JP2015106670A - Method of forming microstructure and manufacturing device of microstructure - Google Patents

Method of forming microstructure and manufacturing device of microstructure Download PDF

Info

Publication number
JP2015106670A
JP2015106670A JP2013248794A JP2013248794A JP2015106670A JP 2015106670 A JP2015106670 A JP 2015106670A JP 2013248794 A JP2013248794 A JP 2013248794A JP 2013248794 A JP2013248794 A JP 2013248794A JP 2015106670 A JP2015106670 A JP 2015106670A
Authority
JP
Japan
Prior art keywords
curable resin
ultraviolet curable
microstructure
mold
ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013248794A
Other languages
Japanese (ja)
Other versions
JP6273548B2 (en
Inventor
鉄平 岩瀬
Teppei Iwase
鉄平 岩瀬
和田 紀彦
Norihiko Wada
紀彦 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2013248794A priority Critical patent/JP6273548B2/en
Publication of JP2015106670A publication Critical patent/JP2015106670A/en
Application granted granted Critical
Publication of JP6273548B2 publication Critical patent/JP6273548B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To mold plural high quality microstructures arranged at a small pitch.SOLUTION: Plural microstructures are formed on a substrate 12 by means of continuous transfer. Using a light-shielding member 15 which has an opening 151 at a position along the outer periphery of a microstructure, which has been already formed, and a neighboring transfer region, an ultraviolet ray 171 is radiated through the opening 151 while pressing an ultraviolet curable resin 13. The ultraviolet curable resin 13 is prevented from being extruded out of a microstructure mold 11 while performing continuous microstructure transfer and overlapping with the neighboring microstructure is prevented. Thus, high quality microstructures which are arranged at a small pitch are molded.

Description

本発明は、ナノインプリント技術を用いて基板上に複数の微細構造を形成する方法および微細構造の製造装置に関するものである。   The present invention relates to a method for forming a plurality of microstructures on a substrate using a nanoimprint technique and a manufacturing apparatus for the microstructures.

近年、ディスプレイ、照明などの商品に用いられる光学部品において、特殊光学特性を発揮するナノメートル(nm)オーダーからミクロン(μm)オーダーの微細なパターンを形成することで、光の反射,回折を制御した従来にない新機能を発現したデバイスを実現することが望まれている。   In recent years, in optical parts used in products such as displays and lighting, the reflection and diffraction of light are controlled by forming fine patterns of nanometer (nm) order to micron (μm) order that exhibit special optical properties. Therefore, it is desired to realize a device that exhibits a new function that has not been achieved in the past.

基板上に塗布された樹脂表面に微細構造を有する光学部品の製造方法としては、ナノインプリント技術が用いられる。ナノインプリント技術とは、設計された微細形状が予め表面に加工された型を用いて、塗布された樹脂に対して型を押し付けることで、樹脂表面に微細形状を転写して微細構造を成形する方法である。転写する方法としては、基板表面に塗布する樹脂として熱硬化型樹脂を用いて転写時に加熱しながら転写する熱インプリント法と、紫外線硬化樹脂を用いて転写時に紫外線を照射することにより転写するUVインプリント法がある。熱インプリント法は材料の選択性が広いという特徴があるが、材料の粘度が高いために型に対する転写率があがらないという問題や昇温および降温に時間を要するためスループットがあがらないという問題がある。一方UVインプリント法は、材料の選択性の問題があるものの、一般に材料粘度が低いために型に対する転写率が高く、また、紫外線を照射することで硬化するためにスループットが高いという特徴を有している。熱インプリント法およびUVインプリント法のいずれを採用するかは、適用デバイスにより異なるが、材料起因の問題がない場合には、UVインプリント法が量産工法として適していると考えられる。   A nanoimprint technique is used as a method for manufacturing an optical component having a fine structure on the surface of a resin applied on a substrate. Nanoimprint technology is a method of forming a microstructure by transferring the fine shape to the resin surface by pressing the die against the applied resin using a die whose surface has been designed and processed in advance. It is. As a transfer method, a thermosetting resin is used as a resin to be applied to the substrate surface, and a thermal imprint method is performed while heating at the time of transfer, and UV is transferred by irradiating ultraviolet rays at the time of transfer using an ultraviolet curable resin. There is an imprint method. The thermal imprint method has the feature that the material selectivity is wide, but the problem is that the transfer rate to the mold does not increase due to the high viscosity of the material and the throughput does not increase because it takes time to raise and lower the temperature. is there. On the other hand, the UV imprint method has a problem of material selectivity, but generally has a high transfer rate due to low material viscosity and high throughput because it is cured by irradiating with ultraviolet rays. doing. Which of the thermal imprinting method and the UV imprinting method is employed differs depending on the application device, but when there is no problem caused by the material, the UV imprinting method is considered suitable as a mass production method.

図8(a)〜(d)にUVナノインプリント工法の概略を示す工程断面図を示す。
まず、作成する所定の形状を加工した微細構造金型81を作成した後(図8(a))、基板82上に予め塗布された紫外線硬化樹脂83に対して、微細形状を有する微細構造金型81を押圧し、微細構造金型81上の微細形状に紫外線硬化樹脂83を充填させる(図8(b))。次に、微細構造金型81を押圧した状態で紫外線841を照射して紫外線硬化樹脂83を硬化させた後(図8(c))、微細構造金型81を基板82から離型することで、基板82表面上に微細形状を転写成形する(図8(d))。ここで、紫外線硬化樹脂83に紫外線841を照射する必要があるため、一般的には微細構造金型81を石英等の紫外線を透過する材質で製作し、微細構造金型81側から紫外線841を照射する方法と基板82に紫外線を透過する材質を用いて、基板82側から紫外線841を照射する方法のいずれかの方法が用いられる。
Process sectional drawing which shows the outline of UV nanoimprint construction method in Fig.8 (a)-(d) is shown.
First, after forming a microstructured die 81 in which a predetermined shape to be created is created (FIG. 8A), a microstructured die having a microstructure is applied to the ultraviolet curable resin 83 applied in advance on the substrate 82. The mold 81 is pressed, and the ultraviolet curable resin 83 is filled into the fine shape on the fine structure mold 81 (FIG. 8B). Next, after the ultraviolet curable resin 83 is cured by irradiating the ultraviolet ray 841 while the fine structure mold 81 is pressed (FIG. 8C), the fine structure mold 81 is released from the substrate 82. Then, a fine shape is transferred and molded on the surface of the substrate 82 (FIG. 8D). Here, since it is necessary to irradiate the ultraviolet curable resin 83 with the ultraviolet ray 841, generally, the microstructure die 81 is made of a material that transmits ultraviolet rays such as quartz, and the ultraviolet ray 841 is emitted from the microstructure die 81 side. Any one of an irradiation method and a method of irradiating the substrate 82 with the ultraviolet ray 841 using a material that transmits ultraviolet rays to the substrate 82 is used.

前記ナノインプリント法に関する代表的な技術としては、次のような方法がある。例えば、基板上に形成したい微細構造を反転させた微細形状を有する微細構造金型を、基板の表面に形成されたレジスト膜層に対して型押しすることで、所定の微細形状パターンを転写する方法がある。また、シリコンウエハを微細構造金型として用いて、型押し転写によりレジスト膜層に25nm以下の微細な凹凸パターンを形成する方法もある(例えば、特許文献1参照)。   As a typical technique related to the nanoimprint method, there is the following method. For example, a predetermined fine shape pattern is transferred by embossing a fine structure mold having a fine shape obtained by inverting a fine structure to be formed on a substrate against a resist film layer formed on the surface of the substrate. There is a way. There is also a method of forming a fine uneven pattern of 25 nm or less on a resist film layer by stamping transfer using a silicon wafer as a fine structure mold (see, for example, Patent Document 1).

近年は、ディスプレイや照明器具など光学製品の低価格化の要求から、ガラスやフィルムなど大面積な基材上に、製品サイズに相当する微細構造パターンを複数並べて形成し、後の工程で基材ごと分割することで、製造コストを削減する方法が主流となっている。そのような方法を従来のUVナノインプリント法を用いて実現する場合は、図8で示した微細構造転写のフローを、基板上の位置をずらしながら連続的に繰り返して行っていた。   In recent years, due to the demand for lower prices for optical products such as displays and lighting fixtures, multiple fine structure patterns corresponding to the product size are formed side by side on a large area substrate such as glass or film, and the substrate is used in a later process. The method of reducing the manufacturing cost by dividing each of them is the mainstream. When such a method is realized by using a conventional UV nanoimprint method, the flow of fine structure transfer shown in FIG. 8 is continuously repeated while shifting the position on the substrate.

