JP2007254828A - Steel sheet having excellent surface cracking resistance upon hot rolling and its production method - Google Patents

Steel sheet having excellent surface cracking resistance upon hot rolling and its production method Download PDF

Info

Publication number
JP2007254828A
JP2007254828A JP2006081494A JP2006081494A JP2007254828A JP 2007254828 A JP2007254828 A JP 2007254828A JP 2006081494 A JP2006081494 A JP 2006081494A JP 2006081494 A JP2006081494 A JP 2006081494A JP 2007254828 A JP2007254828 A JP 2007254828A
Authority
JP
Japan
Prior art keywords
rolling
hot rolling
steel sheet
less
thin steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006081494A
Other languages
Japanese (ja)
Other versions
JP5168806B2 (en
Inventor
Tsutomu Okamoto
力 岡本
Tadashi Tsunoda
忠 角田
Yasuo Igarashi
泰生 五十嵐
Nobuhiro Fujita
展弘 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006081494A priority Critical patent/JP5168806B2/en
Publication of JP2007254828A publication Critical patent/JP2007254828A/en
Application granted granted Critical
Publication of JP5168806B2 publication Critical patent/JP5168806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel sheet in which surface cracking is hard to be generated in a process where, regarding hot direct rolling or hot charge rolling for a slab, the slab is reheated as it is, so as to be hot-rolled without reducing its temperature to an Ar1 or below in a cooling stage succeeding to melting/solidifying, and to provide its production method. <P>SOLUTION: The steel sheet has a composition comprising, by mass, 0.06 to 0.30% C, ≤2.0% Si, 0.1 to 3.0% Mn, ≤0.1% P, 0.0005 to 0.01% S, 0.025 to 0.20% Al, 0.01 to 0.10% Nb, 0.01 to 0.20% Ti and 0.0005 to 0.010% N, and the balance Fe with inevitable impurities, and in which the N content [N] and the Ti content [Ti] satisfy inequality (A); [Ti]-3.4×[N]>0, and also, the number of boundary nitrides with a diameter of the equivalent circle of ≤50 nm is ≤140 pieces per μm<SP>2</SP>of grain boundary. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、表面性状に優れた鋼板に関し、特に鋼片の直送圧延もしくはホットチャージ圧延時において、溶融、凝固に引き続いて、そのまま、又は、再加熱し熱延を施す工程において、熱間圧延時の耐表面割れ性に優れた熱延鋼板及びその製造方法、及びこの熱延鋼板を素材として製造される冷延鋼板及び表面処理鋼板及び鋼管に関する。   The present invention relates to a steel sheet having excellent surface properties, particularly during direct rolling or hot charge rolling of a steel slab, following the melting and solidification, as it is or during the hot rolling in the process of reheating and hot rolling. The present invention relates to a hot-rolled steel sheet having excellent surface crack resistance and a method for producing the same, and a cold-rolled steel sheet, a surface-treated steel sheet and a steel pipe which are produced using the hot-rolled steel sheet as a raw material.

鋼板の製造工程では、連続鋳造後直ちに熱間圧延する直送圧延や、連続鋳造後、加熱炉へのスラブ装入温度をオーステナイト温度域とし、その後熱間圧延をするいわゆるホットチャージ圧延を行うことにより、スラブに蓄えられた熱エネルギーを有効利用する方法が盛んに利用されている。   In the steel plate manufacturing process, direct feed rolling, which is hot rolled immediately after continuous casting, or so-called hot charge rolling, in which the slab charging temperature to the heating furnace is set to the austenite temperature range after continuous casting, and then hot rolling is performed. The method of effectively using the thermal energy stored in the slab is actively used.

スラブが鋳造後室温まで冷却されてγ相からα相へ変態後に再加熱圧延される通常の圧延に対して、上述の如き直送圧延やホットチャージ圧延では、スラブ表面がα相への変態を経ることなく鋳造時に粗大なγ粒のまま加熱され、圧延される。このため、熱間圧延の初期にγ粒界に沿って割れが発生し、この割れが進展することにより大きな割れに至るいわゆる鋼板表面割れが発生する場合がある。   In contrast to the normal rolling in which the slab is cooled to room temperature after casting and reheated and rolled after transformation from the γ phase to the α phase, in the direct feed rolling and hot charge rolling as described above, the slab surface undergoes transformation to the α phase. Without being heated, the coarse γ grains are heated and rolled. For this reason, a crack occurs along the γ grain boundary in the initial stage of hot rolling, and a so-called steel plate surface crack that reaches a large crack may occur due to the progress of the crack.

このような、直送圧延やホットチャージ圧延の鋼板表面割れの防止方法として、特許文献1では鋳片スラブ表面から10mm以内の範囲をAr3−100℃以下と、1000℃以上1250℃以下の温度に2回以上加熱冷却を繰り返した後に熱間圧延をする方法が記載されている。この特許文献1に示す開示技術では、上述の温度範囲において加熱と冷却を繰り返すことにより、γ粒の微細化が起こるとともに、冷却中に粒界に析出した炭窒化物は、旧粒界の位置に残存することから新たに生成した粒界に存在しなくなることを見出し、また加熱冷却を少なくとも2回以上繰り返すことにより、表面欠陥を抑制することが可能なことを見出して上述の条件を提案している。   As a method for preventing such a steel sheet surface crack in direct feed rolling or hot charge rolling, Patent Document 1 discloses that the range within 10 mm from the slab slab surface is Ar 3 to 100 ° C. or lower and 1000 ° C. or higher and 1250 ° C. or lower. A method of hot rolling after repeating heating and cooling more than once is described. In the disclosed technique shown in Patent Document 1, by repeating heating and cooling in the above temperature range, γ grains are refined, and carbonitrides precipitated at the grain boundaries during cooling are the positions of the old grain boundaries. And the above conditions were proposed by finding that surface defects can be suppressed by repeating heating and cooling at least twice or more. ing.

