JP2015113486A - Continuously cast b-containing steel cast metal - Google Patents

Continuously cast b-containing steel cast metal Download PDF

Info

Publication number
JP2015113486A
JP2015113486A JP2013256142A JP2013256142A JP2015113486A JP 2015113486 A JP2015113486 A JP 2015113486A JP 2013256142 A JP2013256142 A JP 2013256142A JP 2013256142 A JP2013256142 A JP 2013256142A JP 2015113486 A JP2015113486 A JP 2015113486A
Authority
JP
Japan
Prior art keywords
steel
content
slab
rem
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013256142A
Other languages
Japanese (ja)
Other versions
JP6534240B2 (en
Inventor
謙治 田口
Kenji Taguchi
謙治 田口
加藤 徹
Toru Kato
徹 加藤
山中 章裕
Akihiro Yamanaka
章裕 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2013256142A priority Critical patent/JP6534240B2/en
Publication of JP2015113486A publication Critical patent/JP2015113486A/en
Application granted granted Critical
Publication of JP6534240B2 publication Critical patent/JP6534240B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a continuously cast B-containing steel cast metal in which the occurrence of surface cracks is suppressed.SOLUTION: The continuously cast B-containing steel cast metal contains C: 0.050-0.180%, Si: 0.10-0.40%, Mn: 0.5-2.0%, P: 0.020% or less, S: 0.0030% or less, Ti: 0.005-0.030%, Sol. Al: 0.005-0.060%, B: 0.0005-0.0050%, N: 0.0015-0.0070%, and rare earth metals: 0.001-0.050%. The slab further contains at least one of Cu, Cr, Ni, Mo, V, Nb, and Ca in amounts of Cu: 0.1-0.5%, Cr: 0.2-2.0%, Ni: 0.3-2.5%, Mo: 0.1-0.8%, V: 0.01-0.10%, Nb: 0.005-0.050%, and Ca: 0.0005-0.0060%, and the balance comprising Fe and impurities, and contents of Ti, rare earth metals, B, and N satisfy a relationship: ([%Ti]+[%REM])/([%B]+[%N])≥2.5.

Description

本発明は、垂直曲げ型または湾曲型の連続鋳造機を用いて製造される、B(ホウ素)含有鋼の連続鋳造鋳片に関する。   The present invention relates to a continuous cast slab of B (boron) -containing steel produced using a vertical bending type or curved type continuous casting machine.

垂直曲げ型または湾曲型の連続鋳造機を用いて鋼の鋳片を製造する際、鋳片には、曲げおよびその後の曲げの矯正に伴って、引っ張りの歪みが発生する。この歪みによって、鋳片の表面には、旧オーステナイト粒界に沿って割れが発生することがある。このような割れが特に発生しやすい鋼種の一つとして、Bを含有する鋼が挙げられる。   When steel slabs are produced using a vertical bend type or curved type continuous caster, the slabs are subjected to tensile strain as the bends and subsequent bends are corrected. Due to this distortion, cracks may occur on the surface of the slab along the prior austenite grain boundaries. One of the steel types in which such cracks are particularly likely to occur is steel containing B.

鋼中には不可避的にNが存在し、Bは、Nとの親和力が非常に大きいため、熱力学的にBNが析出しやすい。また、BやNは、鋼中において拡散しやすい上に、粒界に偏析しやすい。そのため、粒界上にBNが析出しやすい。B含有鋼は、この析出したBNを起点とした脆化が生じやすいため、他の鋼種と比較して高温延性に劣る。   N is inevitably present in the steel, and since B has a very high affinity with N, BN tends to precipitate thermodynamically. Further, B and N are easily diffused in the steel and are easily segregated at the grain boundaries. Therefore, BN tends to precipitate on the grain boundary. Since B-containing steel tends to be embrittled starting from this precipitated BN, it is inferior in high temperature ductility compared to other steel types.

一方、鋼中のBは、鋼の変態点を低下させる特性を有し、粒界の焼入れ性を高めるのに有効な元素である。そのため、B含有鋼は、鋼材の組織を制御して鋼材の強度を高めることが可能であり、ますます需要が高まりつつある高強度厚鋼板に用いられることが多い。また、Bは、鋼材の熱影響部の特性改善に非常に有用な元素である。   On the other hand, B in steel has the characteristic of lowering the transformation point of steel and is an element effective for enhancing the hardenability of grain boundaries. Therefore, the B-containing steel can increase the strength of the steel material by controlling the structure of the steel material, and is often used for a high-strength thick steel plate whose demand is increasing. B is an element that is very useful for improving the characteristics of the heat-affected zone of steel.

このように、高強度厚鋼板を製造する上で、Bは必須添加元素の一つとされる。   Thus, when manufacturing a high strength thick steel plate, B is one of the essential additive elements.

しかし、B含有鋼は、上述のように鋳片の表面割れや、この表面割れに伴う鋼板の表面疵が発生しやすいため、表面手入れの頻度が高くなりやすく、歩留まりのロスが増大しやすい。また、これらに起因して、生産性の低下や生産コストの増加が生じる。   However, since the B-containing steel is liable to cause surface cracks in the slab and surface flaws of the steel sheet due to the surface cracks as described above, the frequency of surface care tends to increase, and the yield loss tends to increase. Also, due to these, productivity decreases and production costs increase.

そのため、厚鋼板用として、強度や熱影響部について優れた特性を有するB含有鋼の連続鋳造に際し、鋳片の表面割れの防止が図られている。   Therefore, in the case of continuous casting of B-containing steel having excellent properties in terms of strength and heat-affected zone for thick steel plates, prevention of surface cracks in the slab is attempted.

例えば、特許文献1には、B含有の連続鋳造鋳片の割れ抑制法として、鋼中でBおよびNの含有率を、Ti、ZrおよびHfの含有率に対して所定の関係を満たすように制御する方法が提案されている。   For example, in Patent Document 1, as a method for suppressing cracking in a continuous casting slab containing B, the content ratios of B and N in steel are set so as to satisfy a predetermined relationship with respect to the content ratios of Ti, Zr, and Hf. A method of controlling has been proposed.

特許文献2には、BおよびNを含有する鋼を垂直曲げ型連続鋳造機により連続鋳造する際の鋳片表面割れを防止する方法として、連続鋳造機内で鋳片が曲げ応力を受ける領域および矯正応力を受ける領域での鋳片の表面温度を所定の温度範囲とする方法が提案されている。   In Patent Document 2, as a method for preventing slab surface cracking when steel containing B and N is continuously cast by a vertical bending type continuous casting machine, an area where the slab is subjected to bending stress and correction in the continuous casting machine A method has been proposed in which the surface temperature of a slab in a region subjected to stress is set to a predetermined temperature range.

特許文献3には、高強度厚鋼板用のB含有鋼の連続鋳造鋳片について、連続鋳造時や熱間圧延時に表面割れや疵の発生を低減する方法として、BNの平衡析出量を所定の値未満とする方法が提案されている。また、同文献には、鋼中のB、NおよびTiの含有率の範囲が規定されている。   In Patent Document 3, as a method for reducing the occurrence of surface cracks and wrinkles during continuous casting or hot rolling for a continuous cast slab of B-containing steel for a high-strength thick steel plate, the equilibrium precipitation amount of BN is predetermined. A method of making it less than the value is proposed. In the same document, the range of the content ratios of B, N and Ti in the steel is defined.

特開昭56−80354号公報JP-A-56-80354 特許第4561755号公報Japanese Patent No. 4561755 特開2010−189712号公報JP 2010-189712 A

B含有鋼の連続鋳造鋳片の表面割れを抑制する方法は、特許文献1〜3に提案されている。しかし、これらの文献に記載の方法をもってしても、その表面割れを抑制することは未だ不十分である。   Patent Documents 1 to 3 propose methods for suppressing surface cracking of a continuous cast slab of B-containing steel. However, even with the methods described in these documents, it is still insufficient to suppress the surface cracking.

本発明は、このような実状に鑑みてなされたものであり、垂直曲げ型または湾曲型の連続鋳造機を用いて製造した際に、表面割れの発生が抑制された、B含有鋼の連続鋳造鋳片を提供することを目的とする。   The present invention has been made in view of such a situation, and continuous casting of B-containing steel in which the occurrence of surface cracks is suppressed when manufactured using a vertical bending type or curved type continuous casting machine. The object is to provide a slab.

上述のように、B含有鋼の鋳片を垂直曲げ型または湾曲型の連続鋳造機を用いて製造する際、鋳片には、曲げおよびその後の曲げが矯正されるに伴って、引っ張り歪みが発生し、この歪みに起因して、粒界割れ等の鋳片の表面割れが発生することがある。   As described above, when a slab of B-containing steel is produced using a vertical or curved continuous casting machine, the slab is subjected to tensile strain as the bending and subsequent bending are corrected. Due to this distortion, surface cracks of the slab such as grain boundary cracks may occur.

この表面割れは、特に、引張歪みが作用する際の鋳片表面温度が、第III領域の脆化温度域(600〜900℃)にある場合に発生しやすいことが一般に知られている。この温度域は鋼がオーステナイトからフェライトに変態する温度域に相当し、オーステナイト粒界に沿ってフェライトがフィルム状に生成するため、鋼の脆化が生じる。   It is generally known that this surface crack is likely to occur particularly when the slab surface temperature when tensile strain acts is in the embrittlement temperature region (600 to 900 ° C.) of the third region. This temperature range corresponds to a temperature range in which the steel transforms from austenite to ferrite, and since ferrite forms in a film shape along the austenite grain boundary, embrittlement of the steel occurs.

また、引張歪みが作用する際の鋳片表面温度が、フェライトに変態する温度まで低下していない場合であっても、鋼の成分組成がAlNやNbC等の窒化物や炭化物が生成、析出しやすい成分系であるときには、これらの析出物に起因した脆化も生じやすい。   Moreover, even when the surface temperature of the slab when tensile strain acts is not lowered to a temperature at which it transforms into ferrite, nitrides and carbides such as AlN and NbC are formed and precipitated in the steel composition. When it is an easy component system, embrittlement due to these precipitates tends to occur.

B含有鋼の場合、鋼中のBが粒界に偏析しやすいため、オーステナイト粒界に沿って脆化の起点となるBNが生成しやすい。さらに、BNは、第III領域よりも高温の温度域から生成し始めるため、鋳片の曲げまたは曲げの矯正を第III領域よりも高温域で行った場合においても、鋳片に表面割れが発生しやすい。以上のことから、B含有鋼は、元来、難鋳造性鋼種であることが知られている。   In the case of B-containing steel, B in the steel is likely to segregate at the grain boundaries, so that BN that becomes the starting point of embrittlement is easily generated along the austenite grain boundaries. Furthermore, since BN begins to be generated from a temperature range higher than that of the region III, surface cracking occurs in the slab even when bending or correcting the slab is performed in a region higher than the region III. It's easy to do. From the above, it is known that B-containing steel is originally a hardly castable steel type.

本発明者らは、B含有鋼の連続鋳造鋳片に生じる表面割れの発生が、オーステナイト粒界に析出するBNの影響を大きく受けることから、この表面割れの発生を抑制する方法として、脆化の起点となる粒界上におけるBNの析出を抑制することに着目し、後述する予備実験等を行った。   Since the occurrence of surface cracks occurring in the continuous cast slab of B-containing steel is greatly affected by BN precipitated at the austenite grain boundaries, the present inventors have adopted embrittlement as a method for suppressing the occurrence of surface cracks. Focusing on the suppression of the precipitation of BN on the grain boundary that is the starting point of the above, preliminary experiments and the like to be described later were conducted.