従来の製造方法を用いた連続転写の方法を説明する図を図9に示す。
まず、図9(a)では、図8(a)〜(d)に示す方法で、基材82に対し紫外線硬化樹脂831を配置し、紫外線硬化樹脂831に微細構造金型81を押し付け、紫外線照射ユニット84から紫外線を照射して紫外線硬化樹脂831を硬化させ、微細構造金型81を離型させる。次に、図9(b)に示すように、紫外線硬化樹脂831と隣り合う位置に紫外線硬化樹脂832を塗布し、微細構造金型81を紫外線硬化樹脂832上にずらし、図9(a)と同様のフローで紫外線硬化樹脂832を硬化させ離型させていた。
FIG. 9 is a diagram for explaining a continuous transfer method using a conventional manufacturing method.
First, in FIG. 9A, the ultraviolet curable resin 831 is disposed on the base material 82 by the method shown in FIGS. 8A to 8D, and the microstructure die 81 is pressed against the ultraviolet curable resin 831. The ultraviolet curable resin 831 is cured by irradiating ultraviolet rays from the irradiation unit 84, and the microstructure die 81 is released. Next, as shown in FIG. 9B, the ultraviolet curable resin 832 is applied to a position adjacent to the ultraviolet curable resin 831, and the microstructure die 81 is shifted onto the ultraviolet curable resin 832. As shown in FIG. The ultraviolet curable resin 832 was cured and released in the same flow.

特開平5−80530号公報Japanese Patent Laid-Open No. 5-80530

しかしながら従来の連続転写方法では、微細構造金型81からの押圧によって紫外線硬化樹脂832が濡れ広がり、既に硬化済の紫外線硬化樹脂831の上に乗りあがり、紫外線硬化樹脂831からなる微細形状に未硬化の樹脂832が入りこんでしまう。後の洗浄などでこれら樹脂の大半は取り除かれるが、若干の残渣は微細形状の中に残ってしまい、微細形状が精度劣化するという問題点があった。また、隣接する紫外線効果樹脂が入り込む問題点を回避するには、紫外線硬化樹脂831と紫外線硬化樹脂832とを配置する間隔を広げ、樹脂の濡れ広がりによる隣接パターンへの乗り上げをなくすことが考えられるが、それでは対象とする基板サイズ内のパターン配置数が減少し、1つの基板から製造できる微細形状の数が減少するという問題点があった。   However, in the conventional continuous transfer method, the UV curable resin 832 spreads out by pressing from the fine structure mold 81, rides on the already cured UV curable resin 831, and is uncured into a fine shape made of the UV curable resin 831. The resin 832 enters. Although most of these resins are removed by subsequent cleaning or the like, there is a problem in that some of the residue remains in the fine shape, and the accuracy of the fine shape deteriorates. Further, in order to avoid the problem of the adjoining ultraviolet effect resin entering, it is conceivable to widen the interval between the ultraviolet curable resin 831 and the ultraviolet curable resin 832 so as to eliminate the riding on the adjacent pattern due to the spreading of the resin. However, there is a problem that the number of pattern arrangements within the target substrate size is reduced and the number of fine shapes that can be manufactured from one substrate is reduced.

そこで、本発明は、従来の問題点を解決するために、複数の微細構造を、狭間隔かつ高品質に配列して成形することを目的とする。   Therefore, an object of the present invention is to form a plurality of fine structures arranged in a narrow space at a high quality in order to solve the conventional problems.

上記目的を達成するために本発明の微細構造の形成方法は、微細構造金型の表面に形成される微細形状を、基板上に塗布される紫外線硬化樹脂に転写することを繰り返し、前記基板上に配列される複数の微細構造を形成する方法であって、前記基板上に前記紫外線硬化樹脂を塗布する塗布工程と、前記紫外線硬化樹脂を微細構造金型で押圧しながら前記微細形状の転写領域の外周領域の少なくとも一部と接する前記紫外線硬化樹脂にのみ紫外線を照射する押圧工程と、前記転写領域全面に対し紫外線を照射して前記紫外線硬化樹脂の全体を硬化させる硬化工程と、前記微細構造金型を前記紫外線硬化樹脂から離型させる離型工程とを有し、前記基板上を順次移動して前記塗布工程から前記離型工程を繰り返し、
前記転写領域の外周領域の少なくとも一部は、転写によってすでに形成された前記微細構造と隣り合う前記転写領域の外周辺に沿うことを特徴とする。
In order to achieve the above object, the fine structure forming method of the present invention repeatedly transfers the fine shape formed on the surface of the fine structure mold to an ultraviolet curable resin applied on the substrate, A method of forming a plurality of microstructures arranged on the substrate, the coating step of applying the ultraviolet curable resin on the substrate, and the transfer region of the fine shape while pressing the ultraviolet curable resin with a microstructure mold A pressing step of irradiating only the ultraviolet curable resin in contact with at least a part of the outer peripheral region of the substrate, a curing step of irradiating the entire transfer region with ultraviolet rays to cure the entire ultraviolet curable resin, and the microstructure A mold release process for releasing the mold from the ultraviolet curable resin, and sequentially moving on the substrate to repeat the mold release process from the coating process,
At least a part of the outer peripheral area of the transfer area is along the outer periphery of the transfer area adjacent to the fine structure already formed by the transfer.

また、本発明の微細構造の製造装置は、微細構造が形成される基板を載置するステージと、前記基板と前記ステージとの間に設けられて紫外線を遮光する遮光体と、前記遮光体に設けられて紫外線が透過する開口部と、微細形状が形成される微細構造金型と、前記微細構造金型を前記紫外線硬化樹脂に押圧する際に前記開口部を通して前記紫外線硬化樹脂に紫外線を照射する第1の紫外線照射ユニットと、前記微細構造金型を前記紫外線硬化樹脂に押圧した後に前記微細構造金型を押圧した状態で前記紫外線硬化樹脂全体に紫外線を照射する第2の紫外線照射ユニットとを有し、前記基板上に順次塗布される紫外線硬化樹脂に前記微細形状を転写することを繰り返して前記基板上に配列される複数の前記微細構造を形成し、前記開口部が、転写領域の外周辺に沿って設けられることを特徴とする。   The fine structure manufacturing apparatus of the present invention includes a stage on which a substrate on which a fine structure is formed is placed, a light shielding body that is provided between the substrate and the stage and shields ultraviolet rays, and the light shielding body. An opening through which ultraviolet rays are transmitted, a microstructure mold in which a fine shape is formed, and when the microstructure mold is pressed against the ultraviolet curable resin, the ultraviolet curable resin is irradiated with ultraviolet rays through the opening. A first ultraviolet irradiation unit that irradiates the entire ultraviolet curable resin with ultraviolet rays in a state in which the microstructured mold is pressed after the fine structure mold is pressed against the ultraviolet curable resin; A plurality of microstructures arranged on the substrate by repeatedly transferring the fine shape to an ultraviolet curable resin sequentially applied on the substrate, and the opening portion And which are located along the outer periphery of the region.

以上のように、本発明の微細構造の形成方法、および微細構造の製造装置によると、微細構造の連続転写における微細構造金型からの樹脂のはみ出しによる隣接微細構造への乗り上げを回避することで、狭間隔かつ高品質に配列された微細構造を成形することができる。   As described above, according to the fine structure forming method and the fine structure manufacturing apparatus of the present invention, it is possible to prevent the resin from protruding from the fine structure mold in the continuous transfer of the fine structure to avoid the adjacent fine structure. It is possible to mold fine structures arranged with a narrow interval and high quality.

本発明の実施の形態1における製造装置の構造を示す概略図Schematic which shows the structure of the manufacturing apparatus in Embodiment 1 of this invention. 本発明の実施の形態1における転写方法を説明する工程断面図Process sectional drawing explaining the transfer method in Embodiment 1 of this invention 本発明の実施の形態1における連続転写について説明する模式図Schematic diagram illustrating continuous transfer in Embodiment 1 of the present invention 本発明の実施の形態2における製造装置の構造を示す概略図Schematic which shows the structure of the manufacturing apparatus in Embodiment 2 of this invention. 本発明の実施の形態2における連続転写について説明する模式図Schematic diagram illustrating continuous transfer in Embodiment 2 of the present invention 本発明の実施の形態3における製造装置の構造を示す概略図Schematic which shows the structure of the manufacturing apparatus in Embodiment 3 of this invention. 本発明の実施の形態3における連続転写について説明する模式図Schematic diagram illustrating continuous transfer in Embodiment 3 of the present invention UVナノインプリント工法の概略を示す工程断面図Process cross section showing the outline of UV nanoimprint method 従来の製造方法を用いた連続転写の方法を説明する図The figure explaining the method of continuous transfer using the conventional manufacturing method

以下本発明の実施の形態について、図面を参照しながら説明する。
(実施の形態1)
図1は本発明の実施の形態1における製造装置の構造を示す概略図である。図1(a)は図1(b)のA−A’断面の模式図、図1(b)は上面からの模式図である。
Embodiments of the present invention will be described below with reference to the drawings.
(Embodiment 1)
FIG. 1 is a schematic diagram showing the structure of a manufacturing apparatus according to Embodiment 1 of the present invention. FIG. 1A is a schematic view of the AA ′ cross section of FIG. 1B, and FIG. 1B is a schematic view from the top.