特許文献2には、連続鋳造したスラブを一旦、Ac1点以下まで冷却した後、再度加熱して圧延を行う方法が提案されている。また特許文献3には、スラブの表層部を冷却し350℃〜500℃の温度に1分以上保持した後、表層部を変態させた上で再加熱して圧延する方法が記載されている。これらの技術は、変態を目的として一旦冷却した後に再加熱する必要があり、本来の高温での装入を目的とした直送圧延、ホットチャージ圧延の利点が損なわれ、熱エネルギー的に不利なばかりでなく、目標とする温度までスラブを放冷する必要から生産性を著しく損なうという問題がある。また、特許文献4には、析出物の形態制御のため、1300℃から1150℃の温度範囲で1パス15%以上の圧下率で2回以上圧延を行うことによる表面割れの防止方法が開示されている。この特許文献4の開示技術では、高温での圧延を達成するためにはスラブ抽出温度を非常に高くする設定する必要があり、同じく、熱エネルギー的に不利となり、高温抽出による生産性の低下が問題となる。特許文献5は熱延用加熱炉に使用する燃料の硫化水素濃度を50ppm以下とする方法を記載しているが、使用燃料の自由度を著しく阻害すること、硫化物起因の割れ以外には効果が発揮できないという問題がある。特許文献6では、(Fe、Mn)Sの粒界析出起因の表面割れを抑制するために、MnよりもSとの結合力の強いTi、Mg、Ca、Ce、La、Ba、Liのうち1種または2種以上添加し、硫化物を作ることで、(Fe、Mn)Sの生成を抑制する手法を提案しているが、硫化物起因の割れ以外には効果が発揮できない。また、溶鋼中の粗大硫化物は製品の加工性を低下させるため、加工性の求められる鋼板には適用できないという問題がある。
特開平7−290101号公報 特開昭55−84202号公報 特公平7−112563号公報 特開昭55−77901号公報 特開2001−25801号公報 特開2002−178007号公報
Patent Document 2 proposes a method in which a continuously cast slab is once cooled to the Ac1 point or less and then heated and rolled again. Patent Document 3 describes a method in which a surface layer portion of a slab is cooled and held at a temperature of 350 ° C. to 500 ° C. for 1 minute or longer, and then the surface layer portion is transformed and then reheated and rolled. These technologies need to be reheated after being cooled once for the purpose of transformation, and the advantages of direct feed rolling and hot charge rolling for the purpose of charging at high temperatures are impaired, which is disadvantageous in terms of thermal energy. In addition, there is a problem that productivity is remarkably impaired because it is necessary to cool the slab to a target temperature. Patent Document 4 discloses a method for preventing surface cracking by rolling twice or more at a rolling reduction of 15% or more in one pass in a temperature range of 1300 ° C. to 1150 ° C. to control the form of precipitates. ing. In the technique disclosed in Patent Document 4, it is necessary to set the slab extraction temperature to be very high in order to achieve rolling at a high temperature, which is similarly disadvantageous in terms of thermal energy, and the productivity is lowered due to high temperature extraction. It becomes a problem. Patent Document 5 describes a method of setting the hydrogen sulfide concentration of the fuel used in the heating furnace for hot rolling to 50 ppm or less. However, it has an effect other than significantly inhibiting the degree of freedom of the fuel used and cracking caused by sulfide. There is a problem that cannot be demonstrated. In Patent Document 6, among Ti, Mg, Ca, Ce, La, Ba, and Li, which have a stronger binding force with S than Mn, in order to suppress surface cracking due to grain boundary precipitation of (Fe, Mn) S. A method of suppressing the formation of (Fe, Mn) S by adding one or two or more to make sulfides has been proposed, but the effect cannot be exhibited except for cracks caused by sulfides. Moreover, since the coarse sulfide in molten steel reduces the workability of a product, there exists a problem that it cannot apply to the steel plate in which workability is calculated | required.
JP 7-290101 A JP 55-84202 A Japanese Patent Publication No.7-112563 JP 55-77901 A JP 2001-25801 A JP 2002-178007 A

そこで本発明は、上述した従来の問題点に鑑みて案出されたものであり、その目的とするところは、鋼片の直送圧延もしくはホットチャージ圧延において、可能な限り高温で熱延加熱炉に装入し、そのまま又は再加熱し熱延を施す工程において、表面割れの発生しにくい、熱間圧延時の耐表面割れ性に優れた薄鋼板及びその製造方法を提供することにある。   Therefore, the present invention has been devised in view of the above-described conventional problems, and the object of the present invention is to provide a hot-rolling heating furnace at the highest possible temperature in direct feed rolling or hot charge rolling of a steel slab. It is an object of the present invention to provide a thin steel sheet having excellent surface crack resistance at the time of hot rolling and a method for producing the same, in which surface cracking is unlikely to occur in the step of charging, as it is or reheating and hot rolling.

本発明は、窒化物の列状析出が熱延割れの主原因であることを見出し、その列状析出の無害化のため、円相当径が50nm以下の粒界窒化物を、粒界1μm当たり140個以下とすることで熱延での割れが抑制できることに着目して案出されたものである。 The present invention finds that the precipitation of nitrides is the main cause of hot rolling cracks, and in order to render the precipitation of the rows harmless, a grain boundary nitride having an equivalent circle diameter of 50 nm or less is converted to a grain boundary of 1 μm 2. It was devised by paying attention to the fact that cracking in hot rolling can be suppressed by setting it to 140 or less per hit.

即ち、請求項1に係る発明は、質量%で、C:0.06〜0.30%、Si:2.0%以下、Mn:0.1〜3.0%、P:0.1%以下、S:0.0005〜0.01%、Al:0.025〜0.20%、Nb:0.01〜0.10%、Ti:0.01〜0.20%、N:0.0005〜0.010%を含有し、残部がFe及び不可避的不純物からなり、Nの含有量[N]、Tiの含有量[Ti]が下記の式(A)を満たし、かつ円相当径が50nm以下の粒界窒化物が、粒界1μm当たり140個以下であることを特徴とする。
[Ti]−3.4×[N]>0(A)
That is, the invention according to claim 1 is mass%, C: 0.06 to 0.30%, Si: 2.0% or less, Mn: 0.1 to 3.0%, P: 0.1% Hereinafter, S: 0.0005 to 0.01%, Al: 0.025 to 0.20%, Nb: 0.01 to 0.10%, Ti: 0.01 to 0.20%, N: 0.00. 0005 to 0.010%, the balance is Fe and inevitable impurities, the N content [N], the Ti content [Ti] satisfies the following formula (A), and the equivalent circle diameter is The number of grain boundary nitrides of 50 nm or less is 140 or less per 1 μm 2 of grain boundaries.
[Ti] -3.4 × [N]> 0 (A)

また、請求項2に係る発明は、更に質量%で、V:0.005〜0.05%、B:0.0003〜0.010%、Ca:0.0005〜0.02%、Mg:0.0005〜0.02%、Zr:0.0005〜0.02%、REM:0.0005〜0.02%、Cu:0.04〜1.4%、Ni:0.02〜0.8%、Mo:0.02〜0.5%、Cr:0.02〜1.0%の1種又は2種以上を含有することを特徴とする薄鋼板である。   The invention according to claim 2 is further in mass%, V: 0.005 to 0.05%, B: 0.0003 to 0.010%, Ca: 0.0005 to 0.02%, Mg: 0.0005-0.02%, Zr: 0.0005-0.02%, REM: 0.0005-0.02%, Cu: 0.04-1.4%, Ni: 0.02-0. It is a thin steel plate characterized by containing one or more of 8%, Mo: 0.02-0.5%, Cr: 0.02-1.0%.

また、請求項3に係る発明は、円相当径が50nm以下の粒界窒化物が、NbN、AlN、AlとNbの複合窒化物の1種又は2種以上を含むことを特徴とする請求項1又は2記載の薄鋼板である。   The invention according to claim 3 is characterized in that the grain boundary nitride having an equivalent circle diameter of 50 nm or less includes one or more of NbN, AlN, and a composite nitride of Al and Nb. The thin steel sheet according to 1 or 2.

また、請求項4に係る発明は、請求項1〜3のうち何れか1項記載の薄鋼板の製造方法において、直送圧延もしくはホットチャージ圧延する際において、溶融、凝固に引き続く冷却過程で鋼片をAr1以下の温度まで下げることなく、そのまま又は再加熱し熱延を施すことを特徴とする薄鋼板の製造方法である。   Further, the invention according to claim 4 is the method for producing a thin steel sheet according to any one of claims 1 to 3, wherein the steel slab is subjected to a cooling process subsequent to melting and solidification when performing direct feed rolling or hot charge rolling. Without reducing the temperature to a temperature of Ar1 or less, and is subjected to hot rolling as it is or reheated.

