WO2019078060A1 - Imprint device and article manufacturing method - Google Patents

Imprint device and article manufacturing method Download PDF

Info

Publication number
WO2019078060A1
WO2019078060A1 PCT/JP2018/037705 JP2018037705W WO2019078060A1 WO 2019078060 A1 WO2019078060 A1 WO 2019078060A1 JP 2018037705 W JP2018037705 W JP 2018037705W WO 2019078060 A1 WO2019078060 A1 WO 2019078060A1
Authority
WO
WIPO (PCT)
Prior art keywords
irradiation
imprint material
area
imprint
mold
Prior art date
Application number
PCT/JP2018/037705
Other languages
French (fr)
Japanese (ja)
Inventor
小出 博之
智美 舩吉
小林 謙一
林 達也
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018177271A external-priority patent/JP6686090B2/en
Priority claimed from JP2018177272A external-priority patent/JP6650980B2/en
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to CN201880068085.3A priority Critical patent/CN111247623B/en
Priority to US16/843,677 priority patent/US20200333704A1/en
Priority to KR1020207011769A priority patent/KR102426957B1/en
Publication of WO2019078060A1 publication Critical patent/WO2019078060A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/002Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/16Surface shaping of articles, e.g. embossing; Apparatus therefor by wave energy or particle radiation, e.g. infrared heating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2012Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image using liquid photohardening compositions, e.g. for the production of reliefs such as flexographic plates or stamps
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7042Alignment for lithographic apparatus using patterning methods other than those involving the exposure to radiation, e.g. by stamping or imprinting
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers

Definitions

  • the present invention relates to an imprint apparatus for forming a pattern of an imprint material on a substrate using a mold.
  • an imprint method of molding an imprint material on a substrate using a mold is known.
  • an imprint material is supplied onto a substrate, and the supplied imprint material is brought into contact with a mold (imprinting). Then, after curing the imprint material in a state in which the imprint material and the mold are in contact with each other, the pattern of the imprint material is formed on the substrate by separating the mold from the cured imprint material (releasing). .
  • JP-A 2013-069919 discloses curing the imprint material on the outer peripheral portion of the substrate in order to prevent the imprint material from spreading to the outer peripheral portion of the substrate while the imprint material and the mold are in contact with each other.
  • An imprint apparatus for irradiating light is disclosed.
  • the mold used in the imprint apparatus is a convex portion (referred to as a mesa portion) that protrudes from the surrounding area.
  • a pattern (pattern region) to be formed on the substrate may be formed in the mesa portion of the mold, or it may be a flat surface on which the pattern is not formed. Therefore, while the imprint material on the substrate and the mesa of the mold are opposed to each other and the imprint material is in contact with the surface of the mesa, the imprint material protrudes from the mesa and adheres to the side surface of the mesa. This may cause the generation of foreign matter.
  • the imprint apparatus described in Japanese Patent Application Laid-Open No. 2013-069919 can prevent the imprint material from spreading to the outer peripheral portion of the substrate, the imprint material may protrude to the side surface (outside) of the mesa portion of the mold. Can not prevent.
  • the imprint apparatus is an imprint apparatus for forming a pattern of an imprint material on a substrate using a mold, wherein the mesa section of the mold is in contact with the imprint material.
  • An optical system for irradiating irradiation light for increasing the viscosity of the imprint material to a peripheral region including the end and surrounding the mesa portion, and contacting the mesa portion of the mold with the imprint material on the substrate A control unit for controlling the optical system such that the irradiation timings of the irradiation light with respect to a plurality of regions different from each other in distance from the center of the mesa portion in the peripheral region are different from each other It features.
  • FIG. 1 is a view showing the configuration of the imprint apparatus 1 in the present embodiment.
  • the configuration of the imprint apparatus 1 will be described with reference to FIG.
  • the plane on which the substrate 10 is disposed as the XY plane and the direction orthogonal thereto as the Z direction each axis is determined as shown in FIG.
  • the imprint apparatus 1 brings the imprint material supplied on the substrate into contact with the mold 8 (mold) and applies energy for curing to the imprint material, thereby causing a pattern of the cured product to which the concavo-convex pattern of the mold is transferred.
  • the mold may also be referred to as a mold, template or master.
  • the imprint apparatus 1 of FIG. 1 is used to manufacture devices such as semiconductor devices as articles.
  • an imprint apparatus 1 adopting a photo-curing method will be described.
  • the imprint apparatus is an apparatus for forming a pattern of a cured product to which an uneven pattern of a mold is transferred by bringing an imprint material supplied on a substrate into contact with the mold and applying energy for curing to the imprint material. is there.
  • the imprint apparatus is an apparatus for forming an imprint material on a substrate using a mold.
  • the imprint apparatus 1 includes a mold holding unit 3 (imprint head) that holds and moves the mold 8, a substrate holding unit 4 (stage) that holds and moves the substrate 10, and a supply unit 5 that supplies an imprint material onto the substrate. (Dispenser) is provided.
  • the imprint apparatus 1 also includes a light irradiation system 2 that emits light 9 that cures the imprint material, an imaging unit 6 that emits light 35 to capture the contact state of the mold and the imprint material, and the imprint apparatus 1 Control unit 7 that controls the operation of Furthermore, the imprint apparatus 1 includes a detector 12 that detects a mark formed on a mold or a substrate.
  • the substrate holding unit 4 includes a substrate chuck 16 for holding the substrate 10, and a substrate driving mechanism 17 for controlling the position of the substrate 10 with respect to at least two axes in the X- and Y-axis directions in the XYZ coordinate system. Further, the position of the substrate holding unit 4 can be obtained using the mirror 18 and the interferometer 19 provided in the substrate holding unit 4. An encoder may be used instead of the mirror 18 and the interferometer 19 to determine the position of the substrate holder 4.
  • the mold holding unit 3 is moved in the vertical direction (Z-axis direction) by a mold drive mechanism 38 (actuator) provided in the mold holding unit in a state where the mold 8 is held by the mold chuck 11.
  • a mold drive mechanism 38 actuator
  • the pattern area 8a of the mold 8 contacts (imprints) the imprint material 14.
  • the mesa 8 d see FIG. 3) of the mold 8 used in the imprint apparatus 1, a reverse pattern (pattern region) of the concavo-convex pattern formed on the substrate is formed, or a flat surface (flat Part).
  • the mesa portion of the mold is the pattern region 8a
  • it may be a flat portion in which a pattern is not formed.
  • the mold holding unit 3 may be provided with a space 13 divided by the partition plate 41 and the mold 8.
  • the mold 8 at the time of imprinting or mold release is deformed. can do.
  • the mold 8 can be deformed in a convex shape with respect to the substrate 10, and the pattern area 8a and the imprint material 14 can be brought into contact.
  • the detector 12 can detect the mark formed on the mold 8 and the mark formed on the substrate 10.
  • the imprint apparatus 1 can obtain the relative position between the mold 8 and the substrate 10 based on the detection result of the detector 12, and moves the mold 8 and the substrate 10 by moving at least one of the mold 8 and the substrate 10. It can be aligned.
  • the controller 7 controls the operation of each mechanism of the imprint apparatus 1 in order to form a pattern in a plurality of shot areas formed on the substrate 10. Further, the control unit 7 can be configured to control the mold holding unit 3, the substrate holding unit 4, the supply unit 5, the light irradiation system 2, and the detector 12. The control unit 7 may be provided in the imprint apparatus 1 or may be installed at a location different from the imprint apparatus 1 and controlled remotely.
  • a curable composition (sometimes referred to as an uncured resin) that is cured by receiving energy for curing is used.
  • energy for curing electromagnetic waves, heat, etc. are used.
  • the electromagnetic wave include light such as infrared light, visible light, and ultraviolet light whose wavelength is selected from the range of 10 nm or more and 1 mm or less.
  • the curable composition is a composition which is cured by irradiation of light or by heating.
  • the photocurable composition which is cured by light contains at least a polymerizable compound and a photopolymerization initiator, and may contain a nonpolymerizable compound or a solvent as required.
  • the non-polymerizable compound is at least one selected from the group consisting of a sensitizer, a hydrogen donor, an internal release agent, a surfactant, an antioxidant, a polymer component and the like.
  • the imprint material is applied in the form of a film on a substrate by a spin coater or a slit coater.
  • the liquid jet head may apply droplets or in the form of islands or films formed by connecting a plurality of droplets onto the substrate.
  • the viscosity (the viscosity at 25 ° C.) of the imprint material is, for example, 1 mPa ⁇ s or more and 100 mPa ⁇ s or less.
  • the substrate Glass, ceramics, metals, semiconductors, resins, etc. are used for the substrate, and if necessary, a member made of a material different from the substrate may be formed on the surface.
  • the substrate is a silicon wafer, a compound semiconductor wafer, quartz glass or the like.
  • FIG. 2 is a flow chart showing a forming process of forming the imprint material 14 on the substrate 10 using the imprint apparatus 1. The imprint method by the light curing method will be described with reference to FIG.
  • step 101 the substrate 10 is carried into the imprint apparatus 1.
  • the substrate 10 is carried into the substrate chuck 16 of the substrate holding unit 4 by a substrate conveyance mechanism (not shown).
  • step 102 the supply unit 5 supplies the imprint material 14 to the shot area on the substrate 10 on which the pattern of the imprint material is to be formed.
  • step 103 the mold 8 and the substrate 10 are brought close to each other to bring the imprint material 14 supplied on the substrate 10 into contact with the pattern area 8a of the mold 8 (stamping step).
  • the film thickness becomes uneven, which may affect the etching process or the like in the subsequent steps.
  • a part of the imprint material 14 attached to the side surface 8b of the pattern area 8a may fall onto the substrate 10 during imprinting, and may be a foreign substance. If foreign matter is present on the substrate 10, the fine pattern formed in the pattern area 8a of the die 8 may be destroyed if the die 8 comes in contact with the foreign matter on the substrate in the sealing step. Therefore, it causes the defect of pattern formation.
  • the imprint material is applied to the entire pattern area 8a as shown in FIG. 3C at the last part of the imprint material such as corners of the shot area (corners, corners when the shot area is rectangular). In some cases, it will be unfilled 8c without being filled. Also in the case where the non-filling 8 c exists on the substrate 10, the film thickness of the imprint material 14 becomes nonuniform, and there is a possibility that it may be affected by the etching process or the like in the later step. In this embodiment, the adhesion of the imprint material to the side surface 8b of the pattern area 8a is reduced, and defects in pattern formation and breakage of the mold 8 are prevented, thereby providing an imprint apparatus with high yield.
  • the imprint apparatus 1 of the present embodiment performs the imprint by irradiating the outer peripheral portion of the pattern region 8a in the step 104. It prevents the protrusion of the material 14.
  • step 104 part of the pattern area 8a is in contact with the imprint material 14, and the irradiation light 50 is irradiated before the step 103 is completed.
  • step 105 after the impression is completed and the pattern of the pattern area 8a is filled with the imprint material, in step 105, the mold 8 and the substrate 10 are aligned.
  • alignment between the mold 8 and the substrate 10 is performed by detecting light from the mark formed on the mold 8 and the mark formed on the substrate 10 by the detector 12.
  • the irradiation light 50 is not irradiated in the vicinity of the center of the pattern area 8 a of the mold 8 in which the fine pattern is formed.
