JP6551632B1 - Low alloy high strength seamless steel pipe for oil well - Google Patents

Low alloy high strength seamless steel pipe for oil well Download PDF

Info

Publication number
JP6551632B1
JP6551632B1 JP2019514056A JP2019514056A JP6551632B1 JP 6551632 B1 JP6551632 B1 JP 6551632B1 JP 2019514056 A JP2019514056 A JP 2019514056A JP 2019514056 A JP2019514056 A JP 2019514056A JP 6551632 B1 JP6551632 B1 JP 6551632B1
Authority
JP
Japan
Prior art keywords
cao
less
mgo
steel pipe
ssc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019514056A
Other languages
Japanese (ja)
Other versions
JPWO2019131035A1 (en
Inventor
岡津 光浩
光浩 岡津
正雄 柚賀
正雄 柚賀
陽一 伊藤
陽一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Application granted granted Critical
Publication of JP6551632B1 publication Critical patent/JP6551632B1/en
Publication of JPWO2019131035A1 publication Critical patent/JPWO2019131035A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/10Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

特定の合金組成を有するとともに、組成比が下記(1)式および(2)式を満足する長径5μm以上のCaO、Al2O3、MgOを含む酸化物系の鋼中非金属介在物の個数が100mm2当り5個以下であり、組成比が下記(3)式および(4)式を満足する長径5μm以上のCaO、Al2O3、MgOを含む酸化物系の鋼中非金属介在物の個数が100mm2当り20個以下である、降伏強度862MPa以上の高強度を有しつつ、より高い硫化水素ガス飽和環境下における優れた耐SSC性を有する油井用低合金高強度継目無鋼管。(CaO)/(Al2O3)≦0.25 (1)1.0≦(Al2O3)/(MgO)≦9.0 (2)(CaO)/(Al2O3)≧2.33 (3)(CaO)/(MgO)≧1.0 (4)ここで(CaO)、(Al2O3)、(MgO)はそれぞれ酸化物系の鋼中非金属介在物中の、CaO、Al2O3、MgOの質量%である。The number of non-metallic inclusions in the oxide-based steel containing CaO, Al 2 O 3 and MgO having a specific alloy composition and satisfying the following formulas (1) and (2) and having a major axis of 5 μm or more per 100 mm 2 The number of non-metallic inclusions in the oxide-based steel containing CaO, Al 2 O 3 and MgO having a major axis of 5 μm or more satisfying the following formulas (3) and (4) with a composition ratio of 5 or less is 20 per 100 mm 2. A low-alloy high-strength seamless steel pipe for oil wells having excellent SSC resistance in a higher hydrogen sulfide gas saturation environment while having a high strength of 862 MPa or more, which is the following. (CaO) / (Al2O3) ≦ 0.25 (1) 1.0 ≦ (Al2O3) / (MgO) ≦ 9.0 (2) (CaO) / (Al2O3) ≧ 2.33 (3) (CaO) / (MgO) ≧ 1.0 (4) Here, (CaO), (Al 2 O 3), and (MgO) are the mass% of CaO, Al 2 O 3, and MgO in the non-metallic inclusions in the oxide steel, respectively.

Description

本発明は、油井やガス井用(以下、単に油井とも記す。)の高強度継目無鋼管であって、特に硫化水素を含むサワー環境下における耐硫化物応力腐食割れ(SSC)に優れた油井用低合金高強度継目無鋼管に関する。なお、ここでいう「高強度」とは、降伏強度が862MPa以上(125ksi以上)の強度を有する場合をいうものとする。   The present invention is a high-strength seamless steel pipe for oil wells and gas wells (hereinafter, also simply referred to as oil wells), and particularly an oil well excellent in sulfide stress corrosion cracking (SSC) in a sour environment containing hydrogen sulfide. This invention relates to low alloy high strength seamless steel pipe. Here, “high strength” refers to the case where the yield strength is 862 MPa or more (125 ksi or more).

近年、原油価格の高騰や、近い将来に予想される石油資源の枯渇という観点から、従来では省みられなかったような高深度の油田や、硫化水素等を含む、いわゆるサワー環境下にある厳しい腐食環境の油田やガス田等の開発が盛んになっている。このような環境下で使用される油井用鋼管には、高強度で、かつ優れた耐食性(耐サワー性)を兼ね備えた材質を有することが要求される。   In recent years, from the viewpoint of soaring crude oil prices and the depletion of oil resources expected in the near future, the sour environment is so severe that it includes deep oil fields and hydrogen sulfide that were not previously excluded. Development of oil fields and gas fields, etc. in corrosive environment has become popular. A steel pipe for oil wells used under such an environment is required to have a material that has high strength and excellent corrosion resistance (sourcing resistance).

このような要求に対し、例えば、特許文献1には、重量%で、C:0.15〜0.30%、Si:0.05〜0.5%、Mn:0.05〜1%、Al:0.005〜0.5%、Cr:0.2〜1.5%、Mo:0.1〜1%、V:0.05〜0.3%、およびNb:0.003〜0.1%を含有し、残部はFeおよび不可避不純物からなり、不純物として、Pが0.025%以下、Sが0.01%以下、Nが0.01%以下、O(酸素)が0.01%以下である低合金からなり、析出している炭化物の総量が1.5〜4質量%であり、炭化物の総量に占めるMC炭化物の割合が5〜45質量%、M23炭化物の割合が製品の肉厚をt(mm)としたとき(200/t)質量%以下とすることで、靭性と耐硫化物応力腐食割れに優れる油井用鋼が開示されている。To such a demand, for example, in Patent Document 1, C: 0.15 to 0.30%, Si: 0.05 to 0.5%, Mn: 0.05 to 1% by weight%. Al: 0.005-0.5%, Cr: 0.2-1.5%, Mo: 0.1-1%, V: 0.05-0.3%, and Nb: 0.003-0 The balance contains Fe and unavoidable impurities, and as impurities, P is not more than 0.025%, S is not more than 0.01%, N is not more than 0.01%, O (oxygen) is not more than 0. It is made of a low alloy of not more than 01%, the total amount of precipitated carbides is 1.5 to 4% by mass, the proportion of MC carbides in the total amount of carbides is 5 to 45% by mass, M 23 C 6 carbides An oil well with excellent toughness and resistance to sulfide stress corrosion cracking by setting the product thickness to t (mm) (200 / t) or less by mass. Steel for use is disclosed.

また、特許文献2には、質量%で、C:0.22〜0.35%、Si:0.05〜0.5%、Mn:0.1〜1%、P:0.025%以下、S:0.01%以下、Cr:0.1〜1.08%、Mo:0.1〜1%、Al:0.005〜0.1%、B:0.0001〜0.01%、N:0.005%以下、O(酸素):0.01%以下、Ni:0.1%以下、Ti:0.001〜0.03%、でかつ、0.00008/N%以下、V:0〜0.5%、Zr:0〜0.1%、Ca:0〜0.01%を含み、残部はFeおよび不純物を含み、かつ直径5μm以上のTiNの数が断面1mm当たり10個以下とすることで、降伏強度が758〜862MPaでありかつ割れ発生限界応力(σth)が鋼材の規格最小強度(SMYS)の85%以上である耐硫化物応力腐食割れ性に優れた鋼管が開示されている。Further, in Patent Document 2, C: 0.22 to 0.35%, Si: 0.05 to 0.5%, Mn: 0.1 to 1%, P: 0.025% or less by mass%. S: 0.01% or less, Cr: 0.1 to 1.08%, Mo: 0.1 to 1%, Al: 0.005 to 0.1%, B: 0.0001 to 0.01% N: 0.005% or less, O (oxygen): 0.01% or less, Ni: 0.1% or less, Ti: 0.001 to 0.03%, and 0.00008 / N% or less V: 0 to 0.5%, Zr: 0 to 0.1%, Ca: 0 to 0.01%, the balance contains Fe and impurities, and the number of TiN having a diameter of 5 μm or more per 1 mm 2 cross section By setting the number to 10 or less, the yield strength is 758 to 862 MPa and the crack initiation limit stress (σth) is 85% or more of the standard minimum strength (SMYS) of the steel material. Steel pipe excellent in sulfide stress corrosion cracking resistance is disclosed.

一方、特許文献3には、質量%で、C:0.2〜0.35%、Si:0.05〜0.5%、Mn:0.05〜1.0%、P:0.025%以下、S:0.01%以下、Al:0.005〜0.10%、Cr:0.1〜1.0%、Mo:0.5〜1.0%、Ti:0.002〜0.05%、V:0.05〜0.3%、B:0.0001〜0.005%、N:0.01%以下、O:0.01%以下を含有する鋼の[211]面半価幅と水素拡散係数からなる式を所定の値に規定することで、耐硫化物応力腐食割れ性に優れた、降伏強度861MPa以上の低合金油井管用鋼が開示されている。   On the other hand, in Patent Document 3, C: 0.2 to 0.35%, Si: 0.05 to 0.5%, Mn: 0.05 to 1.0%, P: 0.025 by mass%. %: S: 0.01% or less, Al: 0.005-0.10%, Cr: 0.1-1.0%, Mo: 0.5-1.0%, Ti: 0.002- [211] of steel containing 0.05%, V: 0.05 to 0.3%, B: 0.0001 to 0.005%, N: 0.01% or less, O: 0.01% or less A steel for low-alloy oil country tubular goods having a yield strength of 861 MPa or more, which is excellent in sulfide stress corrosion cracking resistance, is disclosed by prescribing a formula consisting of a half-value width and a hydrogen diffusion coefficient to a predetermined value.

特開2000−297344号公報JP, 2000-297344, A 特開2001−131698号公報JP 2001-131698 A 特開2005−350754号公報JP 2005-350754 A

これらの特許文献1〜3に開示された技術の鋼の耐硫化物応力腐食割れ性とは、NACE(National Association of Corrosion Engineeringの略)TM0177 method Aに規定されている、丸棒引張試験片を硫化水素ガス飽和した試験浴中で一定応力を負荷したまま720時間浸漬した際のSSC発生の有無を意味している。   The sulfide stress corrosion cracking resistance of the steel of the technology disclosed in these Patent Documents 1 to 3 refers to a round bar tensile test specimen defined in NACE (abbreviation of National Association of Corrosion Engineering) TM0177 method A. It means the presence or absence of SSC when immersed for 720 hours in a test bath saturated with hydrogen sulfide gas under constant stress.

ここで、特許文献1については、試験浴として、0.05気圧(=0.005MPa)の硫化水素を飽和させた25℃の0.5%酢酸+5%食塩水溶液を用いてSSC試験の評価を行っている。また、特許文献2については、試験浴を25℃の0.5%酢酸+5%食塩水溶液として、硫化水素の分圧がC110は1気圧(=0.1MPa)、C125−C140は1気圧での試験は苛酷なことから0.1気圧(=0.01MPa)でSSC試験の評価を行っている。さらに、特許文献3については、試験浴として、0.1atm(=0.01MPa)の硫化水素ガス(炭酸ガスバランス)を飽和させた常温の5質量%の食塩+0.5質量%の酢酸水溶液(以下「A浴」という。)と、1atm(=0.1MPa)の硫化水素ガス(炭酸ガスバランス)を飽和させた常温の5質量%の食塩+0.5質量%の酢酸水溶液(以下「B浴」という。)を用いてSSC試験の評価を行っている。特に、特許文献3の表4の実施例においては、降伏強度944MPa以上の鋼は全て「A浴」でのSSC試験の評価を行っている。このように、特に降伏強度が862MPa以上の鋼は、硫化水素ガスの分圧が1気圧(=0.1MPa)での試験は苛酷として、0.05気圧(=0.005MPa)あるいは0.1気圧(=0.01MPa)の硫化水素ガスを飽和させた試験浴でのSSC試験の合格を目標としていた。しかしながら、昨今の油井やガス井用の硫化水素環境が苛酷化し、より厳しい0.2気圧(=0.02MPa)の硫化水素ガスが飽和した環境での高強度な油井用鋼管の耐硫化物応力腐食割れ性が求められており、上記先行技術ではいずれも不十分である。   Here, with respect to Patent Document 1, evaluation of the SSC test is performed using a 0.5% acetic acid + 5% saline aqueous solution at 25 ° C. saturated with hydrogen sulfide at 0.05 atm (= 0.005 MPa) as a test bath. Is going. Moreover, about patent document 2, the partial pressure of hydrogen sulfide is made into 1 atm (= 0.1 MPa) of C110, and C125-C140 is 1 at 1 atmospheric pressure by making a test bath into 25 degreeC 0.5% acetic acid + 5% salt solution. Since the test is severe, the SSC test is evaluated at 0.1 atm (= 0.01 MPa). Furthermore, about patent document 3, 5 mass% salt + 0.5 mass% acetic acid aqueous solution of normal temperature which saturated the hydrogen sulfide gas (carbonic acid gas balance) of 0.1 atm (= 0.01MPa) as a test bath Hereinafter referred to as "bath A") and 5 mass% of sodium chloride + 0.5 mass% of acetic acid aqueous solution (hereinafter referred to as "B bath") saturated with hydrogen sulfide gas (carbon dioxide gas balance) of 1 atm (= 0.1 MPa) The evaluation of the SSC test is carried out using In particular, in the example of Table 4 of Patent Document 3, all steels having a yield strength of 944 MPa or more are evaluated for the SSC test in the “A bath”. As described above, particularly in the case of steel having a yield strength of 862 MPa or more, the test at a partial pressure of hydrogen sulfide gas of 1 atm (= 0.1 MPa) is severe, and 0.05 atm (= 0.005 MPa) or 0.1 The aim was to pass the SSC test in a test bath saturated with hydrogen sulfide gas at atmospheric pressure (= 0.01 MPa). However, the hydrogen sulfide environment for oil wells and gas wells in recent years has become harsh, and the sulfide resistance stress of high-strength steel pipes for oil wells in an environment saturated with more severe 0.2 atm (= 0.02 MPa) hydrogen sulfide gas. Corrosion cracking resistance is required, and none of the above prior art is sufficient.

本発明は、このような問題点に鑑みてなされたものであり、降伏強度862MPa以上の高強度を有しつつ、より高い硫化水素ガス飽和環境、具体的には硫化水素ガス分圧0.02MPa以下のサワー環境下における優れた耐硫化物応力腐食割れ性(耐SSC性)を有する油井用低合金高強度継目無鋼管を提供することを目的とする。   The present invention has been made in view of such problems, and has a high yield strength of 862 MPa or more and a higher hydrogen sulfide gas saturation environment, specifically, a hydrogen sulfide gas partial pressure of 0.02 MPa. An object of the present invention is to provide a low alloy high strength seamless steel pipe for oil wells having excellent sulfide stress corrosion cracking resistance (SSC resistance) under the following sour environment.