図1に示すように、実施の形態1における微細構造の製造装置には、押圧用ヘッド(図示せず)の先端に、石英ガラスなど紫外線を透過できる部材で製作された微細構造金型11が微細形状を下向きにして取り付けられており、その上には、微細構造金型11を透過して紫外線を下方に照射できるような紫外線照射ユニット14が取り付けられている。また、下側には、同じく石英ガラスなど紫外線を透過できる部材で製作されたステージ16の上に任意の開口部151を有した遮光体15が配置され、遮光体15の上面に基板12が配置される。ステージ16の下面には、ステージ16および基板12を透過して紫外線を上方に照射できるような紫外線照射ユニット17が取り付けられている。遮光体15は、紫外線を遮へいできる部材であり、ここではガラス上にスパッタでクロムの金属膜を形成した部材を用いている。開口部151は遮光体15の一部金属膜を形成しないことによりに形成され、遮光体15は、開口部151を通して紫外線照射ユニット17からの紫外線を上方へ透過できる構成である。開口部151は、微細構造金型11の外形線すなわち、転写領域の外形線に沿って、例えば、図1(b)では図面左辺および下辺に配置されている。   As shown in FIG. 1, the microstructure manufacturing apparatus according to Embodiment 1 has a microstructure mold 11 made of a member capable of transmitting ultraviolet light, such as quartz glass, at the tip of a pressing head (not shown). An ultra-violet irradiation unit 14 is mounted so that the micro shape can be directed downward, and an ultra-violet irradiation unit 14 that can transmit the ultra-violet light downward through the fine mold 11 is mounted thereon. Also, on the lower side, a light shielding body 15 having an arbitrary opening 151 is arranged on a stage 16 made of a member that can transmit ultraviolet rays, such as quartz glass, and the substrate 12 is arranged on the upper surface of the light shielding body 15. Is done. An ultraviolet irradiation unit 17 is attached to the lower surface of the stage 16 so as to transmit the ultraviolet rays upward through the stage 16 and the substrate 12. The light shielding body 15 is a member capable of shielding ultraviolet rays. Here, a member in which a chromium metal film is formed on glass by sputtering is used. The opening 151 is formed by not forming part of the metal film of the light shielding body 15, and the light shielding body 15 is configured to transmit ultraviolet rays from the ultraviolet irradiation unit 17 upward through the opening 151. The openings 151 are arranged along the outline of the microstructure mold 11, that is, the outline of the transfer region, for example, on the left side and the lower side in FIG. 1B.

図2(a)〜(d)は本発明の実施の形態1における転写方法を説明する工程断面図であり、図1に示す製造装置を用いて、微細構造を成形する成形フローを示す模式図である。なお、図1(a)、(b)と同じ部分または相当する部分には同じ符号を付し、一部の説明を省略する。図2(a)は基板上に紫外線硬化樹脂13を塗布する塗布工程を、図2(b)は塗布した紫外線硬化樹脂13と微細構造金型11を接触させ押圧する押圧工程を、図2(c)は紫外線硬化樹脂13を硬化させる硬化工程を、図2(d)は微細構造金型11を紫外線硬化樹脂13から離す離型工程を示す。   2A to 2D are process cross-sectional views illustrating the transfer method according to the first embodiment of the present invention, and are schematic diagrams illustrating a molding flow for molding a microstructure using the manufacturing apparatus illustrated in FIG. It is. In addition, the same code | symbol is attached | subjected to the part which is the same as that of FIG. 1 (a), (b), or an equivalent part, and a one part description is abbreviate | omitted. 2A shows an application process of applying the ultraviolet curable resin 13 on the substrate, and FIG. 2B shows a pressing process of contacting and pressing the applied ultraviolet curable resin 13 with the microstructure mold 11 as shown in FIG. c) shows a curing step for curing the ultraviolet curable resin 13, and FIG. 2 (d) shows a mold releasing step for separating the microstructure mold 11 from the ultraviolet curable resin 13.

まず、図2(a)の塗布工程では、基板12上の微細構造金型11に対向する領域のうち、遮光体15の開口部151より内側に紫外線硬化樹脂13を塗布する。塗布方式としてここではディスペンス方式をとっており、ノズル(図示せず)先端から紫外線硬化樹脂13を適量塗布する。次に、図2(b)の押圧工程では、微細構造金型11をヘッドごと下降させ、塗布された紫外線硬化樹脂13に接触させ押圧させる。この際、ステージ16の下側に配置された紫外線照射ユニット17からは紫外線171が同時に照射されており、遮光体15の開口部151から紫外線硬化樹脂13に紫外線171が照射され、紫外線171が照射された領域の紫外線硬化樹脂13のみを硬化している。押圧によって濡れ広がった紫外線硬化樹脂13の内、開口部151の直上に到達した紫外線硬化樹脂13はその場で紫外線照射されることで半硬化状態に達するため、粘度が上がり以降外側(図面左方)へ濡れ広がることはない。またその他の紫外線硬化樹脂13すなわち開口部151より反対側に濡れ広がった紫外線硬化樹脂13は、前記開口部151からの紫外線171で硬化されることはなく、図中アの方向へ濡れ広がり微細構造金型11の微細形状に充填される。この際、前記その場で硬化した紫外線硬化樹脂13は半硬化状態であり微量には変形可能であるため、微細構造金型11の押圧の障害になることはなく、図中アの方向への紫外線硬化樹脂13は微細構造金型11の外側まで濡れ広がる。   First, in the coating process of FIG. 2A, the ultraviolet curable resin 13 is coated on the inner side of the opening 151 of the light shield 15 in the region facing the microstructure die 11 on the substrate 12. Here, a dispensing method is used as an application method, and an appropriate amount of the ultraviolet curable resin 13 is applied from the tip of a nozzle (not shown). Next, in the pressing step of FIG. 2B, the microstructure die 11 is lowered together with the head, and is brought into contact with and pressed against the applied ultraviolet curable resin 13. At this time, ultraviolet rays 171 are simultaneously irradiated from the ultraviolet irradiation unit 17 arranged on the lower side of the stage 16, and the ultraviolet rays 171 are irradiated to the ultraviolet curable resin 13 from the openings 151 of the light shield 15. Only the ultraviolet-curing resin 13 in the formed region is cured. Of the ultraviolet curable resin 13 that has spread out by pressing, the ultraviolet curable resin 13 that has just reached the top of the opening 151 reaches a semi-cured state by being irradiated with ultraviolet rays on the spot. ) Will not spread out wet. Further, the other ultraviolet curable resin 13, that is, the ultraviolet curable resin 13 wetted and spread to the opposite side from the opening 151, is not cured by the ultraviolet light 171 from the opening 151, but spreads in the direction of A in the drawing and has a fine structure. The fine shape of the mold 11 is filled. At this time, since the ultraviolet curable resin 13 cured in situ is in a semi-cured state and can be deformed to a small amount, it does not become an obstacle to pressing the microstructure mold 11 and is directed in the direction of A in the figure. The ultraviolet curable resin 13 spreads wet to the outside of the microstructure mold 11.

つまり、紫外線硬化樹脂13はそのまま外側へ押圧によって紫外線硬化樹脂13が外側へ濡れ広がり、開口部151に達した時点で即時硬化されるため、開口部151より外側へ(図面左方)は濡れ広がらず、残りの樹脂は矢印アの方向、つまり紫外線硬化樹脂13の硬化した端部以外の方向(主には硬化した端部以外の方向)に流れ出しながら、微細構造金型11の微細形状に充填する。また、開口部151は微細構造が形成された転写領域の外形線に沿って形成されるため、転写領域の端部においては微細構造が転写されるが、その領域ではある程度硬化が進行しているため、その外側に紫外線硬化樹脂13が流出することを抑制できる。次に、図2(c)の硬化工程では、ヘッド上部に取り付けられた紫外線照射ユニット14より、紫外線141が照射され、微細構造金型11を透過して紫外線硬化樹脂13の全体を硬化する。最後に、図2(d)の離型工程で微細構造金型11を上昇させることで、紫外線硬化樹脂13から離型する。   That is, the ultraviolet curable resin 13 is pressed outward as it is, so that the ultraviolet curable resin 13 spreads outward and is immediately cured when it reaches the opening 151, so that the ultraviolet curable resin 13 is spread outward from the opening 151 (to the left in the drawing). The remaining resin flows into the direction of the arrow A, that is, the direction other than the cured end of the ultraviolet curable resin 13 (mainly the direction other than the cured end), and fills the fine shape of the microstructure mold 11 To do. In addition, since the opening 151 is formed along the outline of the transfer region in which the fine structure is formed, the fine structure is transferred at the end of the transfer region, but curing is progressing to some extent in the region. Therefore, it is possible to prevent the ultraviolet curable resin 13 from flowing out to the outside. Next, in the curing step of FIG. 2C, ultraviolet rays 141 are irradiated from the ultraviolet irradiation unit 14 attached to the upper part of the head, and the entire ultraviolet curable resin 13 is cured through the microstructure mold 11. Finally, the fine structure mold 11 is raised in the mold release process of FIG.