  • the imprint material 14 is prevented from adhering to the side surface 8b, and the viscosity of the imprint material 14 in the center of the mold 8 is changed. Without, it is possible to maintain the filling property of the fine pattern.
  • the imprint material 14 changes in viscosity but is not cured. If the imprint material 14 in the vicinity of the side surface 8 b of the mold 8 is cured to prevent the imprint material 14 from adhering to the side surface 8 b of the mold 8 as in the prior art, alignment of the mold 8 and the substrate 10 is performed. It will be difficult to In addition, when the fine structure is disposed also in the pattern area 8a close to the side surface 8b of the mold 8, the imprint material 14 is hardened before it is filled into the fine structure, which causes an increase in unfilled defects. The decrease in overlay accuracy and the increase in unfilled defects may lower the yield.
  • step 106 overlay accuracy determination is performed. If the overlay accuracy satisfies the determination value, in step 107, the imprint material 14 is cured in a state where the mold 8 and the imprint material 14 are in contact. After the imprint material 14 is cured, the mold 8 is separated from the cured imprint material 14 in step 108 (mold release process). If it is determined in step 106 that the overlay accuracy determination does not satisfy the determination value, the mold-substrate alignment step of step 105 is continued. If the determination value is not satisfied in step 106, the process may be forced to proceed to the next step.
  • step 109 it is determined whether the imprint processing has been completed on the shot area designated on the substrate 10.
  • the substrate 10 is unloaded out of the imprint apparatus 1 in step 110. If the imprint process is not completed, the process returns to step 102, the imprint material 14 is supplied to the next imprint position (shot area), and each process is repeated until the imprint process is completed.
  • FIG. 4 is a view for explaining the light irradiation performed in step 104.
  • the irradiation light 50 is applied to the peripheral area (irradiation area 52) including the side surface 8b which is the outer peripheral portion of the pattern area 8a of the mold 8.
  • the irradiation light 50 may be any light as long as the imprint material 14 causes a polymerization reaction, and is not limited to the ultraviolet light. If the imprint material 14 is cured by the irradiation light 50, alignment can not be performed in step 105.
  • the light irradiation performed in step 104 does not cure the imprint material 14, but applies light to such an extent that the viscosity of the imprint material 14 in the vicinity of the pattern area 8 a becomes high.
  • the irradiation light 50 can appropriately determine the wavelength of irradiation light, irradiation time, intensity and the like in consideration of the property of the material of the imprint material 14 and the like.
  • FIG. 4B is a view showing the relationship between the irradiation area 52 where the irradiation light 50 is irradiated onto the substrate 10 through the mold 8 and the side surface 8 b (peripheral part) of the mold 8.
  • the irradiation area 52 of the irradiation light 50 is an area including the side surface 8 b of the mold 8.
  • the pattern area 8a of the mold 8 shown in FIG. 5A When bringing the pattern area 8a of the mold 8 shown in FIG. 5A into contact with the imprint material 14 supplied onto the substrate 10, the pattern area 8a of the mold 8 is deformed into a convex shape with respect to the substrate 10 May contact with. As shown in FIG. 5B, after the pattern area 8a near the center of the mold 8 and the imprint material 14 come into contact, the area where the mold and the imprint material are in contact is directed toward the outside (peripheral part) of the pattern area 8a. Start spreading. As shown in FIG.
  • the polymerization reaction of the gas-liquid interface 14b of the imprint material 14 in the area to which the irradiation light 50 is irradiated is initiated by the irradiation light 50, and the viscosity of the gas-liquid interface 14b increases.
  • the moving speed of the gas-liquid interface 14b of the imprint material 14 spreading toward the outside of the pattern area 8a decreases, and the side surface 8b of the mold 8 is formed. It is possible to prevent the imprint material from adhering.
  • FIG. 6 shows a schematic view of an optical system for irradiating the irradiation light 50.
  • An irradiation light source 51 of a wavelength at which the imprint material 14 undergoes a polymerization reaction is prepared.
  • the irradiation light source 51 is selected to obtain light output necessary for causing the imprint material 14 to polymerize to a desired viscosity, and is constituted of, for example, a lamp, a laser diode, an LED or the like.
  • the light from the irradiation light source 51 is guided to the light modulation element 53 (spatial light modulation element) by the optical element 54a.
  • a digital micro mirror device hereinafter, DMD
  • the light modulation element 53 is not limited to the DMD, and other elements such as an LCD device or an LCOS device can be used.
  • the imprint apparatus 1 can set the irradiation region 52 of the irradiation light 50 and the light intensity at an arbitrary position on the substrate. .
  • the magnification of the projection light onto the mold 8 and the substrate 10 is adjusted by the optical element 54 b of the irradiation light 50 whose irradiation area 52 and light intensity are controlled by the light modulation element 53.
  • step 103 and step 104 in the first embodiment will be described in more detail.
  • step 103 when the mold 8 is brought into contact with the imprint material 14, the gas-liquid interface 14b of the imprint material 14 spreads outward in a circular shape or a similar shape as shown in FIG. That is, the contact area between the mold 8 and the imprint material 14 changes so as to spread from the vicinity of the center of the pattern area 8a. Since the pattern area 8a of the mold 8 is generally rectangular, the irradiation area 52 is also an area along the outer periphery of the rectangle. Therefore, the timing at which the gas-liquid interface 14 b of the imprint material 14 reaches the irradiation area 52 (the outer peripheral portion of the pattern area 8 a) of the irradiation light 50 differs at each position of the irradiation area 52.
  • the gas-liquid interface 14b reaches the irradiation area 52 in step 104, if the irradiation timing of the irradiation light 50 is early, an unfilled defect may occur in the pattern area 8a near the side surface 8b of the mold 8.
  • the gas-liquid interface 14 b reaches the irradiation area 52, if the irradiation timing of the irradiation light 50 is late, the imprint material 14 may run off and adhere to the side surface 8 b of the mold 8. For this reason, the irradiation light 50 for preventing the protrusion of the imprint material 14 must be irradiated at an appropriate timing of the imprinting process.
  • the irradiation area 52 is divided into a plurality of small areas 52a, 52b,..., 52n in step 104 as shown in FIG. 8A. And, at least one of the irradiation timing or the irradiation intensity is changed with respect to each small area and irradiation light 50 is irradiated.
  • the light modulation element 53 described above, the irradiation timing, irradiation area, and irradiation intensity of the irradiation light 50 to the irradiation area 52 can be set.
  • each small area may be set to a rectangular shape, a triangular shape, or any other shape.
  • the timing at which the gas-liquid interface 14b reaches the small areas 52a, 52b,..., 52n of the irradiation area 52 is determined, and the small areas are irradiated with the irradiation light 50 according to the determination result. Change the irradiation timing.
  • the determination of the timing at which the air-liquid interface 14 b reaches each small area can be determined in real time based on the imaging result of the imaging unit 6.
  • the timing at which the gas-liquid interface 14b reaches each small area may be obtained in advance, and the irradiation timing of the irradiation light 50 may be determined for each small area according to the result.
  • FIG. 8B an irradiation timing chart of the irradiation light 50 to a small area of the irradiation area 52 when the gas-liquid interface 14b spreads outward from the center of the pattern area 8a is shown in FIG. 8B.
  • the irradiation timing chart of each of the small areas 52a, 52b,..., 52h is shown by limiting to the left side of the pattern area 8a in the irradiation area 52.
  • the horizontal axis shows time.
  • FIG. 8B after the sealing step is started, the irradiation timing becomes earlier as the small region where the gas-liquid interface 14b arrives earlier.
  • the gas-liquid interface 14b that has spread from the vicinity of the center of the pattern area 8a reaches the small area 52d and the small area 52e at time T1.
  • the control unit 55 of FIG. 6 controls the light modulation element 53 so that the irradiation light 50 is irradiated to the small area 52 d and the small area 52 e.
  • the gas-liquid interface 14b reaches the small area 52c and the small area 52f at time T2.
  • the control unit 55 controls the light modulation element 53 so that the irradiation light 50 is irradiated to the small area 52c and the small area 52f.
  • the gas-liquid interface 14b reaches the small area 52b and the small area 52g at time T3.
  • control unit 55 controls the light modulation element 53 so that the irradiation light 50 is irradiated to the small area 52 b and the small area 52 g.
  • the gas-liquid interface 14b reaches the small area 52a and the small area 52h at time T4.
  • the control unit 55 controls the light modulation element 53 so that the irradiation light 50 is irradiated to the small area 52a and the small area 52h.
  • the time to irradiate the irradiation light 50 to each small area can be set arbitrarily.
  • region is set to (DELTA) T.
  • the intensity of the irradiation light irradiated to each small area is the same.
  • the irradiation intensity may be changed.
  • the irradiation intensity of each of the small areas 52a, 52b,..., 52h of the irradiation area 52 may be changed.
  • the horizontal axis represents time
  • the vertical axis represents the irradiation intensity of each small area.
  • the irradiation intensity of the irradiation light 50 with respect to the small area which the gas-liquid interface 14b reaches first is made strong, and the irradiation intensity is weakened in the order in which the gas-liquid interface 14b reaches.
  • the horizontal axis indicates time
  • the vertical axis indicates the irradiation intensity of the irradiation light 50 for each small area (small area 52a to small area 52h).
  • the explanation was given by limiting to the small area on the left side of the pattern area 8a in the irradiation area 52, but in actuality, the irradiation timing or the irradiation intensity in all the small areas 52a, 52b,. Decide.
  • the irradiation light 50 can be irradiated at an optimal timing according to the spread of the contact area between the pattern area 8a of the mold and the imprint material 14 on the substrate.
  • FIGS. 9A and 9B the irradiation timing chart of the irradiation light 50 to the small area of the irradiation area 52 when the gas-liquid interface 14b spreads outward from the center of the pattern area 8a is shown in FIGS. 9A and 9B.
  • the irradiation timing chart of each of the small areas 52a, 52b,..., 52h is shown by limiting to the left side of the pattern area 8a in the irradiation area 52.
  • the horizontal axis shows time
  • the vertical axis shows the irradiation intensity of each small area.
  • FIG. 9A is an example in which the irradiation time is constant and the irradiation intensity is changed, and FIG.
  • 9B is an example in which the irradiation intensity is constant and the irradiation time is changed. As shown in FIG. 9, after the sealing step is started, the irradiation amount increases as the gas-liquid interface 14 b reaches the smaller region earlier.
  • the small areas 52d and 52e close to the center have a large exposure amount, and the small area 52a of the end,
  • the exposure amount of 52 h is set small. Furthermore, in addition to the change of the exposure amount of each small area, as shown in the first embodiment, the irradiation timing of each small area may be changed.
  • the irradiation light 50 is applied to each small area based on the distance between each small area (small areas 52a to 52n) of the irradiation area 52 described in the first embodiment and the center position 61 of the shot area. The case of changing the irradiation timing of will be described.
  • an irradiation timing chart of the irradiation light 50 to the small area of the irradiation area 52 when the gas-liquid interface 14b spreads outward from the center of the pattern area 8a is shown in FIG. 10B.
  • the irradiation timing chart of each of the small areas 52a, 52b,..., 52h is shown by limiting to the left side of the pattern area 8a in the irradiation area 52.