本発明者等は、上述の課題を解決するため、最初に、種々の化学組成を有する降伏強度が862MPa以上の継目無鋼管に対して、NACE TM0177 method Aにもとづいて、SSC試験を行った。なお、試験浴としては0.1気圧(=0.01MPa)、および0.2気圧(=0.02MPa)の硫化水素ガスを飽和させた2種類の24℃の0.5質量%CHCOOHとCHCOONaとの混合水溶液を用いた。なお、試験浴のpHはそれぞれの硫化水素ガスの飽和終了時点で3.5となるように調整した。また、SSC試験における試験応力は、それぞれの鋼管の実降伏強度の90%とした。さらに、SSC試験の試験本数は鋼管ごとに3本ずつ実施した。実施したSSC試験の各3本の破断時間の平均を、それぞれの鋼管の降伏強度で整理したグラフを図1に示す。図1において、縦軸はSSC試験の各3本の破断時間の平均(hr)であり、横軸は鋼管の降伏強度YS(MPa)である。In order to solve the above-mentioned problems, the present inventors first performed an SSC test on a seamless steel pipe having various chemical compositions and a yield strength of 862 MPa or more based on NACE TM0177 method A. Incidentally, 0.1 atm as a test bath (= 0.01 MPa), and 0.2 atm (= 0.02 MPa) 2 kinds saturated with hydrogen sulfide gas for 24 ° C. of 0.5 wt% CH 3 COOH And a mixed aqueous solution of CH 3 COONa was used. The pH of the test bath was adjusted to 3.5 at the end of saturation of each hydrogen sulfide gas. The test stress in the SSC test was 90% of the actual yield strength of each steel pipe. Furthermore, the number of SSC tests was three for each steel pipe. FIG. 1 shows a graph in which the average of the three break times of the SSC test performed is arranged by the yield strength of each steel pipe. In FIG. 1, the vertical axis is the average (hr) of the breaking time of each of the three SSC tests, and the horizontal axis is the yield strength YS (MPa) of the steel pipe.

図1中、中空のプロット(○、△、□のプロットを使用)は、0.01MPaの硫化水素ガス飽和条件でのSSC試験結果を示す。この試験条件においては、鋼の降伏強度が863MPaから933MPaの範囲において、いずれの鋼管も3本試験中3本とも720時間時点で破断しなかった(○、△、□の各プロット)。一方、図1中、中実のプロット(●、▲、■のプロットを使用)は、0.02MPaの硫化水素ガス飽和条件でのSSC試験結果を示す。こちらの試験条件においては、鋼の降伏強度によらず、3本試験中3本が720時間時点で破断しなかったもの(●プロット)、3本中1本以上あるいは3本共破断し、かつ破断時間の3本平均がおよそ400時間以上720時間未満のもの(▲プロット)、および3本中3本共破断し、かつ破断時間の3本平均がおよそ400時間未満のもの(■プロット)に分かれることを見出した。   In FIG. 1, hollow plots (using plots of ◯, Δ, □) indicate SSC test results under a hydrogen sulfide gas saturation condition of 0.01 MPa. Under these test conditions, when the yield strength of the steel was in the range of 863 MPa to 933 MPa, none of the three steel pipes broke at the time of 720 hours during the three tests (each plot of ◯, Δ, □). On the other hand, in FIG. 1, the solid plots (using the plots ●, ▲, and ■) show the results of the SSC test under the hydrogen sulfide gas saturation condition of 0.02 MPa. Under these test conditions, regardless of the yield strength of the steel, three of the three tests did not break at 720 hours (● plot), one or more of the three or three of them broke, and When the average of the three break times is about 400 hours or more and less than 720 hours (▲ plot), and when three of the three breaks together, the average of the three break times is less than about 400 hours (■ plot) I found it to be divided.

そこで、これらSSC試験結果の違いについて発明者らは鋭意研究を重ねた。その結果、破断時間平均が400時間以上720時間未満のもの(▲プロット)と400時間未満のもの(■プロット)では、SSCの発生位置が異なることを見出した。具体的には、破断試験片の破面観察により、破断時間平均が400時間以上720時間未満のもの(▲プロット)は試験片表面からSSCが発生しており、破断時間平均が400時間未満のもの(■プロット)は試験片内部からSSCが発生していた。   Therefore, the inventors diligently conducted researches on the difference between these SSC test results. As a result, it was found that the occurrence position of SSC was different between those having an average rupture time of 400 hours or more and less than 720 hours (▲ plot) and those having less than 400 hours (■ plot). Specifically, by observing the fracture surface of the fracture test piece, those with an average fracture time of 400 hours or more and less than 720 hours (▲ plot), SSC occurred from the surface of the specimen, and the average fracture time was less than 400 hours. As for the thing (■ plot), SSC was generated from the inside of the test piece.

これらの結果を受けて、発明者らはさらなる研究を重ね、鋼中の介在物分布の違いによって、これらのSSC発生挙動が変わることを見出した。具体的には、SSC試験片を採取したパイプの近傍より、SSC試験片を採取した肉厚位置において鋼管長手方向断面で15mm×15mmの検鏡面の観察サンプルを採取し、鏡面研磨を実施した。その後、走査型電子顕微鏡(SEM)にて10mm×10mmの領域について介在物のSEM観察、およびSEMに付随する特性X線分析装置にて介在物の化学組成を分析し、その質量%を算出した。その結果、長径が5μm以上の介在物のほとんどがAl、CaO、MgOを含む酸化物であり、かつAl、CaO、MgOの3元組成図にそれぞれの質量比をプロットすると、上述のSSC発生挙動の違いによって酸化物組成が異なることを見出した。Based on these results, the inventors conducted further studies and found that differences in the distribution of inclusions in the steel change the behavior of these SSCs. Specifically, from the vicinity of the pipe from which the SSC test piece was taken, an observation sample of a 15 mm × 15 mm inspection surface was taken at a cross section in the longitudinal direction of the steel pipe at the thickness position where the SSC test piece was taken. After that, SEM observation of inclusions in a region of 10 mm × 10 mm with a scanning electron microscope (SEM) and the chemical composition of the inclusions were analyzed with a characteristic X-ray analyzer accompanying the SEM, and the mass% was calculated. . As a result, most of the major axis 5μm or more inclusions Al 2 O 3, CaO, an oxide containing MgO, and Al 2 O 3, CaO, when plotting the respective mass ratio ternary composition diagram of the MgO It has been found that the oxide composition differs depending on the difference in SSC generation behavior described above.

図2には、図1において破断時間平均が400時間以上720時間未満であった鋼管における長径が5μm以上の介在物のAl、CaO、MgOの3元組成図の一例を示す。図2に示すように、CaO比が比較的小さいAl‐MgO複合介在物の数が非常に多い。一方、図3には、図1において破断時間平均が400時間未満であった鋼管における長径が5μm以上の介在物のAl、CaO、MgOの3元組成図の一例を示す。図3に示すように、図2とは対照的に、CaO比が大きいCaO‐Al‐MgO複合介在物の数が非常に多い。さらに、図4には、図1において720時間で3本試験中3本共破断しなかった鋼管における長径が5μm以上の介在物のAl、CaO、MgOの3元組成図の一例を示す。図4に示すように、図2、図3と比較して、CaO比が小さい介在物、およびCaO比が大きい介在物の両方の数が少なくなっていることがわかる。FIG. 2 shows an example of a ternary composition diagram of Al 2 O 3 , CaO, and MgO of inclusions having a major axis of 5 μm or more in a steel pipe whose average fracture time is 400 hours or more and less than 720 hours in FIG. As shown in FIG. 2, the number of Al 2 O 3 -MgO composite inclusions having a relatively small CaO ratio is very large. On the other hand, FIG. 3 shows an example of a ternary composition diagram of Al 2 O 3 , CaO, and MgO of inclusions having a major axis of 5 μm or more in the steel pipe whose fracture time average was less than 400 hours in FIG. As shown in FIG. 3, in contrast to FIG. 2, the number of CaO-Al 2 O 3 -MgO composite inclusions having a large CaO ratio is very large. Furthermore, FIG. 4 shows an example of a ternary composition diagram of Al 2 O 3 , CaO, and MgO of inclusions having a major axis of 5 μm or more in a steel pipe in which three tubes did not break in 720 hours in FIG. Show. As shown in FIG. 4, it can be seen that the number of inclusions having a small CaO ratio and inclusions having a large CaO ratio is reduced as compared with FIGS. 2 and 3.

以上のことから、破断時間平均が400時間以上720時間未満で、試験片の表面からSSCが発生した鋼管に多く存在した介在物組成、および破断時間平均が400時間未満で、試験片の内部からSSCが発生した鋼管に多く存在した介在物組成の範囲をそれぞれ導出し、SSCが720時間で発生しなかった鋼管におけるそれらの介在物組成となっている介在物の個数との対比から、問題となる介在物の個数の上限を明らかにした。   From the above, the inclusion time composition having a fracture time average of 400 hours or more and less than 720 hours, a large amount of inclusions present in the steel pipe where SSC was generated from the surface of the test piece, and the break time average of less than 400 hours, From the comparison with the number of inclusions in the steel pipe in which SSC did not occur in 720 hours, and the number of inclusions in those inclusion compositions in the steel pipe where SSC did not occur in 720 hours, The upper limit of the number of inclusions

本発明は、これらの知見に基づいて完成されたものであり、下記の要旨からなる。
[1] 質量%で、C:0.25〜0.50%、Si:0.01〜0.40%、Mn:0.45〜0.90%、P:0.010%以下、S:0.001%以下、O:0.0015%以下、Al:0.015〜0.080%、Cu:0.02〜0.09%、Cr:0.9〜1.5%、Mo:1.4〜2.0%、Nb:0.005〜0.05%、B:0.0005〜0.0040%、Ca:0.0010〜0.0020%、Mg:0.001%以下、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成を有し、組織は、組成比が下記(1)式および(2)式を満足する長径5μm以上のCaO、Al、MgOを含む酸化物系の鋼中非金属介在物の個数が100mm当り5個以下、組成比が下記(3)式および(4)式を満足する長径5μm以上のCaO、Al、MgOを含む酸化物系の鋼中非金属介在物の個数が100mm当り20個以下であり、降伏強度が862MPa以上である油井用低合金高強度継目無鋼管。
(CaO)/(Al)≦0.25 (1)
1.0≦(Al)/(MgO)≦9.0 (2)
(CaO)/(Al)≧2.33 (3)
(CaO)/(MgO)≧1.0 (4)
ここで(CaO)、(Al)、(MgO)はそれぞれ酸化物系の鋼中非金属介在物中の、CaO、Al、MgOの質量%である。
[2] 前記組成に加えてさらに、質量%で、V:0.02〜0.3%、W:0.03〜0.2%、Ta:0.03〜0.3%のうちから選ばれた1種または2種以上を含有する上記[1]に記載の油井用低合金高強度継目無鋼管。
[3] 前記組成に加えてさらに、質量%で、Ti:0.003〜0.050%、Zr:0.005〜0.10%のうちから選ばれた1種または2種を含有する上記[1]または[2]に記載の油井用低合金高強度継目無鋼管。
The present invention has been completed based on these findings and comprises the following gist.
[1] In mass%, C: 0.25 to 0.50%, Si: 0.01 to 0.40%, Mn: 0.45 to 0.90%, P: 0.010% or less, S: 0.001% or less, O: 0.0015% or less, Al: 0.015 to 0.080%, Cu: 0.02 to 0.09%, Cr: 0.9 to 1.5%, Mo: 1 .4 to 2.0%, Nb: 0.005 to 0.05%, B: 0.0005 to 0.0040%, Ca: 0.0010 to 0.0020%, Mg: 0.001% or less, N : 0.005% or less of CaO, Al 2 having a composition comprising the balance Fe and inevitable impurities, and having a compositional ratio satisfying the following formulas (1) and (2) of 5 μm or more in major axis O 3, the number of oxide-based steel in non-metallic inclusions containing MgO is 100 mm 2 per 5 or less, the composition ratio of the following equation (3) and 4) more than the major diameter 5μm satisfying the formula CaO, Al 2 O 3, the number of oxide-based steel in non-metallic inclusions containing MgO is at 100 mm 2 per 20 or less, oil wells yield strength is not less than 862MPa Low alloy high strength seamless steel pipe for use.
(CaO) / (Al 2 O 3 ) ≦ 0.25 (1)
1.0 ≦ (Al 2 O 3 ) / (MgO) ≦ 9.0 (2)
(CaO) / (Al 2 O 3 ) ≧ 2.33 (3)
(CaO) / (MgO) ≧ 1.0 (4)
Here, (CaO), (Al 2 O 3 ) and (MgO) are mass% of CaO, Al 2 O 3 and MgO in non-metallic inclusions in oxide-based steel, respectively.
[2] In addition to the above-mentioned composition, it is further selected by mass% from V: 0.02 to 0.3%, W: 0.03 to 0.2%, Ta: 0.03 to 0.3% The low-alloy high-strength seamless steel pipe for oil wells according to the above [1], which contains one or two or more kinds.
[3] In addition to the above composition, the composition further contains one or two kinds selected from Ti: 0.003 to 0.050% and Zr: 0.005 to 0.10% by mass%. The low alloy high strength seamless steel pipe for oil wells according to [1] or [2].