また、請求項5に係る発明は、さらに連続鋳造から熱間圧延の加熱炉で加熱されるまでの時間が2〜10時間であることを特徴とする請求項4記載の薄鋼板の製造方法である。   The invention according to claim 5 is the method for producing a thin steel sheet according to claim 4, wherein the time from continuous casting to heating in a hot rolling furnace is 2 to 10 hours. is there.

また、請求項6に係る発明は、さらに900〜1200℃の温度範囲で1パス当たり10%以上の圧下率、ひずみ速度1/s以上で3回以上の粗圧延を行うことを特徴とする請求項4又は5記載の薄鋼板の製造方法である。   Further, the invention according to claim 6 is characterized in that rough rolling is further performed three times or more at a reduction rate of 10% or more per pass and a strain rate of 1 / s or more in a temperature range of 900 to 1200 ° C. Item 6. The method for producing a thin steel plate according to Item 4 or 5.

本発明によれば、鋼片の直送圧延もしくはホットチャージ圧延において、熱間圧延で表面割れの生じない、表面性状に優れた薄鋼板を提供することができる。また、本発明では、スラブに蓄えられた熱エネルギーを有効利用し、製造コストの低減を図るとともに、冷却、再加熱時間の短縮による生産性の向上ができるものとして工業的価値を向上させることが可能となる。。   ADVANTAGE OF THE INVENTION According to this invention, the thin steel plate excellent in the surface property which does not produce a surface crack by hot rolling in the direct-feed rolling or hot charge rolling of a steel slab can be provided. In the present invention, the thermal energy stored in the slab can be effectively used to reduce the manufacturing cost, and the industrial value can be improved as the productivity can be improved by shortening the cooling and reheating time. It becomes possible. .

以下、本発明を実施するための最良の形態について、熱間圧延時の耐表面割れ性に優れた薄鋼板を例にとり詳細に説明する。以下、組成における重量%は、単に%と記載する。   Hereinafter, the best mode for carrying out the present invention will be described in detail by taking, as an example, a thin steel plate having excellent surface crack resistance during hot rolling. Hereinafter, the weight% in the composition is simply described as%.

一般に、1150℃〜1000℃付近で発生する割れはII領域脆性で割れることが知られており、中炭鋼は包晶温度が高いためにγ粒径が大きく応力集中しやすいこと、γ粒界に析出する硫化物、酸化物が粒界強度を低下させることが原因といわれている。   In general, it is known that cracks occurring near 1150 ° C. to 1000 ° C. are brittle in the II region, and because medium carbon steel has a high peritectic temperature, the γ grain size is large and stress concentration is likely to occur. It is said that the sulfides and oxides precipitated in the steel cause the grain boundary strength to decrease.

本発明者等は、従来技術では極めて困難であった熱間圧延時の耐表面割れ性を有し、且つ製造コスト性、生産性に優れた薄鋼板を得るため、熱延工程の1150℃〜1000℃の粗圧延時に割れが発生したコイル、スラブを詳細に調査した。その結果、割れの発生するスラブにおいて、図1に示すようなAl窒化物、Nb窒化物、あるいはAlとNbの複合窒化物が旧γ粒界上に列状に析出していることを見出し、γ粒界への前記窒化物の列状析出が熱延割れの主原因であることを見出した。そして、その列状析出の無害化のため析出物のサイズ、密度の影響について鋭意検討し、円相当径が50nm以下の前記粒界窒化物を、粒界1μm当たり140個以下とすることで熱延での割れが抑制できることを見出した。そして、これを達成する手段として、NとTiの特定式の範囲でTiを添加し、連続鋳造から熱延の加熱炉にて加熱されるまでの時間と温度の条件を規定することで、Nを円相当径100nm超の比較的大きなTiNとして析出させ、粒界上の前記窒化物析出物密度を低減させることが有効であることを見出し、本発明を案出するに至った。 In order to obtain a thin steel sheet having surface crack resistance at the time of hot rolling, which is extremely difficult with the prior art, and having excellent manufacturing cost and productivity, the present inventors have obtained a hot rolling step of 1150 ° C. to Coils and slabs that cracked during rough rolling at 1000 ° C. were investigated in detail. As a result, in the slab where cracks occur, it is found that Al nitride, Nb nitride, or a composite nitride of Al and Nb as shown in FIG. 1 is precipitated in a row on the old γ grain boundary, It has been found that the above-mentioned precipitation of nitrides on the γ grain boundary is the main cause of hot rolling cracks. Then, the size of the column-like precipitates for detoxification of deposition, extensive studies on the influence of density, the circle equivalent diameter of less of the grain boundary nitride 50 nm, by more than 140 per grain boundary 1 [mu] m 2 It discovered that the crack by hot rolling can be suppressed. And as a means to achieve this, by adding Ti in the range of the specific formula of N and Ti, by defining conditions of time and temperature from continuous casting to heating in a hot-rolling heating furnace, N Was found to be effective as a relatively large TiN having an equivalent circle diameter of more than 100 nm to reduce the nitride precipitate density on the grain boundary, and the present invention was devised.

以下、本発明を適用した薄鋼板を構成する各成分の添加理由及び数値限定理由について説明する。   Hereinafter, the reason for adding each component constituting the thin steel plate to which the present invention is applied and the reason for limiting the numerical value will be described.

C :0.06〜0.30%
Cは0.12%のときに包晶温度が最も高く、γ粒径が大きくなるため熱延時の表面割れが発生しやすいが、高強度鋼板においては、パーライトやベイナイトなどによる組織強化や微細なNbCを生成し、析出強化を得るために添加が必須な元素である。これら効果を安定して得るためには0.06%以上の添加が必要である。しかし、0.30%を超えると溶接性が低下する。このため、本発明では溶接性をも維持する観点から、Cの含有量の上限を0.3%とする。
C: 0.06-0.30%
When C is 0.12%, the peritectic temperature is the highest, and the γ grain size is large, so surface cracking during hot rolling is likely to occur. However, in high-strength steel sheets, the structure strengthening and fineness due to pearlite, bainite, etc. It is an element that must be added to produce NbC and to obtain precipitation strengthening. In order to obtain these effects stably, addition of 0.06% or more is necessary. However, if it exceeds 0.30%, the weldability decreases. For this reason, in the present invention, from the viewpoint of maintaining weldability, the upper limit of the C content is set to 0.3%.

Si:2.0%以下
Siは、有害な炭化物の生成を抑えフェライト分率を増加させることにより伸び性を向上させるために有効な元素であり、固溶強化により材料強度確保のためにも有効な元素であることから、0.01%以上の添加が望ましい。但し、過剰な添加で化成処理性を悪化させ、特にSiの含有量が2.0%を超えると熱延時のデスケーリング性が著しく低下し、Siスケールも発生する。このため、Siの含有量の上限を2.0%とした。特に、表層品位が問題となる鋼板おいて、このSiの含有量は、1.0%以下が望ましい。
Si: 2.0% or less Si is an effective element for improving the extensibility by suppressing the formation of harmful carbides and increasing the ferrite fraction, and also effective for securing material strength by solid solution strengthening. Therefore, addition of 0.01% or more is desirable. However, the chemical conversion processability is deteriorated by excessive addition. Particularly, when the Si content exceeds 2.0%, the descaling property at the time of hot rolling is remarkably lowered, and Si scale is also generated. For this reason, the upper limit of Si content was set to 2.0%. In particular, in a steel plate where surface layer quality is a problem, the Si content is desirably 1.0% or less.