  • the horizontal axis shows time.
  • the distances between the center position 61 of the shot area and the small areas 52a, 52b,..., 52h are La, Lb,.
  • x a, b, ..., h. That is, the irradiation timing of each small area in the third embodiment is determined according to the distance.
  • the irradiation timing may be determined by a linear function or a second or higher order function. As shown in FIG.
  • the irradiation intensity and the irradiation time may be changed as in the method described in the second embodiment.
  • the irradiation intensity can be increased as the distance is shorter.
  • irradiation time can be lengthened, so that distance is short.
  • both the irradiation timing and the irradiation intensity or the irradiation amount may be changed.
  • the irradiation timing or the irradiation amount is determined accordingly.
  • the number of divisions of the small regions 52a, 52b,..., 52n of the irradiation region 52 and the division shape are not limited to FIG. 10A as described above.
  • the irradiation light is applied to each small area based on the distance between each small area (small areas 52a to 52n) of the irradiation area 52 described in the first embodiment and the impression center position 62 of the mold 8.
  • the case of changing the irradiation timing of 50 will be described.
  • the irradiation intensity may be changed instead of the irradiation timing.
  • the impression center position 62 of the mold 8 indicates the position where the pattern area 8a of the mold 8 and the imprint material on the substrate first come in contact with each other.
  • the center of the pattern area 8a of the mold 8 first contacts the imprint material, but, for example, when forming a pattern in a shot area (peripheral shot, edge shot) including the outer periphery of the substrate, the pattern area It is not necessarily the center of 8a.
  • FIG. 11A is a view showing the irradiation area 52 and the imprint center position 62 of the mold 8 according to the fourth embodiment.
  • region 52 at this time is shown to FIG. 11B.
  • the irradiation timing chart of each of the small areas 52a, 52b,..., 52h is shown, limited to the left side of the pattern area 8a in the irradiation area 52.
  • the horizontal axis shows time.
  • distances between the seal center position 62 and the small areas 52a, 52b, ..., 52h are La, Lb, ..., Lh.
  • x a, b, ..., h. That is, the irradiation timing of each small area of the fourth embodiment is determined according to the distance as in the third embodiment.
  • FIG. 11B after the sealing process is started, generally, the shorter the distance between the sealing center position 62 and each small area of the irradiation area 52, the earlier the irradiation timing.
  • the timing chart of FIG. 11B has been described assuming that the start time of the sealing step is 0, the timing at which the mold 8 and the imprint material 14 are in contact with each other may be 0.
  • the irradiation intensity and the irradiation time may be changed as in the method described in the second embodiment.
  • the irradiation intensity can be increased as the distance is shorter.
  • irradiation time can be lengthened, so that distance is short.
  • both the irradiation timing and the irradiation intensity or the irradiation amount may be changed.
  • the explanation was given by limiting to the small area on the left side of the pattern area 8a in the irradiation area 52, but in actuality, the distance from the seal center position 62 in all the small areas 52a, 52b,.
  • the irradiation timing or the irradiation amount is determined in accordance with.
  • the number of divisions of the small regions 52a, 52b,..., 52n of the irradiation region 52 and the division shape are not limited to FIG. 11A as described above.
  • the irradiation timing can be controlled from the shape of the shot area.
  • the irradiation area 52 is divided into small areas 52y in the vertical direction (y direction) and small areas 52x in the horizontal direction (x direction), and for each small area, Irradiation timing or irradiation intensity is changed and irradiation light 50 is irradiated.
  • FIG. 12A is a view showing an irradiation area 52 of the fifth embodiment.
  • region 52 at this time and 52y is shown to FIG. 12B.
  • FIG. 12B shows an irradiation timing chart of each of the small areas 52x and 52y, and the horizontal axis shows time.
  • Ly and Lx distances between the center position of the shot area or the seal center position and the small area 52y and the small area 52x are denoted by Ly and Lx, respectively.
  • Ly distances between the center position of the shot area or the seal center position and the small area 52y and the small area 52x.
  • the irradiation timing for the small area 52y is generally earlier than that for the small area 52x.
  • the irradiation light 50 can irradiate each of the small region 52y in the vertical direction and the small region 52x in the horizontal direction at a timing previously determined by an experiment or the like.
  • the timing at which the gas-liquid interface 14b described in the above embodiment reaches each of the small area 52y in the vertical direction and the small area 52x in the horizontal direction is observed using the imaging unit 6 such as a camera.
  • the irradiation timing of the irradiation light 50 can be determined based on that.
  • the irradiation timing of the irradiation light 50 can be determined by the method of determining the irradiation timing shown in the third embodiment using the center position of the shot area and the distances Ly and Lx from the seal center position.
  • the irradiation intensity and the irradiation time may be changed similarly to the method described in the second embodiment.
  • the irradiation intensity can be increased as the distance is shorter.
  • irradiation time can be lengthened, so that distance is short.
  • both the irradiation timing and the irradiation intensity or the irradiation amount may be changed.
  • the method of dividing the small area 52y in the vertical direction and the small area 52x in the horizontal direction is not limited to the method shown in FIG. 12A.
  • the small area 52y in the vertical direction and It may be divided into small regions 52x.
  • the irradiation light 50 can be irradiated with an optimum exposure amount according to the distance between the center of the shot area and each shot area.
  • each of the small regions 52a to 52n of the irradiation region 52 described in FIG. 8 of the first embodiment is further directed from the center of the shot region to the outside of the irradiation region 52.
  • Irradiation light 50 is irradiated to each small area by changing the irradiation timing or the irradiation intensity.
  • FIG. 13A is a view showing an irradiation area 52 of the sixth embodiment.
  • region 52 at this time is shown to FIG. 13B.
  • FIG. 13B shows an irradiation timing chart of each of the small areas 52c1, 52c2 and 52c3, and the horizontal axis shows time.
  • the irradiation light 50 is emitted sequentially from the small area inside the shot area.
  • the small area 52c shown in FIG. 8 is described in FIG. 13, the entire small area of the irradiation area 52 can be irradiated by similarly irradiating the irradiation light 50 sequentially from the inside to the other small areas. .
  • the sixth embodiment is not limited to the first embodiment, and can be applied to any method of dividing the irradiation area 52 shown in the second to fifth embodiments.
  • the irradiation light 50 is irradiated with the optimum exposure amount according to the spread of the contact area of the pattern area 8a of the mold 8 and the imprint material 14 (movement of the gas-liquid interface 14b). be able to.
  • the present invention provides an imprint apparatus which forms a pattern of an imprint material without reducing the fillability of the imprint material with respect to a portion which is likely to be unfilled.
  • the imprint apparatus 1 of the present embodiment when the irradiation light 50 is applied also to the corner portion of the shot area (pattern area 8a) near the side surface 8b in step 104 of FIG. It becomes difficult to fill the part and there is a possibility that an unfilled defect may occur. Therefore, the imprint apparatus 1 of the seventh embodiment lowers the intensity of the irradiation light 50 at the corner portion (second region) of the pattern region 8 a in the step 104.
  • FIG. 4 is a view for explaining the light irradiation performed in step 104.
  • the irradiation light 50 is applied to the peripheral area (irradiation area 52) including the side surface 8b which is the outer peripheral portion of the pattern area 8a of the mold 8.
  • the irradiation light 50 may be any light as long as the imprint material 14 causes a polymerization reaction, and is not limited to the ultraviolet light. If the imprint material 14 is cured by the irradiation light 50, alignment can not be performed in step 105.
  • the light irradiation performed in step 104 does not cure the imprint material 14, but applies light to such an extent that the viscosity of the imprint material 14 in the vicinity of the pattern area 8 a becomes high.
  • the irradiation light 50 can appropriately determine the wavelength of irradiation light, irradiation time, intensity and the like in consideration of the property of the material of the imprint material 14 and the like.
  • the corner portion of the pattern area 8a is difficult to be filled with the imprint material. Therefore, in the first embodiment, the irradiation light 50 is not irradiated uniformly to the irradiation area 52 shown in FIG. 4B, but the intensity of the irradiation light 50 at a position corresponding to the corner portion is lowered.
  • the irradiation area 52 is divided into a plurality of small areas as shown in FIG. 14B. And irradiation light 50 is irradiated to each small area by changing the irradiation intensity.
  • the irradiation area and the irradiation intensity of the irradiation light 50 to the irradiation area 52 can be set.
  • FIG. 14B shows an example in which the irradiation area 52 is divided into small areas of eight squares in the longitudinal direction and six squares in the lateral direction, the number of divisions is not limited to this and may be set to an arbitrary number.
  • the shape of each small area may be set to a rectangular shape, a triangular shape, or any other shape.
  • the control unit 55 causes the light modulation element 53 to decrease the intensity of the irradiation light 50 irradiating the intensity of the irradiation light irradiated through the small regions 52a, 52b, 52c, 52d through the other regions. Control. Further, the control unit 55 may control the light modulation element 53 so that the irradiation light 50 is not irradiated to the small regions 52a, 52b, 52c, 52d.
  • the mold and the imprint material are brought into contact with each other, the area where the time for the imprint material to reach the side surface of the pattern area of the mold is later than the first area is taken as the second area.
  • the irradiation area is divided, and the intensity of the irradiation light 50 is distributed in the corner portions of the pattern area 8a and the other areas, thereby reducing the protrusion of the imprint material while the corner areas of the pattern area 8a are reduced. It is possible to prevent the decrease in the filling property.
  • the filling property of the imprint material is influenced by the width of the pattern formed in the pattern area 8a.
  • the width of the pattern formed in the pattern area 8a For example, as in the case of an alignment mark, a pattern in which the width of the recess is wider than that of the other asperities is less likely to be filled with the imprint material. Therefore, in the imprint apparatus 1 of the eighth embodiment, the intensity of the irradiation light 50 is made lower in the irradiation area 52 than in the other areas in the area where the pattern having the wide width of the recess such as the alignment mark is formed.
  • the irradiation light 50 is not irradiated uniformly to the irradiation area 52 shown in FIG. 4B, but the intensity of the irradiation light 50 at the position corresponding to the alignment mark is lowered.
  • region 52 is divided
  • irradiation light 50 is irradiated to each small area by changing the irradiation intensity.
  • the irradiation area and irradiation intensity of the irradiation light 50 to the irradiation area 52 can be set.
  • FIG. 15B shows an example in which the irradiation area 52 is divided into small areas of eight squares in the longitudinal direction and six squares in the lateral direction, the number of divisions is not limited to this and may be set to an arbitrary number.
  • the shape of each small area may be set to any other shape such as a rectangular shape or a triangular shape.
  • the control unit 55 controls the light modulation element 53 so that the intensity of the irradiation light 50 is lower in the small regions 52e and 52f than in the other regions. Further, the control unit 55 may control the light modulation element 53 so that the irradiation light 50 is not irradiated to the small regions 52e and 52f.
  • the area where the time for the imprint material to reach the side surface of the pattern area of the mold is later than the first area is taken as the second area.
  • a region including the region in which the alignment mark is formed is taken as a second region.
  • the protrusion of the imprint material is reduced while the projection area of the pattern area 8a is reduced. It is possible to prevent the decrease in the filling property of the alignment mark. Not only the alignment mark but also the intensity of the irradiation light 50 may be lowered relative to the area where the pattern of the recess pattern formed in the mold is wider than the other widths. In this way, the protrusion of the imprint material can be reduced while maintaining the filling property of the imprint material.