なお、ここでいう「高強度」とは、降伏強度が862MPa以上(125ksi以上)の強度を有することを指す。
また、本発明において、耐硫化物応力腐食割れ性(耐SSC性)に優れるとは、NACE TM0177 methodAにもとづくSSC試験であって、特に0.2気圧(=0.02MPa)の硫化水素ガスを飽和させた24℃の0.5質量%CHCOOHとCHCOONaとの混合水溶液を試験浴としたSSC試験を各3本ずつ試験し、そのいずれもが破断時間が720時間以上であることを指す。
また、本発明において、CaO、Al、MgOを含む酸化物系とは、鋼中のMnS等の形態制御等の目的で添加されるCaと溶鋼中に含まれるOとの反応で生成されるCaO、および、転炉法等で精錬された溶鋼を取鍋に出鋼する際、あるいは出鋼後に添加される脱酸材のAlと溶鋼中に含まれるOとの反応で生成されるAl、さらには、溶鋼の脱硫処理中に、取鍋のMgO‐C組成の耐火物と、脱硫のために用いられるCaO‐Al‐SiO系スラグとの反応で、溶鋼中に溶出したMgO、といった酸化物が連続鋳造法あるいは造塊法などの鋳造時に凝集・複合したまま凝固後の鋼中に残存したものを意味する。
In addition, "high strength" here refers to having the strength whose yield strength is 862 Mpa or more (125 ksi or more).
In the present invention, excellent resistance to sulfide stress corrosion cracking (SSC resistance) is an SSC test based on NACE TM0177 methodA, and in particular, hydrogen sulfide gas at 0.2 atm (= 0.02 MPa) is used. Three SSC tests each using a saturated aqueous solution of 0.5% by mass CH 3 COOH and CH 3 COONa at 24 ° C as test baths, all of which have a break time of 720 hours or more. Point to
In the present invention, the oxide system containing CaO, Al 2 O 3 and MgO is formed by the reaction between Ca added for the purpose of shape control of MnS in steel and the like and O contained in molten steel. CaO, and when the molten steel refined by a converter method or the like is taken out into a ladle, or is generated by the reaction of deoxidized material Al added in the molten steel with O contained in the molten steel The reaction between Al 2 O 3 and also the refractory of the MgO-C composition of the ladle and the CaO-Al 2 O 3 -SiO 2 -based slag used for desulfurization during the desulfurization treatment of molten steel, the molten steel It refers to what remains in the steel after solidification as oxides such as MgO which has been dissolved in during aggregation and combination during casting such as continuous casting or ingot casting.

本発明によれば、降伏強度862MPa以上の高強度を有しつつ、より高い硫化水素ガス飽和環境、具体的には硫化水素ガス分圧0.02MPa以下のサワー環境下における優れた耐硫化物応力腐食割れ性(耐SSC性)を示す油井用低合金高強度継目無鋼管を提供することができる。   According to the present invention, excellent sulfide stress in a higher hydrogen sulfide gas saturation environment, specifically, a sour environment with a hydrogen sulfide gas partial pressure of 0.02 MPa or less, while having a high yield strength of 862 MPa or more. A low-alloy high-strength seamless steel pipe for oil wells exhibiting corrosion cracking resistance (SSC resistance) can be provided.

図1は、鋼管の降伏強度とSSC試験3本分の平均破断時間のグラフである。FIG. 1 is a graph of the yield strength of a steel pipe and the average breaking time of three SSC tests. 図2は、SSC試験において破断時間平均が400時間以上720時間未満であった鋼管における長径が5μm以上の介在物のAl、CaO、MgOの3元組成図の一例である。FIG. 2 is an example of a ternary composition diagram of Al 2 O 3 , CaO, and MgO of inclusions having a major axis of 5 μm or more in a steel pipe whose break time average was 400 hours or more and less than 720 hours in the SSC test. 図3は、SSC試験において破断時間平均が400時間未満であった鋼管における長径が5μm以上の介在物のAl、CaO、MgOの3元組成図の一例である。FIG. 3 is an example of a ternary composition diagram of Al 2 O 3 , CaO, and MgO of inclusions having a major axis of 5 μm or more in a steel pipe whose break time average was less than 400 hours in the SSC test. 図4は、SSC試験において720時間で3本試験中3本共破断しなかった鋼管における長径が5μm以上の介在物のAl、CaO、MgOの3元組成図の一例である。FIG. 4 is an example of a ternary composition diagram of Al 2 O 3 , CaO, and MgO of inclusions having a major axis of 5 μm or more in a steel pipe in which three triple fractures did not occur during three hours in 720 hours in the SSC test.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の油井用低合金高強度継目無鋼管は、質量%で、C:0.25〜0.50%、Si:0.01〜0.40%、Mn:0.45〜0.90%、P:0.010%以下、S:0.001%以下、O:0.0015%以下、Al:0.015〜0.080%、Cu:0.02〜0.09%、Cr:0.9〜1.5%、Mo:1.4〜2.0%、Nb:0.005〜0.05%、B:0.0005〜0.0040%、Ca:0.0010〜0.0020%、Mg:0.001%以下、N:0.005%以下を含有し、残部Feおよび不可避的不純物からなる組成を有し、組織は、組成比が下記(1)式および(2)式を満足する長径5μm以上のCaO、Al、MgOを含む酸化物系の鋼中非金属介在物の個数が100mm当り5個以下、組成比が下記(3)式および(4)式を満足する長径5μm以上のCaO、Al、MgOを含む酸化物系の鋼中非金属介在物の個数が100mm当り20個以下であり、降伏強度が862MPa以上である。また、上記組成に加えて、さらに、質量%で、V:0.02〜0.3%、W:0.03〜0.2%、Ta:0.03〜0.3%のうちから選ばれた1種または2種以上を含有することができる。さらに、質量%で、Ti:0.003〜0.050%、Zr:0.005〜0.10%のうちから選ばれた1種または2種を含有することができる。
(CaO)/(Al)≦0.25 (1)
1.0≦(Al)/(MgO)≦9.0 (2)
(CaO)/(Al)≧2.33 (3)
(CaO)/(MgO)≧1.0 (4)
ここで(CaO)、(Al)、(MgO)はそれぞれ酸化物系の鋼中非金属介在物中の、CaO、Al、MgOの質量%である。
The low-alloy high-strength seamless steel pipe for oil wells of the present invention is mass%, C: 0.25 to 0.50%, Si: 0.01 to 0.40%, Mn: 0.45 to 0.90%. , P: 0.010% or less, S: 0.001% or less, O: 0.0015% or less, Al: 0.015 to 0.080%, Cu: 0.02 to 0.09%, Cr: 0 .9 to 1.5%, Mo: 1.4 to 2.0%, Nb: 0.005 to 0.05%, B: 0.0005 to 0.0040%, Ca: 0.0010 to 0.0020 %, Mg: 0.001% or less, N: 0.005% or less, the balance is Fe and inevitable impurities, and the composition has the following composition ratios (1) and (2) The number of non-metallic inclusions in the oxide-based steel containing CaO, Al 2 O 3 and MgO with a major axis of 5 μm or more satisfying the above requirement is 5 per 100 mm 2 Hereinafter, the number of nonmetallic inclusions in the oxide-based steel containing CaO, Al 2 O 3 and MgO having a major diameter of 5 μm or more satisfying the following formulas (3) and (4): 20 per 100 mm 2 The yield strength is 862 MPa or more. Moreover, in addition to the above-mentioned composition, further, by mass%, V: 0.02 to 0.3%, W: 0.03 to 0.2%, Ta: 0.03 to 0.3%, it is selected from among It can contain one or more of the following. Furthermore, 1 type or 2 types selected from Ti: 0.003-0.050% and Zr: 0.005-0.10% can be contained by mass%.
(CaO) / (Al 2 O 3 ) ≦ 0.25 (1)
1.0 ≦ (Al 2 O 3 ) / (MgO) ≦ 9.0 (2)
(CaO) / (Al 2 O 3 ) ≧ 2.33 (3)
(CaO) / (MgO) ≧ 1.0 (4)
Here, (CaO), (Al 2 O 3 ) and (MgO) are mass% of CaO, Al 2 O 3 and MgO in non-metallic inclusions in oxide-based steel, respectively.

まず、本発明の鋼管の化学組成の限定理由について説明する。以下、特に断わらないかぎり質量%は単に%で記す。   First, the reasons for limitation of the chemical composition of the steel pipe of the present invention will be described. Hereinafter, mass% is simply expressed as% unless otherwise specified.

C:0.25〜0.50%
Cは、鋼の強度を増加させる作用を有し、所望の高強度を確保するために重要な元素である。本発明で目的とする降伏強度が862MPa以上の高強度化を実現するためには、0.25%以上のCの含有を必要とする。一方、0.50%を超えるCの含有は、高温焼戻しを実施してもなお硬さが低下せずに耐硫化物応力腐食割れ感受性を著しく阻害する。このためCは、0.25〜0.50%とする。Cは、好ましくは0.26%以上であり、より好ましくは0.27%以上である。Cは、好ましくは0.40%以下であり、より好ましくは0.30%以下である。
C: 0.25 to 0.50%
C has an effect of increasing the strength of steel and is an important element for ensuring a desired high strength. In order to achieve a high yield strength of 862 MPa or more, which is the target yield strength in the present invention, it is necessary to contain 0.25% or more of C. On the other hand, the content of C exceeding 0.50% significantly inhibits the resistance to sulfide stress corrosion cracking without decreasing the hardness even after high temperature tempering. Therefore, C is set to 0.25 to 0.50%. C is preferably 0.26% or more, and more preferably 0.27% or more. C is preferably 0.40% or less, more preferably 0.30% or less.

Si:0.01〜0.40%
Siは、脱酸剤として作用するとともに、鋼中に固溶して鋼の強度を増加させ、焼戻時の急激な軟化を抑制する作用を有する元素である。このような効果を得るためには、0.01%以上のSiの含有を必要とする。一方、0.40%を超えるSiの含有は、粗大な酸化物系介在物を形成し、SSCの起点となる。このため、Siは、0.01〜0.40%とする。Siは、好ましくは0.02%以上である。Siは、好ましくは0.15%以下であり、より好ましくは0.04%以下である。
Si: 0.01-0.40%
Si is an element which acts as a deoxidizing agent, is solid-solved in the steel to increase the strength of the steel, and has the function of suppressing rapid softening during tempering. In order to obtain such an effect, it is necessary to contain 0.01% or more of Si. On the other hand, when the content of Si exceeds 0.40%, coarse oxide-based inclusions are formed and become the starting point of SSC. For this reason, Si is made 0.01 to 0.40%. Si is preferably 0.02% or more. Si is preferably 0.15% or less, more preferably 0.04% or less.

Mn:0.45〜0.90%
Mnは、焼入れ性の向上を介して、鋼の強度を増加させるとともに、Sと結合しMnSとしてSを固定して、Sによる粒界脆化を防止する作用を有する元素である。本発明では0.45%以上のMnの含有を必要とする。一方、0.90%を超えるMnの含有は、鋼の硬さを著しく上昇させ、高温焼戻しを実施してもなお硬さが低下せずに耐硫化物応力腐食割れ感受性を著しく阻害する。このためMnは、0.45〜0.90%とする。Mnは、好ましくは0.55%以上であり、より好ましくは0.60%以上である。Mnは、好ましくは0.85%以下であり、より好ましくは0.80%以下である。
Mn: 0.45 to 0.90%
Mn is an element that has the effect of increasing the strength of steel through the improvement of hardenability and binding to S to fix S as MnS to prevent grain boundary embrittlement due to S. In the present invention, it is necessary to contain 0.45% or more of Mn. On the other hand, when the content of Mn exceeds 0.90%, the hardness of the steel is significantly increased, and even if high temperature tempering is performed, the hardness does not decrease and the sulfide stress corrosion cracking susceptibility is significantly impaired. Therefore, Mn is set to 0.45 to 0.90%. Mn is preferably 0.55% or more, more preferably 0.60% or more. Mn is preferably 0.85% or less, more preferably 0.80% or less.

P:0.010%以下
Pは、固溶状態では粒界等に偏析し、粒界脆化割れ等を引き起こす傾向を示す。本発明ではできるだけ低減することが望ましいが、0.010%までは許容できる。このようなことから、Pは0.010%以下とする。Pは、好ましくは0.009%以下であり、より好ましくは0.008%以下である。
P: 0.010% or less P is segregated in grain boundaries and the like in a solid solution state, and tends to cause intergranular embrittlement cracking and the like. In the present invention, it is desirable to reduce as much as possible, but 0.010% is acceptable. Because of this, P is made 0.010% or less. P is preferably 0.009% or less, more preferably 0.008% or less.

S:0.001%以下
Sは、鋼中ではほとんどが硫化物系介在物として存在し、延性、靭性や、耐硫化物応力腐食割れ性等の耐食性を低下させる。Sの一部は固溶状態で存在する場合があるが、その場合には粒界等に偏析し、粒界脆化割れ等を引き起こす傾向を示す。このため、Sは、本発明ではできるだけ低減することが望ましいが、過剰な低減は精錬コストを高騰させる。このようなことから、本発明では、Sは、その悪影響が許容できる0.001%以下とする。
S: 0.001% or less S is mostly present as sulfide inclusions in steel, and reduces the ductility, toughness, and corrosion resistance such as sulfide stress corrosion cracking resistance. A part of S may be present in a solid solution state, but in that case, it tends to segregate at grain boundaries and the like and cause intergranular brittleness cracking and the like. For this reason, it is desirable to reduce S as much as possible in the present invention, but excessive reduction raises the refining cost. For this reason, in the present invention, S is set to 0.001% or less where the adverse effect is acceptable.

O(酸素):0.0015%以下
O(酸素)は不可避的不純物として、Al、Si、Mg、Ca等の酸化物として鋼中に存在する。後述するように、SSC試験において、特に、(CaO)/(Al)≦0.25、かつ1.0≦(Al)/(MgO)≦9.0を満たす組成比の、長径5μm以上の酸化物数が100mm当り5個を超える場合、これらの酸化物が起点となって、試験片の表面から長時間で破断するSSCが発生する。また、SSC試験において、(CaO)/(Al)≧2.33、かつ(CaO)/(MgO)≧1.0を満たす組成比の、長径5μm以上の酸化物数が100mm当り20個を超える場合、これらの酸化物が起点となって、試験片内部から短時間で破断するSSCが発生する。このため、O(酸素)は、その悪影響が許容できる0.0015%以下とする。O(酸素)は、好ましくは0.0012%以下であり、より好ましくは0.0010%以下である。
O (oxygen): 0.0015% or less O (oxygen) is present as an inevitable impurity in the steel as an oxide of Al, Si, Mg, Ca or the like. As will be described later, in the SSC test, in particular, the composition ratio satisfying (CaO) / (Al 2 O 3 ) ≦ 0.25 and 1.0 ≦ (Al 2 O 3 ) / (MgO) ≦ 9.0. When the number of oxides having a major axis of 5 μm or more exceeds 5 per 100 mm 2 , these oxides are the starting points, and SSC that breaks from the surface of the test piece in a long time occurs. In the SSC test, the number of oxides having a major axis of 5 μm or more with a composition ratio satisfying (CaO) / (Al 2 O 3 ) ≧ 2.33 and (CaO) / (MgO) ≧ 1.0 per 100 mm 2 When it exceeds 20, these oxides are the starting point, and SSC which breaks in a short time from the inside of the test piece is generated. For this reason, O (oxygen) is made 0.0015% or less to which the adverse effect is allowable. O (oxygen) is preferably 0.0012% or less, more preferably 0.0010% or less.

