JP2012052189A - Manufacturing method of machine part formed of steel material - Google Patents
Manufacturing method of machine part formed of steel material Download PDFInfo
- Publication number
- JP2012052189A JP2012052189A JP2010195998A JP2010195998A JP2012052189A JP 2012052189 A JP2012052189 A JP 2012052189A JP 2010195998 A JP2010195998 A JP 2010195998A JP 2010195998 A JP2010195998 A JP 2010195998A JP 2012052189 A JP2012052189 A JP 2012052189A
- Authority
- JP
- Japan
- Prior art keywords
- nitriding
- manufacturing
- steel
- machine part
- steel material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Heat Treatment Of Articles (AREA)
Abstract
Description
本発明は、鋼材製機械部品の製造方法に関する。特に、歯車、プーリ、スプロケット等の高硬度および高靭性(じんせい:toughness)が要求される機械部品を、鋼材をプレス打ち抜き(ブランキング)等の塑性加工及び/又は機械加工を経て製造するのに好適な発明に係る。 The present invention relates to a method for manufacturing a steel machine part. In particular, machine parts that require high hardness and toughness (toughness) such as gears, pulleys, sprockets, etc. are manufactured through plastic processing and / or machining such as press blanking of steel materials. It relates to a preferred invention.
ここでは、輸送機器等における歯車を、鋼板(鋼材)から塑性加工(ブランキング等)及び切削加工を経て製造する場合について説明するが、プーリやスプロケット等を塑性加工や切削加工により製造する場合についても、本発明は適用できるものである。 Here, the case where gears in transportation equipment and the like are manufactured from steel plates (steel materials) through plastic processing (blanking, etc.) and cutting processing will be described. However, when pulleys and sprockets are manufactured by plastic processing and cutting processing. In addition, the present invention is applicable.
上記のような歯車を鋼板からブランキングにより製造する場合は、ブランキング後、歯車の咬み合い部に所要の硬度を付与するために、従来は、通常、慣用の浸炭処理や浸炭窒化処理により対処していた。 When manufacturing the above gears by blanking from a steel plate, conventionally, in order to give the required hardness to the meshing part of the gears after blanking, it is usually handled by conventional carburizing or carbonitriding Was.
しかし、浸炭処理や浸炭窒化処理では、浸炭に伴い、被処理物(鋼材)の表層に粒界酸化物が析出するため、焼入れ性が低下して、焼入れによる疲れ強さ(fatigue strenngth)の向上効果が阻害される。 However, in carburizing and carbonitriding, grain boundary oxides are deposited on the surface of the workpiece (steel material) during carburizing, so the hardenability is reduced and the fatigue strength (fatigue strenngth) is improved by quenching. The effect is inhibited.
なお、本発明の特許性に影響を与えるものではないが、先行技術文献として、特許文献1〜3等を挙げることができる。 In addition, although it does not affect the patentability of this invention, patent documents 1-3 etc. can be mentioned as a prior art document.
特許文献1には「表層に窒素化合物層を有せず、表面から所定深さまで0.05〜1.50%の濃度で窒素を固溶させた窒素拡散層を備え、且つ焼入れ処理を施した浸窒焼入品」(請求項1等)が、特許文献2には、「鋼製の転動部材であって、表面層から一種以上の合金元素を拡散浸透させるとともに、その表面層を浸炭、浸炭浸窒及び/又は浸窒処理した後に焼入れ若しくは焼入れ焼き戻し処理が施されている転動部材」(請求項1等)が、特許文献3には、「歯車歯をその最終形状に切削し、歯車歯を浸炭し、この歯車を徐冷し、或いは焼きなまし、歯車歯の表面だけを加熱して高周波焼入れする歯車の製造方法」(要約等)が、それぞれ記載されている。
さらに、非特許文献1には、「ガス浸炭窒化」のタイトルの論文、非特許文献2には、「軟窒化処理した鋼の高周波焼入れに関する基礎研究」のタイトルの論文が、記載されている。
Further, Non-Patent
本発明は、上記にかんがみて、鋼材(鋼板)から塑性加工及び/又は機械加工で調製した鋼材加工品(ワーク)を、焼入れ加工を経て製造する機械部品の製造方法において、鋼材として安価な低炭素鋼を用いて所定部位のみ高硬度および高靭性を付与でき、且つ、機械部品を取り付けるに際して、後加工としてカシメや溶接したような場合に、カシメ割れや焼割れが発生しない鋼材製機械部品の製造方法を提供することを目的とする。 In view of the above, the present invention is a low cost, low cost, steel material in a manufacturing method of a machine part in which a steel material product (work) prepared from a steel material (steel plate) by plastic working and / or machining is subjected to quenching. Carbon steel can be used to provide high hardness and toughness only at specified parts, and when attaching machine parts, when it is caulked or welded as post-processing, steel machine parts that do not cause caulking cracks or fire cracks An object is to provide a manufacturing method.