本発明の形成方法によって、微細構造パターンの連続転写において、狭間隔かつ高品質に配列された微細構造パターンを成形できる理由を示す。
図3は本発明の実施の形態1における連続転写について説明する模式図であり、図2のフローを複数回繰り返した際の、微細構造パターンの並列転写の様子を示した模式図である。図3(a)は図3(b)のB−B’断面の模式図、図3(b)は上面模式図である。簡便のため、配列数を縦2列、横2列の4個とし、左下、右下、左上と順に転写した後の、右上の転写における押圧工程時の樹脂の濡れ広がり状態を示している。
The reason why the fine structure pattern arranged in a narrow space and with high quality can be formed by the formation method of the present invention in the continuous transfer of the fine structure pattern will be described.
FIG. 3 is a schematic diagram for explaining continuous transfer according to Embodiment 1 of the present invention, and is a schematic diagram showing a state of parallel transfer of fine structure patterns when the flow of FIG. 2 is repeated a plurality of times. 3A is a schematic diagram of the BB ′ cross section of FIG. 3B, and FIG. 3B is a schematic top view. For the sake of simplicity, the number of arrangements is four in two rows and two rows, and the wet state of the resin during the pressing process in the upper right transfer after transfer in the order of lower left, lower right, and upper left is shown.

図3に示すように、4回目の転写において、紫外線硬化樹脂13は、塗布位置130のように、中心から図中左下方向に偏った位置に塗布されており、押圧工程にて周囲へ濡れ広がる。その際、濡れ広がった紫外線硬化樹脂13は先に遮光体15の開口部151の上部に到達するが、到達した紫外線硬化樹脂13は下面(紙面奥から手前方向)の紫外線照射ユニット17からの紫外線171の照射により即時硬化され、硬化済の紫外線硬化樹脂1321としてその場に留まる。残りの紫外線硬化樹脂1322は紫外線が照射されておらず、押圧と同時に図中右上の方向へ流動し、微細構造金型11の転写領域111の外側まで流れる。開口部151は、前回の転写により硬化済の紫外線硬化樹脂である硬化済樹脂131と隣接し、転写領域111の外辺に沿って転写領域111内に設けられており、押圧中の紫外線硬化樹脂13は、隣(図中左方および下方)の硬化済樹脂131に到達せず、既に形成された微細構造の膜面へ濡れ広がることはない。したがって転写中に前回転写済みパターンの形状品質を損なうことなく、連続転写を行うことが可能になる。   As shown in FIG. 3, in the fourth transfer, the ultraviolet curable resin 13 is applied to a position that is biased from the center to the lower left direction in the figure as in the application position 130, and spreads to the surroundings in the pressing step. . At that time, the UV curable resin 13 that has spread out first reaches the upper portion of the opening 151 of the light shielding body 15, but the UV curable resin 13 that has reached reaches the ultraviolet light from the UV irradiation unit 17 on the lower surface (from the back of the paper to the front). It is immediately cured by irradiation of 171 and remains in place as a cured UV curable resin 1321. The remaining ultraviolet curable resin 1322 is not irradiated with ultraviolet rays, and flows in the upper right direction in the drawing simultaneously with pressing, and flows to the outside of the transfer region 111 of the microstructure die 11. The opening 151 is adjacent to the cured resin 131 that is an ultraviolet curable resin that has been cured by the previous transfer, and is provided in the transfer region 111 along the outer side of the transfer region 111. No. 13 does not reach the adjacent cured resin 131 (left and lower in the figure), and does not spread to the film surface of the already formed fine structure. Accordingly, it is possible to perform continuous transfer without deteriorating the shape quality of the previously transferred pattern during transfer.

また、押圧工程および硬化工程における紫外線照射量について、硬化工程時の積算光量は、紫外線硬化樹脂13を完全に硬化させる必要光量以上である必要があるが、押圧工程時は、樹脂の流動性を抑制する最低限の照射量であることが望ましい。照射量を抑えて樹脂を完全に硬化させずに押圧中にさらに変形させることで、膜厚を薄くでき、膜厚バラツキの低減を図ることが可能になる。また、転写領域111全体に紫外線硬化樹脂13を押し広げながら、硬化済樹脂131に紫外線硬化樹脂13が漏れ広がることを抑制できる。本発明では、例として紫外線硬化樹脂13の硬化に必要な積算光量が1000mJ/cm相当であるのに対し、開口部151から照射する、樹脂流動を抑制するのに十分な積算光量を約50mJ/cmとし、押圧工程の加圧力を1MPaとした。前記紫外線照射量を50mJ/cm程度に抑制することで、半硬化後の弾性率は0.1MPa程度に抑えることができ、1MPa程度の加圧力で十分な薄膜化が可能である。 Moreover, about the ultraviolet irradiation amount in a press process and a hardening process, although the integrated light quantity at the time of a hardening process needs to be more than the required light quantity which hardens the ultraviolet curing resin 13 completely, at the time of a press process, the fluidity | liquidity of resin is required. It is desirable that the minimum irradiation dose be suppressed. By suppressing the irradiation amount and further deforming the resin during pressing without completely curing the resin, the film thickness can be reduced, and the variation in film thickness can be reduced. Further, it is possible to prevent the ultraviolet curable resin 13 from leaking to the cured resin 131 while spreading the ultraviolet curable resin 13 over the entire transfer region 111. In the present invention, for example, the integrated light amount necessary for curing the ultraviolet curable resin 13 is equivalent to 1000 mJ / cm 2 , whereas the integrated light amount that is irradiated from the opening 151 and is sufficient to suppress the resin flow is about 50 mJ. / Cm 2 , and the pressing force in the pressing step was 1 MPa. By suppressing the ultraviolet irradiation amount to about 50 mJ / cm 2 , the elastic modulus after semi-curing can be suppressed to about 0.1 MPa, and a sufficient thin film can be formed with a pressing force of about 1 MPa.

また、遮光体15の材質をガラス板上にスパッタ等で形成されたクロム膜とすることができるが、紫外線を遮光できる材料であればこの限りでなく、例えば同じくガラス板上にニッケルやアルミなどの金属膜を形成したり、石英ガラス上へ直接成膜する方法も考えられる。   The material of the light shield 15 can be a chromium film formed on a glass plate by sputtering or the like, but is not limited to this as long as it is a material capable of shielding ultraviolet rays. For example, nickel, aluminum, etc. are similarly formed on the glass plate. A method of forming a metal film or directly forming a film on quartz glass is also conceivable.

また以上の説明では、微細構造金型11の転写領域111に対する遮光体15の開口部151の形状を、連続転写の順番に従い左辺と下辺のL字型としたが、配列数や転写順によってはこの限りでなく、例えば1辺のみ開口する場合や、3辺を遮光しコの字型に開口する場合など、種々の開口形状をとることが考えられる。さらに、転写領域111の外周に沿って4辺に開口部151を形成しても良い。転写領域111を囲って開口部151を形成することにより、硬化工程中も紫外線171を同時に照射することで、微細構造を形成する前の転写領域や転写領域間に紫外線硬化樹脂13が流動することを防ぐことができ、より精密な微細構造を形成することができる。   In the above description, the shape of the opening 151 of the light shield 15 with respect to the transfer region 111 of the microstructure mold 11 is L-shaped on the left side and the lower side according to the order of continuous transfer. The present invention is not limited to this. For example, it is conceivable to adopt various opening shapes, such as when only one side is opened or when three sides are shielded and opened in a U-shape. Further, the openings 151 may be formed on the four sides along the outer periphery of the transfer region 111. By forming the opening 151 so as to surround the transfer region 111, the ultraviolet curable resin 13 flows between the transfer region and the transfer region before forming the fine structure by simultaneously irradiating the ultraviolet rays 171 during the curing process. Can be prevented, and a more precise fine structure can be formed.

また、上記の説明では、開口部151を転写領域111の外周辺に沿った連続的な開口としたが、複数の開口が外周辺に沿って断続的に並ぶ構成でも、紫外線硬化樹脂1321の硬化度を調整することで用いることができる。   In the above description, the opening 151 is a continuous opening along the outer periphery of the transfer region 111. However, the ultraviolet curable resin 1321 is cured even in a configuration in which a plurality of openings are intermittently arranged along the outer periphery. It can be used by adjusting the degree.

本発明の微細構造の形成方法においては、転写可能な面積は微細構造金型11が作成できる面積であれば上限はなく、今回は単一の面積で約100mm角としている。また、各転写領域間のピッチは、遮光体15の開口部151の形成精度および微細構造金型の送り精度に依存しており、約1mm程度としている。
(実施の形態2)
また、本実施の形態2として、微細構造金型11の押圧ヘッドへの取り付け方法を以下のようにすることで、更なる効果が期待できる。
In the fine structure forming method of the present invention, the transferable area is not limited as long as the fine structure mold 11 can be created, and this time, the single area is about 100 mm square. The pitch between the transfer regions depends on the formation accuracy of the openings 151 of the light shield 15 and the feed accuracy of the fine structure mold, and is about 1 mm.
(Embodiment 2)
Further, as the second embodiment, a further effect can be expected by setting the method of attaching the microstructure die 11 to the pressing head as follows.