  • the ninth embodiment In the imprint apparatus of the seventh embodiment and the eighth embodiment, the case where the distribution of the intensity of the irradiation light 50 is provided in accordance with the presence or absence of the region where the imprint material is difficult to be filled in the pattern region 8a has been described.
  • the irradiation light 50 is applied according to the presence or absence of an area where the imprint material easily protrudes from the pattern area 8 a (an area where the imprint material reaches the side of the pattern area of the mold earlier than others). The case where a distribution is provided in the intensity of will be described.
  • the ease of protrusion of the imprint material is influenced by the direction of the pattern formed in the pattern area 8a.
  • the pattern direction indicates the direction in which the linear concavo-convex pattern extends.
  • the intensity of the irradiation light 50 may be distributed by increasing the intensity of the irradiation light 50 with respect to the region in which the imprint material easily protrudes.
  • the intensity of the irradiation light 50 may be distributed by reducing the intensity of the irradiation light 50 with respect to the region where the imprint material does not easily protrude.
  • a distribution may be provided to the intensity of the irradiation light 50 by the pattern density in addition to the pattern direction.
  • the ease of protrusion of the imprint material at the end of the pattern area (the end of the shot area) and the fillability are different.
  • the distribution of the intensity of the irradiation light 50 according to the pattern direction can reduce the protrusion of the imprint material while maintaining the filling property of the imprint material.
  • the imprint apparatus according to the tenth embodiment will be described in the case where the distribution of the intensity of the irradiation light 50 is provided according to the presence or absence of an area where the imprint material is likely to protrude from the pattern area 8a.
  • the protrusion of the imprint material is influenced by the placement of the droplets of imprint material near the edge of the shot area. For example, as shown in FIG. 17, as the distance between the droplet dropping position of the imprint material 14 and the end of the pattern area 8a (end of the shot area) is shorter, the imprint material is more likely to protrude. Further, as the density of the droplets of the imprint material 14 disposed on the substrate is higher, the imprint material is more likely to protrude.
  • the irradiation intensity of the irradiation light 50 is such that a region (first region) in which the distance between the drop position of the droplet of the imprint material 14 and the end of the shot region is short (first region) is larger than other regions (second region). Establish a distribution.
  • the intensity of the irradiation light 50 is reduced by reducing the intensity of the irradiation light 50 with respect to the region in which the imprint material does not easily protrude (the region where the imprint material reaches the side of the pattern region of the mold is later than others). A distribution may be provided.
  • the irradiation intensity of the irradiation light 50 can be distributed such that the area (first area) in which the density of the droplets of the imprint material 14 is high is made higher than the other areas (second area).
  • a distribution may be provided to the irradiation intensity of the irradiation light 50 based on the information on the amount of imprint material.
  • the area where the time for the imprint material to reach the side surface of the pattern area of the mold is later than the first area is taken as the second area.
  • the filling property of the imprint material is maintained by providing the distribution of the intensity of the irradiation light 50 according to the distance between the droplet dropping position of the imprint material and the end of the shot area and the density of the droplets. At the same time, the protrusion of the imprint material can be reduced.
  • the ease of protrusion of the imprint material is influenced by the arrangement of droplets of the imprint material near the end of the shot area and the shape of the pattern area 8 a formed on the mold 8.
  • the shape of the end of the shot area is not limited to a straight line as shown in FIG.
  • the ease of protrusion of the imprint material is influenced by the distance between the drop position of the droplet close to the edge of the shot area and the edge of the shot area among the droplets of imprint material supplied onto the substrate.
  • the intensity is such that the irradiation intensity of the irradiation light 50 is higher in the region (first region) where the distance between the droplet position of the imprint material and the end of the shot region is shorter (the first region).
  • the ease of the imprint material at the end of the pattern area is different.
  • the distribution of the intensity of the irradiation light 50 is provided according to the distance between the droplet dropping position of the imprint material and the end of the shot area, whereby the imprint material protrudes while maintaining the filling property of the imprint material. Can be reduced.
  • the ease of protrusion of the imprint material is influenced by the imprinting time until the imprint material is cured from the time when the imprint material 14 on the substrate and the pattern area 8a start to make contact.
  • the droplets 15 (e), 15 (f), 15 (g) The sealing time becomes longer in the order of.
  • the intensity of the irradiation light 50 is distributed according to the imprinting time and the position of the end of the shot area.
  • the distribution of the irradiation light 50 can be provided according to the shape of the pattern area 8a.
  • the number of divisions of the irradiation area 52 is arbitrary, and the shape of each small area may be set arbitrarily.
  • a distribution can be provided to the irradiation intensity of the irradiation light 50 in accordance with the pattern of the outline of the shot area (pattern area 8a).
  • the irradiation intensity of the irradiation light 50 can be distributed according to the imprinting time in which the imprint material contacts the pattern area 8a of the mold 8a.
  • the irradiation intensity of the hatched area (first area) of the irradiation area 52 shown in FIG. 19B can be made larger than that of the other areas (second area).
  • the area where the time for the imprint material to reach the side surface of the pattern area of the mold is later than the first area (the area where the imprinting time is short) is taken as the second area.
  • the filling property of the imprint material is maintained while the filling property of the imprint material is maintained.
  • the protrusion of the imprint material can be reduced.
  • step 201 a pattern of an imprint material is formed on a substrate using a mold in the imprint step described in FIG. 2 described above.
  • step 202 the fillability of the end of the shot area of the pattern formed in step 201 is confirmed.
  • step 203 it is confirmed from the observation result of step 201 whether it is necessary to optimize the distribution of the irradiation intensity of the irradiation light. If it is determined in step 203 that the optimization of the filling property is not necessary, the current parameter (irradiation intensity distribution) is set as the optimum value in step 204.
  • step 203 If it is determined in step 203 that the filling property needs to be optimized, the filling property of the end of the pattern area is determined in step 205 from the droplet arrangement information and the pattern condition of the mold, and the irradiation intensity of the irradiation light 50 is obtained. , Calculate the distribution of irradiation intensity including the irradiation position. Then, in step 207, the distribution of the irradiation intensity obtained in step 205 is set as a new parameter. Furthermore, the fillability of the end of the shot area after imprinting is confirmed, and in step 206 the necessity for optimization of parameters such as droplet placement information and imprint profile is judged, and if necessary, the liquid in step 208 Drop placement information can be optimized.
  • the imprint apparatus 1 which employ
  • the imprint apparatus includes, as a curing unit, a heating unit that raises the viscosity of the imprint material by heat instead of the optical system that irradiates the imprint material with irradiation light to increase the viscosity of the imprint material.
  • the heating unit (hardening unit) is the imprint material corresponding to the second area, with the amount of heat per unit area given to the imprint material corresponding to the first area in a state where the mold and the imprint material are in contact with each other.
  • the substrate is heated so as to be more than the amount of heat per unit area given to it.
  • FIG. 1 An embodiment of a planarization apparatus to which the present invention is applied will be described with reference to FIG. While the above embodiment is a method of transferring a pattern drawn in advance on a mold (original plate, template) to a substrate (wafer), in the present embodiment, no concavo-convex pattern is formed on the mold (planar template). .
  • the base pattern on the substrate has a concavo-convex profile derived from the pattern formed in the previous step, and in particular, with recent memory element multi-layering, a process wafer having a level difference of around 1100 nm has come out There is.
  • the unevenness due to the gentle waviness of the whole substrate can be corrected by the focus following function of the scanning exposure apparatus used in the exposure process, but fine irregularities of the pitch that fall within the exposure slit area of the exposure apparatus Directly consumes DOF (Depth Of Focus) of the exposure apparatus.
  • DOF Degree Of Focus
  • a planarizing layer such as SOC (Spin On Carbon) or CMP (Chemical Mechanical Polishing) is used.
  • SOC Spin On Carbon
  • CMP Chemical Mechanical Polishing
  • U.S. Pat. No. 4,915,418 proposes a method of forming a continuous film by applying a resist to be a planarizing layer with an ink jet dispenser and imprinting with a flat template.
  • US Pat. No. 8,3942 there is proposed a method of reflecting the topography measurement result on the wafer side in the density information for each position where the application is instructed by the ink jet dispenser.
  • flattening processing planarization
  • planarization is performed in which a planar template (mold) is pressed against a previously applied uncured resist (imprint material, uncured resin) to planarize the substrate surface locally.
  • the present invention is applied to an apparatus.
  • FIG. 21A shows the substrate before the planarization process.
  • the area A is an isolated pattern area and the area of the pattern convex portion is small, and the area B is a dense area and the area occupied by the pattern convex portion is 1: 1 with the area occupied by the concave portion.
  • the average height of the region A and the region B takes different values depending on the proportion of the convex portion.
  • FIG. 21B is a view showing a state in which a resist for forming a planarizing layer is applied to a substrate.
  • coated the resist with the ink jet dispenser based on US9415418 is shown, the application of this invention is possible, even if it uses a spin coater at the time of application
  • FIG. 21C is a view showing a process in which the flat template is made of glass or quartz which transmits ultraviolet light, and the resist is cured by the irradiation of the exposure light from the exposure light source. At this time, the planar template follows the profile of the surface of the substrate for the gentle asperity of the entire substrate.
  • FIG. 21D is a view showing a state in which the planar template is pulled away after resist curing.
  • the present invention is also applicable to the embodiment of the planarizing apparatus, and when using a mold (planar template) in which no pattern is formed in the mesa as in any of the above-described embodiments, the resist ( The protrusion of the imprint material can be reduced.
  • the air-liquid interface 14b has been described as being moved outward from the center of the pattern area (mesa portion) of the mold.
  • the air-liquid interface 14b does not necessarily move uniformly (concentrically), and the time for the imprint material to reach the side surface of the pattern area is short depending on the position and supply amount of the imprint material supplied on the substrate. It may change depending on the area. Therefore, the control unit of the imprint apparatus can change the irradiation order of the small area of the irradiation area 52 according to the supply position and the supply amount of the imprint material supplied onto the substrate.
  • the imprint apparatus 1 which employ
  • it may be an imprint apparatus which hardens an imprint material using not only the photocuring method but heat.
  • the imprint apparatus includes, as a curing unit, a heating unit that raises the viscosity of the imprint material by heat instead of the optical system that irradiates the imprint material with irradiation light to increase the viscosity of the imprint material.
  • the pattern of the cured product formed using the imprint apparatus is used permanently on at least a part of various articles or temporarily for manufacturing various articles.
  • the article is an electric circuit element, an optical element, a MEMS, a recording element, a sensor, or a mold.
  • the electric circuit element include volatile or nonvolatile semiconductor memories such as DRAM, SRAM, flash memory and MRAM, and semiconductor elements such as LSI, CCD, image sensor, and FPGA.
  • the mold may, for example, be a mold for imprinting.
  • the pattern of the cured product is used as it is as a component member of at least a part of the article or temporarily used as a resist mask. After etching, ion implantation, or the like is performed in the substrate processing step, the resist mask is removed.
  • a substrate 1z such as a silicon wafer on which a workpiece 2z such as an insulator is formed is prepared, and then an imprint material 3z is formed on the surface of the workpiece 2z by an inkjet method or the like. Grant Here, a state in which a plurality of droplet-shaped imprint materials 3z are applied onto a substrate is shown.