Mn:0.1〜3.0%
このMnは、強度の確保に必要な元素であり、0.1%以上の添加を必要とする。しかし、3.0%を超えて多量に添加するとミクロ偏析、マクロ偏析が起こりやすくなり、材料の加工性を劣化させる他、化成処理性も劣化してしまう。このため、このMnの含有量は、0.1〜3.0%とした。
Mn: 0.1 to 3.0%
This Mn is an element necessary for ensuring the strength, and requires addition of 0.1% or more. However, if it is added in a large amount exceeding 3.0%, microsegregation and macrosegregation are liable to occur, which deteriorates the workability of the material and the chemical conversion treatment. Therefore, the Mn content is set to 0.1 to 3.0%.

P :0.1%以下
Pはフェライトに固溶してその延性を低下させるので、その含有量は0.1%以下とする。
P: 0.1% or less P is dissolved in ferrite to lower its ductility, so its content is 0.1% or less.

S :0.0005〜0.01%
Sは、硫化物を形成して鋼の脆性を著しく低下させ、表面割れの発生の原因となる。即ち、このSの含有量は低い方が望ましいため、上限を0.01%とする。またSは、MnSなどの硫化物系介在物を形成し、割れの起点となって加工性を劣化させるため、加工性の必要な場合には0.005%以下とすることが望ましい。ただし、0.0005%未満まで低下させても、含有量低減による加工性の向上の効果は飽和しており、生産コストも増大するため、下限を0.0005%とした。
S: 0.0005 to 0.01%
S forms sulfides, significantly lowers the brittleness of the steel, and causes surface cracks. That is, since the lower content of S is desirable, the upper limit is made 0.01%. In addition, S forms sulfide inclusions such as MnS and becomes a starting point of cracking to deteriorate workability. Therefore, when workability is required, S is preferably 0.005% or less. However, even if the content is reduced to less than 0.0005%, the effect of improving the workability by reducing the content is saturated and the production cost is increased, so the lower limit was made 0.0005%.

Al:0.025〜0.20%
Alは、Nb、Nと結合し、Al窒化物、あるいはNbとAlの複合窒化物が粒界析出する結果、鋼の脆性を低減させ、表面割れの原因となる。但し、Alは、Siと同様、有害な炭化物の生成を抑えフェライト分率を増加させ伸びを向上するために有効な元素であり、特に延性と化成処理性を両立するために必要な元素である。またAlは脱酸元素として有効であるため、添加が必要な元素である。これらの効果を十分に得るためにはAlを0.025%以上添加する必要がある.一方,添加量が増加すると延性向上の効果は飽和してしまうばかりか、化成処理性が低下する他、点溶接性も劣化するためAl量の上限を1.50%以下とする。組織制御等で必要でない限り、表面割れを抑制するためには、Al含有量が低いほうが良いため、望ましくは0.25%以下とする。
Al: 0.025 to 0.20%
Al combines with Nb and N, and Al nitride, or a composite nitride of Nb and Al, precipitates at the grain boundaries, thereby reducing the brittleness of the steel and causing surface cracks. However, Al, like Si, is an effective element for suppressing the formation of harmful carbides and increasing the ferrite fraction and improving the elongation, and is particularly an element necessary for achieving both ductility and chemical conversion treatment. . Moreover, since Al is effective as a deoxidizing element, it is an element that needs to be added. In order to sufficiently obtain these effects, it is necessary to add Al by 0.025% or more. On the other hand, when the addition amount increases, not only the effect of improving ductility is saturated, but also the chemical conversion property is lowered and the spot weldability is also deteriorated, so the upper limit of the Al amount is made 1.50% or less. Unless it is necessary for structure control or the like, in order to suppress surface cracking, the lower the Al content, the better.

Nb:0.01〜0.10%
Nbは炭化物の微細な析出による析出強化により、鋼板の高強度化を可能とする。また、γの加工再結晶を抑制することで鋼板の結晶粒を微細化し、疲労強度を上昇させる。この目的のためにはNbを0.01以上添加することが必要である。一方、多量の添加は析出強化能が頭打ちとなること、更にAlと同様Nb窒化物、NbとAlの複合窒化物を形成し、熱延での表面割れの原因となることから、0.10%以下とする。
Nb: 0.01 to 0.10%
Nb makes it possible to increase the strength of the steel sheet by precipitation strengthening due to fine precipitation of carbides. Further, by suppressing the recrystallization of γ, the crystal grains of the steel sheet are refined and the fatigue strength is increased. For this purpose, it is necessary to add 0.01 or more of Nb. On the other hand, when a large amount is added, the precipitation strengthening ability reaches a peak, and Nb nitride and a composite nitride of Nb and Al are formed similarly to Al, which causes surface cracking in hot rolling. % Or less.

Ti:0.01〜0.20%
Tiは本発明における重要な元素の一つである。TiはNbと同様、炭化物の微細な析出による析出強化により、鋼板の高強度化を可能とする。またTiは、Nとの親和力が強く、Ar1超の温度で円相当径100nm超の比較的大きなTiNを形成し、Nを固定することでγ粒界へのAl窒化物、Nb窒化物、あるいはAlとNbの複合窒化物の列状析出を抑制し、熱間圧延時の表面割れを抑制する効果がある。これらの結果を有効に発揮させるためには少なくとも0.01%の添加が必要である。しかし、これらの添加が過度になると析出強化により延性が劣化するため、上限としてTiは0.20%以下とする。TiNの円相当径は100nm超、5μm以下が好ましい。また、このTiNの円相当径は、100nm未満ではNを固定しきれず前記粒界窒化物の析出を抑え切れないこと、TiNの粒界析出物が逆に割れの原因となるため100nm超が望ましい。このTiNの円相当径が5μm超では大きくなり過ぎ、穴拡げ性などの加工性が劣化するため5μm以下が好ましい。さらに好ましくは100nm超、1μm以下である。
Ti: 0.01-0.20%
Ti is one of the important elements in the present invention. Ti, like Nb, can increase the strength of the steel sheet by precipitation strengthening due to fine precipitation of carbides. Ti has a strong affinity for N, and forms a relatively large TiN having an equivalent circle diameter of more than 100 nm at a temperature exceeding Ar1, and fixing N allows Al nitride, Nb nitride to the γ grain boundary, or There is an effect of suppressing row precipitation of the composite nitride of Al and Nb and suppressing surface cracks during hot rolling. In order to exhibit these results effectively, addition of at least 0.01% is necessary. However, if these additions become excessive, ductility deteriorates due to precipitation strengthening, so the upper limit is made Ti 0.20% or less. The equivalent circle diameter of TiN is preferably more than 100 nm and 5 μm or less. Further, if the equivalent circle diameter of TiN is less than 100 nm, N cannot be fixed and the precipitation of the grain boundary nitrides cannot be suppressed, and the grain boundary precipitates of TiN cause cracks on the contrary. . If the equivalent circle diameter of TiN exceeds 5 μm, it becomes too large, and workability such as hole expansibility deteriorates, so that it is preferably 5 μm or less. More preferably, it is more than 100 nm and 1 μm or less.