その結果、鋼の成分組成を所定の範囲に制御すれば、熱力学的にBNが鋼中に析出する条件であっても、脆化の起点となる粒界上におけるBNの析出を抑制すること、および鋳片の表面割れの発生を抑制することが可能であることを知見した。   As a result, if the composition of the steel is controlled within a predetermined range, the precipitation of BN on the grain boundary where embrittlement starts will be suppressed even if BN is thermodynamically precipitated in the steel. And the occurrence of surface cracks in the slab can be suppressed.

本発明は、この知見に基づいてなされたものであり、その要旨は、下記のB含有鋼の連続鋳造鋳片にある。   This invention is made | formed based on this knowledge, The summary exists in the continuous cast slab of the following B containing steel.

質量%で、C:0.050〜0.180%、Si:0.10〜0.40%、Mn:0.5〜2.0%、P:0.020%以下、S:0.0030%以下、Ti:0.005〜0.030%、Sol.Al:0.005〜0.060%、B:0.0005〜0.0050%、N:0.0015〜0.0070%、および、希土類元素:0.001〜0.050%を含有し、さらにCu、Cr、Ni、Mo、V、NbおよびCaのうち少なくとも1種以上をCu:0.1〜0.5%、Cr:0.2〜2.0%、Ni:0.3〜2.5%、Mo:0.1〜0.8%、V:0.01〜0.10%、Nb:0.005〜0.050%およびCa:0.0005〜0.0060%で含有し、残部がFeおよび不純物からなり、鋼中のTi、希土類元素、BおよびNの含有率が下記(a)式の関係を満足することを特徴とするB含有鋼の連続鋳造鋳片。
([%Ti]+[%REM])/([%B]+[%N])≧2.5 …(a)
ここで、[%Ti]、[%REM]、[%B]および[%N]は、それぞれ鋼中のTi、希土類元素、BおよびNの含有率(質量%)を意味する。
In mass%, C: 0.050 to 0.180%, Si: 0.10 to 0.40%, Mn: 0.5 to 2.0%, P: 0.020% or less, S: 0.0030 % Or less, Ti: 0.005 to 0.030%, Sol. Al: 0.005-0.060%, B: 0.0005-0.0050%, N: 0.0015-0.0070%, and rare earth elements: 0.001-0.050%, Further, at least one of Cu, Cr, Ni, Mo, V, Nb and Ca is Cu: 0.1 to 0.5%, Cr: 0.2 to 2.0%, Ni: 0.3 to 2 0.5%, Mo: 0.1-0.8%, V: 0.01-0.10%, Nb: 0.005-0.050% and Ca: 0.0005-0.0060% A continuous cast slab of B-containing steel, wherein the balance is made of Fe and impurities, and the contents of Ti, rare earth elements, B and N in the steel satisfy the relationship of the following formula (a).
([% Ti] + [% REM]) / ([% B] + [% N]) ≧ 2.5 (a)
Here, [% Ti], [% REM], [% B], and [% N] mean the contents (mass%) of Ti, rare earth elements, B, and N in the steel, respectively.

本発明のB含有鋼の連続鋳造鋳片は、鋼中のSol.Alおよび希土類元素の含有率が下記(b)式の関係を満足し、鋼中に存在する酸化物系介在物中の希土類元素の含有率が45質量%以上であるものとすることが好ましい。
[%Sol.Al]/[%REM]≦7 …(b)
ここで、[%Sol.Al]および[%REM]は、それぞれ鋼中のSol.Alおよび希土類元素の含有率(質量%)である。
The continuous casting slab of the B-containing steel of the present invention is obtained from Sol. It is preferable that the content of Al and the rare earth element satisfies the relationship of the following formula (b), and the content of the rare earth element in the oxide inclusions present in the steel is 45% by mass or more.
[% Sol. Al] / [% REM] ≦ 7 (b)
Here, [% Sol. [Al] and [% REM] are obtained from Sol. It is the content rate (mass%) of Al and rare earth elements.

以下の説明では、鋼の成分組成についての「質量%」を、単に「%」とも表記する。   In the following description, “mass%” for the component composition of steel is also simply expressed as “%”.

本発明のB含有鋼の連続鋳造鋳片は、垂直曲げ型または湾曲型の連続鋳造機を用いて製造する際、表面割れの発生が抑制される。さらに、高い高温延性を有しており、厚鋼板用素材として優れた強度および表面性状を有する。また、表面割れの発生が抑制されているため、手入れが不要または軽度の手入れで表面割れを除去できることから、高い生産効率で生産することが可能である。本発明のB含有鋼の連続鋳造鋳片を素材とし、これを熱間圧延して得られた厚鋼板は、優れた強度および表面性状を有する。   When the continuous cast slab of B-containing steel of the present invention is produced using a vertical bending type or curved type continuous casting machine, the occurrence of surface cracks is suppressed. Furthermore, it has high hot ductility and has excellent strength and surface properties as a material for thick steel plates. In addition, since the occurrence of surface cracks is suppressed, the surface cracks can be removed by unnecessary or light care, and therefore, it is possible to produce with high production efficiency. The steel plate obtained by using the continuous cast slab of the B-containing steel of the present invention as a raw material and hot rolling it has excellent strength and surface properties.

鋼Bの粒内で観察されたBNの模式図である。It is a schematic diagram of BN observed in the grain of steel B. 鋳片の([%Ti]+[%REM])と([%B]+[%N])と疵指数との関係を示す図である。It is a figure which shows the relationship between the ([% Ti] + [% REM]) and ([% B] + [% N]) of a slab, and a hull index.

以下では、まず本発明のB含有鋼の連続鋳造鋳片を完成させるために行った検討の内容を説明し、鋼の成分組成を上述の通り規定した理由について説明する。   Below, the content of the examination performed in order to complete the continuous casting slab of the B containing steel of this invention is demonstrated first, and the reason which prescribed | regulated the component composition of steel as mentioned above is demonstrated.

1.本発明を完成させるための検討内容
1−1.第1の予備実験
第1の予備実験では、溶融後、凝固させたB含有鋼中に存在するBNの形態について検討した。
1. Contents of study for completing the present invention 1-1. First Preliminary Experiment In the first preliminary experiment, the form of BN present in the B-containing steel solidified after melting was examined.

1−1−1.実験方法
試料として、表1に示す成分組成を有するB含有鋼を用いた。
1-1-1. Experimental Method B-containing steel having the component composition shown in Table 1 was used as a sample.

Figure 2015113486
Figure 2015113486

鋼Aと鋼Bの相違点は、鋼Aは希土類元素であるNdを含有しないのに対し、鋼BはNdを含有する点にある。鋼Aおよび鋼Bそれぞれを80g、坩堝内で、液相線温度より30℃高い温度まで昇温し、溶融させた。坩堝は、内径20mm、深さ50mmのMgO製とした。溶融させた試料は、5℃/minの冷却速度で冷却、凝固させ、950℃で2min保持した後、急冷した。   The difference between steel A and steel B is that steel A does not contain Nd, which is a rare earth element, whereas steel B contains Nd. 80 g of each of Steel A and Steel B was heated to 30 ° C. higher than the liquidus temperature and melted in a crucible. The crucible was made of MgO having an inner diameter of 20 mm and a depth of 50 mm. The melted sample was cooled and solidified at a cooling rate of 5 ° C./min, held at 950 ° C. for 2 min, and then rapidly cooled.

急冷により得られた円柱形の試料を、縦方向に切断した。試料の縦断面をナイタール液で腐食させ、オーステナイト粒界を顕出させた。オーステナイト粒界が顕出した面を走査型電子顕微鏡で観察し、BNの存在の有無、および存在していたBNの形態を調査した。   A cylindrical sample obtained by quenching was cut in the longitudinal direction. The longitudinal section of the sample was corroded with a nital solution to reveal austenite grain boundaries. The surface on which the austenite grain boundary appeared was observed with a scanning electron microscope, and the presence or absence of BN and the form of BN that existed were investigated.

1−1−2.実験結果
電子顕微鏡による観察の結果、オーステナイト粒径は、鋼A、鋼Bともに0.5〜2.0mm程度であり、双方に顕著な差は認められなかった。しかし、BNの析出形態は、鋼Aと鋼Bとで大きく異なっていた。
1-1-2. Experimental Results As a result of observation with an electron microscope, the austenite grain size was about 0.5 to 2.0 mm for both Steel A and Steel B, and no significant difference was observed between the two. However, the precipitation form of BN was greatly different between Steel A and Steel B.

鋼Aでは、数百nmの大きさのBNが、オーステナイト粒界上で列状に連なって析出していた。一方鋼Bでは、オーステナイト粒界上では列状に連なって析出したBNがほとんど認められず、BNは主に粒内で析出していた。   In the steel A, BN having a size of several hundred nm was precipitated in a row on the austenite grain boundary. On the other hand, in the steel B, BN precipitated in a row on the austenite grain boundary was hardly observed, and BN was mainly precipitated in the grains.

図1は、鋼Bの粒内で観察されたBNの模式図である。鋼Bで観察されたBNは、同図に示すように、酸化物や酸硫化物(以下「酸化物系介在物」という。)と一体となって析出しており、その酸化物系介在物はNd含有率が45質量%以上であった。具体的には、その酸化物系介在物は、87質量%のNd23と13質量%のAl23からなり、Nd含有率が74.6質量%であった。
1−2.第2の予備実験
第2の予備実験では、B含有鋼の高温延性について検討した。
FIG. 1 is a schematic view of BN observed in the grain of steel B. FIG. As shown in the figure, BN observed in the steel B is precipitated together with oxides and oxysulfides (hereinafter referred to as “oxide inclusions”), and the oxide inclusions. The Nd content was 45% by mass or more. Specifically, the oxide inclusions is made 87 mass% of Nd 2 O 3 and 13 wt% of Al 2 O 3, Nd content was 74.6 wt%.
1-2. Second Preliminary Experiment In the second preliminary experiment, high temperature ductility of B-containing steel was examined.

1−2−1.実験方法
試料として、前記表1に示す鋼Aおよび鋼Bの成分組成を有するB含有鋼の丸棒を使用した。丸棒は、直径10mm、長さ190mmの鍛伸材とし、鋳造したままの組織を有しないものとした。この丸棒を、形状を維持したまま、長さ方向の中央の長さ約30mmの部分を溶融させた。その後、溶融状態から1200℃までは、10℃/sの冷却速度で冷却、凝固させ、1200℃以下の温度域では冷却速度を0.4℃/sとして連続的に冷却した。
1-2-1. Experimental Method As a sample, a B-containing steel round bar having the composition of steel A and steel B shown in Table 1 was used. The round bar was a forged material having a diameter of 10 mm and a length of 190 mm, and had no as-cast structure. While maintaining the shape of this round bar, a portion having a length of about 30 mm at the center in the length direction was melted. Thereafter, from the molten state to 1200 ° C., it was cooled and solidified at a cooling rate of 10 ° C./s, and continuously cooled at a cooling rate of 0.4 ° C./s in a temperature range of 1200 ° C. or lower.