Al:0.015〜0.080%
Alは、脱酸剤として作用するとともに、Nと結合しAlNを形成して固溶Nの低減に寄与する。このような効果を得るために、Alは0.015%以上の含有を必要とする。一方、0.080%を超えてAlを含有すると、鋼中の清浄度が低下し、後述するように、SSC試験において、特に、(CaO)/(Al)≦0.25、かつ1.0≦(Al)/(MgO)≦9.0を満たす組成比の、長径5μm以上の酸化物数が100mm当り5個を超える場合、これらの酸化物が起点となって、試験片の表面から長時間で破断するSSCが発生する。このため、Alは、その悪影響が許容できる0.015〜0.080%とする。Alは、好ましくは0.025%以上であり、より好ましくは0.050%以上である。Alは、好ましくは0.075%以下であり、より好ましくは0.070%以下である。
Al: 0.015 to 0.080%
Al acts as a deoxidizing agent and combines with N to form AlN, which contributes to the reduction of solid solution N. In order to acquire such an effect, Al needs to contain 0.015% or more. On the other hand, if the Al content exceeds 0.080%, the cleanliness in the steel is lowered, and as described later, in the SSC test, in particular, (CaO) / (Al 2 O 3 ) ≦ 0.25, and When the number of oxides with a major axis of 5 μm or more having a composition ratio satisfying 1.0 ≦ (Al 2 O 3 ) / (MgO) ≦ 9.0 exceeds 5 per 100 mm 2 , these oxides serve as starting points. , SSC is generated from the surface of the test piece for a long time. For this reason, Al is made 0.015 to 0.080% whose adverse effect is acceptable. Al is preferably 0.025% or more, more preferably 0.050% or more. Al is preferably 0.075% or less, more preferably 0.070% or less.

Cu:0.02〜0.09%
Cuは、耐食性を向上させる作用を有する元素である。Cuを微量に含有した場合、緻密な腐食生成物が形成され、SSCの起点となるピットの生成および成長が抑制されて、耐硫化物応力腐食割れ性が顕著に向上する。このため、本発明では、0.02%以上のCuの含有を必要とする。一方、0.09%を超えてCuを含有すると、継目無鋼管の製造プロセス時の熱間加工性が低下する。このため、Cuは0.02〜0.09%とする。Cuは、好ましくは0.07%以下であり、より好ましくは0.04%以下である。
Cu: 0.02 to 0.09%
Cu is an element having an action of improving the corrosion resistance. When a small amount of Cu is contained, a dense corrosion product is formed, the formation and growth of pits serving as the starting point of SSC are suppressed, and the resistance to sulfide stress corrosion cracking is significantly improved. For this reason, in the present invention, it is necessary to contain 0.02% or more of Cu. On the other hand, if the content of Cu exceeds 0.09%, the hot workability in the manufacturing process of the seamless steel pipe is reduced. For this reason, Cu is made into 0.02 to 0.09%. Cu is preferably 0.07% or less, more preferably 0.04% or less.

Cr:0.9〜1.5%
Crは、焼入れ性の増加を介して、鋼の強度の増加に寄与するとともに、耐食性を向上させる元素である。また、Crは、焼戻時にCと結合し、MC系、M系、M23系等の炭化物を形成する。特にMC系炭化物は焼戻軟化抵抗を向上させ、焼戻しによる強度変化を少なくして、降伏強度の向上に寄与する。本発明で目的とする862MPa以上の降伏強度の達成には、0.9%以上のCrの含有を必要とする。一方、1.5%を超えるCrの含有は、鋼の硬さを著しく上昇させ、高温焼戻しを実施してもなお硬さが低下せずに耐硫化物応力腐食割れ感受性を著しく阻害する。このため、Crは、0.9〜1.5%とする。Crは、好ましくは1.0%以上である。Crは、好ましくは1.3%以下である。
Cr: 0.9 to 1.5%
Cr is an element that contributes to an increase in the strength of the steel and improves the corrosion resistance through an increase in hardenability. In addition, Cr combines with C during tempering to form carbides such as M 3 C, M 7 C 3 and M 23 C 6 systems. In particular, the M 3 C-based carbide improves the temper softening resistance, reduces the strength change due to tempering, and contributes to the improvement of the yield strength. In order to achieve the yield strength of 862 MPa or more targeted by the present invention, the inclusion of Cr of 0.9% or more is required. On the other hand, the content of Cr exceeding 1.5% significantly increases the hardness of the steel, and even if high temperature tempering is performed, the hardness does not decrease and the sulfide stress corrosion cracking susceptibility is significantly impaired. For this reason, Cr is made into 0.9 to 1.5%. Cr is preferably 1.0% or more. Cr is preferably 1.3% or less.

Mo:1.4〜2.0%
Moは、焼入れ性の増加を介して、鋼の強度の増加に寄与するとともに、耐食性を向上させる元素である。特に、焼戻し後に2次析出するMoC炭化物は焼戻軟化抵抗を向上させ、焼戻による強度変化を少なくして、降伏強度の向上に寄与する。加えて、本発明で目的とする862MPa以上の降伏強度を有する鋼において、特定量のMoを添加することにより、特に硫化水素ガス分圧0.2気圧(0.02MPa)以上のサワー環境で、硫化物応力腐食割れの亀裂伝播抵抗が向上し、高い降伏強度と耐硫化物応力腐食割れ性を両立する。このような効果を得るためには、1.4%以上のMoの含有を必要とする。一方、2.0%を超えてMoを含有すると、MoC炭化物が粗大化し、硫化物応力腐食割れの起点となってSSCが発生する。このため、Moは、1.4〜2.0%とする。Moは、好ましくは1.5%以上である。Moは、好ましくは1.8%以下である。
Mo: 1.4 to 2.0%
Mo is an element that contributes to an increase in the strength of steel through the increase in hardenability and improves the corrosion resistance. In particular, Mo 2 C carbides secondarily precipitated after tempering improve temper softening resistance, reduce strength change due to tempering, and contribute to improvement of yield strength. In addition, in the steel having a yield strength of 862 MPa or more as intended in the present invention, by adding a specific amount of Mo, particularly in a sour environment of hydrogen sulfide gas partial pressure of 0.2 atm (0.02 MPa) or more, Crack propagation resistance of sulfide stress corrosion cracking is improved, and high yield strength and sulfide stress corrosion cracking resistance are compatible. In order to obtain such an effect, it is necessary to contain 1.4% or more of Mo. On the other hand, when the content of Mo exceeds 2.0%, Mo 2 C carbides become coarse, and as a starting point of sulfide stress corrosion cracking, SSC is generated. For this reason, Mo is made into 1.4 to 2.0%. Mo is preferably 1.5% or more. Mo is preferably 1.8% or less.

Nb:0.005〜0.05%
Nbは、オーステナイト(γ)温度域での再結晶を遅延させ、γ粒の微細化に寄与し、焼入直後の鋼の下部組織(例えばパケット、ブロック、ラス)の微細化に極めて有効に作用する元素である。このような効果を得るためには、0.005%以上のNbの含有を必要とする。一方、0.05%を超えるNbの含有は、鋼の硬さを著しく上昇させ、高温焼戻しを実施してもなお硬さが低下せずに耐硫化物応力腐食割れ感受性を著しく阻害する。このことからNbは、0.005〜0.05%とする。Nbは、好ましくは0.006%以上であり、より好ましくは0.007%以上である。Nbは、好ましくは0.030%以下であり、より好ましくは0.010%以下である。
Nb: 0.005 to 0.05%
Nb retards recrystallization in the austenite (γ) temperature region, contributes to the refinement of γ grains, and works extremely effectively for the refinement of the steel substructure (eg, packet, block, lath) immediately after quenching. Element. In order to obtain such an effect, it is necessary to contain Nb of 0.005% or more. On the other hand, if Nb content exceeds 0.05%, the hardness of the steel is remarkably increased, and even if high temperature tempering is performed, the hardness does not decrease and the resistance to sulfide stress corrosion cracking is significantly inhibited. Therefore, Nb is set to 0.005 to 0.05%. Nb is preferably 0.006% or more, and more preferably 0.007% or more. Nb is preferably 0.030% or less, and more preferably 0.010% or less.

B:0.0005〜0.0040%
Bは、微量の含有で焼入れ性向上に寄与する元素である。本発明では0.0005%以上のBの含有を必要とする。一方、0.0040%を超えてBを含有しても、上記効果が飽和するか、あるいはFe硼化物(Fe−B)の形成により、逆に所望の効果が期待できなくなり、経済的に不利となる。このため、Bは0.0005〜0.0040%とする。Bは、好ましくは0.0010%以上であり、より好ましくは0.0015%以上である。Bは、好ましくは0.0030%以下であり、より好ましくは0.0025%以下である。
B: 0.0005 to 0.0040%
B is an element which contributes to the improvement of the hardenability with a slight content. In this invention, 0.0005% or more of B needs to be contained. On the other hand, even if B is contained in excess of 0.0040%, the above effect is saturated or the formation of Fe boride (Fe-B) makes it impossible to expect the desired effect, which is economically disadvantageous. It becomes. Therefore, B is set to 0.0005 to 0.0040%. B is preferably 0.0010% or more, and more preferably 0.0015% or more. B is preferably 0.0030% or less, and more preferably 0.0025% or less.

Ca:0.0010〜0.0020%
Caは、鋼中の酸化物系介在物の形態制御のため、積極的に添加する。上述したように、SSC試験において、特に、(Al)/(MgO)比が1.0〜9.0となる、Al‐MgO主体の複合酸化物数が100mm当り5個を超えて存在すると、これらの酸化物が起点となって、試験片の表面から長時間で破断するSSCが発生する。このような、Al‐MgO主体の複合酸化物生成抑制のため、本発明では0.0010%以上のCaの含有を必要とする。一方、SSC試験において、0.0020%を超えるCaの含有は、(CaO)/(Al)≧2.33、かつ(CaO)/(MgO)≧1.0を満たす組成比の、長径5μm以上の酸化物数の増加を引き起こし、これらの酸化物が起点となって、試験片内部から短時間で破断するSSCが発生する。このため、Caは、0.0010〜0.0020%とする。Caは、好ましくは0.0012%以上である。Caは、好ましくは0.0017%以下である。
Ca: 0.0010 to 0.0020%
Ca is positively added to control the form of oxide inclusions in the steel. As described above, in the SSC test, the number of composite oxides mainly composed of Al 2 O 3 —MgO having an (Al 2 O 3 ) / (MgO) ratio of 1.0 to 9.0 is 5 per 100 mm 2. If more than one are present, these oxides form SSCs that break from the surface of the test piece over a long period of time. In order to suppress the formation of such a composite oxide mainly composed of Al 2 O 3 —MgO, the present invention needs to contain 0.0010% or more of Ca. On the other hand, in the SSC test, the content of Ca exceeding 0.0020% has a composition ratio that satisfies (CaO) / (Al 2 O 3 ) ≧ 2.33 and (CaO) / (MgO) ≧ 1.0. This causes an increase in the number of oxides having a major axis of 5 μm or more, and these oxides form SSCs that break within a short time from the inside of the test piece. Therefore, Ca is set to 0.0010 to 0.0020%. Ca is preferably 0.0012% or more. Ca is preferably 0.0017% or less.

Mg:0.001%以下
Mgは、積極的に添加はしないが、低Sのために行われるレードルファーネス(LF)のような脱硫処理中に、取鍋のMgO‐C組成の耐火物と、脱硫のために用いられるCaO‐Al‐SiO系スラグとの反応で、溶鋼中にMg成分として侵入する。上述したように、SSC試験において、特に、(Al)/(MgO)比が1.0〜9.0となる、Al‐MgO主体の複合酸化物数が100mm当り5個を超えて存在すると、これらの酸化物が起点となって、試験片の表面から長時間で破断するSSCが発生する。このため、Mgは、その悪影響が許容できる0.001%以下とする。Mgは、好ましくは0.0008%以下であり、より好ましくは0.0005%以下である。
Mg: not more than 0.001% Mg is not added positively, but during desulfurization treatment such as Ladle furnace (LF) performed for low S, refractory of MgO-C composition of ladle, It enters into molten steel as an Mg component by reaction with CaO—Al 2 O 3 —SiO 2 slag used for desulfurization. As described above, in the SSC test, the number of composite oxides mainly composed of Al 2 O 3 —MgO having an (Al 2 O 3 ) / (MgO) ratio of 1.0 to 9.0 is 5 per 100 mm 2. If more than one are present, these oxides form SSCs that break from the surface of the test piece over a long period of time. For this reason, Mg is made 0.001% or less at which the adverse effect is acceptable. Mg is preferably 0.0008% or less, more preferably 0.0005% or less.

N:0.005%以下
Nは、鋼中不可避的不純物であり、Ti、Nb、Al等の窒化物形成元素と結合しMN型の析出物を形成する。さらに、これらの窒化物を形成した残りの余剰Nは、Bと結合してBN析出物も形成する。この際、B添加による焼入れ性向上効果が失われるため、余剰Nはできるだけ低減することが望ましい。このため、Nは0.005%以下とする。Nは、好ましくは0.004%以下である。
N: 0.005% or less N is an unavoidable impurity in steel and combines with a nitride-forming element such as Ti, Nb or Al to form a MN-type precipitate. Furthermore, the remaining surplus N forming these nitrides combines with B to also form BN precipitates. At this time, since the effect of improving hardenability due to the addition of B is lost, it is desirable to reduce surplus N as much as possible. For this reason, N is made 0.005% or less. N is preferably 0.004% or less.

上記した成分以外の残部は、Feおよび不可避的不純物である。   The balance other than the above components is Fe and unavoidable impurities.

本発明では、下記を目的として、上記の基本の組成に加えて、さらに、V:0.02〜0.3%、W:0.03〜0.2%、Ta:0.03〜0.3%のうちから選ばれた1種または2種以上を含有することができる。さらに、質量%で、Ti:0.003〜0.050%、Zr:0.005〜0.10%のうちから選ばれた1種または2種を含有することができる。   In the present invention, in addition to the above basic composition, V: 0.02 to 0.3%, W: 0.03 to 0.2%, Ta: 0.03 to 0. One or more selected from 3% can be contained. Furthermore, it can contain 1 type or 2 types chosen from Ti: 0.003-0.050% and Zr: 0.005-0.10% by the mass%.