  • the mold 4z for imprint is faced with the side on which the concavo-convex pattern is formed facing the imprint material 3z on the substrate.
  • the substrate 1z provided with the imprint material 3z is brought into contact with the mold 4z, and pressure is applied.
  • the imprint material 3z is filled in the gap between the mold 4z and the workpiece 2z. In this state, when light is irradiated through the mold 4z as energy for curing, the imprint material 3z is cured.
  • a pattern of a cured product of the imprint material 3z is formed on the substrate 1z.
  • the concave portions of the mold correspond to the convex portions of the cured product
  • the concave portions of the mold correspond to the convex portions of the cured product, that is, the uneven pattern of the mold 4z is transferred to the imprint material 3z. It will be done.
  • etching when etching is performed using the pattern of the cured product as an etching resistant mask, a portion of the surface of the workpiece 2z which has no cured product or remains thin is removed to form a groove 5z. Note that it is also preferable to previously remove the remaining portion by etching different from the etching.
  • FIG. 22F when the pattern of the cured product is removed, an article having grooves 5z formed on the surface of the workpiece 2z can be obtained.
  • the pattern of the cured product is removed here, it may be used, for example, as a film for interlayer insulation included in a semiconductor element or the like, that is, as a component of an article without removing it even after processing.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Evolutionary Computation (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Toxicology (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

The present invention provides an imprint device for forming a pattern of imprint material on a substrate using a mold. The imprint device is characterized by comprising: an optical system for irradiating a peripheral region including an end of a mesa portion of a mold with irradiating light for increasing the viscosity of imprint material, the peripheral region surrounding the mesa portion, in a state in which the mesa portion is contacted with the imprint material; and a control unit which, in a state in which the mesa portion of the mold is contacted with the imprint material on the substrate, controls the optical system in such a way that a plurality of regions (52a to 52h, 52n) in the peripheral region that have mutually different distances from the center of the mesa portion are irradiated with the irradiating light at mutually different timings.

Description

インプリント装置、及び、物品の製造方法Imprint apparatus and method of manufacturing article
 本発明は、型を用いて基板上にインプリント材のパターンを形成するインプリント装置に関する。 The present invention relates to an imprint apparatus for forming a pattern of an imprint material on a substrate using a mold.
 半導体デバイスやMEMSなどの物品を製造する方法として、型(モールド)を用いて基板上のインプリント材を成形するインプリント方法が知られている。インプリント方法は、基板上にインプリント材を供給し、供給されたインプリント材と型を接触させる(押印)。そして、インプリント材と型を接触させた状態でインプリント材を硬化させた後、硬化したインプリント材から型を引き離す(離型)ことにより、基板上にインプリント材のパターンが形成される。 As a method of manufacturing an article such as a semiconductor device or a MEMS, an imprint method of molding an imprint material on a substrate using a mold is known. In the imprint method, an imprint material is supplied onto a substrate, and the supplied imprint material is brought into contact with a mold (imprinting). Then, after curing the imprint material in a state in which the imprint material and the mold are in contact with each other, the pattern of the imprint material is formed on the substrate by separating the mold from the cured imprint material (releasing). .
 インプリント装置は、基板上のインプリント材と型を接触させた後、型に形成された凹凸形状のパターンの凹部にインプリント材が十分に充填させた後、インプリント材を硬化させる。特開2013-069919号公報には、インプリント材と型を接触させている間に、基板の外周部にインプリント材が拡がることを防止するため、基板の外周部にインプリント材を硬化する光を照射するインプリント装置が開示されている。 In the imprint apparatus, after bringing the imprint material on the substrate into contact with the mold, the imprint material is sufficiently filled in the concave portions of the concavo-convex pattern formed on the mold, and then the imprint material is cured. JP-A 2013-069919 discloses curing the imprint material on the outer peripheral portion of the substrate in order to prevent the imprint material from spreading to the outer peripheral portion of the substrate while the imprint material and the mold are in contact with each other. An imprint apparatus for irradiating light is disclosed.
 インプリント装置に用いられる型は、その一部の領域が周囲の領域から突出した凸部(メサ部と呼ばれる)となっている。型のメサ部には、基板上に形成されるパターン(パターン領域)が形成されていたり、パターンが形成されていない平面であったりする。そのため、基板上のインプリント材と型のメサ部を対向させてメサ部の表面にインプリント材を接触させている間に、インプリント材がメサ部からはみ出し、メサ部の側面に付着し、それが異物の発生原因となる恐れがある。特開2013-069919号公報に記載されたインプリント装置は、基板の外周部にインプリント材が広がること防止することはできるが、型のメサ部の側面(外側)にインプリント材がはみ出すことを防止することはできない。 The mold used in the imprint apparatus is a convex portion (referred to as a mesa portion) that protrudes from the surrounding area. A pattern (pattern region) to be formed on the substrate may be formed in the mesa portion of the mold, or it may be a flat surface on which the pattern is not formed. Therefore, while the imprint material on the substrate and the mesa of the mold are opposed to each other and the imprint material is in contact with the surface of the mesa, the imprint material protrudes from the mesa and adheres to the side surface of the mesa. This may cause the generation of foreign matter. Although the imprint apparatus described in Japanese Patent Application Laid-Open No. 2013-069919 can prevent the imprint material from spreading to the outer peripheral portion of the substrate, the imprint material may protrude to the side surface (outside) of the mesa portion of the mold. Can not prevent.
 本発明のインプリント装置は、型を用いて基板上にインプリント材のパターンを形成するインプリント装置であって、前記型のメサ部を前記インプリント材に接触させた状態の前記メサ部の端を含み前記メサ部を囲む周辺領域に対して、前記インプリント材の粘性を増加させるための照射光を照射する光学系と、前記型のメサ部を前記基板上のインプリント材に接触させた状態で、前記周辺領域のうちのメサ部の中心からの距離が互いに異なる複数の領域に対する前記照射光の照射のタイミングが互いに異なるように前記光学系を制御する制御部と、を有することを特徴とする。 The imprint apparatus according to the present invention is an imprint apparatus for forming a pattern of an imprint material on a substrate using a mold, wherein the mesa section of the mold is in contact with the imprint material. An optical system for irradiating irradiation light for increasing the viscosity of the imprint material to a peripheral region including the end and surrounding the mesa portion, and contacting the mesa portion of the mold with the imprint material on the substrate A control unit for controlling the optical system such that the irradiation timings of the irradiation light with respect to a plurality of regions different from each other in distance from the center of the mesa portion in the peripheral region are different from each other It features.
インプリント装置を示した図である。It is the figure which showed the imprint apparatus. インプリント材のパターンを形成する工程を示した図である。It is the figure which showed the process of forming the pattern of imprint material. 従来のインプリント方法を示した図である。It is the figure which showed the conventional imprint method. 従来のインプリント方法を示した図である。It is the figure which showed the conventional imprint method. 従来のインプリント方法を示した図である。It is the figure which showed the conventional imprint method. 第1実施形態の照射領域を示した図である。It is the figure which showed the irradiation area | region of 1st Embodiment. 第1実施形態の照射領域を示した図である。It is the figure which showed the irradiation area | region of 1st Embodiment. 第1実施形態の照射領域を示した図である。It is the figure which showed the irradiation area | region of 1st Embodiment. 第1実施形態の照射領域を示した図である。It is the figure which showed the irradiation area | region of 1st Embodiment. 第1実施形態の照射領域を示した図である。It is the figure which showed the irradiation area | region of 1st Embodiment. 第1実施形態の照射領域を決める光学系を示した図である。It is the figure which showed the optical system which determines the irradiation area | region of 1st Embodiment. インプリント材と型が接触する領域と照射領域を示した図である。It is the figure which showed the area | region and irradiation area | region which an imprint material and a type | mold contact. 第1実施形態の照射領域と照射タイミングを示した図である。It is the figure which showed the irradiation area | region and irradiation timing of 1st Embodiment. 第1実施形態の照射領域と照射タイミングを示した図である。It is the figure which showed the irradiation area | region and irradiation timing of 1st Embodiment. 第1実施形態の照射領域と照射タイミングを示した図である。It is the figure which showed the irradiation area | region and irradiation timing of 1st Embodiment. 第2実施形態の照射強度と照射時間を示した図である。It is the figure which showed the irradiation intensity and irradiation time of 2nd Embodiment. 第2実施形態の照射強度と照射時間を示した図である。It is the figure which showed the irradiation intensity and irradiation time of 2nd Embodiment. 第3実施形態の照射領域と照射タイミングを示した図である。It is the figure which showed the irradiation area | region and irradiation timing of 3rd Embodiment. 第3実施形態の照射領域と照射タイミングを示した図である。It is the figure which showed the irradiation area | region and irradiation timing of 3rd Embodiment. 第4実施形態の照射領域と照射タイミングを示した図である。It is the figure which showed the irradiation area | region and irradiation timing of 4th Embodiment. 第4実施形態の照射領域と照射タイミングを示した図である。It is the figure which showed the irradiation area | region and irradiation timing of 4th Embodiment. 第5実施形態の照射領域と照射タイミングを示した図である。It is the figure which showed the irradiation area | region and irradiation timing of 5th Embodiment. 第5実施形態の照射領域と照射タイミングを示した図である。It is the figure which showed the irradiation area | region and irradiation timing of 5th Embodiment. 第5実施形態の照射領域と照射タイミングを示した図である。It is the figure which showed the irradiation area | region and irradiation timing of 5th Embodiment. 第6実施形態の照射領域と照射タイミングを示した図である。It is the figure which showed the irradiation area | region and irradiation timing of 6th Embodiment. 第6実施形態の照射領域と照射タイミングを示した図である。It is the figure which showed the irradiation area | region and irradiation timing of 6th Embodiment. 第7実施形態の照射強度の分布を示した図である。It is a figure showing distribution of irradiation intensity of a 7th embodiment. 第7実施形態の照射強度の分布を示した図である。It is a figure showing distribution of irradiation intensity of a 7th embodiment. 第8実施形態の照射強度の分布を示した図である。It is the figure which showed distribution of the irradiation intensity of 8th Embodiment. 第8実施形態の照射強度の分布を示した図である。It is the figure which showed distribution of the irradiation intensity of 8th Embodiment. 第9実施形態の照射強度の分布を示した図である。It is a figure showing distribution of irradiation intensity of a 9th embodiment. 第10実施形態の照射強度の分布を示した図である。It is a figure showing distribution of irradiation intensity of a 10th embodiment. 第11実施形態の液滴の配置と型の端部を示した図である。It is the figure which showed the arrangement | positioning of the droplet of 11th Embodiment, and the edge part of the type | mold. 第12実施形態の液滴の配置と型の端部を示した図である。It is the figure which showed the arrangement | positioning of the droplet of 12th Embodiment, and the edge part of the type | mold. 第12実施形態の液滴の配置と型の端部を示した図である。It is the figure which showed arrangement | positioning of the droplet of 12th Embodiment, and the edge part of the type | mold. 第13実施形態のパラメータを変更するフローチャートである。It is a flowchart which changes the parameter of 13th Embodiment. 平坦化処理の工程を示す図である。It is a figure which shows the process of planarization treatment. 平坦化処理の工程を示す図である。It is a figure which shows the process of planarization treatment. 平坦化処理の工程を示す図である。It is a figure which shows the process of planarization treatment. 平坦化処理の工程を示す図である。It is a figure which shows the process of planarization treatment. 物品の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of articles | goods. 物品の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of articles | goods. 物品の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of articles | goods. 物品の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of articles | goods. 物品の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of articles | goods. 物品の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of articles | goods.
