburizing treatment, and then subjecting the teeth to the induction hardening. Manufacturing method for eccentric shaft gears.
偏心体を備えた偏心体軸と、該偏心体軸を回転させるための偏心体軸歯車と、を備え、該偏心体軸歯車は、径方向中央部に前記偏心体軸に設けられた歯車嵌合部に嵌合する嵌合穴を有している偏心揺動型の減速装置であって、
前記偏心体軸歯車は、歯面の硬度が、前記嵌合穴の内周面の硬度をよりも、ロックウェル硬度HRCで、10ポイント以上高い
ことを特徴とする偏心揺動型の減速装置。
An eccentric body shaft provided with an eccentric body, and an eccentric body shaft gear for rotating the eccentric body shaft, the eccentric body shaft gear being fitted to a gear fitted to the eccentric body shaft at a radial center portion. An eccentric oscillating type speed reducer having a fitting hole that fits into a joint part,
The eccentric oscillating speed reducer characterized in that the hardness of the tooth surface of the eccentric body shaft gear is 10 points or more higher in Rockwell hardness HRC than the hardness of the inner peripheral surface of the fitting hole.
請求項7において、
前記偏心体軸の前記歯車嵌合部と、前記偏心体軸歯車の前記嵌合穴との嵌合が、締まり嵌めで行われる
ことを特徴とする偏心揺動型の減速装置。
In claim 7,
The eccentric oscillating speed reduction device, wherein the gear fitting portion of the eccentric body shaft and the fitting hole of the eccentric body shaft gear are fitted by an interference fit.
JP2013256532A 2013-12-11 2013-12-11 Eccentric body shaft gear manufacturing method for eccentric oscillating speed reducer Active JP6175361B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013256532A JP6175361B2 (en) 2013-12-11 2013-12-11 Eccentric body shaft gear manufacturing method for eccentric oscillating speed reducer
CN201410382377.8A CN104712731A (en) 2013-12-11 2014-08-06 Eccentric oscillating type speed reduction device and method of manufacturing eccentric body shaft gear of eccentric oscillating type speed reduction device
CN201811359600.1A CN110030361A (en) 2013-12-11 2014-08-06 The manufacturing method of eccentric oscillating-type deceleration device and its eccentric shaft gear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013256532A JP6175361B2 (en) 2013-12-11 2013-12-11 Eccentric body shaft gear manufacturing method for eccentric oscillating speed reducer

Publications (2)

Publication Number Publication Date
JP2015113916A true JP2015113916A (en) 2015-06-22
JP6175361B2 JP6175361B2 (en) 2017-08-02

Family

ID=53412328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013256532A Active JP6175361B2 (en) 2013-12-11 2013-12-11 Eccentric body shaft gear manufacturing method for eccentric oscillating speed reducer

Country Status (2)

Country Link
JP (1) JP6175361B2 (en)
CN (2) CN104712731A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106989158A (en) * 2017-05-24 2017-07-28 宁波金鑫粉末冶金有限公司 A kind of automobile engine water pump driving wheel structure
EP3205443A1 (en) * 2016-02-09 2017-08-16 Siemens Aktiengesellschaft Method for producing a toothed gear, toothed gear, gear driven compressor
KR20170135688A (en) * 2016-05-30 2017-12-08 나부테스코 가부시키가이샤 Gear apparatus, manufacturing method of involute gear, and manufacturing method of gear apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7450340B2 (en) * 2019-04-09 2024-03-15 住友重機械工業株式会社 Gear device, manufacturing method of gear device
CN110144437A (en) * 2019-06-27 2019-08-20 西安北辰亿科电子科技有限公司 A kind of gear synchronous quenching unit
CN115109900A (en) * 2022-06-22 2022-09-27 沈阳飞机工业(集团)有限公司 Local annealing induction heat treatment method for 30CrMnSiNi2A steel additional end bolt