V:0.02〜0.3%
Vは、炭化物あるいは窒化物を形成し、鋼の強化に寄与する元素である。このような効果を得るためには、0.02%以上のVの含有とすることが好ましい。一方、0.3%を超えてVを含有すると、V系炭化物が粗大化して硫化物応力腐食割れの起点となり、SSCが発生するおそれがある。このため、Vを含有する場合には、Vは0.02〜0.3%とすることが好ましい。Vは、より好ましくは0.03%以上である。さらに好ましくは0.04%以上である。Vは、より好ましくは0.1%以下である。さらに好ましくは0.06%以下である。
V: 0.02-0.3%
V is an element which forms carbides or nitrides and contributes to strengthening of the steel. In order to acquire such an effect, it is preferable to make it contain V 0.02% or more. On the other hand, when V is contained exceeding 0.3%, the V-based carbide becomes coarse and becomes a starting point of sulfide stress corrosion cracking, which may cause SSC. For this reason, when V is contained, V is preferably 0.02 to 0.3%. V is more preferably 0.03% or more. More preferably, it is 0.04% or more. V is more preferably 0.1% or less. More preferably, it is 0.06% or less.

W:0.03〜0.2%
Wもまた、炭化物あるいは窒化物を形成し、鋼の強化に寄与する元素である。このような効果を得るためには、0.03%以上のWの含有とすることが好ましい。一方、0.2%を超えてWを含有すると、W系炭化物が粗大化して硫化物応力腐食割れの起点となり、SSCが発生するおそれがある。このため、Wを含有する場合には、Wは0.03〜0.2%とすることが好ましい。Wは、より好ましくは0.07%以上であり、より好ましくは0.1%以下である。
W: 0.03-0.2%
W is also an element that forms carbides or nitrides and contributes to strengthening of the steel. In order to acquire such an effect, it is preferable to make it contain W 0.03% or more. On the other hand, when W is contained in excess of 0.2%, the W-based carbide becomes coarse and becomes a starting point of sulfide stress corrosion cracking, which may cause SSC. For this reason, when it contains W, it is preferable to make W into 0.03 to 0.2%. W is more preferably 0.07% or more, and more preferably 0.1% or less.

Ta:0.03〜0.3%
Taもまた、炭化物あるいは窒化物を形成し、鋼の強化に寄与する元素である。このような効果を得るためには、0.03%以上のTaの含有とすることが好ましい。一方、0.3%を超えてTaを含有すると、Ta系炭化物が粗大化して硫化物応力腐食割れの起点となり、SSCが発生するおそれがある。このため、Taを含有する場合には、Taは0.03〜0.3%とすることが好ましい。Taは、より好ましくは0.08%以上であり、より好ましくは0.2%以下である。
Ta: 0.03-0.3%
Ta is also an element that forms carbides or nitrides and contributes to strengthening of steel. In order to obtain such an effect, it is preferable to contain 0.03% or more of Ta. On the other hand, if the content of Ta exceeds 0.3%, the Ta-based carbides coarsen and become a starting point of sulfide stress corrosion cracking, and there is a possibility that SSC may be generated. For this reason, when it contains Ta, it is preferable to make Ta into 0.03 to 0.3%. Ta is more preferably 0.08% or more, and more preferably 0.2% or less.

Ti:0.003〜0.050%
Tiは、窒化物を形成し、鋼の焼入れ時においてオーステナイト粒のピン止め効果による粗大化の防止に寄与する元素である。さらに、オーステナイト粒を細粒化することで、耐硫化水素割れ感受性が改善される。特に、後述する焼き入れ(Q)、焼き戻し(T)を2回ないし3回と繰り返すことなく、必要とするオーステナイト粒の細粒化を達成することができる。このような効果を得るためには、0.003%以上のTiの含有とすることが好ましい。一方、0.050%を超えてTiを含有すると、粗大化したTi系窒化物が硫化物応力腐食割れの起点となり、SSCが発生するおそれがある。このため、Tiを含有する場合には、Tiは0.003〜0.050%とすることが好ましい。Tiは、より好ましくは0.005%以上である。さらに好ましくは0.010%以上である。Tiは、より好ましくは0.025%以下である。さらに好ましくは0.018%以下である。
Ti: 0.003 to 0.050%
Ti is an element that forms nitrides and contributes to prevention of coarsening due to the pinning effect of austenite grains during steel quenching. Furthermore, the resistance to hydrogen sulfide cracking is improved by making the austenite grains fine. In particular, the required austenite grain refinement can be achieved without repeating the quenching (Q) and tempering (T) described later twice or three times. In order to obtain such an effect, it is preferable to contain 0.003% or more of Ti. On the other hand, if the Ti content exceeds 0.050%, the coarse Ti-based nitride becomes the starting point of sulfide stress corrosion cracking, and SSC may occur. For this reason, when it contains Ti, it is preferable to make Ti into 0.003 to 0.050%. Ti is more preferably 0.005% or more. More preferably, it is 0.010% or more. Ti is more preferably 0.025% or less. More preferably, it is 0.018% or less.

Zr:0.005〜0.10%
Zrもまた、Tiと同様に窒化物を形成し、鋼の焼入れ時においてオーステナイト粒のピン止め効果による粗大化を防止し、耐硫化水素割れ感受性を改善する。特に、Tiとの複合添加によってその効果は著しくなる。このような効果を得るためには、0.005%以上のZrの含有とすることが好ましい。一方、0.10%を超えてZrを含有すると、粗大化したZr系窒化物あるいはTi‐Zr複合窒化物が硫化物応力腐食割れの起点となり、SSCが発生するおそれがある。このため、Zrを含有する場合には、Zrは0.005〜0.10%とすることが好ましい。Zrは、より好ましくは0.013%以上であり、より好ましくは0.026%以下である。
Zr: 0.005 to 0.10%
Zr also forms nitrides like Ti, prevents coarsening due to the pinning effect of austenite grains during quenching of steel, and improves resistance to hydrogen sulfide cracking. In particular, the effect is remarkable by complex addition with Ti. In order to obtain such an effect, it is preferable to contain 0.005% or more of Zr. On the other hand, when the content of Zr exceeds 0.10%, the coarsened Zr-based nitride or Ti-Zr composite nitride becomes a starting point of sulfide stress corrosion cracking, and there is a possibility that SSC occurs. For this reason, when it contains Zr, it is preferable to make Zr into 0.005 to 0.10%. The Zr content is more preferably 0.013% or more, and more preferably 0.026% or less.

次に、本発明の鋼管の組織として、鋼中介在物の規定について説明する。   Next, as the structure of the steel pipe of the present invention, the definition of inclusions in steel will be described.

組成比が下記(1)式および(2)式を満足する長径5μm以上のCaO、Al、MgOを含む酸化物系の鋼中非金属介在物の個数が100mm当り5個以下
(CaO)/(Al)≦0.25 (1)
1.0≦(Al)/(MgO)≦9.0 (2)
ここで(CaO)、(Al)、(MgO)はそれぞれ酸化物系の鋼中非金属介在物中の、CaO、Al、MgOの質量%である。
The number of non-metallic inclusions in the oxide-based steel containing CaO, Al 2 O 3 and MgO having a major axis of 5 μm or more and a composition ratio satisfying the following equations (1) and (2) is 5 or less per 100 mm 2 CaO) / (Al 2 O 3 ) ≦ 0.25 (1)
1.0 ≦ (Al 2 O 3 ) / (MgO) ≦ 9.0 (2)
Here, (CaO), (Al 2 O 3 ) and (MgO) are mass% of CaO, Al 2 O 3 and MgO in non-metallic inclusions in oxide-based steel, respectively.

上述のように、0.02MPaの硫化水素ガスを飽和させた24℃の0.5質量%CHCOOHとCHCOONaとの混合水溶液で、そのpHが硫化水素ガスの飽和終了時点で3.5となるように調整した試験浴中で、試験応力を鋼管の実降伏強度の90%とし、1鋼管ごとに3本ずつSSC試験を実施した。SSC試験において、破断時間平均が400時間以上720時間未満であった鋼管における長径が5μm以上の介在物のAl、CaO、MgOの3元組成は、図2に示したように、(CaO)/(Al)比においてはAlが占める割合が大きく、かつ(Al)/(MgO)比においてもAlが占める割合が大きいものが多数存在した。この範囲を定量的に示すのが(1)式と(2)式である。さらに、SSC試験において、全試験片が720時間で破断していなかった鋼管の同介在物組成における5μm以上の介在物個数との比較により、その個数が、100mm当り5個以下であれば720時間で破断しないことがわかった。このため、(1)式および(2)式を満足する長径5μm以上のCaO、Al、MgOを含む酸化物系の鋼中非金属介在物の個数が100mm当り5個以下とする。好ましくは、3個以下である。なお、このような(1)式および(2)式を満足する長径5μm以上の介在物が耐硫化物応力腐食割れ性に悪影響する理由として、これらの組成の介在物が試験片表面に露出した場合、まず、介在物自身が試験浴中で溶解し、その後ゆるやかに孔食が進行し、およそ400時間を超えた段階でその孔食部からSSCが発生し、破断に至ると考えられる。As described above, it is a mixed aqueous solution of 0.5 mass% CH 3 COOH and CH 3 COONa at 24 ° C. saturated with 0.02 MPa of hydrogen sulfide gas, and the pH is 3. In the test bath adjusted to be 5, the test stress was 90% of the actual yield strength of the steel pipe, and three SSC tests were performed for each steel pipe. As shown in FIG. 2, the ternary composition of Al 2 O 3 , CaO, and MgO of inclusions having a major axis of 5 μm or more in a steel pipe having an average breaking time of 400 hours or more and less than 720 hours in the SSC test. In the (CaO) / (Al 2 O 3 ) ratio, the proportion of Al 2 O 3 is large, and in the (Al 2 O 3 ) / (MgO) ratio, a large proportion of Al 2 O 3 is present. . Expressions (1) and (2) show this range quantitatively. Furthermore, in the SSC test, when all the test pieces were not broken in 720 hours, the number of inclusions of 5 μm or more in the same inclusion composition of the steel pipe was 720 if the number was 5 or less per 100 mm 2. It was found that it did not break in time. Therefore, the number of non-metallic inclusions in the oxide-based steel containing CaO, Al 2 O 3 and MgO having a major diameter of 5 μm or more satisfying the equations (1) and (2) is 5 or less per 100 mm 2. . Preferably, it is 3 or less. In addition, inclusions of these compositions were exposed on the surface of the test piece as the reason that inclusions having a major diameter of 5 μm or more satisfying such expressions (1) and (2) adversely affect sulfide stress corrosion cracking resistance. In this case, first, the inclusions themselves dissolve in the test bath, and then pitting progresses gradually, and it is considered that SSC is generated from the pitting portion at about 400 hours and leads to breakage.

組成比が下記(3)式および(4)式を満足する長径5μm以上のCaO、Al、MgOを含む酸化物系の鋼中非金属介在物の個数が100mm当り20個以下
(CaO)/(Al)≧2.33 (3)
(CaO)/(MgO)≧1.0 (4)
ここで(CaO)、(Al)、(MgO)はそれぞれ酸化物系の鋼中非金属介在物中の、CaO、Al、MgOの質量%である。
The number of non-metallic inclusions in the oxide-based steel containing CaO, Al 2 O 3 and MgO having a major axis of 5 μm or more and a composition ratio satisfying the following equations (3) and (4) is 20 or less per 100 mm 2 ( CaO) / (Al 2 O 3 ) ≧ 2.33 (3)
(CaO) / (MgO) ≧ 1.0 (4)
Here, (CaO), (Al 2 O 3 ) and (MgO) are mass% of CaO, Al 2 O 3 and MgO in non-metallic inclusions in oxide-based steel, respectively.

上述のように、0.02MPaの硫化水素ガスを飽和させた24℃の0.5質量%CHCOOHとCHCOONaとの混合水溶液で、そのpHが硫化水素ガスの飽和終了時点で3.5となるように調整した試験浴中で、試験応力を鋼管の実降伏強度の90%とし、1鋼管ごとに3本ずつSSC試験を実施した。このSSC試験において、破断時間平均が400時間未満であった鋼管の長径が5μm以上の介在物のAl、CaO、MgOの3元組成は、図3に示したように、(CaO)/(Al)比においてはCaOが占める割合が大きく、かつ(CaO)/(MgO)比においてもCaOが占める割合が大きいものが多数存在した。この範囲を定量的に示すのが(3)式と(4)式である。さらに、SSC試験において、全試験片が720時間で破断していなかった鋼管の同介在物組成における5μm以上の介在物個数との比較により、その個数が、100mm当り20個以下であれば720時間で破断しないことがわかった。このため、(3)式および(4)式を満足する長径5μm以上のCaO、Al、MgOを含む酸化物系の鋼中非金属介在物の個数が100mm当り20個以下とする。好ましくは、10個以下である。このような(3)式および(4)式を満足する長径5μm以上の介在物が耐硫化物応力腐食割れ性に悪影響する理由として、(CaO)/(Al)比においてはCaOが占める割合が大きいほど介在物の溶鋼中での晶出温度が高くなり、その結果介在物サイズが非常に粗大化する。そして、SSC試験時にはこれら粗大な介在物と地鉄界面の隙間が起点となって、試験片内部から迅速にSSCが発生し、破断に至ると考えられる。As described above, it is a mixed aqueous solution of 0.5 mass% CH 3 COOH and CH 3 COONa at 24 ° C. saturated with 0.02 MPa of hydrogen sulfide gas, and the pH is 3. In the test bath adjusted to be 5, the test stress was 90% of the actual yield strength of the steel pipe, and three SSC tests were performed for each steel pipe. In this SSC test, the ternary composition of Al 2 O 3 , CaO, and MgO of inclusions having a major axis of a steel pipe having a fracture diameter of less than 400 hours and an average fracture time of less than 400 hours, as shown in FIG. In the / (Al 2 O 3 ) ratio, there are many cases in which the ratio of CaO is large and in the ratio of (CaO) / (MgO), the ratio of CaO is large. Equations (3) and (4) show this range quantitatively. Furthermore, in the SSC test, when all the test pieces were not broken in 720 hours, the number of inclusions of 5 μm or more in the same inclusion composition of the steel pipe was 720 if the number was 20 or less per 100 mm 2. It was found that it did not break in time. Therefore, the number of non-metallic inclusions in the oxide-based steel containing CaO, Al 2 O 3 and MgO having a major diameter of 5 μm or more satisfying the equations (3) and (4) is 20 or less per 100 mm 2. . Preferably, it is 10 or less. As the reason why inclusions with a major diameter of 5 μm or more that satisfy such expressions (3) and (4) adversely affect sulfide stress corrosion cracking resistance, CaO is (CaO) / (Al 2 O 3 ) ratio The higher the proportion, the higher the crystallization temperature of inclusions in the molten steel, and as a result, the inclusion size becomes very coarse. At the time of the SSC test, these coarse inclusions and the gap between the ground iron interface are the starting points, and it is considered that SSC is rapidly generated from the inside of the test piece, leading to breakage.