 以下、本発明の好ましい実施形態を添付の図面に基づいて詳細に説明する。なお、各図において、同一の部材については同一の参照番号を付し、重複する説明は省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings. In each of the drawings, the same members are denoted by the same reference numerals, and redundant description will be omitted.
 (インプリント装置)
 図1は本実施形態におけるインプリント装置1の構成を示した図である。図1を用いてインプリント装置1の構成について説明する。ここでは、基板10が配置される面をXY面、それに直交する方向をZ方向として、図1に示したように各軸を決める。インプリント装置1は、基板上に供給されたインプリント材を型8(モールド)と接触させ、インプリント材に硬化用のエネルギーを与えることにより、型の凹凸パターンが転写された硬化物のパターンを形成する装置である。型は、モールド、テンプレートまたは原版とも呼ばれうる。図1のインプリント装置1は、物品としての半導体デバイスなどのデバイスの製造に使用される。ここでは光硬化法を採用したインプリント装置1について説明する。
(Imprint device)
FIG. 1 is a view showing the configuration of the imprint apparatus 1 in the present embodiment. The configuration of the imprint apparatus 1 will be described with reference to FIG. Here, with the plane on which the substrate 10 is disposed as the XY plane and the direction orthogonal thereto as the Z direction, each axis is determined as shown in FIG. The imprint apparatus 1 brings the imprint material supplied on the substrate into contact with the mold 8 (mold) and applies energy for curing to the imprint material, thereby causing a pattern of the cured product to which the concavo-convex pattern of the mold is transferred. Are devices that form The mold may also be referred to as a mold, template or master. The imprint apparatus 1 of FIG. 1 is used to manufacture devices such as semiconductor devices as articles. Here, an imprint apparatus 1 adopting a photo-curing method will be described.
 インプリント装置は、基板上に供給されたインプリント材を型と接触させ、インプリント材に硬化用のエネルギーを与えることにより、型の凹凸パターンが転写された硬化物のパターンを形成する装置である。このように、インプリント装置は型(モールド)を用いて基板上のインプリント材を成形する装置である。 The imprint apparatus is an apparatus for forming a pattern of a cured product to which an uneven pattern of a mold is transferred by bringing an imprint material supplied on a substrate into contact with the mold and applying energy for curing to the imprint material. is there. Thus, the imprint apparatus is an apparatus for forming an imprint material on a substrate using a mold.
 インプリント装置1は、型8を保持し移動する型保持部3(インプリントヘッド)、基板10を保持し移動する基板保持部4(ステージ)、基板上にインプリント材を供給する供給部5(ディスペンサ)を備える。また、インプリント装置1には、インプリント材を硬化させる光9を照射する光照射系2、光35を照射して型とインプリント材の接触状態を撮像する撮像部6、インプリント装置1の動作を制御する制御部7を備える。さらに、インプリント装置1は、型や基板に形成されたマークを検出する検出器12を備える。 The imprint apparatus 1 includes a mold holding unit 3 (imprint head) that holds and moves the mold 8, a substrate holding unit 4 (stage) that holds and moves the substrate 10, and a supply unit 5 that supplies an imprint material onto the substrate. (Dispenser) is provided. The imprint apparatus 1 also includes a light irradiation system 2 that emits light 9 that cures the imprint material, an imaging unit 6 that emits light 35 to capture the contact state of the mold and the imprint material, and the imprint apparatus 1 Control unit 7 that controls the operation of Furthermore, the imprint apparatus 1 includes a detector 12 that detects a mark formed on a mold or a substrate.
 基板保持部4は、基板10を保持する基板チャック16、XYZ座標系における少なくともX軸方向およびY軸方向の2軸に関して基板10の位置を制御する基板駆動機構17を備える。また、基板保持部4の位置は、基板保持部4に設けられたミラー18と干渉計19を用いて求められる。ミラー18、干渉計19の代わりにエンコーダを用いて基板保持部4の位置を求めてもよい。 The substrate holding unit 4 includes a substrate chuck 16 for holding the substrate 10, and a substrate driving mechanism 17 for controlling the position of the substrate 10 with respect to at least two axes in the X- and Y-axis directions in the XYZ coordinate system. Further, the position of the substrate holding unit 4 can be obtained using the mirror 18 and the interferometer 19 provided in the substrate holding unit 4. An encoder may be used instead of the mirror 18 and the interferometer 19 to determine the position of the substrate holder 4.
 型保持部3は、型チャック11によって型8を保持した状態で型保持部に設けられた型駆動機構38(アクチュエータ)によって上下方向(Z軸方向)に移動する。型保持部3が型駆動機構38によって下方(-Z方向)に移動することによって型8のパターン領域8aはインプリント材14と接触(押印)する。インプリント装置1に用いられる型8のメサ部8d(図3参照)には、基板上に形成する凹凸パターンの反転パターン(パターン領域)が形成されていたり、パターンが形成されていない平面(平坦部)であったりする。以下の説明では、型のメサ部は、パターン領域8aである場合について説明するが、パターンが形成されていない平坦部であってもよい。インプリント材が硬化した後、型保持部3が型駆動機構38によって上方(+Z方向)に移動することによって型8のパターン領域8aは硬化したインプリント材から引き離される(離型)。 The mold holding unit 3 is moved in the vertical direction (Z-axis direction) by a mold drive mechanism 38 (actuator) provided in the mold holding unit in a state where the mold 8 is held by the mold chuck 11. When the mold holding unit 3 is moved downward (in the −Z direction) by the mold driving mechanism 38, the pattern area 8a of the mold 8 contacts (imprints) the imprint material 14. In the mesa 8 d (see FIG. 3) of the mold 8 used in the imprint apparatus 1, a reverse pattern (pattern region) of the concavo-convex pattern formed on the substrate is formed, or a flat surface (flat Part). In the following description, although the case where the mesa portion of the mold is the pattern region 8a will be described, it may be a flat portion in which a pattern is not formed. After the imprint material is cured, the mold holding unit 3 is moved upward (in the + Z direction) by the mold drive mechanism 38, whereby the pattern area 8a of the mold 8 is pulled away from the cured imprint material (mold release).
 さらに、型保持部3には、仕切り板41と型8で区切られた空間13が設けられていてもよく、空間13内の圧力を調整することにより押印時や離型時の型8を変形することができる。例えば、押印時に空間13内の圧力を高くすることで型8を基板10に対して凸形状に変形させてパターン領域8aとインプリント材14とを接触させることができる。 Furthermore, the mold holding unit 3 may be provided with a space 13 divided by the partition plate 41 and the mold 8. By adjusting the pressure in the space 13, the mold 8 at the time of imprinting or mold release is deformed. can do. For example, by raising the pressure in the space 13 at the time of sealing, the mold 8 can be deformed in a convex shape with respect to the substrate 10, and the pattern area 8a and the imprint material 14 can be brought into contact.
 検出器12は、型8に形成されたマークと、基板10に形成されたマークとを検出することができる。インプリント装置1は、検出器12の検出結果に基づいて型8と基板10の相対的な位置を求めることができ、型8と基板10の少なくとも一方を移動させることで型8と基板10を位置合わせすることができる。 The detector 12 can detect the mark formed on the mold 8 and the mark formed on the substrate 10. The imprint apparatus 1 can obtain the relative position between the mold 8 and the substrate 10 based on the detection result of the detector 12, and moves the mold 8 and the substrate 10 by moving at least one of the mold 8 and the substrate 10. It can be aligned.
 制御部7は、基板10上に形成された複数のショット領域にパターンを形成するためにインプリント装置1の各機構の動作を制御する。また制御部7は、型保持部3、基板保持部4、供給部5、光照射系2および検出器12を制御するように構成されうる。制御部7は、インプリント装置1内に設けてもよいし、インプリント装置1とは別の場所に設置し遠隔で制御しても良い。 The controller 7 controls the operation of each mechanism of the imprint apparatus 1 in order to form a pattern in a plurality of shot areas formed on the substrate 10. Further, the control unit 7 can be configured to control the mold holding unit 3, the substrate holding unit 4, the supply unit 5, the light irradiation system 2, and the detector 12. The control unit 7 may be provided in the imprint apparatus 1 or may be installed at a location different from the imprint apparatus 1 and controlled remotely.
 インプリント材には、硬化用のエネルギーが与えられることにより硬化する硬化性組成物(未硬化状態の樹脂と呼ぶこともある)が用いられる。硬化用のエネルギーとしては、電磁波、熱等が用いられる。電磁波としては、例えば、その波長が10nm以上1mm以下の範囲から選択される、赤外線、可視光線、紫外線などの光である。 For the imprint material, a curable composition (sometimes referred to as an uncured resin) that is cured by receiving energy for curing is used. As energy for curing, electromagnetic waves, heat, etc. are used. Examples of the electromagnetic wave include light such as infrared light, visible light, and ultraviolet light whose wavelength is selected from the range of 10 nm or more and 1 mm or less.
 硬化性組成物は、光の照射により、あるいは、加熱により硬化する組成物である。このうち、光により硬化する光硬化性組成物は、重合性化合物と光重合開始剤とを少なくとも含有し、必要に応じて非重合性化合物または溶剤を含有してもよい。非重合性化合物は、増感剤、水素供与体、内添型離型剤、界面活性剤、酸化防止剤、ポリマー成分などの群から選択される少なくとも一種である。 The curable composition is a composition which is cured by irradiation of light or by heating. Among these, the photocurable composition which is cured by light contains at least a polymerizable compound and a photopolymerization initiator, and may contain a nonpolymerizable compound or a solvent as required. The non-polymerizable compound is at least one selected from the group consisting of a sensitizer, a hydrogen donor, an internal release agent, a surfactant, an antioxidant, a polymer component and the like.
 インプリント材は、スピンコーターやスリットコーターにより基板上に膜状に付与される。或いは液体噴射ヘッドにより、液滴状、或いは複数の液滴が繋がってできた島状又は膜状となって基板上に付与されてもよい。インプリント材の粘度(25℃における粘度)は、例えば、1mPa・s以上、100mPa・s以下である。 The imprint material is applied in the form of a film on a substrate by a spin coater or a slit coater. Alternatively, the liquid jet head may apply droplets or in the form of islands or films formed by connecting a plurality of droplets onto the substrate. The viscosity (the viscosity at 25 ° C.) of the imprint material is, for example, 1 mPa · s or more and 100 mPa · s or less.
 基板は、ガラス、セラミックス、金属、半導体、樹脂等が用いられ、必要に応じて、その表面に基板とは別の材料からなる部材が形成されていてもよい。基板としては、具体的に、シリコンウエハ、化合物半導体ウエハ、石英ガラスなどである。 Glass, ceramics, metals, semiconductors, resins, etc. are used for the substrate, and if necessary, a member made of a material different from the substrate may be formed on the surface. Specifically, the substrate is a silicon wafer, a compound semiconductor wafer, quartz glass or the like.