試料の冷却過程において引張試験を行い、試料を破断させた。その際、引張試験は、試料の中央部分の温度を600〜1000℃の範囲で種々変更した。引張試験における歪み速度は、3×10-4-1とした。この歪み速度は、垂直曲げ型または湾曲型の連続鋳造機内における鋳片の曲げおよび曲げの矯正時に、鋳片に作用する歪み速度と桁数が概ね同じである。 A tensile test was performed in the cooling process of the sample to break the sample. In that case, the tensile test changed variously the temperature of the center part of a sample in the range of 600-1000 degreeC. The strain rate in the tensile test was 3 × 10 −4 s −1 . This strain rate is approximately the same as the strain rate acting on the slab and the number of digits when the slab is bent and straightened in a vertical bend type or curved type continuous casting machine.

1−2−2.評価方法
評価はB含有鋼の高温延性で行った。高温延性は下記(1)式で定義される、引張試験による破断前後における試料の断面積減少率とした。
RA=(A0−Af)/A0×100 …(1)
ここで、RA:断面積減少率(%)、A0:引張試験前の試料の横断面積(m2)、Af:試料の破断部分の横断面積(m2)である。
1-2-2. Evaluation method Evaluation was performed on the high temperature ductility of B-containing steel. The high temperature ductility was defined as the reduction rate of the cross-sectional area of the sample before and after breakage by the tensile test defined by the following formula (1).
RA = (A 0 −A f ) / A 0 × 100 (1)
Here, RA is the cross-sectional area reduction rate (%), A 0 is the cross-sectional area (m 2 ) of the sample before the tensile test, and A f is the cross-sectional area (m 2 ) of the fracture portion of the sample.

垂直曲げ型または湾曲型の連続鋳造機内で鋳片の表面が受ける引張歪み量と鋳片の表面割れの発生との関係から、上記断面積減少率が60%以上の鋼では、連続鋳造時に鋳片の表面割れが発生しないことがわかっている。   Due to the relationship between the amount of tensile strain applied to the surface of the slab and the occurrence of surface cracks in the slab in a vertical bending type or curved type continuous casting machine, the above-mentioned steel with a cross-sectional area reduction rate of 60% or more is cast during continuous casting. It has been found that the surface cracks of the pieces do not occur.

また、高温延性の評価と併せて、破断後の試料の破断面観察および組織観察を、走査型電子顕微鏡を用いて行った。組織観察は、破断後の試料を引張方向に平行な方向に切断し、その切断面をナイタール液で腐食させて行った。   In addition to the evaluation of the high temperature ductility, the fracture surface observation and the structure observation of the sample after the fracture were performed using a scanning electron microscope. Microscopic observation was performed by cutting the fractured sample in a direction parallel to the tensile direction and corroding the cut surface with a nital solution.

1−2−3.鋼Aの評価
鋼Aでは、引張試験を行ったときの試料温度が700〜950℃の範囲で高温延性の低下が確認された。具体的には、断面積減少率が20〜55%であり、連続鋳造時には鋳片の表面割れが発生するおそれのある値であった。
1-2-3. Evaluation of Steel A In Steel A, a decrease in hot ductility was confirmed when the sample temperature was 700 to 950 ° C. when the tensile test was performed. Specifically, the cross-sectional area reduction rate was 20 to 55%, which was a value that could cause surface cracks in the slab during continuous casting.

破断後の試料の破断面を観察したところ、破断面の形態は典型的なオーステナイト粒界割れであった。   When the fracture surface of the sample after fracture was observed, the shape of the fracture surface was a typical austenite grain boundary crack.

900℃で引張試験を行った破断後の試料の組織観察を行ったところ、オーステナイト粒界に沿って、数百nmのサイズのBNの析出が確認された。さらに、オーステナイト粒界のBNを起点としたボイド(鋼の割れの起点となる空隙)も散見された。このボイドは、引張の歪みの作用によって生じたと推測される。   When the structure of the sample after the fracture was subjected to a tensile test at 900 ° C., precipitation of BN having a size of several hundred nm was confirmed along the austenite grain boundary. In addition, voids (voids starting from cracks in steel) starting from BN at the austenite grain boundaries were also found. This void is presumed to be caused by the effect of tensile strain.

1−2−4.鋼Bの評価
鋼Bでは、引張試験を行ったときの試料温度が600〜1000℃の範囲で断面積減少率が60%以上であり、鋼Aよりも高い高温延性を有していた。また、断面減少率は、連続鋳造時に鋳片の表面割れが発生しない値であった。
1-2-4. Evaluation of Steel B Steel B had a high-temperature ductility higher than that of Steel A, with a sample area of 600 to 1000 ° C. when the tensile test was performed and a cross-sectional area reduction rate of 60% or more. Moreover, the cross-sectional reduction rate was a value at which surface cracks of the slab did not occur during continuous casting.

破断後の試料の破断面を観察したところ、破断面の形態は、粒内延性の様相を呈していた。   When the fracture surface of the sample after fracture was observed, the fracture surface was in the form of intragranular ductility.

900℃で引張試験を行った破断後の試料の組織観察を行ったところ、BNはオーステナイト粒界上ではほとんど析出しておらず、主に粒内で析出していた。また、析出していたBNは、希土類元素であるNdを含有する酸化物系介在物と一体となって析出していた。この酸化物系介在物はNd含有率が45質量%以上であった。   When the structure of the sample after the fracture was subjected to a tensile test at 900 ° C., BN was hardly precipitated on the austenite grain boundaries, but mainly precipitated in the grains. Further, the precipitated BN was deposited integrally with oxide inclusions containing Nd, which is a rare earth element. The oxide inclusions had an Nd content of 45% by mass or more.

1−3.検討および考察
上記第1および第2の予備実験の結果に加え、さらに行った検討の結果をもとに、連続鋳造中のB含有鋼の鋳片における表面割れの発生を抑制する方法について考察を行った。
1-3. Examination and consideration In addition to the results of the first and second preliminary experiments described above, based on the results of further examination, a method for suppressing the occurrence of surface cracks in the slab of B-containing steel during continuous casting will be discussed. went.

その結果、オーステナイト粒界で析出したBNが鋼の脆化要因であること、および鋳片の表面割れの発生の抑制には、連続鋳造時におけるBNの析出形態を制御することが重要であることが確認された。   As a result, BN precipitated at the austenite grain boundaries is a cause of embrittlement of steel, and it is important to control the precipitation form of BN during continuous casting in order to suppress the occurrence of surface cracks in the slab. Was confirmed.

また、鋼の成分組成が上記(a)式の関係を満足する関係にあれば、BNが、鋼中に均一に分散している希土類元素を含有する酸化物系介在物と複合して粒内で析出し、オーステナイト粒界におけるBNの析出を抑制できることがわかった。   In addition, if the steel component composition satisfies the relationship of the above formula (a), BN is combined with oxide inclusions containing rare earth elements uniformly dispersed in the steel to form intragranular particles. It was found that precipitation of BN at the austenite grain boundary can be suppressed.

第1および第2の予備実験で用いた鋼Bは、希土類元素としてNdを含有させたが、Nd以外にも、LaやCe、その他のいずれの希土類元素であっても同様の効果が得られることも確認した。ここで、希土類元素とは、Sc、Y、ランタノイド(La、Ce等、原子番号57〜71の15元素)から選ばれた1種以上の金属元素を意味する。   The steel B used in the first and second preliminary experiments contained Nd as a rare earth element. However, in addition to Nd, La, Ce, or any other rare earth element can obtain the same effect. I also confirmed that. Here, the rare earth element means one or more metal elements selected from Sc, Y and lanthanoids (La, Ce, etc., 15 elements having atomic numbers 57 to 71).

また、BNを、鋼中に分散している希土類元素を含有する酸化物系介在物と一体として粒内で析出させる効果を高めるには、鋼の成分組成が下記(b)式の関係を満足する関係にあるとともに、酸化物系介在物中の希土類元素の含有率が45質量%以上であればよいことがわかった。
[%Sol.Al]/[%REM]≦7 …(b)
ここで、[%Sol.Al]および[%REM]は、それぞれ鋼中のSol.Alおよび希土類元素の含有率(質量%)である。
Moreover, in order to enhance the effect of depositing BN in the grains integrally with oxide inclusions containing rare earth elements dispersed in the steel, the composition of the steel satisfies the relationship of the following formula (b): It was found that the rare earth element content in the oxide inclusions should be 45% by mass or more.
[% Sol. Al] / [% REM] ≦ 7 (b)
Here, [% Sol. [Al] and [% REM] are obtained from Sol. It is the content rate (mass%) of Al and rare earth elements.

2.本発明のB含有鋼の成分組成およびその限定理由
本発明のB含有鋼は、以上の検討の結果得られた知見に基づいてなされたものであり、その成分組成は、C:0.050〜0.180%、Si:0.10〜0.40%、Mn:0.5〜2.0%、P:0.020%以下、S:0.0030%以下、Ti:0.005〜0.030%、Sol.Al:0.005〜0.060%、B:0.0005〜0.0050%、N:0.0015〜0.0070%、および、希土類元素:0.001〜0.050%を含有し、さらにCu、Cr、Ni、Mo、V、NbおよびCaのうちの1種または2種以上を含有し、これらの元素のうち含有するものの少なくとも1種がCu:0.1〜0.5%、Cr:0.2〜2.0%、Ni:0.3〜2.5%、Mo:0.1〜0.8%、V:0.01〜0.10%、Nb:0.005〜0.050%およびCa:0.0005〜0.0060%を満足し、残部がFeおよび不純物からなり、上記(a)式の関係を満足する。
2. Component composition of B-containing steel of the present invention and reasons for limitation The B-containing steel of the present invention was made based on the knowledge obtained as a result of the above examination, and the component composition was C: 0.050 0.180%, Si: 0.10-0.40%, Mn: 0.5-2.0%, P: 0.020% or less, S: 0.0030% or less, Ti: 0.005-0 .030%, Sol. Al: 0.005-0.060%, B: 0.0005-0.0050%, N: 0.0015-0.0070%, and rare earth elements: 0.001-0.050%, Furthermore, it contains one or more of Cu, Cr, Ni, Mo, V, Nb and Ca, and at least one of these elements is Cu: 0.1 to 0.5%, Cr: 0.2-2.0%, Ni: 0.3-2.5%, Mo: 0.1-0.8%, V: 0.01-0.10%, Nb: 0.005- 0.050% and Ca: 0.0005 to 0.0060% are satisfied, and the balance is composed of Fe and impurities, and the relationship of the above formula (a) is satisfied.

2−1.必須元素
C:0.050〜0.180%
炭素(C)は、一般に、鋼の強度に大きな影響を及ぼす元素として知られている。C含有率が0.050%未満では、高強度厚鋼板等の用途に対して、所定の強度を得ることが困難である。一方、C含有率が0.180%を超えると、鋼の硬度が著しく高くなり、新たな表面疵の原因となるため、鋼の熱処理に特段の工程が必要となる。また、鋼の溶接に際しては、溶接部および熱影響部(HAZ)が硬化するため、厚鋼板として必要となる溶接性を損なうこととなる。これらの理由から、C含有率は0.050〜0.180%とする。C含有率は0.060〜0.180%が好ましい。
2-1. Essential element C: 0.050 to 0.180%
Carbon (C) is generally known as an element that greatly affects the strength of steel. When the C content is less than 0.050%, it is difficult to obtain a predetermined strength for applications such as high-strength thick steel plates. On the other hand, when the C content exceeds 0.180%, the hardness of the steel is remarkably increased and causes a new surface flaw, so that a special process is required for heat treatment of the steel. Further, when steel is welded, the welded portion and the heat-affected zone (HAZ) are hardened, so that the weldability required for the thick steel plate is impaired. For these reasons, the C content is set to 0.050 to 0.180%. The C content is preferably 0.060 to 0.180%.