次に、耐硫化物応力腐食割れ性(耐SSC性)に優れた油井用低合金高強度継目無鋼管の製造方法について、説明する。   Next, a method of producing a low alloy high strength seamless steel pipe for oil well, which is excellent in sulfide stress corrosion cracking resistance (SSC resistance) will be described.

本発明では、上記した組成を有する鋼管素材の製造方法はとくに限定する必要はない。例えば、上記した組成を有する溶鋼を、転炉、電気炉、真空溶解炉等の通常公知の溶製方法で溶製し、連続鋳造法、造塊−分塊圧延法等、通常の方法でビレット等の鋼管素材とする。   In the present invention, the method for producing a steel pipe material having the above-mentioned composition is not particularly limited. For example, molten steel having the above composition is melted by a generally known melting method such as a converter, electric furnace, vacuum melting furnace, etc., and billet is obtained by a conventional method such as a continuous casting method or an ingot-bundling rolling method. And other steel pipe materials.

特に、上述した2種類の介在物組成を有する長径5μm以上のCaO、Al、MgOを含む酸化物系の鋼中非金属介在物の個数を規定値以下とするために、転炉、電気炉、真空溶解炉等の通常公知の溶製方法で溶製した後、ただちにAlによる脱酸処理を行うことが好ましい。さらに、溶鋼中のS(硫黄)を低減するためレードルファーネス(LF)などの脱硫処理を引き続き実施してから、脱ガス装置により溶鋼中のN、O(酸素)を低減し、その後にCa添加処理を実施し、最後に鋳造することが好ましい。さらに、脱ガス処理終了後、Ca添加処理を実施する前の溶鋼中のCa濃度が0.0004質量%以下となるよう、LFや脱ガス処理時に使用する合金原料中不純物Ca濃度を極力低減する管理を実施することが好ましい。
Ca添加処理を実施する前の溶鋼中のCa濃度が0.0004質量%を超える場合、後述するCa添加処理をする際の適正なCa添加量[%Ca*]で添加した場合にかえって溶鋼中Ca濃度が増加する結果、CaO比が高く、かつ(CaO)/(MgO)比が1.0以上となる、CaO‐Al‐MgO複合酸化物数が増加する。その結果、SSC試験において、これらの酸化物が起点となって、試験片内部から短時間で破断するSSCが発生する。脱ガス処理終了後、Ca添加処理をする際は、溶鋼中酸素[%T.O]値に応じて適正なCa濃度(Ca添加量の溶鋼重量に対する比、[%Ca*])となるよう添加することが好ましい。例えば、下記の(5)式に従い、脱ガス処理終了時に迅速に分析して得られた溶鋼中酸素[%T.O]値に応じて、適正Ca濃度[%Ca*]を決めることができる。
0.63≦[%Ca*]/[%T.O]≦0.91 (5)
ここで、[%Ca*]/[%T.O]が0.63未満の場合、Ca添加が不足する結果、鋼管のCa値が本願の範囲内であってもCaO比が低く、かつ(Al)/(MgO)比が1.0〜9.0となる、Al-MgO主体の複合酸化物数が増加する。その結果、SSC試験において、これらの酸化物が起点となって、試験片の表面から長時間で破断するSSCが発生する。一方、[%Ca*]/[%T.O]が0.91を超える場合、CaO比が高く、かつ(CaO)/(MgO)比が1.0以上となる、CaO-Al-MgO複合酸化物数が増加する。その結果、SSC試験において、これらの酸化物が起点となって、試験片内部から短時間で破断するSSCが発生する。
In particular, in order to make the number of non-metallic inclusions in the oxide-based steel containing CaO, Al 2 O 3 and MgO having a major axis of 5 μm or more having the two types of inclusion compositions described above, the converter, It is preferable to carry out deoxidation treatment with Al immediately after melting by a generally known melting method such as an electric furnace or a vacuum melting furnace. Furthermore, desulfurization treatment such as ladle furnace (LF) is continued to reduce sulfur (S) in the molten steel, and then N and O (oxygen) in the molten steel are reduced by the degassing apparatus, and then Ca addition is performed. It is preferred to carry out the treatment and to cast it last. Furthermore, after the end of the degassing treatment, the concentration of Ca in the alloy raw material used during the degassing treatment is reduced as much as possible so that the Ca concentration in the molten steel before carrying out the Ca addition treatment becomes 0.0004 mass% or less. It is preferable to implement management.
When the Ca concentration in the molten steel before carrying out the Ca addition treatment exceeds 0.0004 mass%, in the molten steel instead of the case where it is added at an appropriate Ca addition amount [% Ca *] when performing the Ca addition treatment described later. As a result of the increase in Ca concentration, the number of CaO—Al 2 O 3 —MgO composite oxides in which the CaO ratio is high and the (CaO) / (MgO) ratio is 1.0 or more increases. As a result, in the SSC test, these oxides are the starting point, and the SSC which is broken in a short time from the inside of the test piece is generated. When the Ca addition treatment is performed after the degassing treatment, oxygen in molten steel [% T.H. It is preferable to add so that it may become appropriate Ca concentration (ratio with respect to molten steel weight, [% Ca *]) according to O value. For example, according to the following equation (5), oxygen in molten steel [% T. The appropriate Ca concentration [% Ca *] can be determined according to the O] value.
0.63 ≦ [% Ca *] / [% T.P. O] ≦ 0.91 (5)
Here, [% Ca *] / [% T. When O] is less than 0.63, as a result of insufficient Ca addition, the CaO ratio is low and the (Al 2 O 3 ) / (MgO) ratio is 1. even if the Ca value of the steel pipe is within the range of the present invention. The number of composite oxides mainly composed of Al 2 O 3 —MgO that increases from 0 to 9.0 increases. As a result, in the SSC test, these oxides are the starting point, and SSC which is broken in a long time from the surface of the test piece is generated. Meanwhile, [% Ca *] / [% T. When O] exceeds 0.91, the number of CaO—Al 2 O 3 —MgO composite oxides having a high CaO ratio and a (CaO) / (MgO) ratio of 1.0 or more increases. As a result, in the SSC test, these oxides are the starting point, and the SSC which is broken in a short time from the inside of the test piece is generated.

得られた鋼管素材は、熱間成形により継目無鋼管に成形される。熱間成形方法は通常公知の方法で行うことができる。例えば、熱間成形方法として、鋼管素材を加熱し、ピアサー穿孔の後、マンドレルミル圧延、あるいはプラグミル圧延の方法を用いて所定の肉厚に成形後、適切な縮径圧延までを熱間で行われる。ここでは、鋼管素材の加熱温度は、1150〜1280℃の範囲とすることが好ましい。加熱温度が1150℃未満では、加熱時の鋼管素材の変形抵抗が大きくピアサー穿孔不良となる。一方、加熱温度が1280℃超えでは、ミクロ組織の粗大化が著しく、後述する焼入れ時の細粒化が困難となる。加熱温度は、好ましくは1150℃以上であり、好ましくは1280℃以下である。加熱温度は、より好ましくは1200℃以上である。
また、圧延終了温度は、750〜1100℃の範囲とすることが好ましい。圧延終了温度が750℃未満では、縮径圧延時の荷重負荷が大きく成形不良となる。一方、圧延終了温度が1100℃超えでは、圧延再結晶による細粒化が不十分で、後述する焼入れ時の細粒化が困難となる。圧延終了温度は、好ましくは900℃以上であり、好ましくは1080℃以下である。
なお、本発明では、細粒化の観点から、熱間圧延後に直接焼入れ(DQ)を実施することが好ましい。
The obtained steel pipe material is formed into a seamless steel pipe by hot forming. The hot forming method can be carried out by a generally known method. For example, as a hot forming method, a steel pipe material is heated, pierced by piercing, then formed into a predetermined thickness using a method of mandrel mill rolling or plug mill rolling, and then hot rolling up to appropriate diameter reduction rolling Is called. Here, the heating temperature of the steel pipe material is preferably in the range of 1150 to 1280 ° C. When the heating temperature is less than 1150 ° C., the deformation resistance of the steel pipe material at the time of heating is large, and the piercing failure is caused. On the other hand, when the heating temperature exceeds 1280 ° C., the microstructure becomes extremely coarse, and it becomes difficult to make fine particles during quenching, which will be described later. The heating temperature is preferably 1150 ° C. or higher, and preferably 1280 ° C. or lower. The heating temperature is more preferably 1200 ° C. or higher.
Moreover, it is preferable to make rolling completion temperature into the range of 750-1100 degreeC. When the rolling end temperature is less than 750 ° C., the load applied during the diameter reduction rolling is large, resulting in poor molding. On the other hand, if the rolling finish temperature exceeds 1100 ° C., grain refining by rolling recrystallization is insufficient, and grain refining at the time of quenching described later becomes difficult. The rolling end temperature is preferably 900 ° C. or higher, and preferably 1080 ° C. or lower.
In the present invention, it is preferable to carry out direct quenching (DQ) after hot rolling from the viewpoint of grain refining.

継目無鋼管成形後、本発明で目標とする降伏強度862MPa以上を達成するために、鋼管の焼入れ(Q)、鋼管の焼戻し(T)を実施する。このときの焼入れ温度は細粒化の観点から930℃以下とすることが好ましい。一方、焼入れ温度が860℃未満の場合は、MoあるいはV、W、Taといった2次析出強化元素の固溶が不十分でその後の焼戻し終了時の2次析出量が確保できない。このため、焼入れ温度は860〜930℃とすることが好ましい。
焼戻し温度は、オーステナイト再変態を避けるため、Ac温度以下とする必要があるが、600℃未満だとMoあるいはV、W、Taの炭化物の2次析出量が確保できない。このため、焼戻し温度は、少なくとも600℃以上とすることが好ましい。特に最終の焼戻し温度は、好ましくは630℃以上であり、より好ましくは650℃以上である。
さらに、細粒化による耐硫化水素割れ感受性の改善のため、少なくとも2回以上、焼入れ(Q)および焼戻し(T)を繰り返すことが好ましい。TiやZrが無添加の場合、3回以上繰り返すことが好ましい。
なお、熱間圧延後にDQを適用できない場合は、TiとZrの複合添加を行うか、あるいは少なくとも3回以上、焼入れ(Q)および焼戻し(T)を行い、特に初回の焼入れ温度を950℃以上としてDQの効果を代替することが好ましい。
After the seamless steel pipe is formed, the steel pipe is quenched (Q) and the steel pipe is tempered (T) in order to achieve the target yield strength of 862 MPa or more in the present invention. The quenching temperature at this time is preferably 930 ° C. or less from the viewpoint of finer graining. On the other hand, when the quenching temperature is less than 860 ° C., solid solution of secondary precipitation strengthening elements such as Mo or V, W, and Ta is insufficient, and secondary precipitation can not be secured at the end of the subsequent tempering. Therefore, the quenching temperature is preferably set to 860 to 930 ° C.
The tempering temperature needs to be below Ac 1 temperature to avoid austenite re-transformation, but if it is less than 600 ° C., secondary precipitation of carbide of Mo or V, W, or Ta can not be secured. Therefore, the tempering temperature is preferably at least 600 ° C. or higher. In particular, the final tempering temperature is preferably 630 ° C. or more, more preferably 650 ° C. or more.
Furthermore, it is preferable to repeat the quenching (Q) and the tempering (T) at least twice or more in order to improve the resistance to hydrogen sulfide cracking by grain refinement. When Ti and Zr are not added, it is preferable to repeat three times or more.
When DQ cannot be applied after hot rolling, Ti and Zr are added together, or at least three times or more are quenched (Q) and tempered (T), and the initial quenching temperature is 950 ° C. or more. It is preferable to substitute the effect of DQ.

以下、実施例に基づいてさらに本発明を詳細に説明する。なお、本発明は以下の実施例に限定されない。   Hereinafter, the present invention will be further described in detail based on examples. The present invention is not limited to the following examples.

[実施例1]
表1に示す組成の鋼を転炉法で溶製後、ただちにAl脱酸を行った後、LF-脱ガス処理の順で2次精錬を行い、引き続きCa添加処理を行って、最後に連続鋳造を実施し、鋼管素材を作製した。ここで、一部を除いてAl脱酸、LF、および脱ガス処理時に使用する合金原料にはCa不純物を含まない高純度なものを使用した。そして、脱ガス処理後に溶鋼サンプルを採取し、溶鋼中Ca分析を行った。分析結果は表2−1および表2−2に示す。また、上述のCa添加処理に当り、溶鋼中酸素[%T.O]分析値とCa添加量の溶鋼重量に対する比である[%Ca*]について、[%Ca*]/[%T.O]値を算出し、表2−1および表2−2に記載した。
Example 1
After melting steel with the composition shown in Table 1 by the converter method, Al deoxidation was performed immediately, followed by secondary refining in the order of LF-degassing, followed by Ca addition, and finally continuous. Casting was carried out to produce a steel pipe material. Here, except for a part, Al deoxidizing, LF, and an alloy raw material used at the time of degassing treatment used a high purity one containing no Ca impurity. Then, after degassing treatment, a molten steel sample was collected and analyzed for Ca in molten steel. The analysis results are shown in Table 2-1 and Table 2-2. In addition, oxygen in molten steel [% T.O. O] For [% Ca *] which is a ratio of analyzed value and Ca addition amount to molten steel weight, [% Ca *] / [% T. O] value was calculated and described in Table 2-1 and Table 2-2.