また、Tiの含有量はNの含有量に対して、式(A)を満たす必要がある。
[Ti]−3.4×[N]>0(A)
Further, the Ti content needs to satisfy the formula (A) with respect to the N content.
[Ti] -3.4 × [N]> 0 (A)

式(A)を満たさないと、TiNの析出が十分に起こらず、Nを固定しきれず前記粒界窒化物の析出を抑え切れないため、熱延での表面割れを抑制できない。また、本発明は前記窒化物の抑制を目的とするため、特にSの含有量が高い場合も、式(A)を変化させるものではない。   If the formula (A) is not satisfied, TiN precipitation does not occur sufficiently, N cannot be fixed, and the precipitation of the grain boundary nitride cannot be suppressed, so that surface cracking in hot rolling cannot be suppressed. Further, since the present invention aims to suppress the nitride, the formula (A) is not changed even when the content of S is particularly high.

N :0.0005〜0.010%
Nは、溶鋼処理中に空気中の窒素が取り込まれることから、鋼中に不可避的に混入する元素である。Nは、Nb、Al等と窒化物を形成して母材組織の細粒化を促進する。しかしながら、このNを添加し過ぎると、Alと結合して、γ粒界へのAl窒化物、Nb窒化物、あるいはAlとNbの複合窒化物の列状析出し、脆性を低下させ、熱延時の表面割れの原因を作り出す。このため、Nの含有量の上限を0.010%以下とした。一方、Nの濃度を0.0005%未満とするには製造コストが高くなるので0.0005%を下限とする。
N: 0.0005 to 0.010%
N is an element that is inevitably mixed in steel because nitrogen in the air is taken in during the treatment of molten steel. N forms a nitride with Nb, Al, etc., and promotes the refinement of the base material structure. However, if this N is added too much, it binds to Al and precipitates Al nitride, Nb nitride, or a composite nitride of Al and Nb at the γ grain boundary, reducing brittleness and hot rolling. Producing the cause of surface cracking. For this reason, the upper limit of the content of N is set to 0.010% or less. On the other hand, if the N concentration is less than 0.0005%, the manufacturing cost increases, so 0.0005% is made the lower limit.

V :0.005〜0.05%、B:0.0003〜0.010%
V、Bは共に窒化物形成元素でありNb、Alと同様、脆性を低下させ、熱延時の表面割れの原因となるため添加されないことが望ましい。但し、Vは微細炭化物を形成することで鋼を強化し、Bは鋼の焼入れ性を高めることで鋼を強化するために添加される。この効果を得るためにはVで0.005%以上、Bで0.0003%以上の添加が必要である。ただし、Vで0.05%超、Bで0.01%超添加しても、効果は飽和するためこれを上限とする。
V: 0.005-0.05%, B: 0.0003-0.010%
V and B are both nitride-forming elements and, like Nb and Al, reduce brittleness and cause surface cracks during hot rolling, so it is desirable not to add them. However, V is added to strengthen the steel by forming fine carbides, and B is added to strengthen the steel by enhancing the hardenability of the steel. In order to obtain this effect, it is necessary to add 0.005% or more for V and 0.0003% or more for B. However, even if V exceeds 0.05% and B exceeds 0.01%, the effect is saturated, so this is the upper limit.

Ca:0.0005〜0.02%、Mg:0.0005〜0.02%、Zr:0.0005〜0.02%、REM:0.0005〜0.02%
Ca、Mg、Zr、REMは硫化物系介在物の形態を制御し、局部延性を改善するために有効である。この形態制御効果を有効ならしめるためにはCa、Zr、Mg、REMの1種または2種を0.0005%以上の添加するのが望ましい。一方、多量の添加は硫化物系介在物の粗大化を招き、清浄度を悪化させて延性を低下させるのみならず、コストの上昇を招くので、CaとZr、Mg、REMの上限を0.02%とする。なお、REMとしては、例えば、元素番号21、39、57〜71の元素である。
Ca: 0.0005 to 0.02%, Mg: 0.0005 to 0.02%, Zr: 0.0005 to 0.02%, REM: 0.0005 to 0.02%
Ca, Mg, Zr, and REM are effective for controlling the form of sulfide inclusions and improving local ductility. In order to make this form control effect effective, it is desirable to add 0.0005% or more of one or two of Ca, Zr, Mg, and REM. On the other hand, addition of a large amount leads to coarsening of sulfide inclusions, not only lowering the cleanliness and lowering the ductility, but also causing an increase in cost. 02%. In addition, as REM, it is an element of the element numbers 21, 39, 57-71, for example.

Cu:0.04〜1.4%、Ni:0.02〜0.8%、Mo:0.02〜0.5%、Cr:0.02〜1.0%
Cu、Ni、Mo、Crはミクロ組織および強度の制御に用いられるもので、添加量が少ないと強度上昇の効果がなく、過剰の添加では、延性を劣化させる。従って、Cuは0.04〜1.4%、Niは0.02〜0.8%、Moは0.02〜0.5%、Crは0.02〜1.0%の1種または2種以上を添加することが必要である。
Cu: 0.04-1.4%, Ni: 0.02-0.8%, Mo: 0.02-0.5%, Cr: 0.02-1.0%
Cu, Ni, Mo, and Cr are used for controlling the microstructure and strength. If the addition amount is small, there is no effect of increasing the strength, and excessive addition deteriorates the ductility. Therefore, Cu is 0.04 to 1.4%, Ni is 0.02 to 0.8%, Mo is 0.02 to 0.5%, and Cr is 0.02 to 1.0%. It is necessary to add more seeds.

γ粒界の析出状態は本発明において最も重要な因子のひとつである。本発明者らは熱延時の表面割れ発生の有無とγ粒界上の析出状態の関係について、鋭意検討を行った。そして、γ粒界上に50nm以下のNb窒化物、Al窒化物、或いはNbとAlの複合窒化物が列状に析出し、これが粒界1μmあたり140個以下となるとき、前記粒界析出物は無害化され、熱延での表面割れが抑制できることを見出した。前記粒界析出物は、Nb、Alが含まれていれば、B、Vの複合窒化物であっても本発明の効果は変わらない。 The precipitation state of the γ grain boundary is one of the most important factors in the present invention. The present inventors diligently investigated the relationship between the occurrence of surface cracks during hot rolling and the precipitation state on the γ grain boundaries. When Nb nitride of 50 nm or less, Al nitride, or a composite nitride of Nb and Al precipitates in a row on the γ grain boundary, and this is 140 or less per grain boundary 1 μm 2 , the grain boundary precipitation It was found that the product was rendered harmless and surface cracking during hot rolling could be suppressed. As long as the grain boundary precipitate contains Nb and Al, the effect of the present invention is not changed even if it is a composite nitride of B and V.

次に本発明を適用した薄鋼板の製造方法について説明する。   Next, the manufacturing method of the thin steel plate to which this invention is applied is demonstrated.