Si:0.10〜0.40%
ケイ素(Si)は、一般に、鋼の製造プロセスでは脱酸元素として鋼の酸素(O)含有率を低減するために有効な元素の一つであり、また、鋼を強化する効果も有する。Si含有率が0.10%未満では、溶鋼を十分に脱酸することができない。溶鋼が十分に脱酸されていない状態で連続鋳造を行うと、鋼中に気泡が生成し、製品の欠陥となるばかりでなく、時にはブレークアウトを誘発し、操業ができなくなるという問題も生じる。一方、Si含有率が0.4%を超えると、縞状マルテンサイトを生成するようになり、溶接時にHAZ靭性を低下させるという問題がある。そこで、Si含有率は0.10〜0.40%とする。Si含有率は、0.10%以上、0.30%未満が好ましい。
Si: 0.10 to 0.40%
In general, silicon (Si) is one of elements effective for reducing the oxygen (O) content of steel as a deoxidizing element in the steel manufacturing process, and also has an effect of strengthening steel. If the Si content is less than 0.10%, the molten steel cannot be sufficiently deoxidized. If the continuous casting is performed in a state where the molten steel is not sufficiently deoxidized, bubbles are generated in the steel, resulting in product defects, and sometimes a breakout is induced and the operation becomes impossible. On the other hand, when the Si content exceeds 0.4%, striped martensite is generated, and there is a problem that the HAZ toughness is lowered during welding. Therefore, the Si content is set to 0.10 to 0.40%. The Si content is preferably 0.10% or more and less than 0.30%.

Mn:0.5〜2.0%
マンガン(Mn)は、一般に、鋼の強度に大きな影響を及ぼす元素として知られている。Mn含有率が0.5%未満では、高強度厚鋼板として十分な強度を得ることが困難である。一方、Mn含有率が2.0%を超えると、固溶強化のため、鋼の強度が著しく高くなり、製品の強度の調整が困難となる。また、Mnは、中心偏析部で濃化するため、含有率が高いほど鋳片や鋳片の圧延後の厚鋼板内で生じる強度むらが著しくなる。そこで、Mn含有率は0.5〜2.0%とする。Mn含有率は0.70〜1.80%が好ましい。
Mn: 0.5 to 2.0%
Manganese (Mn) is generally known as an element that greatly affects the strength of steel. When the Mn content is less than 0.5%, it is difficult to obtain sufficient strength as a high-strength thick steel plate. On the other hand, if the Mn content exceeds 2.0%, the strength of the steel is remarkably increased due to solid solution strengthening, and it becomes difficult to adjust the strength of the product. Further, since Mn is concentrated at the center segregation part, the higher the content ratio, the more the unevenness in strength that occurs in the slab and in the thick steel plate after rolling the slab. Therefore, the Mn content is set to 0.5 to 2.0%. The Mn content is preferably 0.70 to 1.80%.

P:0.020%以下
リン(P)は、鋼中に不可避的に含有される不純物元素の一つであり、含有率は低いことが好ましい。Pは、鋼の固液界面における平衡分配係数が小さいため、溶鋼の凝固時に著しく偏析する。このため、P含有率が高い場合には、種々の製品特性に悪影響を及ぼすことが懸念される。また、偏析によりPが濃化した部分は融点が著しく低下するため、鋳片の熱間圧延時には、この濃化部が溶融して製品の疵の原因となることもある。そこで、P含有率は、0.020%以下とする。P含有率は、Pが偏析した部分における種々の問題の発生を防止するため、0.01%未満とすることが好ましい。また、通常の工業的な精錬方法によって製造可能な範囲として、P含有率は0.005%以上とすることが好ましい。
P: 0.020% or less Phosphorus (P) is one of impurity elements inevitably contained in steel, and the content is preferably low. Since P has a small equilibrium partition coefficient at the solid-liquid interface of steel, it segregates significantly during solidification of the molten steel. For this reason, when P content rate is high, we are anxious about having a bad influence on various product characteristics. Further, since the melting point of the portion where P is concentrated due to segregation is remarkably lowered, the concentrated portion may melt during hot rolling of the slab and cause wrinkling of the product. Therefore, the P content is set to 0.020% or less. The P content is preferably less than 0.01% in order to prevent occurrence of various problems in the portion where P is segregated. Moreover, it is preferable that P content rate shall be 0.005% or more as a range which can be manufactured with a normal industrial refining method.

S:0.0030%以下
硫黄(S)は、Pと同様に、鋼中に不可避的に含有される不純物元素の一つであり、含有率はできる限り低いことが好ましい。Sは、これもPと同様に、鋼の固液界面における平衡分配係数が小さいため、溶鋼の凝固時に著しく偏析し、また、偏析によりSが濃化した部分は融点が低下する。Sが濃化した部分は、特に鋳片の圧延時に、表面の疵の発生の原因となる。そこで、S含有率は、0.0030%以下とする。S含有率は、0.0020%以下が好ましい。より高強度が要求される場合等、要求レベルの厳しい条件では、S含有率を0.0020%以下とすることが好ましい。通常の工業的な精錬方法で製造可能な範囲として、S含有率は0.0002%以上とすることが好ましい。
S: 0.0030% or less Sulfur (S), like P, is one of impurity elements inevitably contained in steel, and the content is preferably as low as possible. S, like P, also has a small equilibrium partition coefficient at the solid-liquid interface of the steel, so that it segregates remarkably during solidification of the molten steel, and the melting point of the portion where S is concentrated by segregation decreases. The portion where S is concentrated becomes a cause of surface flaws, particularly when the slab is rolled. Therefore, the S content is set to 0.0030% or less. The S content is preferably 0.0020% or less. In a strict requirement level, such as when higher strength is required, the S content is preferably 0.0020% or less. As a range that can be produced by a normal industrial refining method, the S content is preferably 0.0002% or more.

Ti:0.005〜0.030%
チタン(Ti)は、一般的には鋼の強度を向上させる元素である。また、鋼中のNをTiNとして固定するため、Tiを鋼に含有させることにより、BNの生成にも影響を及ぼす。すなわち、Tiを鋼に含有させることにより、BNの生成量が減少するため、連続鋳造機における鋳片の曲げ時、および曲げの矯正時に鋳片の表面割れが発生するのを抑制する効果が得られる。この表面割れ発生の抑制効果は、Ti含有率が0.005%未満では得られない。一方、Ti含有率が0.030%を超えると、Tiの炭化物が多数生成し、溶接時にHAZ靭性を低下させるという問題があり、また、粗大なTiNが生成する原因ともなる。そこで、Ti含有率は0.005〜0.030%とする。また、TiNの生成量が過剰である場合には、鋳片の表面性状が低下する。鋳片の表面割れの発生および鋳片の表面性状の低下の双方を安定的に抑制する観点からは、Ti含有率は0.010〜0.020%が好ましい。
Ti: 0.005-0.030%
Titanium (Ti) is an element that generally improves the strength of steel. Moreover, since N in steel is fixed as TiN, the production of BN is also affected by including Ti in the steel. That is, since the amount of BN produced is reduced by containing Ti in the steel, the effect of suppressing the occurrence of surface cracks in the slab at the time of bending and correcting the slab in a continuous casting machine is obtained. It is done. This effect of suppressing the occurrence of surface cracks cannot be obtained when the Ti content is less than 0.005%. On the other hand, if the Ti content exceeds 0.030%, a large number of Ti carbides are generated, and there is a problem that the HAZ toughness is lowered during welding, and this also causes coarse TiN to be generated. Therefore, the Ti content is set to 0.005 to 0.030%. Moreover, when the production amount of TiN is excessive, the surface properties of the slab are lowered. From the viewpoint of stably suppressing both the occurrence of surface cracks in the slab and the deterioration of the surface properties of the slab, the Ti content is preferably 0.010 to 0.020%.

Sol.Al:0.005〜0.060%
アルミニウム(Al)は、Siと同様に、脱酸元素として鋼のO含有率を低減するのに有効な元素の一つである。Al含有率が0.005%未満では、溶鋼を十分に脱酸することができない。また、製錬工程において十分に脱硫することも困難となる。一方、Al含有率が過剰であると、AlNが生成しやすく、鋳片の表面割れが発生する原因となる。そこで、Al含有率は0.005〜0.060%とする。Al含有率は0.005〜0.050%が好ましい。本明細書でいうAl含有率は、Sol.Al(酸可溶Al)の含有率を意味する。
Sol. Al: 0.005-0.060%
Similar to Si, aluminum (Al) is one of the elements effective for reducing the O content of steel as a deoxidizing element. If the Al content is less than 0.005%, the molten steel cannot be sufficiently deoxidized. It also becomes difficult to sufficiently desulfurize in the smelting process. On the other hand, if the Al content is excessive, AlN is likely to be generated, which causes a surface crack of the slab. Therefore, the Al content is set to 0.005 to 0.060%. The Al content is preferably 0.005 to 0.050%. The Al content referred to in this specification is Sol. It means the content of Al (acid-soluble Al).

B:0.0005〜0.0050%
ホウ素(B)は、粒界の焼き入れ性を高める効果、鋼材の組織を制御する効果、および鋼材の強度を高める効果を有する。Bは微量の添加で高い効果を発揮する。しかし、B含有率が0.0005%未満では、引張強度で700〜1200MPaという高強度を得ることができない。一方、B含有率が0.0050%を超えると、その効果が飽和するとともに、鋼の靭性を低下させることとなる。そのため、B含有率は0.0005〜0.0050%とする。厚鋼板のミクロ組織を制御し、Bを添加することによる効果を明確に発現させる観点からは、B含有率を0.0010〜0.0040%とすることが好ましい。
B: 0.0005 to 0.0050%
Boron (B) has the effect of increasing the hardenability of the grain boundaries, the effect of controlling the structure of the steel material, and the effect of increasing the strength of the steel material. B exhibits a high effect when added in a small amount. However, if the B content is less than 0.0005%, a high strength of 700 to 1200 MPa cannot be obtained in terms of tensile strength. On the other hand, when the B content exceeds 0.0050%, the effect is saturated and the toughness of the steel is lowered. Therefore, the B content is set to 0.0005 to 0.0050%. From the viewpoint of controlling the microstructure of the thick steel plate and clearly expressing the effect of adding B, the B content is preferably 0.0010 to 0.0040%.