図4は、本発明の実施の形態2における製造装置の構造を示す概略図である。図4(a)は図4(b)のC−C’断面の模式図、図4(b)は上面からの模式図である。
図4に示すように、実施の形態2における微細構造の製造装置には、押圧用ヘッド(図示せず)の先端に、石英ガラスなど紫外線を透過できる部材で製作された微細構造金型11が微細形状を下向きにして取り付けられており、その上には、微細構造金型11を透過して紫外線を下方に照射できるような紫外線照射ユニット14が取り付けられている。微細構造金型11には、微細形状が形成されている面の反対側に、4つのバネ181〜184(以下、区別しないときはバネ18と称す)が、図4(b)に示すように微細構造金型11の四隅に配置され、微細構造金型11は、紫外線照射ユニット14を含む押圧ヘッド(図示せず)に治具(図示せず)を用いて固定されている。また、4つのバネ18の内、紫外線硬化樹脂が塗布される位置に最も近い角部に配置されるバネ181は他のバネ18より長く形成され、微細構造金型11は紫外線硬化樹脂が塗布される位置と向かい合う位置が基板12に最も近づくように傾く。下側のステージ16や基板12、下部紫外線照射ユニット17や遮光体15の配置構成は、図1に示す内容と同様のため、ここでは説明を省略する。また、実施の形態2における微細構造を成形する方法も、図2に示す内容と同様のため省略する。
FIG. 4 is a schematic diagram showing the structure of the manufacturing apparatus according to Embodiment 2 of the present invention. 4A is a schematic diagram of a CC ′ cross section of FIG. 4B, and FIG. 4B is a schematic diagram from the top.
As shown in FIG. 4, the microstructure manufacturing apparatus according to the second embodiment includes a microstructure mold 11 made of a member capable of transmitting ultraviolet rays, such as quartz glass, at the tip of a pressing head (not shown). An ultra-violet irradiation unit 14 is mounted so that the micro shape can be directed downward, and an ultra-violet irradiation unit 14 that can transmit the ultra-violet light downward through the fine mold 11 is mounted thereon. As shown in FIG. 4B, the microstructured mold 11 has four springs 181 to 184 (hereinafter referred to as springs 18 when not distinguished from each other) on the opposite side of the surface on which the fine shape is formed. It arrange | positions at the four corners of the microstructure die 11, and the microstructure die 11 is being fixed to the press head (not shown) containing the ultraviolet irradiation unit 14 using the jig | tool (not shown). Of the four springs 18, the spring 181 disposed at the corner closest to the position where the ultraviolet curable resin is applied is formed longer than the other springs 18, and the microstructure mold 11 is applied with the ultraviolet curable resin. The position facing the position is inclined so as to be closest to the substrate 12. The arrangement of the lower stage 16, the substrate 12, the lower ultraviolet irradiation unit 17, and the light shield 15 is the same as that shown in FIG. The method for forming the microstructure in the second embodiment is also the same as that shown in FIG.

実施の形態2における形成方法によって、微細構造パターンの連続転写における狭間隔かつ高品質に配列された微細構造パターンを成形できる理由を以下に示す。
図5は本発明の実施の形態2における連続転写について説明する模式図であり、図4の構成にて微細構造パターンを並列転写した様子を示した模式図である。図5(a)は図5(b)のD−D’断面の模式図、図5(b)は上面模式図である。簡便のため、配列数を縦2列、横2列の4個とし、左下、右下、左上と順に転写した後の、右上の転写における押圧工程時の樹脂の濡れ広がり状態を示している。
The reason why the fine structure pattern arranged in a narrow interval and with high quality in the continuous transfer of the fine structure pattern can be formed by the forming method in the second embodiment will be described below.
FIG. 5 is a schematic diagram for explaining continuous transfer in the second embodiment of the present invention, and is a schematic diagram showing a state in which fine structure patterns are transferred in parallel with the configuration of FIG. FIG. 5A is a schematic diagram of the DD ′ cross section of FIG. 5B, and FIG. 5B is a schematic top view. For the sake of simplicity, the number of arrangements is four in two rows and two rows, and the wet state of the resin during the pressing process in the upper right transfer after transfer in the order of lower left, lower right, and upper left is shown.

塗布工程では、基板12上の微細構造金型11に対向する領域の内、微細構造金型が傾いて基板12とのギャップが最も狭くなる塗布位置130に紫外線硬化樹脂13が塗布される。そして図5に示す押圧工程では、微細構造金型11をヘッドごと下降させ、塗布された紫外線硬化樹脂13が配置されている箇所近傍を最初に接触させて押圧する。押圧中には、基板12からの反力によりバネ18が順に変形し、塗布位置130に最も近いバネ18(図4の181)が縮むと共に、他のバネ18が伸び、最終的には、基板12と微細構造金型11が平行となり、紫外線硬化樹脂13が配置された箇所近傍から徐々に紫外線硬化樹脂13全体が押圧される。その際、微細構造金型11の傾きにより、紫外線硬化樹脂13は、図5(a)の右方向へ押し流される。すなわち、図5(b)の上面図において左下方向への流動速度は小さく、右上方向への流動速度が大きくなるような、図中矢印の太さが示すような流動速度の違いが生まれる。流動速度の小さい転写領域111の左辺および下辺側は、微細構造金型11より外側へのはみ出しが抑制され、かつ同時に、遮光体15の開口部151より照射される紫外線171により、開口部151を通して紫外線171が照射される領域の紫外線硬化樹脂13の硬化が進行するため、硬化済みの紫外線硬化樹脂1321はその場に留まり、隣(図中左方および下方)に形成された硬化済樹脂131への到達をより効率的に抑制することができる。そして、押圧工程中、徐々に微細構造金型11の傾きを解消していき、最終的には微細構造金型11と基板12とを平行にする。このように、押圧工程中に開口部151からすでに形成された微細構造と隣り合う転写領域111の外周部に紫外線171を照射すると共に、微細構造金型11をこの転写領域111の外周部が最も下がるように傾けることにより、この外周部から逆側の外周部に向けて紫外線硬化樹脂13を押し広げることができるため、紫外線硬化樹脂13が形成済みの微細構造に漏れ出すことを抑制し、微細構造を狭い間隔で形成したとしても、精度よく形成することができる。   In the coating process, the ultraviolet curable resin 13 is applied to the coating position 130 where the microstructure mold is inclined and the gap with the substrate 12 is narrowest in the region facing the microstructure mold 11 on the substrate 12. In the pressing step shown in FIG. 5, the microstructure die 11 is lowered together with the head, and the vicinity of the place where the applied ultraviolet curable resin 13 is disposed is first brought into contact with the head and pressed. During the pressing, the springs 18 are sequentially deformed by the reaction force from the substrate 12, the spring 18 (181 in FIG. 4) closest to the application position 130 is contracted, and the other springs 18 are extended, and finally the substrate. 12 and the fine structure mold 11 become parallel, and the entire ultraviolet curable resin 13 is gradually pressed from the vicinity of the place where the ultraviolet curable resin 13 is disposed. At that time, the ultraviolet curable resin 13 is pushed to the right in FIG. That is, in the top view of FIG. 5B, the flow speed in the lower left direction is small, and the flow speed difference as shown by the thickness of the arrow in the figure is generated such that the flow speed in the upper right direction is large. The left side and the lower side of the transfer region 111 having a low flow velocity are prevented from protruding outward from the microstructure die 11 and at the same time through the opening 151 by the ultraviolet rays 171 irradiated from the opening 151 of the light shielding body 15. Since the curing of the ultraviolet curable resin 13 in the region irradiated with the ultraviolet rays 171 proceeds, the cured ultraviolet curable resin 1321 stays in place, and the cured resin 131 formed next (to the left and below in the drawing). Can be more efficiently suppressed. Then, during the pressing step, the inclination of the fine structure mold 11 is gradually eliminated, and finally the fine structure mold 11 and the substrate 12 are made parallel. In this manner, the outer periphery of the transfer region 111 adjacent to the microstructure already formed from the opening 151 during the pressing step is irradiated with the ultraviolet light 171 and the outer periphery of the transfer region 111 is placed at the outermost portion of the transfer region 111. By tilting it downward, the ultraviolet curable resin 13 can be spread from the outer peripheral portion toward the outer peripheral portion on the opposite side, so that the ultraviolet curable resin 13 is prevented from leaking into the formed fine structure. Even if the structure is formed at a narrow interval, it can be formed with high accuracy.