連続鋳造については、鋳片断面形状が円形である丸ビレット連鋳と、同形状が矩形であるブルーム連鋳の2種類について行った。さらにブルーム連鋳鋳片についてはおよそ1200℃の加熱保持後、鋼片圧延を行い丸ビレットに成形した。なお、表2−1および表2−2には、丸ビレット連鋳を「直鋳ビレット」と記載し、鋼片圧延を行い丸ビレットに成形したものを「鋼片圧延ビレット」と記載した。次に、これらの丸ビレット素材を用い、表2−1および表2−2に示すビレット加熱温度、圧延終了温度で継目無鋼管の熱間圧延を実施した。次に、これらの継目無鋼管について、表2−1および表2−2に記載した焼入れ(Q)温度、焼戻し(T)温度にて熱処理を行った。なお、一部の継目無鋼管については直接焼入れ(DQ)を実施し、それ以外の継目無鋼管については空冷後に熱処理を行った。   About continuous casting, it carried out about two types, round billet continuous casting whose slab cross-sectional shape is a circle, and Bloom continuous casting whose same shape is a rectangle. Further, the bloom continuous cast slab was heated and held at about 1200 ° C., and then rolled into a round billet. In addition, in Table 2-1 and Table 2-2, round billet continuous casting was described as "directly cast billet", steel strip rolling was performed, and what was formed into a round billet was described as "steel piece rolled billet". Next, using these round billet materials, hot rolling of seamless steel pipes was performed at billet heating temperatures and rolling finish temperatures shown in Table 2-1 and Table 2-2. Next, heat treatment was performed on these seamless steel pipes at the quenching (Q) temperature and the tempering (T) temperature described in Table 2-1 and Table 2-2. In addition, direct hardening (DQ) was implemented about a part of seamless steel pipe, and heat treatment was performed about the other seamless steel pipes after air cooling.

最終焼戻し終了段階で、管端の周方向の任意の1箇所の肉厚中央より15mm×15mmの検鏡面の介在物調査サンプル、引張試験片、SSC試験片をそれぞれ採取した。特にSSC試験片については各3本ずつ採取した。そして、以下の方法で評価した。   At the end of final tempering, a 15 mm × 15 mm inspection surface inclusion inspection sample, a tensile test piece and an SSC test piece were respectively collected from any one thickness center in the circumferential direction of the pipe end. In particular, three SSC specimens were collected. And it evaluated by the following methods.

介在物調査サンプルは、鏡面研磨実施後、走査型電子顕微鏡(SEM)にて10mm×10mmの領域について介在物のSEM観察、およびSEMに付随する特性X線分析装置にて介在物の化学組成を分析し、その質量%を算出した。そして(1)式と(2)式、および(3)式と(4)式の組成比を満足する長径5μm以上の介在物個数をそれぞれ数え、表2−1および表2−2に記載した。   After the mirror polishing, the inclusion investigation sample was observed with a scanning electron microscope (SEM) for SEM observation of inclusions in a 10 mm × 10 mm region, and the chemical composition of the inclusions was measured with a characteristic X-ray analyzer attached to the SEM. It analyzed and calculated the mass%. And the number of inclusions having a major diameter of 5 μm or more satisfying the composition ratio of the equations (1) and (2), and the equations (3) and (4), respectively, is counted and listed in Tables 2-1 and 2-2. .

次に、採取した引張試験片を用いて、JIS Z2241の引張試験を行い、降伏強度を測定した。試験で得られた鋼管の降伏強度を表2−1および表2−2に示す。ここでは、降伏強度が862MPa以上を合格とした。   Next, the tensile test of JIS Z2241 was performed using the collected tensile test piece, and the yield strength was measured. The yield strength of the steel pipe obtained by the test is shown in Table 2-1 and Table 2-2. Here, the yield strength passed 862 MPa or more.

さらに、採取したSSC試験片を用いて、NACE TM0177 method Aにもとづいて、SSC試験を行った。試験浴としては0.2気圧(=0.02MPa)の硫化水素ガスを飽和させた24℃の0.5質量%CHCOOHとCHCOONaとの混合水溶液を用いた。なお、試験浴のpHは、それぞれの硫化水素ガスの飽和終了時点で3.5となるように調整した。また、SSC試験における試験応力は、それぞれの鋼管の実降伏強度の90%とした。試験時間は720時間としたが、720時間経過時点で未破断であったものは、破断するか、900時間に到達するまで試験を継続した。試験で得られた各3本のSSC試験片の破断時間を、それぞれ表2−1および表2−2に示す。ここでは、SSC試験については、3本の試験片が3本とも破断時間が720時間以上であるものを合格とした。Furthermore, the SSC test was performed based on NACE TM0177 method A using the collected SSC test piece. As a test bath, a mixed aqueous solution of 0.5 mass% CH 3 COOH and CH 3 COONa at 24 ° C. saturated with 0.2 atm (= 0.02 MPa) hydrogen sulfide gas was used. The pH of the test bath was adjusted to 3.5 at the end of saturation of each hydrogen sulfide gas. The test stress in the SSC test was 90% of the actual yield strength of each steel pipe. The test time was 720 hours, but those that were not broken at 720 hours were broken or continued until 900 hours were reached. Tables 2-1 and 2-2 show the break times of the three SSC test pieces obtained in the test, respectively. Here, in the SSC test, all three test pieces having a break time of 720 hours or more were regarded as pass.

化学組成、(1)式と(2)式を満たす組成の長径5μm以上の介在物個数、および(3)式と(4)式を満たす組成の長径5μm以上の介在物個数の全てが、本発明範囲であった発明例(鋼管No.1−1および鋼管No.1−6〜1−14)は、いずれも降伏強度が862MPa以上であり、3本実施したSSC試験の破断時間が3本とも720時間以上であった。   The chemical composition, the number of inclusions with a major axis of 5 μm or more with a composition satisfying the formulas (1) and (2), and the number of inclusions with a major axis of 5 μm or more with a composition satisfying the expressions (3) and (4) are all Inventive examples (steel pipe No. 1-1 and steel pipe Nos. 1-6 to 1-14), which were within the scope of the invention, all had a yield strength of 862 MPa or more, and three break times of three SSC tests were conducted. Both were over 720 hours.

一方、化学組成のCaが本発明範囲を上回った比較例(鋼管No.1−2)、および、脱ガス処理後の溶鋼中Ca濃度が高く、かつCa添加時の[%Ca*]/[%T.O]値が0.91を超えていた結果、(3)式と(4)式を満たす組成比の長径5μm以上の介在物個数が本発明範囲外であった比較例(鋼管No.1−3)は、SSC試験3本中2本以上が720時間以内に破断した。   On the other hand, a comparative example in which Ca of the chemical composition exceeds the scope of the present invention (Steel pipe No. 1-2), and the concentration of Ca in molten steel after degassing treatment is high, and [% Ca *] / % T. As a result of the O] value exceeding 0.91, a comparative example (steel pipe No. 1-) in which the number of inclusions having a major axis of 5 μm or more with a composition ratio satisfying the formulas (3) and (4) was outside the scope of the present invention. 3) 2 or more out of 3 SSC test fractured within 720 hours.

また、Ca添加時の[%Ca*]/[%T.O]値が0.63を下回った結果、(1)式と(2)式を満たす組成比の長径5μm以上の介在物個数が本発明範囲外であった比較例(鋼管No.1−4)、および、Caが本発明範囲を下回った比較例(鋼管No.1−5)は、SSC試験3本中1本以上が720時間以内に破断した。   In addition, [% Ca *] / [% T. As a result of the O] value being less than 0.63, the number of inclusions having a major axis of 5 μm or more with a composition ratio satisfying the formulas (1) and (2) was outside the range of the present invention (steel pipe No. 1-4 ) And a comparative example (steel pipe No. 1-5) in which Ca was below the range of the present invention, one or more of the three SSC tests broke within 720 hours.

化学組成のC、Mn、Cr、Mo、Nbが本発明範囲を上回った比較例(鋼管No.1−15、1−17、1−23、1−25、1−27)は、高温焼き戻しを実施してもなお強度が高かったため、SSC試験3本共720時間以内に破断した。   Comparative examples (steel pipe Nos. 1-15, 1-17, 1-23, 1-25, 1-27) in which the chemical compositions C, Mn, Cr, Mo, and Nb exceeded the scope of the present invention were tempered at high temperature. Since the strength was still high even after the test, the three SSC tests were broken within 720 hours.

逆に、化学組成のC、Mn、Cr、Bが本発明範囲を下回った比較例(鋼管No.1−16、1−18、1−24、1−28)は、目標とする降伏強度を達成しなかった。   Conversely, the comparative examples (steel pipe Nos. 1-16, 1-18, 1-24, 1-28) in which the chemical compositions C, Mn, Cr, and B are below the scope of the present invention have the target yield strength. It did not achieve.

また、Moが本発明範囲を下回った比較例(鋼管No.1−26)は、鋼の硫化物応力腐食割れ亀裂伝播抵抗が不足してSSC試験3本共720時間以内に破断した。   Moreover, the comparative example (steel pipe No. 1-26) in which Mo was less than the range of the present invention was insufficient in the sulfide stress corrosion cracking propagation resistance of steel, and the three SSC tests broke within 720 hours.

化学組成のP、Sが本発明範囲を上回った比較例(鋼管No.1−19、1−20)は、SSC試験3本中2本以上が720時間以内に破断した。   In the comparative examples (steel pipe Nos. 1-19 and 1-20) in which the chemical compositions P and S exceeded the scope of the present invention, two or more of the three SSC tests broke within 720 hours.

化学組成のO(酸素)が本発明範囲を上回り、かつ、(1)式と(2)式を満たす組成比の長径5μm以上の介在物個数、および(3)式と(4)式を満たす組成比の長径5μm以上の介在物個数が本発明範囲外であった比較例(鋼管No.1−21)は、SSC試験3本共720時間以内に破断した。   O (oxygen) in the chemical composition exceeds the range of the present invention, and the number of inclusions with a major axis of 5 μm or more satisfying the formulas (1) and (2), and the formulas (3) and (4) are satisfied. The comparative example (steel pipe No. 1-21) in which the number of inclusions having a major axis of 5 μm or more in the composition ratio was out of the scope of the present invention broke within 720 hours for all three SSC tests.

化学組成のAlが本発明範囲を上回った比較例(鋼管No.1−22)は、(1)式と(2)式を満たす組成比の長径5μm以上の介在物個数も本発明範囲外となり、SSC試験3本共720時間以内に破断した。   In the comparative example (steel pipe No. 1-22) in which the Al in the chemical composition exceeded the range of the present invention, the number of inclusions having a major axis of 5 μm or more with a composition ratio satisfying the formulas (1) and (2) was also outside the range of the present invention. The three SSC tests were broken within 720 hours.

化学組成のMgが本発明範囲を上回り、かつ、(1)式と(2)式を満たす組成の長径5μm以上の介在物個数が本発明範囲外であった比較例(鋼管No.1−29)は、SSC試験3本中2本が720時間以内に破断した。   Comparative example (steel pipe No. 1-29) in which Mg having a chemical composition exceeded the range of the present invention and the number of inclusions having a major axis of 5 μm or more satisfying the formulas (1) and (2) was out of the range of the present invention. 2) 2 of 3 SSC tests were broken within 720 hours.

化学組成のNが本発明範囲を上回った比較例(鋼管No.1−30)は、余剰NがBと結合しBNを形成したことで固溶Bが不足となり、焼き入れ性が低下したため、目標とする降伏強度を達成しなかった。   In the comparative example (steel pipe No. 1-30) in which the chemical composition N exceeded the scope of the present invention, the excess N was combined with B to form BN, so that the solid solution B was insufficient and the hardenability was reduced. The target yield strength was not achieved.

[実施例2]
表3に示す組成の鋼を転炉法で溶製後、ただちにAl脱酸を行った後、LF-脱ガス処理の順で2次精錬を行い、引き続きCa添加処理を行って、最後に連続鋳造を実施し、鋼管素材を作製した。ここで、一部を除いてAl脱酸、LF、および脱ガス処理時に使用する合金原料にはCa不純物を含まない高純度なものを使用した。そして、脱ガス処理後に溶鋼サンプルを採取し、溶鋼中Ca分析を行った。分析結果は表4−1および表4−2に示す。また、上述のCa添加処理に当り、溶鋼中酸素[%T.O]分析値とCa添加量の溶鋼重量に対する比である[%Ca*]について、[%Ca*]/[%T.O]値を算出し、表4−1および表4−2に記載した。
Example 2
After melting steel with the composition shown in Table 3 by the converter method, Al deoxidation was performed immediately, followed by secondary refining in the order of LF-degassing treatment, followed by Ca addition treatment, and finally continuous Casting was carried out to produce a steel pipe material. Here, except for a part, Al deoxidizing, LF, and an alloy raw material used at the time of degassing treatment used a high purity one containing no Ca impurity. Then, after degassing treatment, a molten steel sample was collected and analyzed for Ca in molten steel. The analysis results are shown in Tables 4-1 and 4-2. In addition, oxygen in molten steel [% T.O. O] For [% Ca *] which is a ratio of analyzed value and Ca addition amount to molten steel weight, [% Ca *] / [% T. O] value was calculated and described in Table 4-1 and Table 4-2.

連続鋳造については、鋳片断面形状が円形である丸ビレット連鋳を行った。次に、これらの丸ビレット素材を用い、表4−1および表4−2に示すビレット加熱温度、圧延終了温度で継目無鋼管の熱間圧延を実施した。次に、これらの継目無鋼管について、表4−1および表4−2に記載した焼入れ(Q)温度、焼戻し(T)温度にて熱処理を行った。なお、一部の継目無鋼管については直接焼入れ(DQ)を実施し、それ以外の継目無鋼管については空冷後に熱処理を行った。   For continuous casting, round billet continuous casting in which the slab cross-sectional shape is circular was performed. Next, using these round billet materials, hot rolling of seamless steel pipes was performed at billet heating temperatures and rolling finish temperatures shown in Tables 4-1 and 4-2. Next, heat treatment was performed on these seamless steel pipes at the quenching (Q) temperature and the tempering (T) temperature described in Table 4-1 and Table 4-2. In addition, direct hardening (DQ) was implemented about a part of seamless steel pipe, and heat treatment was performed about the other seamless steel pipes after air cooling.

最終焼戻し終了段階で、管端の周方向の任意の1箇所の肉厚中央より15mm×15mmの検鏡面の介在物調査サンプル、引張試験片、SSC試験片をそれぞれ採取した。特にSSC試験片については各3本ずつ採取した。そして、以下の方法で評価した。   At the end of final tempering, a 15 mm × 15 mm inspection surface inclusion inspection sample, a tensile test piece and an SSC test piece were respectively collected from any one thickness center in the circumferential direction of the pipe end. In particular, three SSC specimens were collected. And it evaluated by the following methods.