 (第1実施形態)
 図2はインプリント装置1を用いて基板10上のインプリント材14を成形する成形工程を示したフローチャートである。図2を参照しながら光硬化法によるインプリント方法を説明する。
First Embodiment
FIG. 2 is a flow chart showing a forming process of forming the imprint material 14 on the substrate 10 using the imprint apparatus 1. The imprint method by the light curing method will be described with reference to FIG.
 まず、工程101において、インプリント装置1内に基板10を搬入する。不図示の基板搬送機構によって、基板10は基板保持部4の基板チャック16に搬入される。 First, in step 101, the substrate 10 is carried into the imprint apparatus 1. The substrate 10 is carried into the substrate chuck 16 of the substrate holding unit 4 by a substrate conveyance mechanism (not shown).
 次に工程102で、供給部5はインプリント材のパターンが形成される基板10上のショット領域にインプリント材14を供給する。工程103で型8と基板10を近づけることで基板10上に供給されたインプリント材14と型8のパターン領域8aを接触させる(押印工程)。 Next, in step 102, the supply unit 5 supplies the imprint material 14 to the shot area on the substrate 10 on which the pattern of the imprint material is to be formed. In step 103, the mold 8 and the substrate 10 are brought close to each other to bring the imprint material 14 supplied on the substrate 10 into contact with the pattern area 8a of the mold 8 (stamping step).
 その際、図3Aに示すように、インプリント材14と型8との濡れ性が良いため、インプリント材14が型8のパターン領域8aからはみ出し、パターン領域8aの側面8b付着することが確認されている。パターン領域8aの側面8bにインプリント材14が付着した状態でインプリント材を硬化すると、型8を離型した際に、図3Bに示すような形状のインプリント材14が形成される。なお、図3Bではパターン領域8aに対応する微細な凹凸パターンは省略している。図3Bに示すようにインプリント材14の突起形状15が形成されると、膜厚が不均一となり、後工程のエッチング処理等で影響を与える恐れがある。また、パターン領域8aの側面8bに付着したインプリント材14の一部がインプリント中に基板10上へ落下し、異物となる恐れがある。基板10上に異物が存在していると、押印工程に基板上の異物に型8が接触すると、型8のパターン領域8aに形成された微細パターンが破壊する恐れがある。そのため、パターン形成の不良を引き起こす原因となる。 At that time, as shown in FIG. 3A, since the wettability of the imprint material 14 and the mold 8 is good, it is confirmed that the imprint material 14 protrudes from the pattern area 8a of the mold 8 and adheres to the side surface 8b of the pattern area 8a. It is done. When the imprint material is cured in a state where the imprint material adheres to the side surface 8b of the pattern area 8a, when the mold 8 is released, the imprint material 14 having a shape as shown in FIG. 3B is formed. In FIG. 3B, the fine uneven pattern corresponding to the pattern area 8a is omitted. When the projection shape 15 of the imprint material 14 is formed as shown in FIG. 3B, the film thickness becomes uneven, which may affect the etching process or the like in the subsequent steps. In addition, a part of the imprint material 14 attached to the side surface 8b of the pattern area 8a may fall onto the substrate 10 during imprinting, and may be a foreign substance. If foreign matter is present on the substrate 10, the fine pattern formed in the pattern area 8a of the die 8 may be destroyed if the die 8 comes in contact with the foreign matter on the substrate in the sealing step. Therefore, it causes the defect of pattern formation.
 また、ショット領域の角部(コーナー部、ショット領域が矩形の場合の角部)などのインプリント材が最後に充填する箇所は、図3Cに示すようにパターン領域8aの全部にインプリント材が充填されずに未充填8cとなる場合がある。基板10上に未充填8cが存在する場合もまた、インプリント材14の膜厚が不均一になり、後工程のエッチング処理等で影響を与える恐れがある。本実施形態では、パターン領域8aの側面8bにインプリント材が付着するのを低減し、パターン形成の不良や型8の破壊を防ぐことにより、歩留まりの高いインプリント装置を提供する。 Further, as shown in FIG. 3C, the imprint material is applied to the entire pattern area 8a as shown in FIG. 3C at the last part of the imprint material such as corners of the shot area (corners, corners when the shot area is rectangular). In some cases, it will be unfilled 8c without being filled. Also in the case where the non-filling 8 c exists on the substrate 10, the film thickness of the imprint material 14 becomes nonuniform, and there is a possibility that it may be affected by the etching process or the like in the later step. In this embodiment, the adhesion of the imprint material to the side surface 8b of the pattern area 8a is reduced, and defects in pattern formation and breakage of the mold 8 are prevented, thereby providing an imprint apparatus with high yield.
 そこで、本実施形態のインプリント装置1は、工程103においてパターン領域8aをインプリント材14に接触させる際に、工程104によりパターン領域8aの外周部に照射光50を照射することで、インプリント材14のはみ出しを防ぐ。工程104は、パターン領域8aの一部がインプリント材14と接触し、工程103が完了する前に、照射光50を照射する。 Therefore, when the pattern region 8a is brought into contact with the imprint material 14 in the step 103, the imprint apparatus 1 of the present embodiment performs the imprint by irradiating the outer peripheral portion of the pattern region 8a in the step 104. It prevents the protrusion of the material 14. In step 104, part of the pattern area 8a is in contact with the imprint material 14, and the irradiation light 50 is irradiated before the step 103 is completed.
 工程103において、押印が完了してパターン領域8aのパターンにインプリント材が充填した後、工程105において型8と基板10との位置合わせを行う。例えば、検出器12で型8に形成されたマークと基板10に形成されたマークからの光を検出することによって型8と基板10の位置合わせを行う。微細パターンが形成されている型8のパターン領域8aの中心付近には照射光50を照射しない。上述したように照射光50を型8の側面8bに照射することで、側面8bにインプリント材14が付着することを防ぎ、型8の中心部にあるインプリント材14に関しては粘性を変化させずに、微細パターンへ充填性を維持することができる。 In step 103, after the impression is completed and the pattern of the pattern area 8a is filled with the imprint material, in step 105, the mold 8 and the substrate 10 are aligned. For example, alignment between the mold 8 and the substrate 10 is performed by detecting light from the mark formed on the mold 8 and the mark formed on the substrate 10 by the detector 12. The irradiation light 50 is not irradiated in the vicinity of the center of the pattern area 8 a of the mold 8 in which the fine pattern is formed. As described above, by irradiating the side surface 8b of the mold 8 with the irradiation light 50, the imprint material 14 is prevented from adhering to the side surface 8b, and the viscosity of the imprint material 14 in the center of the mold 8 is changed. Without, it is possible to maintain the filling property of the fine pattern.
 工程104において、インプリント材14は粘性が変化するが硬化していない。先行技術のように型8の側面8bにインプリント材14が付着することを防ぐために、型8の側面8b近傍のインプリント材14を硬化させてしまうと、型8と基板10との位置合わせを行うことが困難となる。また、型8の側面8bに近いパターン領域8aにも微細構造が配置されている場合、インプリント材14が微細構造に充填する前に硬化することとなり、未充填欠陥を増加させる原因となる。重ね合わせ精度の低下と未充填欠陥の増加は歩留まりを低下させる恐れがある。 In step 104, the imprint material 14 changes in viscosity but is not cured. If the imprint material 14 in the vicinity of the side surface 8 b of the mold 8 is cured to prevent the imprint material 14 from adhering to the side surface 8 b of the mold 8 as in the prior art, alignment of the mold 8 and the substrate 10 is performed. It will be difficult to In addition, when the fine structure is disposed also in the pattern area 8a close to the side surface 8b of the mold 8, the imprint material 14 is hardened before it is filled into the fine structure, which causes an increase in unfilled defects. The decrease in overlay accuracy and the increase in unfilled defects may lower the yield.
 工程106にて重ね合わせ精度判定が実施され、重ね合わせ精度が判定値を満足すれば、工程107で型8とインプリント材14が接触した状態でインプリント材14を硬化させる。インプリント材14を硬化させた後、工程108にて、硬化したインプリント材14から型8を引き離す(離型工程)。工程106にて重ね合わせ精度判定が判定値を満足しなければ、工程105の型と基板の位置合わせ工程を継続する。工程106で判定値を満足しない場合には、強制的に次工程に進むように処理してもよい。 In step 106, overlay accuracy determination is performed. If the overlay accuracy satisfies the determination value, in step 107, the imprint material 14 is cured in a state where the mold 8 and the imprint material 14 are in contact. After the imprint material 14 is cured, the mold 8 is separated from the cured imprint material 14 in step 108 (mold release process). If it is determined in step 106 that the overlay accuracy determination does not satisfy the determination value, the mold-substrate alignment step of step 105 is continued. If the determination value is not satisfied in step 106, the process may be forced to proceed to the next step.
 工程108で型8が基板上のインプリント材から引き離された後、工程109において、基板10上に指定したショット領域に対してインプリント処理が完了したかどうかの終了判定が行われる。工程109でインプリント処理が終了した場合、工程110においてインプリント装置1外に基板10を搬出する。インプリント処理が完了していない場合、工程102に戻り、次のインプリント位置(ショット領域)にインプリント材14を供給し、インプリント処理が完了するまで各工程が繰り返される。 After the mold 8 is pulled away from the imprint material on the substrate in step 108, in step 109, it is determined whether the imprint processing has been completed on the shot area designated on the substrate 10. When the imprint process is completed in step 109, the substrate 10 is unloaded out of the imprint apparatus 1 in step 110. If the imprint process is not completed, the process returns to step 102, the imprint material 14 is supplied to the next imprint position (shot area), and each process is repeated until the imprint process is completed.
 次に、工程104で行う光の照射について詳細に説明する。図4は、工程104で行う光の照射を説明する図である。図4Aに示すように、照射光50を型8のパターン領域8aの外周部である側面8bを含む周辺領域(照射領域52)に照射する。照射光50はインプリント材14が重合反応する光であれば良く、紫外光に限らない。照射光50によってインプリント材14が硬化してしまうと工程105で位置合わせを行うことができない。そのため、工程104で行う光の照射はインプリント材14を硬化させずに、パターン領域8a付近のインプリント材14の粘性が高くなる程度の光を照射する。照射光50は、インプリント材14の材料の性質などを考慮して、照射する光の波長や、照射時間、強度などを適宜求めることができる。 Next, light irradiation performed in step 104 will be described in detail. FIG. 4 is a view for explaining the light irradiation performed in step 104. As shown in FIG. 4A, the irradiation light 50 is applied to the peripheral area (irradiation area 52) including the side surface 8b which is the outer peripheral portion of the pattern area 8a of the mold 8. The irradiation light 50 may be any light as long as the imprint material 14 causes a polymerization reaction, and is not limited to the ultraviolet light. If the imprint material 14 is cured by the irradiation light 50, alignment can not be performed in step 105. Therefore, the light irradiation performed in step 104 does not cure the imprint material 14, but applies light to such an extent that the viscosity of the imprint material 14 in the vicinity of the pattern area 8 a becomes high. The irradiation light 50 can appropriately determine the wavelength of irradiation light, irradiation time, intensity and the like in consideration of the property of the material of the imprint material 14 and the like.