本発明では、図4(b)に示すように、微細構造金型11の四隅にバネ18を配置させているが、それらバネ定数を変化させることにより、より有効な紫外線硬化樹脂13の流動の制御が可能となる。具体的には、塗布位置130に最も近い、図4(b)における左下のバネ181のバネ定数に対し、右上のバネ182のバネ定数を小さく設定する。押圧工程における微細構造金型11と紫外線硬化樹脂13とが接触した初期の段階では、比較的定数の大きいバネ181の近傍である、図4(b)の左下付近では紫外線硬化樹脂13に圧力がかかりにくく、左下方への樹脂の流れが低減されるが、微細構造金型11が平行になる押圧後期の段階では、バネ182の定数が小さくバネ181近傍と比較し樹脂への加圧力が上がるため、紫外線硬化樹脂13は右上方へ押し流されやすくなる。なお、図4(b)中のバネ183および184のバネ定数は、バネ181と182のバネ定数の中間の値のものを用いても良い。また、バネの本数および配置位置はこの限りでなく、辺の中央などさらに追加して多数配置することも考えられる。また押圧初期に傾いた微細構造金型11を押圧中に平行化する手段としてバネを用いたが、方法はこの限りでなく、硬度や膜厚の異なるゴムや、ダンパー、またヘッドの下降位置と同期して機械的に傾きを制御する方式で行っても同様の効果が期待できる。また、バネやゴム、ダンパーなどは微細構造金型11が取り付けられる上部ヘッド部分に取り付けたが、ステージ16側に取り付け、ステージ側を傾けるような構成としても良い。   In the present invention, as shown in FIG. 4B, the springs 18 are arranged at the four corners of the microstructure die 11, but by changing these spring constants, more effective flow of the ultraviolet curable resin 13 can be achieved. Control becomes possible. Specifically, the spring constant of the upper right spring 182 is set smaller than the spring constant of the lower left spring 181 in FIG. In the initial stage where the microstructure mold 11 and the ultraviolet curable resin 13 are in contact with each other in the pressing step, the pressure is applied to the ultraviolet curable resin 13 near the lower left of FIG. Although it is difficult to apply, the flow of the resin to the lower left is reduced, but at the later stage of pressing when the microstructure die 11 is parallel, the constant of the spring 182 is small and the pressure applied to the resin is increased compared to the vicinity of the spring 181. For this reason, the ultraviolet curable resin 13 is easily pushed upward to the right. Note that the spring constants of the springs 183 and 184 in FIG. 4B may be intermediate values of the spring constants of the springs 181 and 182. Further, the number and arrangement position of the springs are not limited to this, and it is conceivable that a large number of springs such as the center of the side are additionally arranged. In addition, the spring is used as a means for parallelizing the microstructured mold 11 inclined at the initial stage of pressing. However, the method is not limited to this, and rubbers having different hardness and film thickness, dampers, and lowering positions of the heads may be used. The same effect can be expected even if the method is used in which the tilt is mechanically controlled synchronously. Further, although the spring, rubber, damper, and the like are attached to the upper head portion to which the microstructure die 11 is attached, it may be configured to attach to the stage 16 side and tilt the stage side.

また、実施の形態2における微細構造金型11をバネ18を介して押圧ヘッドに取り付ける構成は、単独でも有効に作用することが考えられ、ステージ16と基板12の間の遮光体15、および下部紫外線照射ユニット17がない場合でも、一定の効果が期待できる。
(実施の形態3)
また、実施の形態3として、微細構造金型を以下のようにすることで、更なる効果が期待できる。
In addition, the configuration in which the microstructure mold 11 in the second embodiment is attached to the pressing head via the spring 18 can be considered to work effectively alone, and the light shielding body 15 between the stage 16 and the substrate 12 and the lower part. Even when there is no ultraviolet irradiation unit 17, a certain effect can be expected.
(Embodiment 3)
Further, as the third embodiment, a further effect can be expected by using a microstructure mold as follows.

図6は、本発明の実施の形態3における製造装置の構造を示す概略図である。図6(a)は図6(b)のE−E’断面の模式図、図6(b)は上面からの模式図である。
図6に示すように、実施の形態3における微細構造の製造装置には、押圧用ヘッド(図示せず)の先端に、石英ガラスなど紫外線を透過できる部材で製作された微細構造金型11が微細形状を下向きにして取り付けられており、その上には、微細構造金型11を透過して紫外線を下方に照射できるような紫外線照射ユニット14が取り付けられている。微細構造金型11は、図6(b)に示すように、微細形状が形成された領域の内、外周の任意の2辺に沿う領域112において、他の領域と比較して紫外線硬化樹脂13に対する撥水性の低い、すなわち親水性の高い領域が形成される。領域112を形成する方法としては、例えば微細構造金型11をフッ素など撥水性の高い材料で成膜処理する際に、領域112のみを遮へいして行うことで、他の領域と比較して撥水性を落とすことができる。下側のステージ16や基板12、紫外線照射ユニット17や遮光体15の配置構成は、前記図1および図4に示す内容と同様のため、ここでは説明を省略する。また、実施の形態3における微細構造を成形するフローも、図2に示す内容と同様のため省略する。
FIG. 6 is a schematic diagram showing the structure of the manufacturing apparatus according to Embodiment 3 of the present invention. FIG. 6A is a schematic diagram of the EE ′ cross section of FIG. 6B, and FIG. 6B is a schematic diagram from the top.
As shown in FIG. 6, the microstructure manufacturing apparatus according to the third embodiment has a microstructure mold 11 made of a member capable of transmitting ultraviolet light, such as quartz glass, at the tip of a pressing head (not shown). An ultra-violet irradiation unit 14 is mounted so that the micro shape can be directed downward, and an ultra-violet irradiation unit 14 that can transmit the ultra-violet light downward through the fine mold 11 is mounted thereon. As shown in FIG. 6B, the microstructure mold 11 has an ultraviolet curable resin 13 in the region 112 along any two sides of the outer periphery in the region where the fine shape is formed, as compared with other regions. A region having a low water repellency, ie, a high hydrophilicity is formed. As a method for forming the region 112, for example, when the microstructure mold 11 is formed with a material having high water repellency such as fluorine, the region 112 is shielded, so that the region 112 is repelled compared to other regions. Can remove water. The arrangement configuration of the lower stage 16, the substrate 12, the ultraviolet irradiation unit 17, and the light shield 15 is the same as that shown in FIGS. The flow for forming the microstructure in the third embodiment is also the same as that shown in FIG.

実施の形態3における微細構造の形成方法によって、微細構造パターンの連続転写における狭間隔かつ高品質に配列された微細構造パターンを成形できる理由を以下に示す。
図7は本発明の実施の形態3における連続転写について説明する模式図であり、図6の構成にて微細構造パターンを並列転写した様子を示した模式図である。図7(a)は図7(b)のF−F’断面の模式図、図7(b)は上面模式図である。簡便のため、配列数を縦2列、横2列の4個とし、左下、右下、左上と順に転写した後の、右上の転写における押圧工程時の樹脂の濡れ広がり状態を示している。
The reason why the fine structure pattern arranged in a narrow interval and with high quality in the continuous transfer of the fine structure pattern can be formed by the fine structure forming method in the third embodiment will be described below.
FIG. 7 is a schematic diagram for explaining continuous transfer according to Embodiment 3 of the present invention, and is a schematic diagram showing a state in which fine structure patterns are transferred in parallel with the configuration of FIG. Fig.7 (a) is a schematic diagram of the FF 'cross section of FIG.7 (b), FIG.7 (b) is an upper surface schematic diagram. For the sake of simplicity, the number of arrangements is four in two rows and two rows, and the wet state of the resin during the pressing process in the upper right transfer after transfer in the order of lower left, lower right, and upper left is shown.

塗布工程では、基板12上の微細構造金型11に対向する領域の内、塗布位置130として、中心から図中左下方向に偏った位置に紫外線硬化樹脂13が塗布される。そして図7に示す押圧工程では、微細構造金型11をヘッドごと下降させる。その際、押圧によって濡れ広がる紫外線硬化樹脂13は、図7(b)中左下の、微細構造金型11のうち領域112に接触した際、領域112に沿って図中上方向または右方向へ積極的に濡れ広がる。これは領域112が他と比較して高い親水性を有しているためである。これにより微細構造金型11の外側へのはみ出しが抑制され、かつ同時に、遮光体15の開口部151より照射される紫外線171により領域112に流動した紫外線硬化樹脂13の硬化が進行するため、硬化済みの紫外線硬化樹脂1321としてその場に留まり、硬化されていない紫外線硬化樹脂1322が隣(図中左方および下方)に形成された硬化済樹脂131への到達をより効率的に抑制することができる。   In the application step, the ultraviolet curable resin 13 is applied to a position that is biased from the center toward the lower left in the drawing as the application position 130 in the region facing the microstructure die 11 on the substrate 12. In the pressing step shown in FIG. 7, the microstructure die 11 is lowered with the head. At that time, the ultraviolet curable resin 13 that spreads by pressing is positively moved upward or rightward in the drawing along the region 112 when contacting the region 112 of the microstructure die 11 at the lower left in FIG. Spreads wet. This is because the region 112 has higher hydrophilicity than others. As a result, the protrusion of the microstructure mold 11 to the outside is suppressed, and at the same time, the curing of the ultraviolet curable resin 13 that has flowed to the region 112 by the ultraviolet light 171 irradiated from the opening 151 of the light shielding body 15 proceeds. It is possible to more effectively suppress the arrival of the uncured ultraviolet curable resin 1322 on the adjacent side (left and lower in the figure) to the cured resin 131 that remains in place as the already completed ultraviolet curable resin 1321. it can.