そこで、本発明者らは、上記課題を解決するために、鋭意開発に努力をした結果、下記構成の鋼材製機械部品の製造方法に想到した。 Therefore, as a result of diligent efforts to solve the above-mentioned problems, the present inventors have come up with a method for manufacturing a steel machine part having the following configuration.
低炭素鋼材(炭素含有量0.3質量%未満)から所定部品形状に塑性加工及び/又は機械加工で調製した鋼材加工品(ワーク)を、焼入れ加工を経て製造する鋼材製機械部品の製造方法であって、
前記ワークに対して、密閉室内で、実質的に中性ガスと窒化剤とのみからなる窒化ガスを用いて、深さ10μmの窒素濃度:1.5質量%以下で、且つ、深さ50μmの窒素濃度:0.10質量%以上の浸窒層を得る浸窒処理工程、及び、
該浸窒処理工程後の前記ワークを、所要部位にのみ高周波加熱してオーステナイト化後、時間をおかず急冷してマルテンサイト化する高周波焼入れ工程、
の各工程を含むことを特徴とする。
A method of manufacturing a steel machine part that manufactures a steel product (work) prepared from low-carbon steel (carbon content less than 0.3% by mass) into a predetermined part shape by plastic working and / or machining. Because
A nitrogen concentration of 10 μm in depth: 1.5% by mass or less and a depth of 50 μm using a nitriding gas consisting essentially of a neutral gas and a nitriding agent in a sealed chamber with respect to the workpiece. Nitrogen concentration: a nitriding treatment step for obtaining a nitriding layer of 0.10% by mass or more, and
The work after the nitriding treatment step is induction-heated by induction heating only to a required portion to austenite, and then rapidly cooling to martensite without time,
It is characterized by including each process of these.
以下、本発明を実施するための形態について説明する。以下の説明で濃度等を示す「%」は、特に断らない限り、「質量%」を意味する。 Hereinafter, modes for carrying out the present invention will be described. In the following description, “%” indicating a concentration or the like means “% by mass” unless otherwise specified.
上位概念的には、低炭素鋼材(炭素含有量0.3質量%未満)から所定部品形状に加工した鋼材加工品(ワーク)を、焼入れ加工を経て製造する機械部品の製造方法に関する。 Highly conceptually, the present invention relates to a method of manufacturing a machine part in which a processed steel material (work) processed from a low carbon steel material (carbon content less than 0.3% by mass) into a predetermined part shape is subjected to quenching.
ここでは、低炭素鋼材として、冷間圧延鋼板一般用「SPCC」を用いて、板状機械部品(例えば歯車)を、ブランキング加工(塑性加工)を経て製造する場合を例に採り説明する。本発明は、他の低炭素鋼板、さらには、帯鋼、型鋼、棒鋼等の他の鋼材を用いて、歯車以外の機械部品に適用することもできる。また、塑性加工に限らず、切削・研削機械加工により形成した機械部品(ワーク)に適用することも可能である。 Here, a case where a plate-like mechanical part (for example, a gear) is manufactured through blanking (plastic working) by using “SPCC” for cold rolled steel sheet as a low carbon steel material will be described as an example. The present invention can also be applied to machine parts other than gears using other low carbon steel sheets, and other steel materials such as strip steel, die steel, and steel bars. Further, the present invention can be applied not only to plastic working but also to machine parts (workpieces) formed by cutting / grinding machining.
そして、本発明の方法の概略は、図1に示す如くである。以下、各工程を詳細に説明する。 The outline of the method of the present invention is as shown in FIG. Hereinafter, each process will be described in detail.