鋼片の圧延は直送圧延もしくはホットチャージ圧延にて実施される。溶融、凝固後の冷却過程で鋼片をAr1以下の温度に落とすと、熱延時の表面割れは抑制できるが、熱延を行うために、加熱炉で多量の熱エネルギーが必要であり、製造コストが増大することに加え、Ar1までの冷却とその後の加熱のために生産性が著しく低下する。このため、本発明では冷却過程において鋼片はAr1以上に保持し、そのまま又は再加熱して熱間圧延を行うこととする。   The rolling of the steel slab is performed by direct feed rolling or hot charge rolling. If the steel slab is dropped to a temperature of Ar1 or lower during the cooling process after melting and solidification, surface cracking during hot rolling can be suppressed, but in order to perform hot rolling, a large amount of thermal energy is required in the heating furnace, and the manufacturing cost In addition to the increase in productivity, productivity is significantly reduced due to cooling to Ar1 and subsequent heating. For this reason, in the present invention, in the cooling process, the steel slab is held at Ar1 or more and is subjected to hot rolling as it is or after reheating.

連続鋳造後、Ar1超の温度のままで熱延の加熱炉に装入され加熱されるまでの時間は本発明で重要な因子であり、2〜10時間とする。そのメカニズムは明確ではないが、2時間以下では、円相当径100nm超の比較的大きなTiNが十分に析出成長できないことに加え、粒界に析出するNb窒化物、Al窒化物、あるいはNbとAlの複合窒化物の成長も十分でないことから、円相当径50nm以下の前記窒化物粒界析出物密度が増加し、熱延時の表面割れが発生するためである。一方、上記時間が10時間を越えると,スラブの熱が大気に放出され、鋼片がAr1以下の温度となり、製造コストが増大してしまうためである。   After continuous casting, the time required for charging and heating in a hot-rolling heating furnace at a temperature exceeding Ar1 is an important factor in the present invention, and is 2 to 10 hours. Although the mechanism is not clear, in 2 hours or less, a relatively large TiN having an equivalent circle diameter of over 100 nm cannot be sufficiently precipitated and grown, and in addition, Nb nitride, Al nitride, or Nb and Al precipitated at grain boundaries. This is because the growth of the composite nitride is not sufficient, so that the density of the nitride grain boundary precipitates having a circle-equivalent diameter of 50 nm or less increases and surface cracks occur during hot rolling. On the other hand, if the above time exceeds 10 hours, the heat of the slab is released to the atmosphere, the steel slab becomes a temperature of Ar1 or less, and the manufacturing cost increases.

加熱後の熱延工程の粗圧延をII領域脆化温度から外すことで熱延時の表面割れはさらに防止できる。しかしながら、これを高温側で回避するためにはスラブの抽出温度を高くする必要があり、加熱による製造コストが増大することに加え、その後の仕上圧延終了温度を所定の温度とするためには、仕上圧延前に温度待ちする必要が生じ、生産性を阻害する。一方、低温側に回避するためには、仕上げ圧延終了温度を確保することができず、強度、伸びの劣化が起こる。従って本発明では、粗圧延を900〜1200℃で実施する。なお、仕上げ温度を安定して保つには、粗圧延を1000℃以上で実施することが好ましい。   Surface cracking during hot rolling can be further prevented by removing rough rolling in the hot rolling process after heating from the II region embrittlement temperature. However, in order to avoid this on the high temperature side, it is necessary to increase the extraction temperature of the slab, in addition to increasing the manufacturing cost by heating, in order to make the finish rolling end temperature after that a predetermined temperature, It is necessary to wait for the temperature before finish rolling, which hinders productivity. On the other hand, in order to avoid the low temperature side, the finish rolling finish temperature cannot be secured, and the strength and elongation deteriorate. Therefore, in this invention, rough rolling is implemented at 900-1200 degreeC. In addition, in order to keep finishing temperature stably, it is preferable to implement rough rolling at 1000 degreeC or more.

粗圧延は上述した温度範囲で少なくとも10%以上の圧下率で3回以上行う必要がある。その理由として、1パス当たりの圧下率が低いと所定の板厚を得るための圧下回数が多くなり、生産性の低下と仕上温度の確保が困難となるためである。また、圧延回数を3回以下とすると、1パス当たりの圧延率が高くなり、板形状の劣化や、端部割れが発生しやすくなる。また、各圧延におけるひずみ速度は1/s以上とする。その理由として、ひずみ速度が小さいと、生産性が低下する上、加工発熱量の低下から板温度の確保が困難となるためである。   Rough rolling needs to be performed three times or more at a rolling reduction of at least 10% in the temperature range described above. The reason is that if the rolling reduction per pass is low, the number of rollings for obtaining a predetermined plate thickness increases, and it becomes difficult to lower the productivity and secure the finishing temperature. In addition, when the number of rolling is 3 times or less, the rolling rate per pass is increased, and the plate shape is easily deteriorated and end cracks are likely to occur. The strain rate in each rolling is 1 / s or more. The reason for this is that when the strain rate is low, productivity is lowered and it is difficult to ensure the plate temperature due to a decrease in the amount of heat generated by processing.

本発明は、熱間圧延中の表面割れを抑制するものであり、圧延以降の仕上げ圧延温度、ROT冷却、巻取り温度に制約を与えるものではない。また、この熱延鋼板を素材として冷延鋼板および表面処理鋼板および鋼管を製造する場合にも本発明の効果は失われるものではない。   The present invention suppresses surface cracks during hot rolling, and does not limit the finish rolling temperature after rolling, ROT cooling, or the winding temperature. Further, the effects of the present invention are not lost even when a cold-rolled steel sheet, a surface-treated steel sheet and a steel pipe are produced using this hot-rolled steel sheet as a raw material.

次に本発明を実施例について説明する。   Next, examples of the present invention will be described.

表1に示す成分の鋼を溶製し、常法に従い連続鋳造でスラブとした。その後の加熱炉で加熱されるまでの時間、装入温度等を表2に示す。加熱炉装入温度は輻射温度計にて測定した。粗圧延は全て1000℃から1200℃の温度で6パスの圧延を各パスとも圧下率10%以上、ひずみ速度1/s(sは、秒を意味する)以上で実施した。   Steels having the components shown in Table 1 were melted and slabs were obtained by continuous casting according to a conventional method. Table 2 shows the time until heating in the subsequent heating furnace, the charging temperature, and the like. The heating furnace charging temperature was measured with a radiation thermometer. The rough rolling was performed at a temperature of 1000 ° C. to 1200 ° C. for 6 passes at a rolling reduction rate of 10% or more and a strain rate of 1 / s (s means second).

また、これらの鋼中に存在する粒界窒化物を形成している元素の種類、50nm以下の窒化物の1μm当たりの個数、並びに鋼板の表面割れ発生状況を表2に示す。本試験では、析出物は抽出レプリカ法(第3版 鉄鋼便覧IV 鉄鋼材料、試験・分析、P397参照)に基づいて作製したサンプルをEDS元素分析機能が実装された透過型電子顕微鏡(TEM)を用いて、析出物の観察及び、元素分析、回折点から析出物の同定および円相当径、析出物個数の測定を行った。析出物密度はTEMで析出物の列の幅と長さと個数を測定し、(析出物密度)=(個数)/{(長さ)×(幅)}にて求めた。 Table 2 shows the types of elements forming grain boundary nitrides present in these steels, the number of nitrides of 50 nm or less per 1 μm 2 , and the occurrence of surface cracks in the steel sheet. In this test, the precipitate was prepared by using a transmission electron microscope (TEM) equipped with an EDS elemental analysis function for a sample prepared based on the extraction replica method (3rd edition, Steel Handbook IV, Steel Materials, Test and Analysis, see P397) Using this, observation of precipitates and elemental analysis, identification of precipitates from diffraction points, and measurement of equivalent circle diameter and the number of precipitates were performed. Precipitate density was determined by measuring the width, length and number of precipitate rows with TEM, and (precipitate density) = (number) / {(length) × (width)}.