本実施の形態3における微細構造金型の一部を他と比較して親水性の高い領域を有した構成とする方法は、単独でも有効に作用することが考えられ、ステージ16と基板12の間の遮光体15、および下部紫外線照射ユニット17がない場合でも、一定の効果が期待できる。   It is conceivable that the method in which a part of the microstructure mold according to the third embodiment has a region having a higher hydrophilicity than others is effective even when used alone. Even when there are no light shielding body 15 and lower ultraviolet irradiation unit 17 between them, a certain effect can be expected.

本発明は、複数の微細構造パターンを、狭間隔かつ高品質に配列して成形することができ、ナノインプリント技術を用いて基板上に複数の微細構造を作成する方法および微細構造の製造装置等に有用である。   INDUSTRIAL APPLICABILITY The present invention provides a method for creating a plurality of microstructures on a substrate using a nanoimprint technology and a manufacturing apparatus for the microstructure, which can be formed by arranging a plurality of microstructure patterns with narrow intervals and high quality. Useful.

11 微細構造金型
111 転写領域
112 領域
12 基板
13 紫外線硬化樹脂
130 塗布位置
131 硬化済樹脂
1321 紫外線硬化樹脂
1322 紫外線硬化樹脂
14 紫外線照射ユニット
141 紫外線
15 遮光体
151 開口部
16 ステージ
17 紫外線照射ユニット
171 紫外線
18 バネ
81 微細構造金型
82 基板
83 紫外線硬化樹脂
831 紫外線硬化樹脂
832 紫外線硬化樹脂
84 紫外線照射ユニット
841 紫外線
DESCRIPTION OF SYMBOLS 11 Microstructure metal mold | die 111 Transfer area | region 112 area | region 12 Substrate 13 UV curable resin 130 Application position 131 Cured resin 1321 UV curable resin 1322 UV curable resin 14 Ultraviolet irradiation unit 141 Ultraviolet light 15 Shading body 151 Opening 16 Stage 17 Ultraviolet irradiation unit 171 Ultraviolet ray 18 Spring 81 Microstructure mold 82 Substrate 83 Ultraviolet curable resin 831 Ultraviolet curable resin 832 Ultraviolet curable resin 84 Ultraviolet irradiation unit 841 Ultraviolet ray

Claims (7)

微細構造金型の表面に形成される微細形状を、基板上に塗布される紫外線硬化樹脂に転写することを繰り返し、前記基板上に配列される複数の微細構造を形成する方法であって、
前記基板上に前記紫外線硬化樹脂を塗布する塗布工程と、
前記紫外線硬化樹脂を微細構造金型で押圧しながら前記微細形状の転写領域の外周領域の少なくとも一部と接する前記紫外線硬化樹脂にのみ紫外線を照射する押圧工程と、
前記転写領域全面に対し紫外線を照射して前記紫外線硬化樹脂の全体を硬化させる硬化工程と、
前記微細構造金型を前記紫外線硬化樹脂から離型させる離型工程と
を有し、
前記基板上を順次移動して前記塗布工程から前記離型工程を繰り返し、
前記転写領域の外周領域の少なくとも一部は、転写によってすでに形成された前記微細構造と隣り合う前記転写領域の外周辺に沿うことを特徴とする微細構造の形成方法。
A method of repeatedly transferring a fine shape formed on the surface of a microstructure mold to an ultraviolet curable resin applied on a substrate to form a plurality of microstructures arranged on the substrate,
An application step of applying the ultraviolet curable resin on the substrate;
A pressing step of irradiating ultraviolet rays only to the ultraviolet curable resin that is in contact with at least a part of the outer peripheral region of the fine-shaped transfer region while pressing the ultraviolet curable resin with a microstructure mold,
A curing step of irradiating the entire surface of the transfer region with ultraviolet rays to cure the entire ultraviolet curable resin;
A mold release step of releasing the microstructure mold from the ultraviolet curable resin,
Repeat the mold release process from the coating process by sequentially moving on the substrate,
At least a part of the outer peripheral region of the transfer region is along the outer periphery of the transfer region adjacent to the microstructure already formed by transfer.
前記塗布工程において、前記紫外線硬化樹脂を塗布する位置は、前記転写領域の中心から、前記転写領域の外周領域の少なくとも一部の方向に離れた位置であることを特徴とする請求項1に記載の微細構造の形成方法。   The position where the ultraviolet curable resin is applied in the application step is a position away from the center of the transfer region in the direction of at least a part of the outer peripheral region of the transfer region. Method for forming a fine structure. 前記押圧工程で前記紫外線硬化樹脂に照射される紫外線の積算光量は、前記硬化工程で前記紫外線硬化樹脂に照射される紫外線の積算光量よりも少ないことを特徴とする請求項1または請求項2のいずれかに記載の微細構造の形成方法。   The integrated light quantity of the ultraviolet rays applied to the ultraviolet curable resin in the pressing step is smaller than the integrated light amount of the ultraviolet rays applied to the ultraviolet curable resin in the curing step. A method for forming a microstructure according to any one of the above. 前記押圧工程において、押圧開始時には前記転写領域の外周領域の少なくとも一部のみを押圧し、徐々に前記紫外線硬化樹脂全体を押圧することを特徴とする請求項1から請求項3のいずれか1項に記載の微細構造の形成方法。   4. The pressing process according to claim 1, wherein at the start of pressing, only at least a part of the outer peripheral area of the transfer area is pressed, and the entire ultraviolet curable resin is gradually pressed. 5. A method for forming a microstructure as described in 1. 微細構造が形成される基板を載置するステージと、
前記基板と前記ステージとの間に設けられて紫外線を遮光する遮光体と、
前記遮光体に設けられて紫外線が透過する開口部と、
微細形状が形成される微細構造金型と、
前記微細構造金型を前記紫外線硬化樹脂に押圧する際に前記開口部を通して前記紫外線硬化樹脂に紫外線を照射する第1の紫外線照射ユニットと、
前記微細構造金型を前記紫外線硬化樹脂に押圧した後に前記微細構造金型を押圧した状態で前記紫外線硬化樹脂全体に紫外線を照射する第2の紫外線照射ユニットと
を有し、
前記基板上に順次塗布される紫外線硬化樹脂に前記微細形状を転写することを繰り返して前記基板上に配列される複数の前記微細構造を形成し、
前記開口部が、前記微細形状の転写領域の外周辺に沿って設けられることを特徴とする微細構造の製造装置。
A stage on which a substrate on which a microstructure is formed is placed;
A light-shielding body that is provided between the substrate and the stage and shields ultraviolet rays;
An opening provided in the light-shielding body and transmitting ultraviolet rays;
A microstructure mold in which a fine shape is formed;
A first ultraviolet irradiation unit that irradiates the ultraviolet curable resin with ultraviolet rays through the opening when the microstructure die is pressed against the ultraviolet curable resin;
A second ultraviolet irradiation unit that irradiates the entire ultraviolet curable resin with ultraviolet rays in a state in which the fine structure mold is pressed after the fine structure mold is pressed against the ultraviolet curable resin;
Repeatedly transferring the fine shape to an ultraviolet curable resin sequentially applied on the substrate to form a plurality of fine structures arranged on the substrate;
The fine structure manufacturing apparatus, wherein the opening is provided along an outer periphery of the fine-shaped transfer region.
前記微細構造金型または前記ステージを保持する複数の弾性体をさらに有し、
前記微細構造金型と前記ステージとが互いに傾いて保持され、
傾いた状態で前記微細構造金型を前記紫外線硬化樹脂に押圧を開始し、押圧中に徐々に傾きを解消し、押圧終了までには前記微細構造金型と前記ステージとを平行にすることを特徴とする請求項5に記載の微細構造の製造装置。
A plurality of elastic bodies for holding the microstructure mold or the stage;
The microstructured mold and the stage are held tilted with respect to each other;
Start pressing the microstructured mold against the UV curable resin in a tilted state, gradually cancel the tilt during pressing, and make the microstructured mold and the stage parallel by the end of pressing The fine structure manufacturing apparatus according to claim 5, wherein the apparatus is a fine structure manufacturing apparatus.
前記微細構造金型の前記形状の表面の内、前記開口部を通して紫外線が照射される領域が、他の領域に比べて親水性が高いことを特徴とする請求項5または請求項6のいずれかに記載の微細構造の製造装置。   The region irradiated with ultraviolet rays through the opening in the surface of the shape of the fine structure mold has higher hydrophilicity than other regions. The fine structure manufacturing apparatus described in 1.
JP2013248794A 2013-12-02 2013-12-02 Microstructure manufacturing equipment Active JP6273548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013248794A JP6273548B2 (en) 2013-12-02 2013-12-02 Microstructure manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013248794A JP6273548B2 (en) 2013-12-02 2013-12-02 Microstructure manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2015106670A true JP2015106670A (en) 2015-06-08
JP6273548B2 JP6273548B2 (en) 2018-02-07