(1)ワーク調製工程:
低炭素鋼板を歯車形状にブランキング加工をして板状ワークを調製する。ブランキング加工後、通常、機械加工(切削乃至研削)により面取り加工を行なう。なお、ブランキング加工の代わりに最初から機械加工によりワークを調製してもよい。
(1) Workpiece preparation process:
A plate work is prepared by blanking a low carbon steel plate into a gear shape. After blanking, chamfering is usually performed by machining (cutting or grinding). Note that the workpiece may be prepared by machining from the beginning instead of blanking.
(2)浸窒処理工程:
該板状ワークの全面表層側を浸窒処理する。
(2) Nitrogen treatment process:
Nitrogen treatment is performed on the entire surface of the plate-like workpiece.
このときの浸窒処理の条件は、ワークに対して、密閉室内で、実質的に中性ガスと窒化剤とのみからなる窒化ガスを用いて、深さ10μmの窒素濃度1.5%以下(浸窒加熱温度により異なるが、望ましくは、0.2〜0.9%)で、且つ、深さ50μmの窒素濃度0.10%以上(浸窒加熱温度により異なるが、望ましくは0.15〜0.7%)の浸窒層を得ることができるものとする。なお、深さ100μmの窒素濃度0.5%(さらには0.2%)以下となるものとすることがさらに望ましい。 Nitrogen treatment conditions at this time are as follows: a nitrogen concentration of 10 μm in depth of 1.5% or less using a nitriding gas consisting essentially of a neutral gas and a nitriding agent in a sealed chamber with respect to the workpiece. Although it varies depending on the nitriding heating temperature, it is preferably 0.2 to 0.9%, and the nitrogen concentration at a depth of 50 μm is 0.10% or more (depending on the nitriding heating temperature, desirably 0.15 to 0.7%) nitriding layer can be obtained. It is more desirable that the nitrogen concentration at a depth of 100 μm be 0.5% (or 0.2%) or less.
深さ10μmの窒素濃度が過剰になると、表面硬さ・靭性を確保し難くなる。高周波加熱に際して、オーステナイト中に固溶された窒素原子(N)が分子状窒素(N2)となって、粒界拡散或いは連結空孔を介して脱窒(逸脱)して、ボイドが多数形成されやすいためと推定される。 If the nitrogen concentration at a depth of 10 μm is excessive, it is difficult to ensure surface hardness and toughness. During high-frequency heating, nitrogen atoms (N) dissolved in austenite become molecular nitrogen (N 2 ), denitrifying (departing) through grain boundary diffusion or connected vacancies, and many voids are formed. It is estimated that it is easy to be done.
上記窒素濃度を確保し易い浸窒処理条件は、実質的にN2(中性ガス)とNH3(窒化剤)とのみからなり、窒化剤混合比率:20〜50vol%(望ましくは30〜45vol%)の組成のものを用いる。また、加熱条件は、通常、650〜850℃×35〜120minの範囲から選定するが、N固溶限の高いオーステナイト域、A1変態点:Fe−C状態図で727℃以上が望ましく、さらには、740〜840℃×60〜100minとすることが望ましい。 Nitrogen treatment conditions for ensuring the nitrogen concentration are substantially composed only of N 2 (neutral gas) and NH 3 (nitriding agent), and a nitriding agent mixing ratio: 20 to 50 vol% (desirably 30 to 45 vol). %) Composition. The heating conditions are usually selected from the range of 650 to 850 ° C. × 35 to 120 min, but the austenite region having a high N solid solubility limit, A 1 transformation point: 727 ° C. or higher is desirable in the Fe—C phase diagram, Is preferably 740-840 ° C. × 60-100 min.
窒化剤混合比率が高すぎたり、加熱条件の温度が低すぎたり時間が長すぎたりする場合は、窒素濃度が過剰になり易く、さらには、オーステナイト中に固溶(侵入)したN原子が会合してN分子(N2)となりオーステナイト粒界にボイドを形成して、残留オーステナイト(γ)を生成し易くなる(硬度低下をもたらす。)。 If the mixing ratio of the nitriding agent is too high, the temperature of the heating conditions is too low, or the time is too long, the nitrogen concentration tends to be excessive, and further, N atoms dissolved (invaded) in the austenite are associated. As a result, N molecules (N 2 ) are formed, and voids are formed at the austenite grain boundaries, so that retained austenite (γ) is easily generated (resulting in a decrease in hardness).