N:0.0015〜0.0070%
窒素(N)は、転炉等を用いて大気雰囲気で鋼を溶製する場合に、鋼中に不可避的に侵入する元素である。Nは、鋼中でTiやB等とともに窒化物を形成する。これらの窒化物は、鋳片の熱間加工の過程でピン止め粒子として結晶粒を微細化する効果を有することから、鋼材の機械的特性に影響を及ぼす。しかし、N含有率が0.0015%未満では結晶粒を微細化する効果は得られない。一方、これらの窒化物が連続鋳造時にオーステナイト粒界に動的析出するため、N含有率が過剰である場合、具体的には0.0070%を超える場合に鋳片の表面割れの原因となる。このため、N含有率は0.0015〜0.0070%とする。組織のピン止め効果を確実に発揮させるとともに、鋳片の中心部等における粗大な炭化物、窒化物の生成に伴う鋼の靭性の低下を防止する観点から、N含有率は0.002〜0.004%が好ましい。
N: 0.0015 to 0.0070%
Nitrogen (N) is an element that inevitably penetrates into steel when the steel is melted in an air atmosphere using a converter or the like. N forms a nitride with Ti, B, etc. in steel. Since these nitrides have an effect of refining crystal grains as pinning particles in the process of hot working of a slab, they affect the mechanical properties of steel materials. However, if the N content is less than 0.0015%, the effect of refining crystal grains cannot be obtained. On the other hand, since these nitrides dynamically precipitate at austenite grain boundaries during continuous casting, it causes surface cracks in the slab when the N content is excessive, specifically when it exceeds 0.0070%. . For this reason, N content rate shall be 0.0015 to 0.0070%. From the standpoint of reliably exhibiting the pinning effect of the structure and preventing the deterioration of the toughness of the steel due to the formation of coarse carbides and nitrides in the center of the slab, the N content is 0.002 to 0.00. 004% is preferred.

REM:0.001〜0.050%
希土類元素(REM)は、鋼中の酸化物系介在物の形態を制御する元素である。生成したREMを含有する酸化物系介在物はBNと結合する。そのため、REMを含有する酸化物系介在物を鋼中に析出させることにより、オーステナイト粒界上へのBNの析出が抑制される。しかし、REM含有率が0.001%未満では、BNの析出抑制効果は得られない。一方、REMは高価な元素であり、また、過剰に添加するとその効果が飽和するため、0.050%を超えると費用に比べて得られる効果が小さくなる。そのため、REM含有率は0.001〜0.050%とする。REM含有率は、0.001〜0.035%が好ましい。
REM: 0.001 to 0.050%
Rare earth elements (REM) are elements that control the form of oxide inclusions in steel. The oxide inclusions containing the generated REM bind to BN. Therefore, precipitation of BN on the austenite grain boundary is suppressed by precipitating oxide inclusions containing REM in the steel. However, if the REM content is less than 0.001%, the effect of suppressing the precipitation of BN cannot be obtained. On the other hand, REM is an expensive element, and if added excessively, its effect is saturated. Therefore, if it exceeds 0.050%, the effect obtained compared to the cost becomes small. Therefore, the REM content is set to 0.001 to 0.050%. The REM content is preferably 0.001 to 0.035%.

ここで、REMとは、周期表の第3族に属するスカンジウム(Sc)、イットリウム(Y)、およびランタノイド(LaからLuまで(原子番号57〜71)の15元素)うち、1種以上の元素を意味する。これらの元素のうち、特に、Ce、La、PrおよびNdのうちの1種以上が好ましい。   Here, REM means one or more elements among scandium (Sc), yttrium (Y), and lanthanoids (15 elements from La to Lu (atomic number 57 to 71)) belonging to Group 3 of the periodic table. Means. Among these elements, one or more of Ce, La, Pr and Nd are particularly preferable.

1−2.選択的必須元素
以上の必須元素の成分組成の調整のみでは、引張強度で700MPa以上の高強度を達成することや、溶接性、耐候性等のその他の特性を発現させることは困難である。これらの特性を得るには、Cu、Cr、Ni、Mo、V、NbおよびCaのうち1種または2種以上を以下の含有率で含有させる必要がある。
1-2. Selective Essential Elements It is difficult to achieve a high strength of 700 MPa or higher in tensile strength and to develop other characteristics such as weldability and weather resistance only by adjusting the component composition of the above essential elements. In order to obtain these characteristics, it is necessary to contain one or more of Cu, Cr, Ni, Mo, V, Nb, and Ca at the following contents.

Cu:0.1〜0.5%
銅(Cu)は、鋼の焼き入れ性を向上させる元素である。しかし、Cu含有率が0.1%未満では、焼き入れ性の向上効果は得られない。一方、Cu含有率が0.5%を超えると、焼き入れ性の向上効果が過剰となるばかりでなく、鋼材の熱間加工性が低下する。そこで、Cuを含有させる場合は、その含有率は0.1〜0.5%とする。Cu含有率は0.2〜0.5%が好ましい。
Cu: 0.1 to 0.5%
Copper (Cu) is an element that improves the hardenability of steel. However, if the Cu content is less than 0.1%, the effect of improving the hardenability cannot be obtained. On the other hand, when the Cu content exceeds 0.5%, not only the effect of improving the hardenability becomes excessive, but also the hot workability of the steel material decreases. Therefore, when Cu is contained, the content is set to 0.1 to 0.5%. The Cu content is preferably 0.2 to 0.5%.

また、Cuは、鋼の連続鋳造時には、スタークラックと呼ばれる鋳片の表面割れを誘発する元素でもある。このため、Cu含有率を0.2%以上とする場合には、Cu含有率の1/3以上の含有率となるように後述するNiを添加することが好ましい。   Cu is also an element that induces surface cracks of a slab called a star crack during continuous casting of steel. For this reason, when making Cu content rate into 0.2% or more, it is preferable to add Ni mentioned later so that it may become 1/3 or more content rate of Cu content.

Cr:0.2〜2.0%
クロム(Cr)は、鋼の強度および靭性を高める効果を有する元素である。また、80kgクラス以上の鋼のように、鋼に高強度が要求される場合には実質的に必須の元素である。しかし、Cr含有率が0.2%未満では、鋼の強度および靭性を高める効果は得られない。一方、Cr含有率が2.0%以上では、溶接割れが発生する等の問題が発生する。そこで、Crを含有させる場合は、その含有率は0.2〜2.0%とする。鋼の溶接性を重視する場合には、Cr含有率は0.2〜1.5%とすることが好ましい。
Cr: 0.2 to 2.0%
Chromium (Cr) is an element having an effect of increasing the strength and toughness of steel. Moreover, it is a substantially essential element when high strength is required for steel, such as steel of 80 kg class or more. However, if the Cr content is less than 0.2%, the effect of increasing the strength and toughness of the steel cannot be obtained. On the other hand, when the Cr content is 2.0% or more, problems such as weld cracks occur. Therefore, when Cr is contained, the content is made 0.2 to 2.0%. When emphasizing the weldability of steel, the Cr content is preferably 0.2 to 1.5%.

Ni:0.3〜2.5%
ニッケル(Ni)は、固溶強化によって鋼の強度を向上させる効果を有する元素であり、靭性を改善する効果も有する。Ni含有率が0.3%未満ではこれらの効果が得られない。一方、Ni含有率が2.5%を超えた場合、強度および靭性の向上効果は飽和するだけでなく、溶接性を悪化させるという悪影響も生じる。そのため、Niを含有させる場合は、その含有率は0.3〜2.5%とする。Ni含有率は0.4〜2.5%が好ましい。
Ni: 0.3-2.5%
Nickel (Ni) is an element having an effect of improving the strength of steel by solid solution strengthening, and also has an effect of improving toughness. If the Ni content is less than 0.3%, these effects cannot be obtained. On the other hand, when the Ni content exceeds 2.5%, the effect of improving the strength and toughness is not only saturated, but also has an adverse effect of deteriorating the weldability. Therefore, when Ni is contained, the content is set to 0.3 to 2.5%. The Ni content is preferably 0.4 to 2.5%.

Mo:0.1〜0.8%
モリブデン(Mo)は、鋼板の焼き入れ性を向上させるとともに、強度の向上に寄与する元素である。Moは、Crと同様に、80kgクラス以上の鋼のように、鋼に高強度が要求される場合には実質的に必須の元素である。しかし、Mo含有率が0.1%ではこれらの効果は得られない。一方、Moは高価な元素であり、添加量を増加させると製造コストの増加に繋がるばかりでなく、0.8%以上含有させるとベイナイトやマルテンサイト相等の硬化相が生成し、鋼の熱間加工性や溶接性を悪化させる。そのため、Moを含有させる場合は、その含有率は0.1〜0.8%とする。Mo含有率は0.1〜0.7%が好ましい。
Mo: 0.1 to 0.8%
Molybdenum (Mo) is an element that improves the hardenability of the steel sheet and contributes to the improvement of strength. Mo, like Cr, is a substantially essential element when high strength is required for steel, such as steel of 80 kg class or higher. However, when the Mo content is 0.1%, these effects cannot be obtained. On the other hand, Mo is an expensive element, and increasing the amount of addition not only leads to an increase in manufacturing cost, but if it is contained at 0.8% or more, a hardened phase such as bainite and martensite phase is generated, Deteriorates workability and weldability. Therefore, when Mo is contained, the content is set to 0.1 to 0.8%. The Mo content is preferably 0.1 to 0.7%.

V:0.01〜0.10%
バナジウム(V)は、鋼のフェライト相に固溶するとともに、鋼中で炭窒化物を形成するため、鋼の強度の向上に有効な元素である。しかし、V含有率が0.01%未満では、鋼の強度の向上効果は得られない。一方、V含有率が0.10%を超えると、溶接時にHAZでの炭窒化物の析出状況が変化して靭性に悪影響を及ぼす。また、V含有率が過剰である場合、具体的には0.10%を超える場合、鋳片の内部にVNとして析出し、鋳片の表面割れの原因となる。そのため、Vを含有させる場合は、その含有率は0.01〜0.10%とする。V含有率は0.03〜0.10%が好ましい。
V: 0.01-0.10%
Vanadium (V) is an element effective for improving the strength of steel because it dissolves in the ferrite phase of steel and forms carbonitrides in the steel. However, if the V content is less than 0.01%, the effect of improving the strength of the steel cannot be obtained. On the other hand, if the V content exceeds 0.10%, the state of carbonitride precipitation in the HAZ changes during welding, which adversely affects toughness. Further, when the V content is excessive, specifically, when it exceeds 0.10%, it precipitates as VN inside the slab and causes surface cracks of the slab. Therefore, when V is contained, the content is set to 0.01 to 0.10%. The V content is preferably 0.03 to 0.10%.

Nb:0.005〜0.050%
ニオブ(Nb)は、鋼中で炭窒化物を形成し、鋼の強度および靭性の向上に有効な元素である。また、Nbは、TMCP(Thermo−Mechanical Control Process)において、鋼中における固溶および析出を制御することにより、鋼板のミクロ組織を制御するために使用される。しかし、Nb含有率が0.005%未満では、鋼の強度および靭性の向上効果ならびに組織制御効果は得られない。一方、Nb含有率を0.050%以上とすると、鋳片を加熱してもNbを固溶させることができず、組織制御が不可能となる。また、Nb含有率が過剰である場合、具体的には0.050%以上である場合、鋳片内部にNbCとして析出し、鋳片の表面割れの原因となる。そのため、Nbを含有させる場合は、その含有率は0.005〜0.050%とする。Nb含有率は0.005〜0.040%が好ましい。
Nb: 0.005 to 0.050%
Niobium (Nb) is an element that forms carbonitrides in steel and is effective in improving the strength and toughness of steel. Nb is used to control the microstructure of the steel sheet by controlling solid solution and precipitation in the steel in TMCP (Thermo-Mechanical Control Process). However, if the Nb content is less than 0.005%, the effect of improving the strength and toughness of the steel and the effect of controlling the structure cannot be obtained. On the other hand, if the Nb content is 0.050% or more, even if the slab is heated, Nb cannot be dissolved, and the structure cannot be controlled. In addition, when the Nb content is excessive, specifically, when it is 0.050% or more, NbC precipitates inside the slab and causes surface cracks in the slab. Therefore, when Nb is contained, the content is made 0.005 to 0.050%. The Nb content is preferably 0.005 to 0.040%.