Family

ID=53436619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013248794A Active JP6273548B2 (en) 2013-12-02 2013-12-02 Microstructure manufacturing equipment

Country Status (1)

Country Link
JP (1) JP6273548B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019065250A1 (en) * 2017-09-29 2019-04-04 キヤノン株式会社 Imprint device and method for manufacturing article
WO2019078060A1 (en) * 2017-10-17 2019-04-25 キヤノン株式会社 Imprint device and article manufacturing method
JP2019075551A (en) * 2017-10-17 2019-05-16 キヤノン株式会社 Imprint device and article manufacturing method
JP2019080047A (en) * 2017-10-23 2019-05-23 キヤノン株式会社 Imprint device and article manufacturing method
JP2019125656A (en) * 2018-01-15 2019-07-25 東芝メモリ株式会社 Imprint apparatus, imprint method, and manufacturing method for semiconductor device
KR20200026063A (en) * 2018-08-31 2020-03-10 캐논 가부시끼가이샤 System and method for illuminating edges of an imprint field with a gradient dosage
US10663869B2 (en) 2017-12-11 2020-05-26 Canon Kabushiki Kaisha Imprint system and imprinting process with spatially non-uniform illumination
US11181819B2 (en) 2019-05-31 2021-11-23 Canon Kabushiki Kaisha Frame curing method for extrusion control
WO2022027925A1 (en) * 2020-08-05 2022-02-10 上海鲲游光电科技有限公司 Integrally formed resin diffusing component, doe, and manufacturing method therefor
CN114594230A (en) * 2022-02-22 2022-06-07 山东科技大学 Preparation device and preparation method of mixed wettability sandstone microscopic model
US11747731B2 (en) 2020-11-20 2023-09-05 Canon Kabishiki Kaisha Curing a shaped film using multiple images of a spatial light modulator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270412A (en) * 1988-09-07 1990-03-09 Hitachi Ltd Manufacturing stamper for synthetic resin molded product
JP2004146601A (en) * 2002-10-24 2004-05-20 National Institute Of Advanced Industrial & Technology Active double joint pressing mechanism
JP2006521682A (en) * 2003-03-27 2006-09-21 コリア・インスティテュート・オブ・マシナリー・アンド・マテリアルズ UV nanoimprint lithography using multiple relief element stamps and selective applied pressure
JP2011159824A (en) * 2010-02-01 2011-08-18 Sumitomo Electric Ind Ltd Method for forming resin pattern by nanoimprinting method and method for forming diffraction grating
JP2012109584A (en) * 2011-12-22 2012-06-07 Toshiba Mach Co Ltd Transfer equipment
WO2013023214A1 (en) * 2011-08-11 2013-02-14 University Of Virginia Image-based identification of muscle abnormalities
JP2013069919A (en) * 2011-09-22 2013-04-18 Toshiba Corp Imprint method and imprint apparatus
JP2013069918A (en) * 2011-09-22 2013-04-18 Toshiba Corp Imprint method and imprint apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0270412A (en) * 1988-09-07 1990-03-09 Hitachi Ltd Manufacturing stamper for synthetic resin molded product
JP2004146601A (en) * 2002-10-24 2004-05-20 National Institute Of Advanced Industrial & Technology Active double joint pressing mechanism
JP2006521682A (en) * 2003-03-27 2006-09-21 コリア・インスティテュート・オブ・マシナリー・アンド・マテリアルズ UV nanoimprint lithography using multiple relief element stamps and selective applied pressure
JP2011159824A (en) * 2010-02-01 2011-08-18 Sumitomo Electric Ind Ltd Method for forming resin pattern by nanoimprinting method and method for forming diffraction grating
WO2013023214A1 (en) * 2011-08-11 2013-02-14 University Of Virginia Image-based identification of muscle abnormalities
JP2013069919A (en) * 2011-09-22 2013-04-18 Toshiba Corp Imprint method and imprint apparatus
JP2013069918A (en) * 2011-09-22 2013-04-18 Toshiba Corp Imprint method and imprint apparatus
JP2012109584A (en) * 2011-12-22 2012-06-07 Toshiba Mach Co Ltd Transfer equipment

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11904522B2 (en) 2017-09-29 2024-02-20 Canon Kabushiki Kaisha Imprint apparatus and method for manufacturing article
WO2019065250A1 (en) * 2017-09-29 2019-04-04 キヤノン株式会社 Imprint device and method for manufacturing article
WO2019078060A1 (en) * 2017-10-17 2019-04-25 キヤノン株式会社 Imprint device and article manufacturing method
JP2019075551A (en) * 2017-10-17 2019-05-16 キヤノン株式会社 Imprint device and article manufacturing method
JP2019080047A (en) * 2017-10-23 2019-05-23 キヤノン株式会社 Imprint device and article manufacturing method
US10663869B2 (en) 2017-12-11 2020-05-26 Canon Kabushiki Kaisha Imprint system and imprinting process with spatially non-uniform illumination
JP7030533B2 (en) 2018-01-15 2022-03-07 キオクシア株式会社 Imprint device, imprint method, and manufacturing method of semiconductor device
JP2019125656A (en) * 2018-01-15 2019-07-25 東芝メモリ株式会社 Imprint apparatus, imprint method, and manufacturing method for semiconductor device
US11837469B2 (en) 2018-01-15 2023-12-05 Kioxia Corporation Imprint apparatus, imprint method, and method of manufacturing semiconductor device
KR102547578B1 (en) 2018-08-31 2023-06-26 캐논 가부시끼가이샤 System and method for illuminating edges of an imprint field with a gradient dosage
JP2020038962A (en) * 2018-08-31 2020-03-12 キヤノン株式会社 System and method for illuminating edges of imprint field with gradient dosage
KR20200026063A (en) * 2018-08-31 2020-03-10 캐논 가부시끼가이샤 System and method for illuminating edges of an imprint field with a gradient dosage
US11181819B2 (en) 2019-05-31 2021-11-23 Canon Kabushiki Kaisha Frame curing method for extrusion control
WO2022027925A1 (en) * 2020-08-05 2022-02-10 上海鲲游光电科技有限公司 Integrally formed resin diffusing component, doe, and manufacturing method therefor
US11747731B2 (en) 2020-11-20 2023-09-05 Canon Kabishiki Kaisha Curing a shaped film using multiple images of a spatial light modulator
CN114594230A (en) * 2022-02-22 2022-06-07 山东科技大学 Preparation device and preparation method of mixed wettability sandstone microscopic model
CN114594230B (en) * 2022-02-22 2023-10-13 山东科技大学 Preparation device and preparation method of mixed wettability sandstone microscopic model

Also Published As

Publication number Publication date
JP6273548B2 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
JP6273548B2 (en) Microstructure manufacturing equipment
JP5411557B2 (en) Microstructure transfer device
TWI687301B (en) Imprinting method and imprinting device
JP6032492B2 (en) Fine pattern forming method and fine pattern forming apparatus
JP5480530B2 (en) Fine structure transfer method and fine structure transfer apparatus
JP6203628B2 (en) Fine pattern forming method
KR20100035130A (en) Imprinting method
JP2011061029A (en) Imprinting method and imprinting apparatus
JP6467709B2 (en) Imprint method and imprint apparatus
JP5559574B2 (en) Transfer method
JP6281592B2 (en) Manufacturing method of replica template
KR102131402B1 (en) 3d printer and method for printing three dimensional structur using the same
JP6338328B2 (en) Imprint apparatus, imprint method, and article manufacturing method
JP6671010B2 (en) Imprint method and imprint apparatus
JP6587124B2 (en) Imprint apparatus and imprint method
JP2014011431A (en) Microstructure transcription device, microstructure transcription stamper, and microstructure transcription method
JP6008131B2 (en) Manufacturing method of optical member
KR101799560B1 (en) Stamp for Making Micro-scale Surface Wrinkles, Method for Manufacturing the Same, And Method for Fabricating Micro-scale Surface Wrinkles On Structures Using the Stamp
KR101837489B1 (en) Roll to roll imprint apparatus for micro polymer stencil Continuous fabrication
KR20230161886A (en) Planarization process, apparatus and method of manufacturing an article
JP7446799B2 (en) Imprint method
JP5327421B2 (en) Stamper for imprint
JP2023079738A (en) Imprint device, imprint method, and method for manufacturing article
JP5731854B2 (en) Method and apparatus for molding photocurable material
JP6036865B2 (en) Imprint mold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

R151 Written notification of patent or utility model registration

Ref document number: 6273548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151