逆に、窒化剤混合比率が低すぎたり、加熱条件の温度が高すぎたりたり時間が短すぎたりする場合は、窒素濃度が過少となり、いずれも、所要の表面硬さを確保し難くなる。 On the contrary, when the mixing ratio of the nitriding agent is too low, the temperature of the heating condition is too high, or the time is too short, the nitrogen concentration becomes too low, and it is difficult to ensure the required surface hardness.
なお、窒化剤混合比率の低い方が、コスト的に有利であるとともに、安定して表面側における高硬度・高靭性を得やすいことを確認している。 It has been confirmed that a lower nitriding agent mixing ratio is advantageous in terms of cost and that it is easy to stably obtain high hardness and high toughness on the surface side.
また、この浸窒処理後、高周波加熱に先立ち、浸炭浸窒装置を用いて行う場合は、通常、焼入れ(クエンチ)処理が行われるが、歪みをかんがみると、必然的ではない。 In addition, after the nitriding treatment, prior to the high-frequency heating, when performing using a carburizing nitriding apparatus, a quenching treatment is usually performed, but it is not inevitable in view of distortion.
(3)高周波焼入れ工程:
浸窒処理工程後のワークを、所要部位(歯部)にのみ高周波加熱してオーステナイトを部分的に生じさせるオーステナイト化後、瞬時急冷してマルテンサイト化する工程である。
(3) Induction hardening process:
In this step, the workpiece after the nitriding treatment is heated at high frequency only at a required portion (tooth portion) to austenite to partially generate austenite, and then instantaneously cooled to martensite.
即ち、部分オーステナイト化できる温度であるFe−C状態図におけるA1線:727℃以上の温度に、望ましくは800〜950℃になるような範囲で適宜設定する。 That is, the A 1 line in the Fe—C phase diagram, which is the temperature at which partial austenitization is possible, is set appropriately at a temperature of 727 ° C. or higher, preferably in the range of 800 to 950 ° C.
具体的には、高周波加熱条件:出力20〜35KWで加熱保持時間3.5〜1.0sとするとともに、急冷条件:20〜40℃×1〜10sとする。 Specifically, high-frequency heating conditions: output 20 to 35 kW, heating and holding time 3.5 to 1.0 s, and rapid cooling conditions: 20 to 40 ° C. × 1 to 10 s.
高周波加熱時間が短いと、深部へのN拡散が小さくて表面側のN濃度の低下が抑制されて残留オーステナイト(retained austenite)(以下、「γR」)量が相対的に大となり易い。逆に、高周波焼入れ(加熱)時間が長いと、深部へのN拡散が大きくて表面側N濃度が低下して、表面側γR量が相対的に小となり易い。 When the high-frequency heating time is short, the N diffusion to the deep part is small, the decrease in the N concentration on the surface side is suppressed, and the amount of retained austenite (hereinafter “γ R ”) tends to be relatively large. On the other hand, when the induction hardening (heating) time is long, N diffusion to the deep part is large, the surface side N concentration is lowered, and the surface side γ R amount tends to be relatively small.
高周波焼入れ工程における急冷に際して、オーステナイト(γ)からマルテンサイトへの変態が生じるが、マルテンサイト変態は体積膨張を伴う。このため、γRの比率が大であるとマルテンサイト変態率が小となりマルテンサイト膨張に起因する圧縮残留応力が小さく、鋼材機械部品に高硬度・高靭性を得がたい。逆に、γRの比率が小であるとマルテンサイト変態率が大となりマルテンサイト膨張に起因する圧縮残留応力が大となることによる鋼材機械部品に高硬度・高靭性の向上が期待できる。 Upon rapid cooling in the induction hardening process, transformation from austenite (γ) to martensite occurs, and martensite transformation is accompanied by volume expansion. Therefore, gamma ratio martensitic transformation rate When it is large in R is smaller compressive residual stress due to the small next martensite expansion, difficult to obtain a high hardness and high toughness steel mechanical parts. Conversely, gamma ratio of R can be expected to improve the high hardness and high toughness in a certain the steel mechanical parts due to compressive residual stress becomes larger martensite transformation rate is due to the large next martensite expansion small.