Ca:0.0005〜0.0060%
カルシウム(Ca)は、他の成分元素と異なり、鋼の材料特性には大きな影響を与えない元素である。一方、連続鋳造時において、タンディッシュから鋳型に溶鋼を注入するノズルの閉塞を抑制する効果を有する元素である。そのため、ノズルの閉塞抑制を目的として溶鋼に添加されることがある。また、鋼にCaを添加すると、鋼中のS含有率を低減させ、MnSの生成を抑制する効果も得られる。そのため、鋼中の硫化物の形態制御を目的として溶鋼に添加されることもある。しかし、Ca含有率が0.0005%未満ではこれらの効果は得られない。一方、Ca含有率が0.0060%を超えると、その効果が飽和し、製造コストの増加を招くばかりか、却ってノズルの閉塞を助長することもある。そのため、Caを含有させる場合は、その含有率は0.0005〜0.0060%とする。Ca含有率は、0.0010〜0.0050%が好ましい。
Ca: 0.0005 to 0.0060%
Unlike other component elements, calcium (Ca) is an element that does not significantly affect the material properties of steel. On the other hand, it is an element having an effect of suppressing clogging of a nozzle that injects molten steel from a tundish into a mold during continuous casting. Therefore, it may be added to molten steel for the purpose of suppressing nozzle blockage. Moreover, when Ca is added to steel, the S content in steel is reduced and the effect which suppresses the production | generation of MnS is also acquired. Therefore, it may be added to molten steel for the purpose of controlling the form of sulfide in steel. However, if the Ca content is less than 0.0005%, these effects cannot be obtained. On the other hand, if the Ca content exceeds 0.0060%, the effect is saturated and not only increases the manufacturing cost but also promotes blocking of the nozzle. Therefore, when Ca is contained, the content is set to 0.0005 to 0.0060%. The Ca content is preferably 0.0010 to 0.0050%.

以上の必須元素および選択的必須元素以外の残部は、Feおよび不純物である。ここで、「不純物」とは、鋼材の工業的生産において原料たる鉱石やスクラップ、および製造設備からの溶出成分等から混入するものであり、鋼の性能に悪影響を及ぼさない範囲のものをいう。   The balance other than the above essential elements and selective essential elements is Fe and impurities. Here, the “impurities” are those mixed from ore and scrap as raw materials in the industrial production of steel materials, components eluted from production equipment, and the like, and in a range that does not adversely affect the performance of the steel.

2−3.鋼中のTi、REM、BおよびNの含有率の関係
本発明のB含有鋼では、鋼中のTi、REM、BおよびNの含有率が下記(a)式の関係を満足するものとする。
([%Ti]+[%REM])/([%B]+[%N])≧2.5 …(a)
ここで、[%Ti]、[%REM]、[%B]および[%N]は、それぞれ鋼中のTi、REM、BおよびNの含有率(質量%)である。
2-3. Relationship between content ratios of Ti, REM, B and N in steel In the B-containing steel of the present invention, the content ratios of Ti, REM, B and N in the steel satisfy the relationship of the following formula (a). .
([% Ti] + [% REM]) / ([% B] + [% N]) ≧ 2.5 (a)
Here, [% Ti], [% REM], [% B], and [% N] are the contents (mass%) of Ti, REM, B, and N in the steel, respectively.

鋼中のB含有率およびN含有率が高いほど、連続鋳造時に鋳片内にBNが生成しやすく、かつ生成量も多くなるため、得られる鋳片の脆化が生じやすくなる。ところが、TiNは、1300〜1400℃の高温域からBNの析出に先立って生成するため、鋼中のTi含有率が高いと、BNの生成量を低減させることができる。   As the B content and N content in the steel are higher, BN is more likely to be generated in the slab during continuous casting and the amount of generation is increased, so that the resulting slab is more likely to be embrittled. However, TiN is generated prior to precipitation of BN from a high temperature range of 1300 to 1400 ° C. Therefore, if the Ti content in the steel is high, the amount of BN generated can be reduced.

また、REMは、鋼中で酸化物や酸硫化物(酸化物系介在物)を生成し、鋼中に分散する。鋼の温度が低下するに従って生成するBNは、鋼中に分散したREM酸化物系介在物と一体となって析出するため、オーステナイト粒界上でのBNの析出を抑制できる。   Moreover, REM produces | generates an oxide and an oxysulfide (oxide inclusion) in steel, and disperse | distributes in steel. Since BN produced as the temperature of the steel decreases, it precipitates together with the REM oxide inclusions dispersed in the steel, so that precipitation of BN on the austenite grain boundaries can be suppressed.

鋼中のTi、REM、BおよびNの含有率が上記(a)式の関係を満足することにより、BNの生成量を低減させるとともに、オーステナイト粒界上でのBNの析出を抑制でき、B含有鋼の脆化を十分に抑制することができる。そのため、本発明のB含有鋼は、垂直曲げ型または湾曲型の連続鋳造機を用いて製造した場合であっても、表面割れの発生が抑制される。   When the content of Ti, REM, B and N in the steel satisfies the relationship of the above formula (a), the amount of BN produced can be reduced, and precipitation of BN on the austenite grain boundaries can be suppressed. The embrittlement of the contained steel can be sufficiently suppressed. Therefore, even when the B-containing steel of the present invention is produced using a vertical bending type or a curved type continuous casting machine, occurrence of surface cracks is suppressed.

2−4.鋼中のSol.AlおよびREMの含有率の関係、ならびに鋳片内のREM酸化物系介在物の規定
本発明のB含有鋼では、鋼中のSol.AlおよびREMの含有率が下記(b)式の関係を満足し、かつ鋼中に存在する酸化物系介在物中のREM含有率が45質量%以上であることが好ましい。
[%Sol.Al]/[%REM]≦7 …(b)
ここで、[%Sol.Al]および[%REM]は、それぞれ鋼中のSol.Alおよび希土類元素の含有率(質量%)である。
2-4. Sol. Relationship between Al and REM content ratios and definition of REM oxide-based inclusions in the slab In the B-containing steel of the present invention, Sol. It is preferable that the content of Al and REM satisfy the relationship of the following formula (b), and the REM content in the oxide inclusions present in the steel is 45% by mass or more.
[% Sol. Al] / [% REM] ≦ 7 (b)
Here, [% Sol. [Al] and [% REM] are obtained from Sol. It is the content rate (mass%) of Al and rare earth elements.

鋼中のSol.AlおよびREMの含有率が上記(b)式の関係を満足しない場合、鋼中に存在する酸化物系介在物は、REM酸化物の生成量が少ないため、Al23を主体とするものとなりやすい。また、このようなAl23を主体とする酸化物系介在物は、粗大なクラスターを形成しやすい。さらに、この酸化物系介在物中のREM含有率が45質量%未満である場合には、介在物による粗大なクラスターの形成が顕著になり、鋼中で偏在するため、酸化物系介在物が鋼中で均一に分散した状態が得られにくい。また、酸化物系介在物中のREM含有率が低い場合には、その酸化物系介在物と一体としてBNを析出させることが困難となる。 Sol. When the content of Al and REM does not satisfy the relationship of the above formula (b), the oxide inclusions present in the steel are mainly composed of Al 2 O 3 because the amount of REM oxide produced is small. It is easy to become. Further, such oxide-based inclusions mainly composed of Al 2 O 3 tend to form coarse clusters. Furthermore, when the REM content in the oxide inclusions is less than 45% by mass, the formation of coarse clusters due to the inclusions becomes prominent and unevenly distributed in the steel. It is difficult to obtain a uniformly dispersed state in steel. Further, when the REM content in the oxide inclusions is low, it becomes difficult to deposit BN integrally with the oxide inclusions.

一方、鋼中のSol.AlおよびREMの含有率が下記(b)式の関係を満足し、鋼中に存在する酸化物系介在物中のREM含有率が45質量%以上である場合には、酸化物系介在物が鋼中で均一に分散した状態が得られやすいとともに、この酸化物系介在物にBNを一体化させることにより、BNを効果的に結晶粒内に析出させることが容易である。そのため、オーステナイト粒界上でのBNの析出をより抑制することができ、高い高温延性を得ることができ、鋳片の表面割れの発生をより抑制することができる。   On the other hand, Sol. When the content of Al and REM satisfies the relationship of the following formula (b) and the REM content in the oxide inclusions present in the steel is 45% by mass or more, the oxide inclusions are It is easy to obtain a uniformly dispersed state in steel, and it is easy to effectively precipitate BN in crystal grains by integrating BN with this oxide inclusion. Therefore, precipitation of BN on the austenite grain boundary can be further suppressed, high hot ductility can be obtained, and occurrence of surface cracks in the slab can be further suppressed.

本発明のB含有鋼の効果を確認するため、以下の2つの連続鋳造試験を行い、その結果を評価した。   In order to confirm the effect of the B-containing steel of the present invention, the following two continuous casting tests were conducted and the results were evaluated.

1.第1試験
1−1.試験方法
溶鋼は、容量が2.5tの高周波誘導炉を用いて、SiおよびMnによる予備複合脱酸を施したものを2.5t溶製した。溶製した溶鋼は、高周波誘導炉から取鍋に上から注入して移し替えた。取鍋内にはあらかじめ金属AlおよびNdを装入しておき、溶鋼を注入することによって溶鋼中にAlおよびNdを溶解させ、溶鋼の成分組成を鋳造すべき目標の組成に最終調整した。
1. First test 1-1. Test Method The molten steel was melted by 2.5 t using a high-frequency induction furnace having a capacity of 2.5 t and subjected to preliminary combined deoxidation with Si and Mn. The molten steel was transferred from the high-frequency induction furnace to the ladle from above. Metal la and Nd were charged in the ladle in advance, and molten steel was poured to dissolve Al and Nd in the molten steel, so that the component composition of the molten steel was finally adjusted to the target composition to be cast.

連続鋳造機は、垂直部の長さが1.3mの垂直曲げ型の連続鋳造機を用いた。成分組成を調整した溶鋼を、取鍋からタンディッシュを介して連続鋳造機に注入し、厚さ100mm、幅500mmの鋳片を連続鋳造した。鋳造速度は0.70〜1.20m/minとし、2次冷却の比水量は0.7〜1.6L/kg−steelとした。   As the continuous casting machine, a vertical bending type continuous casting machine having a vertical length of 1.3 m was used. Molten steel with adjusted component composition was poured from a ladle through a tundish into a continuous casting machine to continuously cast a slab having a thickness of 100 mm and a width of 500 mm. The casting speed was 0.70 to 1.20 m / min, and the specific water amount for secondary cooling was 0.7 to 1.6 L / kg-steel.