表1に示す鋼A〜Oが本発明において成分を限定した鋼(以下、発明鋼という。)である。これに対して、鋼p〜tは、本発明において限定した成分から逸脱させた比較鋼であり、鋼pはC、Mnの添加量を、鋼qはNの添加量並びに式(A)を、鋼sは、Mn、Sの添加量を、鋼tは、Tiの添加量を本発明において規定した当該成分の上限範囲から逸脱させており、また窒化物密度が本発明の範囲外となっている。また、鋼rは式Aにつき、本発明において規定した範囲から逸脱しており、また窒化物密度が本発明の範囲外となっている。   Steels A to O shown in Table 1 are steels whose components are limited in the present invention (hereinafter referred to as invention steels). On the other hand, the steels p to t are comparative steels deviating from the components limited in the present invention, the steel p represents the addition amount of C and Mn, the steel q represents the addition amount of N and the formula (A). Steel s deviates the addition amount of Mn and S, and steel t deviates the addition amount of Ti from the upper limit range of the component specified in the present invention, and the nitride density is outside the range of the present invention. ing. Steel r deviates from the range defined in the present invention for Formula A, and the nitride density is outside the range of the present invention.

表2のうち、A3、C3は鋳造後、加熱までの時間が本発明の範囲外にあり、窒化物密度が本発明の範囲外となっている。   Of Table 2, A3 and C3 are outside the scope of the present invention after casting and before heating, and the nitride density is outside the scope of the present invention.

このようにして得られた熱延鋼板について熱間圧延後に表面割れ観察試験を行った。×は表面割れが確認されたもの、○は表面割れが確認されなかったものを示す。   The hot-rolled steel sheet thus obtained was subjected to a surface crack observation test after hot rolling. X indicates that the surface crack was confirmed, and ○ indicates that the surface crack was not confirmed.

発明鋼では表面割れが見られないのに対し、比較鋼はいずれも表面割れが発生していることがわかる。   It can be seen that surface cracks are observed in the comparative steels, whereas no surface cracks are observed in the inventive steels.

γ粒界に見られる列状窒化物Row-like nitrides found at γ grain boundaries

Claims (6)

質量%で、
C :0.06〜0.30%、
Si:2.0%以下、
Mn:0.1〜3.0%、
P :0.1%以下、
S :0.0005〜0.01%、
Al:0.025〜0.20%、
Nb:0.01〜0.10%、
Ti:0.01〜0.20%、
N :0.0005〜0.010%、
を含有し、残部がFe及び不可避的不純物からなり、Nの含有量[N]、Tiの含有量[Ti]が下記の式(A)を満たし、かつ円相当径が50nm以下の粒界窒化物が、粒界1μm当たり140個以下であることを特徴とする熱間圧延時の耐表面割れ性に優れた薄鋼板。
[Ti]−3.4×[N]>0(A)
% By mass
C: 0.06 to 0.30%,
Si: 2.0% or less,
Mn: 0.1 to 3.0%
P: 0.1% or less,
S: 0.0005 to 0.01%,
Al: 0.025 to 0.20%,
Nb: 0.01-0.10%,
Ti: 0.01-0.20%,
N: 0.0005 to 0.010%,
Grain boundary nitriding in which the balance is Fe and inevitable impurities, the N content [N], the Ti content [Ti] satisfy the following formula (A), and the equivalent circle diameter is 50 nm or less A thin steel sheet having excellent surface cracking resistance during hot rolling, wherein the number of objects is 140 or less per 1 μm 2 of grain boundaries.
[Ti] -3.4 × [N]> 0 (A)
更に質量%で、
V :0.005〜0.05%、
B :0.0003〜0.010%、
Ca:0.0005〜0.02%、
Mg:0.0005〜0.02%、
Zr:0.0005〜0.02%、
REM:0.0005〜0.02%、
Cu:0.04〜1.4%、
Ni:0.02〜0.8%、
Mo:0.02〜0.5%、
Cr:0.02〜1.0%、
の1種又は2種以上を含有することを特徴とする請求項1記載の熱間圧延時の耐表面割れ性に優れた薄鋼板。
In addition,
V: 0.005-0.05%,
B: 0.0003 to 0.010%,
Ca: 0.0005 to 0.02%,
Mg: 0.0005 to 0.02%,
Zr: 0.0005 to 0.02%,
REM: 0.0005 to 0.02%,
Cu: 0.04 to 1.4%,
Ni: 0.02 to 0.8%,
Mo: 0.02 to 0.5%,
Cr: 0.02-1.0%,
The thin steel plate excellent in the surface crack resistance at the time of hot rolling of Claim 1 characterized by containing 1 type (s) or 2 or more types of these.
円相当径が50nm以下の粒界窒化物が、NbN、AlN、AlとNbの複合窒化物の1種又は2種以上を含むことを特徴とする請求項1又は2記載の熱間圧延時の耐表面割れ性に優れた薄鋼板。   The grain boundary nitride having a circle-equivalent diameter of 50 nm or less includes one or more of NbN, AlN, and Al and Nb composite nitrides. Thin steel plate with excellent surface crack resistance. 請求項1〜3のうち何れか1項記載の薄鋼板の製造方法において、直送圧延もしくはホットチャージ圧延する際において、溶融、凝固に引き続く冷却過程で鋼片をAr1以下の温度まで下げることなく、そのまま又は再加熱し熱延を施すことを特徴とする熱間圧延時の耐表面割れ性に優れた薄鋼板の製造方法。   In the method for producing a thin steel sheet according to any one of claims 1 to 3, when direct feed rolling or hot charge rolling is performed, the steel slab is not lowered to a temperature of Ar1 or lower in a cooling process subsequent to melting and solidification, A method for producing a thin steel sheet having excellent surface cracking resistance during hot rolling, which is subjected to hot rolling as it is or after reheating. さらに連続鋳造から熱間圧延の加熱炉で加熱されるまでの時間が2〜10時間であることを特徴とする請求項4記載の熱間圧延時の耐表面割れ性に優れた薄鋼板の製造方法。   5. The production of a thin steel sheet having excellent surface crack resistance during hot rolling according to claim 4, wherein the time from continuous casting to heating in a hot rolling furnace is 2 to 10 hours. Method. さらに900〜1200℃の温度範囲で1パス当たり10%以上の圧下率、ひずみ速度1/s以上で3回以上の粗圧延を行うことを特徴とする請求項4又は5記載の熱間圧延時の耐表面割れ性に優れた薄鋼板の製造方法。   6. During hot rolling according to claim 4 or 5, wherein rough rolling is performed at least 3 times at a reduction rate of 10% or more per pass and a strain rate of 1 / s or more in a temperature range of 900 to 1200 ° C. A method for producing a thin steel sheet having excellent surface crack resistance.
JP2006081494A 2006-03-23 2006-03-23 Thin steel plate with excellent surface crack resistance during hot rolling and its manufacturing method Active JP5168806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006081494A JP5168806B2 (en) 2006-03-23 2006-03-23 Thin steel plate with excellent surface crack resistance during hot rolling and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006081494A JP5168806B2 (en) 2006-03-23 2006-03-23 Thin steel plate with excellent surface crack resistance during hot rolling and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2007254828A true JP2007254828A (en) 2007-10-04
JP5168806B2 JP5168806B2 (en) 2013-03-27