こうして、表面硬さ(ビッカース硬さ:JIS Z 2244(荷重100g)、以下同じ。)650HV以上、望ましくは、750HV以上、よりさらには800HV以上を有する機械部品を容易に製造することができる。 Thus, a machine part having a surface hardness (Vickers hardness: JIS Z 2244 (load 100 g), the same shall apply hereinafter) of 650 HV or higher, desirably 750 HV or higher, and even 800 HV or higher can be easily manufactured.
なお、「SPCC」の化学成分は、C:0.12%以下、Mn:0.50%以下、P:0.040%以下、S:0.045%以下、である([JIS G 3141]から引用。)。 The chemical components of “SPCC” are C: 0.12% or less, Mn: 0.50% or less, P: 0.040% or less, S: 0.045% or less (quoted from [JIS G 3141]).
本発明の効果を確認するために行なった実施例について説明する。 Examples carried out to confirm the effects of the present invention will be described.
使用した試験片は、低炭素鋼板(SPCC)(厚み:2.8mm)をブランキング加工後、切削によりR付けをして、図3に示すような寸法仕様の板状歯車とした。 The test specimen used was a low-carbon steel plate (SPCC) (thickness: 2.8 mm) blanked and then rounded by cutting to form a plate-like gear with dimensional specifications as shown in FIG.
なお、各特性の試験方法は、下記の如く行なった。 In addition, the test method of each characteristic was performed as follows.
1)表面硬さ(HV):
マイクロビッカース硬度計を用いて荷重100gの条件で、JISZ2244に準じて行なった。
1) Surface hardness (HV):
The measurement was performed according to JISZ2244 under the condition of a load of 100 g using a micro Vickers hardness tester.
2)浸窒処理後の窒化深さ(μm)
光学顕微鏡で撮影した金属断面組織写真(400倍)で、フェライト相/マルテンサイト相が略等量に見える深さで判定した。
2) Nitriding depth after nitriding treatment (μm)
The metal cross-sectional structure photograph (400 times) taken with an optical microscope was used to determine the depth at which the ferrite phase / martensite phase appeared to be substantially equivalent.
3)高周波処理の有効深さ(μm)
ビッカース硬度計で、HV550を示す硬さまでの深さで判定した。
3) Effective depth of high-frequency treatment (μm)
Judgment was made with a Vickers hardness meter by a depth up to a hardness of HV550.
(1)浸窒処理工程:
浸窒処理は、手前側から順に、搬出入装置が連結されたパージ室を兼ねた冷却室、中間室、最後に、加熱室(浸窒室)が配され、真空気密構造で、手前側で搬出入するイン−アウト方式のダイレクト浸炭炉(株式会社日本テクノ製造)(図示せず。)を用いた。
(1) Nitrogen treatment process:
Nitrogen treatment is performed in order from the front side: a cooling chamber that also serves as a purge chamber connected to the loading / unloading device, an intermediate chamber, and finally a heating chamber (nitrogenation chamber). An in-out direct carburizing furnace (manufactured by Nippon Techno Co., Ltd.) (not shown) was used.
真空気密構造であることにより、浸窒処理を行う加熱室の雰囲気を、実質的にN2(中性ガス)とNH3(窒化剤)とのみからなるものにし易くなり、浸窒処理に際して、粒界における酸化物生成(硬さ・靭性低下の一因となる。)が抑制される。 Due to the vacuum-tight structure, the atmosphere of the heating chamber in which the nitriding treatment is performed is easily made substantially only of N 2 (neutral gas) and NH 3 (nitriding agent). Oxide formation at the grain boundaries (which contributes to a decrease in hardness and toughness) is suppressed.