鋳造した鋼の成分組成を表2に示した。同表には、下記(a)式の左辺(([%Ti]+[%REM])/([%B]+[%N]))の値も「TR/BN」として示した。
([%Ti]+[%REM])/([%B]+[%N])≧2.5 …(a)
ここで、[%Ti]、[%REM]、[%B]および[%N]は、それぞれ鋼中のTi、希土類元素、BおよびNの含有率(質量%)である。
The component composition of the cast steel is shown in Table 2. In the same table, the value of the left side (([% Ti] + [% REM]) / ([% B] + [% N])) of the following formula (a) is also shown as “TR / BN”.
([% Ti] + [% REM]) / ([% B] + [% N]) ≧ 2.5 (a)
Here, [% Ti], [% REM], [% B] and [% N] are the contents (mass%) of Ti, rare earth elements, B and N in the steel, respectively.

Figure 2015113486
Figure 2015113486

本発明例1〜6は、本発明の規定を満たしていた。比較例1〜6は、いずれも本発明の規定のうち、上記(a)式の関係を満たさなかった。   Inventive Examples 1 to 6 satisfied the provisions of the present invention. Comparative Examples 1 to 6 did not satisfy the relationship of the above formula (a) in the definition of the present invention.

得られた鋳片は、表面からスケールを除去して酸洗処理を行った。その後、鋳片の天側(連続鋳造機の湾曲部において内周面側であった面)および鋳片の地側(連続鋳造機の湾曲部において外周面側であった面)の双方に対して、JIS Z2343に規定された染色浸透探傷試験(いわゆるカラーチェック法)により、鋳片の割れや疵の発生の有無を目視で観察し、その程度を確認した。   The obtained slab was pickled by removing the scale from the surface. Thereafter, for both the top side of the slab (the surface that was the inner peripheral surface side in the curved portion of the continuous casting machine) and the ground side of the slab (the surface that was the outer peripheral surface side in the curved portion of the continuous casting machine) The presence or absence of cracks in the slab and the occurrence of flaws were visually observed and confirmed by a dyeing penetrant flaw detection test (so-called color check method) defined in JIS Z2343.

1−2.試験結果
評価項目は、鋳片の表面割れの程度とした。表面割れの程度は、0、1、2および3の4段階の疵指数に指標化して評価した。前記表2には、鋼の成分組成と併せて疵指数を示した。各疵指数の意味する内容は以下の通りである。
1-2. Test result The evaluation item was the degree of surface cracking of the slab. The degree of surface cracking was evaluated by indexing into four grades of 0, 1, 2, and 3. Table 2 shows the soot index together with the steel component composition. The meaning of each index is as follows.

「0」:鋳片の表面に疵が全く確認されず、鋳片の表面状態は非常に健全であった。
「1」:確認された鋳片の単位長さ当たりの疵の個数が10個/m以下と少なく、かつ確認された疵が、鋳片の表面をグラインダによって最大3mm旋削する軽度の手入れにより容易に除去できる程度の実用上問題ないレベルであった。
「2」:確認された鋳片の単位長さ当たりの疵の個数が30〜40個/mと鋳片全面に疵が散見される状態であり、かつ確認された疵が、鋳片の表面をグラインダで3mm旋削する軽度の手入れによっては完全には除去できないレベルであった。
「3」:鋳片のコーナー部に深さ3mm以上の割れが顕著に観察され、その鋳片を次工程で使用するには、鋳片の幅方向両端を30mm以上切断しなければならず、歩留まりの大幅な低下を伴うレベルの疵であった。
“0”: No flaws were observed on the surface of the slab, and the surface state of the slab was very sound.
“1”: The number of defects per unit length of the confirmed slab is as small as 10 pieces / m or less, and the identified defects are easy to lightly caret by turning the slab surface up to 3 mm with a grinder. However, it was at a level where there was no problem in practical use.
“2”: The number of ridges per unit length of the slab confirmed is 30 to 40 pieces / m, and the stagnation is found on the entire surface of the slab, and the confirmed defects are on the surface of the slab. It was a level that could not be removed completely by light care of turning 3 mm with a grinder.
“3”: A crack having a depth of 3 mm or more is remarkably observed in the corner portion of the slab, and in order to use the slab in the next process, both ends in the width direction of the slab must be cut by 30 mm or more. It was a level of drought accompanied by a significant drop in yield.

表2に示すように、本発明例1〜6は、いずれも疵指数が0または1であり、鋳片の表面品質は、実用上支障のないレベルであった。特に、本発明例3および6は、疵指数が0であり、鋳片の表面に疵が全く確認されず、鋳片の表面状態は非常に健全であった。   As shown in Table 2, all of Examples 1 to 6 of the present invention had a haze index of 0 or 1, and the surface quality of the slab was at a level with no practical problem. In particular, Examples 3 and 6 of the present invention had a wrinkle index of 0, no flaws were observed on the surface of the slab, and the surface state of the slab was very sound.

一方、比較例1〜4は、いずれも疵指数が2または3であり、鋳片の表面品質は、実用上許容できないレベルであった。これは、本発明の規定のうち、上記(a)式の関係を満たさなかったため、鋼中でのBNの生成量が多く、オーステナイト粒界上でBNが析出したためと考えられる。比較例4は、鋼がREMとしてNdを含有しているものの、上記(a)式の関係を満たさなかったため、表面割れが発生したと考えられる。   On the other hand, all of Comparative Examples 1 to 4 had a crack index of 2 or 3, and the surface quality of the cast slab was at an unacceptable level in practice. This is considered to be because the amount of BN produced in the steel was large and BN precipitated on the austenite grain boundaries because the relationship of the above formula (a) was not satisfied among the provisions of the present invention. Although the comparative example 4 did not satisfy | fill the relationship of the said (a) formula, although steel contained Nd as REM, it is thought that the surface crack generate | occur | produced.

比較例1および3は、疵指数が3であり、鋳片全面に疵が散見される状態であるのみならず、鋳片のコーナー部での割れも顕著で、鋳片の幅方向両端を切断しなければ使用できない程度であった。   In Comparative Examples 1 and 3, the hull index is 3, and not only is the state in which wrinkles are scattered all over the slab, but also cracks at the corners of the slab are prominent, and both ends in the width direction of the slab are cut. Otherwise, it could not be used.

図2は、鋳片の([%Ti]+[%REM])と([%B]+[%N])と疵指数との関係を示す図である。同図からわかるように、上記(a)式の関係を満たす場合に疵指数が0または1であり、満たさない場合に疵指数が2または3であった。   FIG. 2 is a diagram showing the relationship between ([% Ti] + [% REM]), ([% B] + [% N]) and the heel index of the slab. As can be seen from the figure, the power index was 0 or 1 when the relationship of the above equation (a) was satisfied, and the power index was 2 or 3 when the relationship was not satisfied.

2.第2試験
2−1.試験方法
使用した溶鋼が表3に示す成分組成のものであること以外は、第1試験と同じ条件とした。同表には、下記(b)式の左辺の値も示した。
[%Sol.Al]/[%REM]≦7 …(b)
ここで、[%Sol.Al]および[%REM]は、それぞれ鋼中のSol.AlおよびREM(ここではNd)の含有率(質量%)である。
2. Second test 2-1. Test method The conditions were the same as those in the first test except that the molten steel used had the composition shown in Table 3. The table also shows the value on the left side of the following equation (b).
[% Sol. Al] / [% REM] ≦ 7 (b)
Here, [% Sol. [Al] and [% REM] are obtained from Sol. It is the content (mass%) of Al and REM (here Nd).

Figure 2015113486
Figure 2015113486

表3に示す本発明例2a〜2eは、いずれもSol.AlおよびNd以外の成分の含有率は前記表2に示す本発明例2と同じであるため、Sol.AlおよびNdのみ含有率を示した。本発明例2a〜2eは、いずれも本発明で規定する成分組成および上記(a)式の関係を満たす本発明例である。   Invention Examples 2a to 2e shown in Table 3 are all Sol. Since the content of components other than Al and Nd is the same as that of Invention Example 2 shown in Table 2 above, Sol. Only the contents of Al and Nd were shown. Inventive Examples 2a to 2e are inventive examples satisfying the relationship between the component composition defined in the present invention and the above formula (a).

このうち、本発明例2a、2bおよび2cは、鋼中のSol.AlおよびREMの含有率が下記(b)式の関係を満足し、本発明例2dおよび2eは満足しなかった。   Of these, Examples 2a, 2b and 2c of the present invention are Sol. The contents of Al and REM satisfied the relationship represented by the following formula (b), and Invention Examples 2d and 2e were not satisfied.

得られた鋳片は、第1試験と同様にカラーチェック法により、鋳片の割れや疵の発生の有無を目視で観察し、その程度を確認した。   The obtained slab was visually observed for the presence or absence of cracks or flaws in the slab by the color check method as in the first test, and the degree thereof was confirmed.

第2試験では、さらに、各鋳片について、鋼中の酸化物系介在物について、成分組成の評価も行った。得られた鋳片の幅方向中央部の表面から厚さ方向に厚さの1/4の位置からサンプルを切り出した。切り出したサンプルを走査型電子顕微鏡で観察し、無作為に酸化物系介在物(酸化物または酸硫化物)を20個抽出した。抽出した酸化物系介在物は、成分組成をEDS(エネルギー分散型X線分析(Energy dispersive X−ray spectrometry))によって分析した。20個の酸化物系介在物のREM(ここではNd)の含有率を、その鋳片内の酸化物系介在物中のREM含有率とした。   In the second test, the composition of each slab was also evaluated for the oxide inclusions in the steel. A sample was cut out from the surface of the center part in the width direction of the obtained slab in the thickness direction at a quarter of the thickness. The cut sample was observed with a scanning electron microscope, and 20 oxide inclusions (oxide or oxysulfide) were randomly extracted. The extracted oxide inclusions were analyzed by EDS (energy dispersive X-ray spectroscopy) for the component composition. The content of REM (here, Nd) of 20 oxide inclusions was defined as the REM content in the oxide inclusions in the slab.

2−2.評価結果
評価項目は、鋳片の表面割れの程度、および鋼中の酸化物系介在物中のNd含有率とした。表面割れの程度は、第1試験と同様に、0、1、2および3の4段階の疵指数に指標化して評価した。前記表3には、鋼の成分組成と併せて疵指数および鋼中の酸化物系介在物中のNd含有率を示した。
2-2. Evaluation results The evaluation items were the degree of surface cracking of the slab and the Nd content in the oxide inclusions in the steel. Similar to the first test, the degree of surface cracking was evaluated by indexing into four grades of 0, 1, 2, and 3. Table 3 shows the N index content and the Nd content in the oxide inclusions in the steel, together with the component composition of the steel.

表3に示すように、本発明例2dおよび2eは、本発明の規定を満たしており、疵指数は1と、鋳片の表面品質が実用上支障のないレベルであった。しかし、軽度ではあるものの、手入れを必要とする疵が確認された。これは、上記(b)式の関係を満たさず、かつ鋼中の酸化物系介在物中のREM含有率が45質量%未満であったため、オーステナイト粒界上でのBNの析出は抑制されたものの、若干析出したためと考えられる。   As shown in Table 3, Examples 2d and 2e of the present invention satisfied the provisions of the present invention, the haze index was 1, and the surface quality of the slab was at a level that did not impede practical use. However, although it was mild, moths that require care were identified. This does not satisfy the relationship of the above formula (b), and the REM content in the oxide inclusions in the steel was less than 45% by mass, so that the precipitation of BN on the austenite grain boundaries was suppressed. However, it is thought that it was slightly precipitated.