介在物調査サンプルは、鏡面研磨実施後、走査型電子顕微鏡(SEM)にて10mm×10mmの領域について介在物のSEM観察、およびSEMに付随する特性X線分析装置にて介在物の化学組成を分析し、その質量%を算出した。そして(1)式と(2)式、および(3)式と(4)式の組成比を満足する長径5μm以上の介在物個数をそれぞれ数え、表4−1および表4−2に記載した。   After the mirror polishing, the inclusion investigation sample was observed with a scanning electron microscope (SEM) for SEM observation of inclusions in a 10 mm × 10 mm region, and the chemical composition of the inclusions was measured with a characteristic X-ray analyzer attached to the SEM. It analyzed and calculated the mass%. And the number of inclusions having a major diameter of 5 μm or more satisfying the composition ratio of the equations (1) and (2), and the equations (3) and (4) is counted, and the results are listed in Table 4-1 and Table 4-2. .

次に、採取した引張試験片を用いて、JIS Z2241の引張試験を行い、降伏強度を測定した。試験で得られた鋼管の降伏強度を表4−1および表4−2に示す。ここでは、降伏強度が862MPa以上を合格とした。   Next, the tensile test of JIS Z2241 was performed using the collected tensile test piece, and the yield strength was measured. The yield strength of the steel pipe obtained in the test is shown in Table 4-1 and Table 4-2. Here, the yield strength passed 862 MPa or more.

さらに、採取したSSC試験片を用いて、NACE TM0177 method Aにもとづいて、SSC試験を行った。試験浴としては0.2気圧(=0.02MPa)の硫化水素ガスを飽和させた24℃の0.5質量%CHCOOHとCHCOONaとの混合水溶液を用いた。なお、試験浴のpHは、それぞれの硫化水素ガスの飽和終了時点で3.5となるように調整した。また、SSC試験における試験応力は、それぞれの鋼管の実降伏強度の90%とした。試験時間は720時間としたが、720時間経過時点で未破断であったものは、破断するか、900時間に到達するまで試験を継続した。試験で得られた各3本のSSC試験片の破断時間を、それぞれ表4−1および表4−2に示す。ここでは、SSC試験については、3本の試験片が3本とも破断時間が720時間以上であるものを合格とした。Furthermore, the SSC test was performed based on NACE TM0177 method A using the collected SSC test piece. As a test bath, a mixed aqueous solution of 0.5 mass% CH 3 COOH and CH 3 COONa at 24 ° C. saturated with 0.2 atm (= 0.02 MPa) hydrogen sulfide gas was used. The pH of the test bath was adjusted to 3.5 at the end of saturation of each hydrogen sulfide gas. The test stress in the SSC test was 90% of the actual yield strength of each steel pipe. The test time was 720 hours, but those that were not broken at 720 hours were broken or continued until 900 hours were reached. Tables 4-1 and 4-2 show the break times of the three SSC test pieces obtained in the test, respectively. Here, in the SSC test, all three test pieces having a break time of 720 hours or more were regarded as pass.

化学組成、(1)式と(2)式を満たす組成の長径5μm以上の介在物個数、および(3)式と(4)式を満たす組成の長径5μm以上の介在物個数の全てが、本発明範囲であった発明例(鋼管No2−1〜2−20)は、いずれも降伏強度が862MPa以上であり、3本実施したSSC試験のいずれも破断時間が720時間以上であり、合格した。   The chemical composition, the number of inclusions with a major axis of 5 μm or more with a composition satisfying the formulas (1) and (2), and the number of inclusions with a major axis of 5 μm or more with a composition satisfying the expressions (3) and (4) are all Inventive examples (steel pipes No. 2-1 to 2-20), which were within the scope of the invention, all had a yield strength of 862 MPa or more, and all of the three SSC tests conducted had a break time of 720 hours or more and passed.

Claims (3)

質量%で、
C:0.25〜0.50%、
Si:0.01〜0.40%、
Mn:0.45〜0.90%、
P:0.010%以下、
S:0.001%以下、
O:0.0015%以下、
Al:0.015〜0.080%、
Cu:0.02〜0.09%、
Cr:0.9〜1.5%、
Mo:1.4〜2.0%、
Nb:0.005〜0.05%、
B:0.0005〜0.0040%、
Ca:0.0010〜0.0020%、
Mg:0.001%以下、
N:0.005%以下
を含有し、残部Feおよび不可避的不純物からなる組成を有し、
組織は、
組成比が下記(1)式および(2)式を満足する長径5μm以上のCaO、Al、MgOを含む酸化物系の鋼中非金属介在物の個数が100mm当り5個以下、
組成比が下記(3)式および(4)式を満足する長径5μm以上のCaO、Al、MgOを含む酸化物系の鋼中非金属介在物の個数が100mm当り20個以下であり、
降伏強度が862MPa以上である油井用低合金高強度継目無鋼管。
(CaO)/(Al)≦0.25 (1)
1.0≦(Al)/(MgO)≦9.0 (2)
(CaO)/(Al)≧2.33 (3)
(CaO)/(MgO)≧1.0 (4)
ここで(CaO)、(Al)、(MgO)はそれぞれ酸化物系の鋼中非金属介在物中の、CaO、Al、MgOの質量%である。
In mass%,
C: 0.25 to 0.50%,
Si: 0.01 to 0.40%,
Mn: 0.45 to 0.90%,
P: 0.010% or less,
S: 0.001% or less,
O: 0.0015% or less,
Al: 0.015 to 0.080%,
Cu: 0.02 to 0.09%,
Cr: 0.9 to 1.5%,
Mo: 1.4 to 2.0%,
Nb: 0.005 to 0.05%,
B: 0.0005 to 0.0040%,
Ca: 0.0010 to 0.0020%,
Mg: 0.001% or less,
N: containing 0.005% or less, and having a composition comprising the balance Fe and unavoidable impurities,
The organization
The number of non-metallic inclusions in the oxide-based steel containing CaO, Al 2 O 3 and MgO having a major axis of 5 μm or more and a composition ratio satisfying the following equations (1) and (2) is 5 or less per 100 mm 2
The number of nonmetallic inclusions in the oxide-based steel containing CaO, Al 2 O 3 and MgO having a major axis of 5 μm or more and a composition ratio satisfying the following equations (3) and (4) is 20 or less per 100 mm 2 Yes,
Low alloy high strength seamless steel pipe for oil wells, which has a yield strength of 862 MPa or more.
(CaO) / (Al 2 O 3 ) ≦ 0.25 (1)
1.0 ≦ (Al 2 O 3 ) / (MgO) ≦ 9.0 (2)
(CaO) / (Al 2 O 3 ) ≧ 2.33 (3)
(CaO) / (MgO) ≧ 1.0 (4)
Here, (CaO), (Al 2 O 3 ) and (MgO) are mass% of CaO, Al 2 O 3 and MgO in non-metallic inclusions in oxide-based steel, respectively.
前記組成に加えてさらに、質量%で、
V:0.02〜0.3%、
W:0.03〜0.2%、
Ta:0.03〜0.3%
のうちから選ばれた1種または2種以上を含有する
請求項1に記載の油井用低合金高強度継目無鋼管。
In addition to the above composition, in mass%,
V: 0.02-0.3%,
W: 0.03 to 0.2%,
Ta: 0.03-0.3%
The low alloy high strength seamless steel pipe for oil well according to claim 1, which contains one or more selected from the following.
前記組成に加えてさらに、質量%で、
Ti:0.003〜0.050%、
Zr:0.005〜0.10%
のうちから選ばれた1種または2種を含有する
請求項1または請求項2に記載の油井用低合金高強度継目無鋼管。
In addition to the above composition, in mass%,
Ti: 0.003 to 0.050%,
Zr: 0.005 to 0.10%
The low-alloy high-strength seamless steel pipe for oil wells according to claim 1 or 2, which contains one or two selected from among them.
JP2019514056A 2017-12-26 2018-12-06 Low alloy high strength seamless steel pipe for oil well Active JP6551632B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017248909 2017-12-26
JP2017248909 2017-12-26
PCT/JP2018/044835 WO2019131035A1 (en) 2017-12-26 2018-12-06 Low alloy high strength seamless steel pipe for oil wells

Publications (2)

Publication Number Publication Date
JP6551632B1 true JP6551632B1 (en) 2019-07-31
JPWO2019131035A1 JPWO2019131035A1 (en) 2019-12-26

Family

ID=67063517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019514056A Active JP6551632B1 (en) 2017-12-26 2018-12-06 Low alloy high strength seamless steel pipe for oil well

Country Status (7)

Country Link
US (1) US11414733B2 (en)
EP (1) EP3733896B1 (en)
JP (1) JP6551632B1 (en)
AR (1) AR113671A1 (en)
BR (1) BR112020012824B1 (en)
MX (1) MX2020006762A (en)
WO (1) WO2019131035A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112126746A (en) * 2020-08-17 2020-12-25 石钢京诚装备技术有限公司 anti-H2Smelting method of S corrosion ultra-low sulfur steel
WO2024024236A1 (en) * 2022-07-29 2024-02-01 Jfeスチール株式会社 Microbiologically assisted cracking-resistant low-alloy steel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155140A1 (en) * 2010-06-08 2011-12-15 住友金属工業株式会社 Steel for steel pipe having excellent sulfide stress cracking resistance
JP2016094649A (en) * 2014-11-14 2016-05-26 Jfeスチール株式会社 Seamless steel tube and production method therefor

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3562353B2 (en) 1998-12-09 2004-09-08 住友金属工業株式会社 Oil well steel excellent in sulfide stress corrosion cracking resistance and method for producing the same
JP4058840B2 (en) 1999-04-09 2008-03-12 住友金属工業株式会社 Oil well steel excellent in toughness and sulfide stress corrosion cracking resistance and method for producing the same
JP4367588B2 (en) 1999-10-28 2009-11-18 住友金属工業株式会社 Steel pipe with excellent resistance to sulfide stress cracking
JP3666372B2 (en) 2000-08-18 2005-06-29 住友金属工業株式会社 Oil well steel with excellent resistance to sulfide stress corrosion cracking and its manufacturing method
JP4140556B2 (en) 2004-06-14 2008-08-27 住友金属工業株式会社 Low alloy steel for oil well pipes with excellent resistance to sulfide stress cracking
WO2009023847A1 (en) 2007-08-16 2009-02-19 Caldera Pharmaceuticals, Inc. Well plate
US8163010B1 (en) 2008-06-03 2012-04-24 Cardica, Inc. Staple-based heart valve treatment
AR075976A1 (en) 2009-03-30 2011-05-11 Sumitomo Metal Ind METHOD FOR THE MANUFACTURE OF PIPE WITHOUT SEWING
JP5397154B2 (en) 2009-10-23 2014-01-22 新日鐵住金株式会社 Melting method of steel material for oil pipes with high strength and high corrosion resistance
US10287645B2 (en) 2012-03-07 2019-05-14 Nippon Steel & Sumitomo Metal Corporation Method for producing high-strength steel material excellent in sulfide stress cracking resistance
JP5971435B1 (en) * 2014-09-08 2016-08-17 Jfeスチール株式会社 High strength seamless steel pipe for oil well and method for producing the same
MX2017006430A (en) 2014-11-18 2017-09-12 Jfe Steel Corp High-strength seamless steel pipe for oil wells and method for producing same.
MX2017008360A (en) 2014-12-24 2017-10-24 Jfe Steel Corp High-strength seamless steel pipe for oil wells, and production method for high-strength seamless steel pipe for oil wells.
EP3508603A4 (en) 2016-09-01 2020-06-03 Nippon Steel Corporation Steel and oil well steel pipe
US11078558B2 (en) 2016-10-06 2021-08-03 Nippon Steel Corporation Steel material, oil-well steel pipe, and method for producing steel material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155140A1 (en) * 2010-06-08 2011-12-15 住友金属工業株式会社 Steel for steel pipe having excellent sulfide stress cracking resistance
JP2016094649A (en) * 2014-11-14 2016-05-26 Jfeスチール株式会社 Seamless steel tube and production method therefor

Also Published As

Publication number Publication date
US20210363620A1 (en) 2021-11-25
WO2019131035A1 (en) 2019-07-04
EP3733896A4 (en) 2020-11-04
AR113671A1 (en) 2020-05-27
MX2020006762A (en) 2020-08-24
US11414733B2 (en) 2022-08-16
JPWO2019131035A1 (en) 2019-12-26
EP3733896A1 (en) 2020-11-04
BR112020012824B1 (en) 2023-04-18
EP3733896B1 (en) 2023-11-29
BR112020012824A2 (en) 2020-11-24

Similar Documents

Publication Publication Date Title
JP6677310B2 (en) Steel materials and steel pipes for oil wells
US7264684B2 (en) Steel for steel pipes
CN110050082B (en) High Mn steel sheet and method for producing same
EP3395991B1 (en) High strength seamless stainless steel pipe for oil wells and manufacturing method therefor
JP6229640B2 (en) Seamless steel pipe and manufacturing method thereof
US10597760B2 (en) High-strength steel material for oil well and oil well pipes
WO2017149570A1 (en) Low-alloy, high-strength seamless steel pipe for oil well
WO2006109664A1 (en) Ferritic heat-resistant steel
EP3438312B1 (en) High-strength steel material and production method therefor
WO2017149571A1 (en) Low-alloy, high-strength seamless steel pipe for oil well
JP4462452B1 (en) Manufacturing method of high alloy pipe
WO2017149572A1 (en) Low-alloy, high-strength thick-walled seamless steel pipe for oil well
JPWO2005075694A1 (en) Steel for line pipe excellent in HIC resistance and line pipe manufactured using the steel
JP6842257B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method
JP6131890B2 (en) Manufacturing method and selection method of low-alloy high-strength seamless steel pipe for oil well with excellent resistance to sulfide stress corrosion cracking
EP3926057A1 (en) High-mn steel and method for manufacturing same
JP6551632B1 (en) Low alloy high strength seamless steel pipe for oil well
JP2020023736A (en) Two-phase stainless steel having excellent low-temperature toughness
JP6551631B1 (en) Low alloy high strength seamless steel pipe for oil well
KR102339890B1 (en) Steel plate and method of producing same
JP6152930B1 (en) Low alloy high strength thick wall seamless steel pipe for oil wells
JP6551633B1 (en) Low alloy high strength seamless steel pipe for oil well
JP6152929B1 (en) Low alloy high strength seamless steel pipe for oil wells
JP6152928B1 (en) Low alloy high strength seamless steel pipe for oil wells
JP2015113486A (en) Continuously cast b-containing steel cast metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190325

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190327

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190522

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190617

R150 Certificate of patent or registration of utility model

Ref document number: 6551632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250