さらに、真空パージにより短時間で確実にパージ室の酸素雰囲気を真空引きで酸素を排気する。即ち、パージ室にワークを搬入した状態で、それぞれ、隔壁に設けられたパージ室の入口・出口真空扉(第一・第二真空扉)及び加熱室断熱扉を閉じて、密閉隔離されたパージ室、中間室および浸窒室を真空排気した後、N2ガスで各室を復圧(大気圧)させる。そして、加熱室(浸窒室)は設定温度に昇温させておく。パージ室の入口・出口真空扉及び加熱室断熱扉を開けて、加熱室(浸窒室)にワークを搬入した後、加熱室断熱扉およびパージ室の第二真空扉を閉じて、加熱室(浸窒室)を密閉室として、N2とNH3を導入して、窒化剤混合比率を所定値とする。 Furthermore, oxygen is exhausted by evacuating the oxygen atmosphere in the purge chamber reliably in a short time by vacuum purge. In other words, with the work loaded in the purge chamber, the purge chamber is closed and closed by closing the inlet / outlet vacuum doors (first and second vacuum doors) and the heating chamber heat insulating doors of the purge chamber provided on the partition wall, respectively. After evacuating the chamber, the intermediate chamber, and the nitriding chamber, each chamber is decompressed (atmospheric pressure) with N 2 gas. The heating chamber (nitrogenation chamber) is heated to a set temperature. After opening the inlet / outlet vacuum door and the heating chamber insulation door of the purge chamber and carrying the workpiece into the heating chamber (nitrification chamber), the heating chamber insulation door and the second vacuum door of the purge chamber are closed, and the heating chamber ( Nitrating chamber) is used as a sealed chamber, N 2 and NH 3 are introduced, and the nitriding agent mixing ratio is set to a predetermined value.
表1に示す条件で浸窒処理を行った。実施例A・Dにおける浸窒室の加熱タイムチャートを図4に示す。 Nitrogen treatment was performed under the conditions shown in Table 1. A heating time chart of the nitriding chamber in Examples A and D is shown in FIG.
すなわち、N2が充満された浸窒室内の温度を700℃に保持した状態で、50〜80Paに真空引きしたあと、大気圧(101.3kPa)になるまでN2を導入して復圧させる。その際、図4に示す如く、温度が若干下がる。その後、試験片(ワーク)を浸窒室内に挿入し、設定温度(図例では800℃)になるまでになるまで昇温後、浸窒室内の温度分布を均一化させるため均熱時間(40分)を設け、その後、N2(中性ガス)とNH3(窒化剤)とを浸窒室内へ導入して、所定窒化剤混合比率とし、浸窒処理を行った。 That is, after evacuating to 50 to 80 Pa in a state where the temperature in the nitriding chamber filled with N 2 is maintained at 700 ° C., N 2 is introduced and returned to atmospheric pressure (101.3 kPa). . At that time, the temperature slightly decreases as shown in FIG. Thereafter, the test piece (workpiece) is inserted into the nitriding chamber, heated up to the set temperature (800 ° C. in the example), and then soaked for a uniform temperature distribution in the nitriding chamber (40 After that, N 2 (neutral gas) and NH 3 (nitriding agent) were introduced into the nitriding chamber to obtain a predetermined nitriding agent mixing ratio, and a nitriding treatment was performed.
そして、浸窒処理後ワーク(試験片)を、引張駆動にて、中間室を経て焼入れ室へ移動して、急冷(油焼入れ:85℃×10min)を行なって、浸炭浸窒炉から試験片を取り出した。 Then, after the nitriding treatment, the workpiece (test piece) is moved to the quenching chamber through the intermediate chamber by tensile drive, and is rapidly cooled (oil quenching: 85 ° C. × 10 min), and the test piece is removed from the carburizing and nitriding furnace. Was taken out.
こうして調製した各ワークについて、表面からの距離(深さ)−窒素濃度を市販のEMPA(Electron Probe Micro Analyzer)装置を用いて行なった。 About each workpiece | work prepared in this way, the distance (depth)-nitrogen concentration from the surface was performed using the commercially available EMPA (Electron Probe Micro Analyzer) apparatus.
そして、各実施例のワークにおける深さ10μm、50μm及び100μmにおける窒素濃度を表1に示す。 Table 1 shows the nitrogen concentrations at depths of 10 μm, 50 μm, and 100 μm in the workpieces of the examples.
いずれの実施例も本発明の範囲内の浸窒が行なわれていることが分かる。 It can be seen that the nitriding within the scope of the present invention is performed in any of the examples.