一方、本発明例2a〜2cは、いずれも鋳片の表面に疵が全く確認されず、実用上表面の手入れが一切不要であるレベルの表面性状であった。これは、上記(b)式の関係を満たすとともに、鋼中の酸化物系介在物中のNd含有率が45質量%以上であったため、鋳片内の酸化物系介在物の形態がより適正に制御され、この介在物と一体としてBNが析出し、オーステナイト粒界上でのBNの析出がより抑制されたためと考えられる。   On the other hand, Examples 2a to 2c of the present invention all had surface properties at a level where no flaws were confirmed on the surface of the slab and no practical surface maintenance was required. This satisfies the relationship of the above formula (b) and the Nd content in the oxide inclusions in the steel is 45% by mass or more, so that the form of the oxide inclusions in the slab is more appropriate. This is considered to be because BN was precipitated integrally with the inclusions, and the precipitation of BN on the austenite grain boundaries was further suppressed.

本発明のB含有鋼の連続鋳造鋳片は、垂直曲げ型または湾曲型の連続鋳造機を用いて製造する際、表面割れの発生が抑制される。さらに、高い高温延性を有しており、厚鋼板用素材として優れた強度および表面性状を有する。また、表面割れの発生が抑制されているため、手入れが不要または軽度の手入れで表面割れを除去できることから、高い生産効率で生産することが可能である。本発明のB含有鋼の連続鋳造鋳片を素材とし、これを熱間圧延して得られた厚鋼板は、優れた強度および表面性状を有する。   When the continuous cast slab of B-containing steel of the present invention is produced using a vertical bending type or curved type continuous casting machine, the occurrence of surface cracks is suppressed. Furthermore, it has high hot ductility and has excellent strength and surface properties as a material for thick steel plates. In addition, since the occurrence of surface cracks is suppressed, the surface cracks can be removed by unnecessary or light care, and therefore, it is possible to produce with high production efficiency. The steel plate obtained by using the continuous cast slab of the B-containing steel of the present invention as a raw material and hot rolling it has excellent strength and surface properties.

Claims (2)

質量%で、C:0.050〜0.180%、Si:0.10〜0.40%、Mn:0.5〜2.0%、P:0.020%以下、S:0.0030%以下、Ti:0.005〜0.030%、Sol.Al:0.005〜0.060%、B:0.0005〜0.0050%、N:0.0015〜0.0070%、および、希土類元素:0.001〜0.050%を含有し、
さらにCu、Cr、Ni、Mo、V、NbおよびCaのうち少なくとも1種以上をCu:0.1〜0.5%、Cr:0.2〜2.0%、Ni:0.3〜2.5%、Mo:0.1〜0.8%、V:0.01〜0.10%、Nb:0.005〜0.050%およびCa:0.0005〜0.0060%で含有し、
残部がFeおよび不純物からなり、
鋼中のTi、希土類元素、BおよびNの含有率が下記(a)式の関係を満足することを特徴とするB含有鋼の連続鋳造鋳片。
([%Ti]+[%REM])/([%B]+[%N])≧2.5 …(a)
ここで、[%Ti]、[%REM]、[%B]および[%N]は、それぞれ鋼中のTi、希土類元素、BおよびNの含有率(質量%)を意味する。
In mass%, C: 0.050 to 0.180%, Si: 0.10 to 0.40%, Mn: 0.5 to 2.0%, P: 0.020% or less, S: 0.0030 % Or less, Ti: 0.005 to 0.030%, Sol. Al: 0.005-0.060%, B: 0.0005-0.0050%, N: 0.0015-0.0070%, and rare earth elements: 0.001-0.050%,
Further, at least one of Cu, Cr, Ni, Mo, V, Nb and Ca is Cu: 0.1 to 0.5%, Cr: 0.2 to 2.0%, Ni: 0.3 to 2 0.5%, Mo: 0.1-0.8%, V: 0.01-0.10%, Nb: 0.005-0.050% and Ca: 0.0005-0.0060% ,
The balance consists of Fe and impurities,
A continuous cast slab of B-containing steel, wherein the contents of Ti, rare earth elements, B and N in the steel satisfy the relationship of the following formula (a).
([% Ti] + [% REM]) / ([% B] + [% N]) ≧ 2.5 (a)
Here, [% Ti], [% REM], [% B], and [% N] mean the contents (mass%) of Ti, rare earth elements, B, and N in the steel, respectively.
鋼中のSol.Alおよび希土類元素の含有率が下記(b)式の関係を満足し、
鋼中に存在する酸化物系介在物中の希土類元素の含有率が45質量%以上であることを特徴とする請求項1に記載のB含有鋼の連続鋳造鋳片。
[%Sol.Al]/[%REM]≦7 …(b)
ここで、[%Sol.Al]および[%REM]は、それぞれ鋼中のSol.Alおよび希土類元素の含有率(質量%)を意味する。
Sol. The content of Al and rare earth elements satisfies the relationship of the following formula (b):
2. The continuous cast slab of B-containing steel according to claim 1, wherein the content of rare earth elements in the oxide inclusions present in the steel is 45% by mass or more.
[% Sol. Al] / [% REM] ≦ 7 (b)
Here, [% Sol. [Al] and [% REM] are obtained from Sol. It means the content (mass%) of Al and rare earth elements.
JP2013256142A 2013-12-11 2013-12-11 Continuous cast slab of B-containing steel Active JP6534240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013256142A JP6534240B2 (en) 2013-12-11 2013-12-11 Continuous cast slab of B-containing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013256142A JP6534240B2 (en) 2013-12-11 2013-12-11 Continuous cast slab of B-containing steel

Publications (2)

Publication Number Publication Date
JP2015113486A true JP2015113486A (en) 2015-06-22
JP6534240B2 JP6534240B2 (en) 2019-06-26

Family

ID=53527585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013256142A Active JP6534240B2 (en) 2013-12-11 2013-12-11 Continuous cast slab of B-containing steel

Country Status (1)

Country Link
JP (1) JP6534240B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116445826A (en) * 2022-01-07 2023-07-18 宝山钢铁股份有限公司 Low-alloy high-strength steel plate for pressure-bearing container and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620119A (en) * 1979-07-26 1981-02-25 Sumitomo Metal Ind Ltd Preventing method for formation of surface crack in continuously cast billet
JPS5680367A (en) * 1979-12-06 1981-07-01 Nippon Steel Corp Restraining method of cracking in b-containing steel continuous casting ingot
JPS6067621A (en) * 1983-09-22 1985-04-18 Kawasaki Steel Corp Preparation of non-refining high tensile steel
JPH03169455A (en) * 1989-11-29 1991-07-23 Kawasaki Steel Corp Production of continuously cast slab having excellent high temperature deformability
JPH11256270A (en) * 1998-03-13 1999-09-21 Kobe Steel Ltd High tensile strength steel plate excellent in toughness in base material and large heat input weld heat-affected zone, and its production
JP2002020836A (en) * 2000-04-28 2002-01-23 Sumitomo Metal Ind Ltd Slab, thin steel sheet and their production method
JP2005015859A (en) * 2003-06-26 2005-01-20 Sumitomo Metal Ind Ltd High-strength steel sheet having excellent weldability, method for manufacturing the same, and welded steel structure
JP2007254828A (en) * 2006-03-23 2007-10-04 Nippon Steel Corp Steel sheet having excellent surface cracking resistance upon hot rolling and its production method
JP2010280976A (en) * 2009-06-08 2010-12-16 Jfe Steel Corp Low yield ratio high tensile strength thick steel plate having excellent toughness in super-large heat input weld heat-affected zone and method for producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620119A (en) * 1979-07-26 1981-02-25 Sumitomo Metal Ind Ltd Preventing method for formation of surface crack in continuously cast billet
JPS5680367A (en) * 1979-12-06 1981-07-01 Nippon Steel Corp Restraining method of cracking in b-containing steel continuous casting ingot
JPS6067621A (en) * 1983-09-22 1985-04-18 Kawasaki Steel Corp Preparation of non-refining high tensile steel
JPH03169455A (en) * 1989-11-29 1991-07-23 Kawasaki Steel Corp Production of continuously cast slab having excellent high temperature deformability
JPH11256270A (en) * 1998-03-13 1999-09-21 Kobe Steel Ltd High tensile strength steel plate excellent in toughness in base material and large heat input weld heat-affected zone, and its production
JP2002020836A (en) * 2000-04-28 2002-01-23 Sumitomo Metal Ind Ltd Slab, thin steel sheet and their production method
JP2005015859A (en) * 2003-06-26 2005-01-20 Sumitomo Metal Ind Ltd High-strength steel sheet having excellent weldability, method for manufacturing the same, and welded steel structure
JP2007254828A (en) * 2006-03-23 2007-10-04 Nippon Steel Corp Steel sheet having excellent surface cracking resistance upon hot rolling and its production method
JP2010280976A (en) * 2009-06-08 2010-12-16 Jfe Steel Corp Low yield ratio high tensile strength thick steel plate having excellent toughness in super-large heat input weld heat-affected zone and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116445826A (en) * 2022-01-07 2023-07-18 宝山钢铁股份有限公司 Low-alloy high-strength steel plate for pressure-bearing container and manufacturing method thereof

Also Published As

Publication number Publication date
JP6534240B2 (en) 2019-06-26

Similar Documents

Publication Publication Date Title
JP6418358B1 (en) High Mn steel sheet and method for producing the same
US10876182B2 (en) High-strength seamless steel pipe for oil country tubular goods and method of producing the same
JP5943164B1 (en) High strength seamless steel pipe for oil well and method for producing the same
JP5930140B1 (en) High strength seamless steel pipe for oil well and method for producing the same
US9834931B2 (en) H-section steel and method of producing the same
WO2017110027A1 (en) High strength seamless stainless steel pipe for oil wells and manufacturing method therefor
JP6856129B2 (en) Manufacturing method of high Mn steel
JP6954475B2 (en) High Mn steel and its manufacturing method
JP6951060B2 (en) Manufacturing method of slabs
JP6131833B2 (en) Method for continuous casting of Ti deoxidized steel
JP6551632B1 (en) Low alloy high strength seamless steel pipe for oil well
CA3032083C (en) Seamless steel pipe and method for producing same
JP6128297B1 (en) High strength seamless steel pipe for oil well and method for producing the same
JP6795083B2 (en) Steel plate and its manufacturing method
JP2017057483A (en) H-shaped steel and production method therefor
JP6631702B2 (en) High-strength steel sheet with excellent low-temperature toughness
JP7088235B2 (en) Wear-resistant steel sheet and its manufacturing method
JP7063401B2 (en) Manufacturing method of high manganese steel slab and manufacturing method of high manganese steel slab or steel plate
JP6534240B2 (en) Continuous cast slab of B-containing steel
JP2000104116A (en) Production of steel excellent in strength and toughness
JP2003342670A (en) Non-heat treated high tensile steel having excellent toughness
JP5821792B2 (en) Method for producing continuous cast slab of steel containing B and method for continuous casting
JP2021066940A (en) Wear-resistant steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180412

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180419

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20180608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190528

R150 Certificate of patent or registration of utility model

Ref document number: 6534240

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150