Family

ID=38629352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006081494A Active JP5168806B2 (en) 2006-03-23 2006-03-23 Thin steel plate with excellent surface crack resistance during hot rolling and its manufacturing method

Country Status (1)

Country Link
JP (1) JP5168806B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111758A1 (en) * 2010-03-10 2011-09-15 新日本製鐵株式会社 High-strength hot-rolled steel plate and manufacturing method therefor
JP2015113486A (en) * 2013-12-11 2015-06-22 新日鐵住金株式会社 Continuously cast b-containing steel cast metal
JP2017133076A (en) * 2016-01-29 2017-08-03 Jfeスチール株式会社 High strength steel sheet

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271985A (en) * 1993-03-22 1994-09-27 Nippon Steel Corp Steel plate excellent in fatigue propagation resistance and its production
JPH06299238A (en) * 1993-04-09 1994-10-25 Nippon Steel Corp Manufacture of steel plate having excellent fatigue crack propagation resistant characteristic and toughness at welding heat-influenced part
JPH07290101A (en) * 1994-04-26 1995-11-07 Nippon Steel Corp Method for preventing surface crack at time of hot edging/rolling continuously cast slab
JPH08132105A (en) * 1994-11-09 1996-05-28 Nippon Steel Corp Method for preventing surface crack of large width hot-rolling of cast slab
JPH11106861A (en) * 1997-09-29 1999-04-20 Nkk Corp High strength hot rolled steel sheet excellent in shape and workability and its production
JPH11197797A (en) * 1998-01-19 1999-07-27 Kawasaki Steel Corp Method for continuously casting steel
JP2001089816A (en) * 1999-07-19 2001-04-03 Nkk Corp Method of manufacturing high strength hot rolled steel plate
JP2005068548A (en) * 2003-02-28 2005-03-17 Nippon Steel Corp High strength thin steel sheet excellent in hydrogen embitterment resistance and its manufacturing method
JP4516924B2 (en) * 2006-03-23 2010-08-04 新日本製鐵株式会社 Thin steel plate with excellent surface crack resistance during hot rolling and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06271985A (en) * 1993-03-22 1994-09-27 Nippon Steel Corp Steel plate excellent in fatigue propagation resistance and its production
JPH06299238A (en) * 1993-04-09 1994-10-25 Nippon Steel Corp Manufacture of steel plate having excellent fatigue crack propagation resistant characteristic and toughness at welding heat-influenced part
JPH07290101A (en) * 1994-04-26 1995-11-07 Nippon Steel Corp Method for preventing surface crack at time of hot edging/rolling continuously cast slab
JPH08132105A (en) * 1994-11-09 1996-05-28 Nippon Steel Corp Method for preventing surface crack of large width hot-rolling of cast slab
JPH11106861A (en) * 1997-09-29 1999-04-20 Nkk Corp High strength hot rolled steel sheet excellent in shape and workability and its production
JPH11197797A (en) * 1998-01-19 1999-07-27 Kawasaki Steel Corp Method for continuously casting steel
JP2001089816A (en) * 1999-07-19 2001-04-03 Nkk Corp Method of manufacturing high strength hot rolled steel plate
JP2005068548A (en) * 2003-02-28 2005-03-17 Nippon Steel Corp High strength thin steel sheet excellent in hydrogen embitterment resistance and its manufacturing method
JP4516924B2 (en) * 2006-03-23 2010-08-04 新日本製鐵株式会社 Thin steel plate with excellent surface crack resistance during hot rolling and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111758A1 (en) * 2010-03-10 2011-09-15 新日本製鐵株式会社 High-strength hot-rolled steel plate and manufacturing method therefor
JP4842413B2 (en) * 2010-03-10 2011-12-21 新日本製鐵株式会社 High strength hot-rolled steel sheet and manufacturing method thereof
CN102791896A (en) * 2010-03-10 2012-11-21 新日本制铁株式会社 High-strength hot-rolled steel plate and manufacturing method therefor
CN102791896B (en) * 2010-03-10 2014-06-11 新日铁住金株式会社 High-strength hot-rolled steel plate and manufacturing method thereof
KR101420554B1 (en) 2010-03-10 2014-07-16 신닛테츠스미킨 카부시키카이샤 High-strength hot-rolled steel plate and manufacturing method therefor
US9121079B2 (en) 2010-03-10 2015-09-01 Nippon Steel & Sumitomo Metal Corporation High-strength hot-rolled steel sheet and method of manufacturing the same
JP2015113486A (en) * 2013-12-11 2015-06-22 新日鐵住金株式会社 Continuously cast b-containing steel cast metal
JP2017133076A (en) * 2016-01-29 2017-08-03 Jfeスチール株式会社 High strength steel sheet

Also Published As

Publication number Publication date
JP5168806B2 (en) 2013-03-27

Similar Documents

Publication Publication Date Title
JP6691219B2 (en) Steel for pressure vessel having excellent hydrogen induced cracking (HIC) resistance and method for producing the same
JP5124988B2 (en) High-tensile steel plate with excellent delayed fracture resistance and tensile strength of 900 MPa or more and method for producing the same
JP6008039B2 (en) High-strength hot-rolled steel sheet with a maximum tensile strength of 980 MPa or more with excellent bake hardenability and low-temperature toughness
KR101382912B1 (en) Boron-containing steel sheet with excellent hardenability and method of manufacturing same
JP6872616B2 (en) Steel materials for pressure vessels with excellent hydrogen-induced cracking resistance and their manufacturing methods
JP7219882B6 (en) Steel material for pressure vessel and its manufacturing method
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
JP6540764B2 (en) Wear-resistant steel plate and method of manufacturing the same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
CN111479945A (en) Wear-resistant steel having excellent hardness and impact toughness and method for manufacturing same
JP2012122093A (en) High strength cold-rolled steel sheet excellent in formability and method for producing the same
KR102593147B1 (en) Cold rolled plated steel sheet and method of manufacturing the same
JP2007009325A (en) High strength steel product having excellent low temperature crack resistance, and method for producing the same
WO2021054015A1 (en) Wear-resistant steel sheet and method for producing same
JP2019537667A (en) Steel for pressure vessel excellent in resistance to hydrogen-induced cracking and method for producing the same
KR20160138231A (en) High-carbon hot-rolled steel sheet and method for producing same
JP4516924B2 (en) Thin steel plate with excellent surface crack resistance during hot rolling and its manufacturing method
JP5168806B2 (en) Thin steel plate with excellent surface crack resistance during hot rolling and its manufacturing method
JP7464887B2 (en) Steel plate and its manufacturing method
JP7088235B2 (en) Wear-resistant steel sheet and its manufacturing method
WO2020217873A1 (en) Thick steel plate
JP5884781B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
CN114040988A (en) High-strength steel sheet and method for producing same
EP3901306B1 (en) Structural steel having excellent brittle fracture resistance and method for manufacturing same
WO2021033693A1 (en) Steel, and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120531

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R151 Written notification of patent or utility model registration

Ref document number: 5168806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160111

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350