また、浸窒処理後の表面硬さ(HV)を測定するとともに、硬化深さ(μm)を測定して、纏めた結果を図5に示す。図5から、浸窒処理温度が高い程、窒化深さが増大する傾向にあるとともに、浸窒処理後の表面硬さは低下する傾向にあることが分かる。即ち、浸窒処理の温度が高くて時間が長いと表面側の窒素濃度が低くなる傾向にあることが分かる。 Moreover, while measuring the surface hardness (HV) after a nitriding process, the hardening depth (micrometer) was measured and the summarized result is shown in FIG. FIG. 5 shows that the nitriding depth tends to increase as the nitriding temperature increases, and the surface hardness after the nitriding treatment tends to decrease. That is, it can be seen that when the temperature of the nitriding treatment is high and the time is long, the nitrogen concentration on the surface side tends to be low.
(2)高周波焼入れ工程:
上記浸窒処理後の各試験片について、真空式発振機(350kHz、50kW)を用いて、下記二つの条件で高周波焼入れを歯部のみについて行った。
・34kW(8.5KV×4.0A)×1.6s
・21kW(7.0kV×3.0A)×3.0s
(2) Induction hardening process:
About each test piece after the said nitriding process, induction hardening was performed only on the tooth | gear part on the following two conditions using the vacuum oscillator (350 kHz, 50 kW).
・ 34kW (8.5KV × 4.0A) × 1.6s
・ 21kW (7.0kV × 3.0A) × 3.0s
前記方法により測定した表面硬さ(HV)および有効深さ(550HV)(μm)の結果を纏めたものを表1及び図6に示す。 Table 1 and FIG. 6 summarize the results of surface hardness (HV) and effective depth (550 HV) (μm) measured by the above method.
いずれの実施例も表面硬さにおいて750HV以上が得られ、有効深さも50μm以上得られることが確認できた。 In any of the examples, a surface hardness of 750 HV or higher was obtained, and an effective depth of 50 μm or higher was confirmed.
特に、表面硬さ(HV)800HV以上が得られるとともに、有効深さ(550HV)(μm)において、目標値である100μm以上が得られた。これは、従来の高周波焼入れでは得難かった表面硬さ特性である。 In particular, a surface hardness (HV) of 800 HV or higher was obtained, and a target value of 100 μm or higher was obtained at an effective depth (550 HV) (μm). This is a surface hardness characteristic that was difficult to obtain by conventional induction hardening.
Claims (5)
前記ワークに対して、密閉室内で、実質的に中性ガスと窒化剤とのみからなる窒化ガスを用いて、深さ10μmの窒素濃度:1.5質量%以下で、且つ、深さ50μmの窒素濃度:0.10質量%以上の浸窒層を得る浸窒処理工程、及び、
該浸窒処理工程後の前記ワークを、所要部位にのみ高周波加熱してオーステナイト化後、時間をおかず急冷してマルテンサイト化する高周波焼入れ工程、
の各工程を含むことを特徴とする鋼材製機械部品の製造方法。 A machine part manufacturing method for manufacturing a steel product (work) prepared from low carbon steel (carbon content less than 0.3% by mass) into a predetermined part shape by plastic working and / or machining. ,
Using a nitriding gas consisting essentially of a neutral gas and a nitriding agent in a sealed chamber, the nitrogen concentration at a depth of 10 μm is 1.5 mass% or less and the depth is 50 μm with respect to the workpiece. Nitrogen concentration: a nitriding treatment step for obtaining a nitriding layer of 0.10% by mass or more, and
The work after the nitriding treatment step is induction-heated by induction heating only to a required portion to austenite, and then rapidly cooling to martensite without time,
The manufacturing method of the steel-made machine parts characterized by including each process of these.
前記高周波焼入れ工程における、高周波条件:出力20〜35kWで加熱保持時間3.5〜1.0sとするとともに、急冷条件:20〜40℃×1〜10sとして、表面硬度(ビッカース硬さ:JIS Z 2244(荷重100g)、以下同じ。)650HV以上の機械部品を得る、
ことを特徴とする請求項1又は2記載の鋼材製機械部品の製造方法。 As the nitriding gas in the nitriding treatment step, a composition having substantially a composition of N 2 (neutral gas) and NH 3 (nitriding agent) and a nitriding agent mixing ratio of 20 to 50 vol% is used. 740-850 ° C. × 35-120 min,
In the induction hardening step, high-frequency conditions: output 20-35 kW, heating and holding time 3.5-1.0 s, rapid cooling conditions: 20-40 ° C. × 1-10 s, surface hardness (Vickers hardness: JIS Z 2244 (load 100 g), the same shall apply hereinafter.) Obtain machine parts of 650 HV or higher.