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07269677A (en) * 1994-03-30 1995-10-20 Musashi Seimitsu Ind Co Ltd Ring gear
JPH0949561A (en) * 1995-07-21 1997-02-18 Gkn Birfield Spa Differential gear with support section of differential pinion
JPH10202435A (en) * 1997-01-13 1998-08-04 Mitsubishi Motors Corp Manufacture of helical gear
JP2008045200A (en) * 2005-04-28 2008-02-28 Aisin Aw Co Ltd Method for cooling steel member
JP2013096550A (en) * 2011-11-04 2013-05-20 Nabtesco Corp Gear transmission device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1094409C (en) * 1998-03-13 2002-11-20 张元增 Method for making speed changer gear
CN102770567B (en) * 2010-03-30 2015-02-18 爱信艾达株式会社 Carburized steel member and method for producing same
CN101898297B (en) * 2010-04-15 2011-09-07 南通振华重型装备制造有限公司 Manufacturing method of large-size welding type carburizing and quenching gear
CN101804548B (en) * 2010-04-15 2011-05-04 南通振华重型装备制造有限公司 Manufacturing method of integral herringbone gear shaft
JP2012052189A (en) * 2010-09-01 2012-03-15 Aitech Kk Manufacturing method of machine part formed of steel material
CN202520802U (en) * 2012-01-05 2012-11-07 江阴市科安传动机械有限公司 Spiral bevel gear shaft
CN102705480A (en) * 2012-06-19 2012-10-03 无锡市百顺机械厂 Gear
CN102912106B (en) * 2012-07-05 2014-06-04 贵州群建精密机械有限公司 High-frequency quenching technique of medium-carbon steel engine gear
CN102990314A (en) * 2012-12-02 2013-03-27 齐重数控装备股份有限公司 Machining method of hex-equant external diameter centering spline gear

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07269677A (en) * 1994-03-30 1995-10-20 Musashi Seimitsu Ind Co Ltd Ring gear
JPH0949561A (en) * 1995-07-21 1997-02-18 Gkn Birfield Spa Differential gear with support section of differential pinion
JPH10202435A (en) * 1997-01-13 1998-08-04 Mitsubishi Motors Corp Manufacture of helical gear
JP2008045200A (en) * 2005-04-28 2008-02-28 Aisin Aw Co Ltd Method for cooling steel member
JP2013096550A (en) * 2011-11-04 2013-05-20 Nabtesco Corp Gear transmission device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3205443A1 (en) * 2016-02-09 2017-08-16 Siemens Aktiengesellschaft Method for producing a toothed gear, toothed gear, gear driven compressor
WO2017137209A1 (en) * 2016-02-09 2017-08-17 Siemens Aktiengesellschaft Method for producing a gear wheel, gear wheel, geared compressor
KR20170135688A (en) * 2016-05-30 2017-12-08 나부테스코 가부시키가이샤 Gear apparatus, manufacturing method of involute gear, and manufacturing method of gear apparatus
KR102390794B1 (en) * 2016-05-30 2022-04-26 나부테스코 가부시키가이샤 Gear apparatus, manufacturing method of involute gear, and manufacturing method of gear apparatus
CN106989158A (en) * 2017-05-24 2017-07-28 宁波金鑫粉末冶金有限公司 A kind of automobile engine water pump driving wheel structure
CN106989158B (en) * 2017-05-24 2023-07-14 宁波金鑫粉末冶金有限公司 Driving wheel structure of automobile engine water pump

Also Published As

Publication number Publication date
CN110030361A (en) 2019-07-19
CN104712731A (en) 2015-06-17
JP6175361B2 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6175361B2 (en) Eccentric body shaft gear manufacturing method for eccentric oscillating speed reducer
JP6185829B2 (en) Manufacturing method of crankshaft and external gear of eccentric oscillating speed reducer
JP2009142939A (en) Barrel worm-shaped tool
KR101491679B1 (en) Planetary gear deceleration apparatus and method for manufacturing it
US11052451B2 (en) Gear manufacturing method and gear manufactured thereby
JP2003088935A (en) Manufacturing method of external gear
JP2019167589A (en) Laser quenching method
JP6615954B2 (en) Method for manufacturing external gear
JP6429853B2 (en) Crankshaft manufacturing method for eccentric oscillating speed reducer
US20220381335A1 (en) Power transmission device and method of manufacturing the same
JP2009228829A (en) Manufacturing method of stem, manufacturing method of bearing, stem, and bearing
KR200468990Y1 (en) Idle gear carrier of speed reducer
JPH04331851A (en) Manufacture of trochoid group gear shape internal fitting type planetary gear reduction gear
JP5797131B2 (en) Planetary gear reducer
JP5207236B2 (en) Manufacturing method of shaft rod, manufacturing method of bearing, shaft rod and bearing
JP6867837B2 (en) Eccentric swing type gear device and its manufacturing method
JP2019072842A (en) Method for manufacturing eccentric oscillation type speed reducer
JP4461794B2 (en) Toroidal continuously variable transmission
JP2015142956A (en) Planetary gear and method of producing internal gear thereof
CN111322304B (en) Method for manufacturing eccentric body shaft
JP2019044914A (en) transmission
JP2013104516A (en) Differential device
CN116428316A (en) Eccentric swing type gear device
JP2022082236A (en) Method for producing gear device
WO2018061087A1 (en) Steel component manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170710

R150 Certificate of patent or registration of utility model

Ref document number: 6175361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150