The method for manufacturing a steel machine part according to claim 1 or 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010195998A JP2012052189A (en) | 2010-09-01 | 2010-09-01 | Manufacturing method of machine part formed of steel material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010195998A JP2012052189A (en) | 2010-09-01 | 2010-09-01 | Manufacturing method of machine part formed of steel material |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012052189A true JP2012052189A (en) | 2012-03-15 |
Family
ID=45905833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010195998A Withdrawn JP2012052189A (en) | 2010-09-01 | 2010-09-01 | Manufacturing method of machine part formed of steel material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012052189A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100707370B1 (en) * | 2000-12-30 | 2007-04-13 | 두산인프라코어 주식회사 | A Lubrication Method by Operation |
CN104712731A (en) * | 2013-12-11 | 2015-06-17 | 住友重机械工业株式会社 | Eccentric oscillating type speed reduction device and method of manufacturing eccentric body shaft gear of eccentric oscillating type speed reduction device |
JP2017171951A (en) * | 2016-03-18 | 2017-09-28 | 新日鐵住金株式会社 | Steel component and production method thereof |
CN114277225A (en) * | 2021-12-31 | 2022-04-05 | 杭州科锐特医疗设备有限公司 | High-temperature heat treatment method for surgical instrument |
-
2010
- 2010-09-01 JP JP2010195998A patent/JP2012052189A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100707370B1 (en) * | 2000-12-30 | 2007-04-13 | 두산인프라코어 주식회사 | A Lubrication Method by Operation |
CN104712731A (en) * | 2013-12-11 | 2015-06-17 | 住友重机械工业株式会社 | Eccentric oscillating type speed reduction device and method of manufacturing eccentric body shaft gear of eccentric oscillating type speed reduction device |
JP2017171951A (en) * | 2016-03-18 | 2017-09-28 | 新日鐵住金株式会社 | Steel component and production method thereof |
CN114277225A (en) * | 2021-12-31 | 2022-04-05 | 杭州科锐特医疗设备有限公司 | High-temperature heat treatment method for surgical instrument |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2505684B1 (en) | Gear and method for producing same | |
US8733199B2 (en) | Gears and its process of manufacture | |
JP6287390B2 (en) | Gas soft nitriding method of low alloy steel | |
JP2012052189A (en) | Manufacturing method of machine part formed of steel material | |
CN107849679B (en) | Nitrided steel member and method for producing same | |
KR20150126661A (en) | Steel sheet for nitriding and production method therefor | |
JP4624393B2 (en) | Stainless steel spring | |
JP2010222696A (en) | Quenched and tempered steel strip, and method for producing the same | |
JP2015218359A (en) | Surface-hardened component, steel for surface-hardened component, and method for producing the surface-hardened component | |
JP4050512B2 (en) | Manufacturing method of carburizing and quenching member and carburizing and quenching member | |
JP2005200674A (en) | Stainless steel spring manufacturing method, and stainless steel spring | |
JP5405325B2 (en) | Differential gear and manufacturing method thereof | |
JP6656139B2 (en) | Nitride plate component and method of manufacturing the same | |
Dahlström et al. | High performance PM components heat treated by low pressure carburizing and gas quenching | |
RU2291227C1 (en) | Construction-steel parts surface hardening method | |
JP3745972B2 (en) | Steel material manufacturing method | |
EP1291445A1 (en) | Steel material production method | |
JP5821512B2 (en) | NITRIDED COMPONENT AND MANUFACTURING METHOD THEREOF | |
WO2021029014A1 (en) | Electromagnetic steel sheet | |
JP6844378B2 (en) | Directional electrical steel sheet | |
JP3745971B2 (en) | Steel material | |
JP2016188422A (en) | Carburized component | |
JP7178832B2 (en) | Method for manufacturing surface hardening material | |
EP3978636A1 (en) | Method for manufacturing motor core | |
KR20160075220A (en) | Nitrogen solution process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20131105 |