 図4Bは、型8を介して基板10上に照射光50が照射される照射領域52と型8の側面8b(外周部)の関係を示した図である。図4に示すように、照射光50の照射領域52は型8の側面8bを含む領域である。図4に示すように照射領域52を設定することで押印時にインプリント材14がパターン領域8aからはみ出すことを防ぐことができる。 FIG. 4B is a view showing the relationship between the irradiation area 52 where the irradiation light 50 is irradiated onto the substrate 10 through the mold 8 and the side surface 8 b (peripheral part) of the mold 8. As shown in FIG. 4, the irradiation area 52 of the irradiation light 50 is an area including the side surface 8 b of the mold 8. By setting the irradiation area 52 as shown in FIG. 4, it is possible to prevent the imprint material 14 from protruding from the pattern area 8 a at the time of imprinting.
 図5Aに示す型8のパターン領域8aと基板10上に供給されたインプリント材14とを接触させる際に、型8のパターン領域8aを基板10に対して凸形状に変形させてインプリント材14と接触させることがある。図5Bに示すように、型とインプリント材が接触する領域は、型8の中心付近のパターン領域8aとインプリント材14とが接触した後、パターン領域8aの外側(外周部)に向かって広がり始める。図5Cに示すように、照射光50が照射される領域内のインプリント材14の気液界面14bは、照射光50によって、重合反応が開始され、気液界面14bの粘性が増加する。パターン領域8aの外周部のインプリント材14の粘性が増加することで、パターン領域8aの外側に向かって広がるインプリント材14の気液界面14bの移動速度が低下し、型8の側面8bにインプリント材が付着することを防ぐことができる。このとき、インプリント材14の粘性変化に必要な照射光50の強度や、照射光50の照射タイミングは、インプリント材14の種類などによっても異なるため、別途実験により条件を探索する必要がある。 When bringing the pattern area 8a of the mold 8 shown in FIG. 5A into contact with the imprint material 14 supplied onto the substrate 10, the pattern area 8a of the mold 8 is deformed into a convex shape with respect to the substrate 10 May contact with. As shown in FIG. 5B, after the pattern area 8a near the center of the mold 8 and the imprint material 14 come into contact, the area where the mold and the imprint material are in contact is directed toward the outside (peripheral part) of the pattern area 8a. Start spreading. As shown in FIG. 5C, the polymerization reaction of the gas-liquid interface 14b of the imprint material 14 in the area to which the irradiation light 50 is irradiated is initiated by the irradiation light 50, and the viscosity of the gas-liquid interface 14b increases. By increasing the viscosity of the imprint material 14 on the outer peripheral portion of the pattern area 8a, the moving speed of the gas-liquid interface 14b of the imprint material 14 spreading toward the outside of the pattern area 8a decreases, and the side surface 8b of the mold 8 is formed. It is possible to prevent the imprint material from adhering. At this time, since the intensity of the irradiation light 50 required for the viscosity change of the imprint material 14 and the irradiation timing of the irradiation light 50 differ depending on the type of the imprint material 14 and the like, it is necessary to separately search conditions by experiments. .
 図6を用いて照射光50をパターン領域8aの外周部(側面8bを含む領域)に照射するための光学系の一例に関して説明する。図6は、照射光50を照射するための光学系の模式図を示す。インプリント材14が重合反応する波長の照射光光源51を用意する。照射光光源51はインプリント材14を所望の粘度に重合反応させるために必要な光出力が得られるものを選定し、例えば、ランプ、レーザダイオード、LED等から構成される。照射光光源51からの光は光学素子54aによって、光変調素子53(空間光変調素子)へ導かれる。本実施形態の光変調素子53としては、デジタルマイクロミラーデバイス(以下DMD)を使用した例を示す。しかし、光変調素子53としては、DMDに限らず、LCDデバイスやLCOSデバイス等のその他の素子を使用することができる。インプリント装置1は、照射光光源51と基板10との間に光変調素子53を用いることで、照射光50の照射領域52や光の強度を基板上の任意の場所を設定することができる。また、光変調素子53によって照射領域52や光強度が制御された照射光50は、光学素子54bにより、型8および基板10に投影される倍率が調整される。 An example of an optical system for irradiating the outer peripheral portion (region including the side surface 8b) of the pattern region 8a with the irradiation light 50 will be described with reference to FIG. FIG. 6 shows a schematic view of an optical system for irradiating the irradiation light 50. As shown in FIG. An irradiation light source 51 of a wavelength at which the imprint material 14 undergoes a polymerization reaction is prepared. The irradiation light source 51 is selected to obtain light output necessary for causing the imprint material 14 to polymerize to a desired viscosity, and is constituted of, for example, a lamp, a laser diode, an LED or the like. The light from the irradiation light source 51 is guided to the light modulation element 53 (spatial light modulation element) by the optical element 54a. An example in which a digital micro mirror device (hereinafter, DMD) is used as the light modulation element 53 of the present embodiment is shown. However, the light modulation element 53 is not limited to the DMD, and other elements such as an LCD device or an LCOS device can be used. By using the light modulation element 53 between the irradiation light source 51 and the substrate 10, the imprint apparatus 1 can set the irradiation region 52 of the irradiation light 50 and the light intensity at an arbitrary position on the substrate. . Further, the magnification of the projection light onto the mold 8 and the substrate 10 is adjusted by the optical element 54 b of the irradiation light 50 whose irradiation area 52 and light intensity are controlled by the light modulation element 53.
 第1実施形態における、上述の工程103、および、工程104についてさらに詳しく説明する。 The above-mentioned step 103 and step 104 in the first embodiment will be described in more detail.
 工程103において、型8をインプリント材14に接触させた際、インプリント材14の気液界面14bは図7に示すように円状あるいはそれに類似した形状で外側に向かって広がる。つまり、型8とインプリント材14との接触領域は、パターン領域8aの中心付近から広がるように変化する。一般に型8のパターン領域8aは矩形であるため、照射領域52も矩形の外周部に沿った領域である。そのため、インプリント材14の気液界面14bが照射光50の照射領域52(パターン領域8aの外周部)に到達するタイミングは照射領域52の各位置で異なる。 In step 103, when the mold 8 is brought into contact with the imprint material 14, the gas-liquid interface 14b of the imprint material 14 spreads outward in a circular shape or a similar shape as shown in FIG. That is, the contact area between the mold 8 and the imprint material 14 changes so as to spread from the vicinity of the center of the pattern area 8a. Since the pattern area 8a of the mold 8 is generally rectangular, the irradiation area 52 is also an area along the outer periphery of the rectangle. Therefore, the timing at which the gas-liquid interface 14 b of the imprint material 14 reaches the irradiation area 52 (the outer peripheral portion of the pattern area 8 a) of the irradiation light 50 differs at each position of the irradiation area 52.
 一方、工程104において、気液界面14bが照射領域52へ到達するのに対し、照射光50の照射タイミングが早いと型8の側面8bに近いパターン領域8aに未充填欠陥を生じる恐れがある。また、気液界面14bが照射領域52へ到達するのに対し、照射光50の照射タイミングが遅いとインプリント材14が型8の側面8bにはみ出して付着する恐れがある。このため、インプリント材14のはみ出しを防ぐための照射光50は、押印工程の適切なタイミングで照射しなければならない。 On the other hand, while the gas-liquid interface 14b reaches the irradiation area 52 in step 104, if the irradiation timing of the irradiation light 50 is early, an unfilled defect may occur in the pattern area 8a near the side surface 8b of the mold 8. In addition, while the gas-liquid interface 14 b reaches the irradiation area 52, if the irradiation timing of the irradiation light 50 is late, the imprint material 14 may run off and adhere to the side surface 8 b of the mold 8. For this reason, the irradiation light 50 for preventing the protrusion of the imprint material 14 must be irradiated at an appropriate timing of the imprinting process.
 そこで、第1実施形態では、工程104において図8Aに示すように照射領域52を複数の小領域52a、52b、…、52nに分割する。かつ、それぞれの小領域に対し照射タイミング、あるいは、照射強度の少なくとも一方を変えて照射光50を照射する。上述した光変調素子53を用いることで、照射領域52に対する照射光50の照射タイミング、照射領域や照射強度を設定することができる。図8Aでは、照射領域52を縦方向8個、横方向6個のそれぞれ正方形状の小領域に分割する例を示したが、分割個数はこれに限らず任意数に設定してよい。また、それぞれの小領域の形状は長方形状、三角形状その他任意形状に設定してよい。 Therefore, in the first embodiment, the irradiation area 52 is divided into a plurality of small areas 52a, 52b,..., 52n in step 104 as shown in FIG. 8A. And, at least one of the irradiation timing or the irradiation intensity is changed with respect to each small area and irradiation light 50 is irradiated. By using the light modulation element 53 described above, the irradiation timing, irradiation area, and irradiation intensity of the irradiation light 50 to the irradiation area 52 can be set. Although FIG. 8A shows an example in which the irradiation area 52 is divided into small areas of eight squares in the longitudinal direction and six squares in the lateral direction, the number of divisions is not limited to this and may be set to an arbitrary number. In addition, the shape of each small area may be set to a rectangular shape, a triangular shape, or any other shape.
 第1実施形態では、気液界面14bが照射領域52の各小領域52a、52b、…、52nに到達するタイミングを判定し、判定結果に応じて、それぞれの小領域に対して照射光50の照射タイミングを変える。気液界面14bが各小領域へ到達するタイミングの判定は、撮像部6の撮像結果に基づいてリアルタイムに判定することができる。あるいは、気液界面14bが各小領域へ到達するタイミングを事前に求めておき、その結果に応じて、それぞれの小領域に対して照射光50の照射タイミングを決定することもできる。 In the first embodiment, the timing at which the gas-liquid interface 14b reaches the small areas 52a, 52b,..., 52n of the irradiation area 52 is determined, and the small areas are irradiated with the irradiation light 50 according to the determination result. Change the irradiation timing. The determination of the timing at which the air-liquid interface 14 b reaches each small area can be determined in real time based on the imaging result of the imaging unit 6. Alternatively, the timing at which the gas-liquid interface 14b reaches each small area may be obtained in advance, and the irradiation timing of the irradiation light 50 may be determined for each small area according to the result.
 図7に示すように、パターン領域8aの中心から気液界面14bが外側に向かって広がる場合の、照射領域52の小領域に対する照射光50の照射タイミングチャートを図8Bに示す。説明の簡略化のため、照射領域52のうちパターン領域8aの左辺に限定して、小領域52a、52b、…、52hそれぞれの照射タイミングチャートを示す。横軸は時間を示す。図8Bに示す通り、押印工程を開始した後、気液界面14bが早く到達する小領域ほど、照射タイミングが早くなる。 As shown in FIG. 7, an irradiation timing chart of the irradiation light 50 to a small area of the irradiation area 52 when the gas-liquid interface 14b spreads outward from the center of the pattern area 8a is shown in FIG. 8B. In order to simplify the description, the irradiation timing chart of each of the small areas 52a, 52b,..., 52h is shown by limiting to the left side of the pattern area 8a in the irradiation area 52. The horizontal axis shows time. As shown in FIG. 8B, after the sealing step is started, the irradiation timing becomes earlier as the small region where the gas-liquid interface 14b arrives earlier.
 押印工程が開始した後、パターン領域8aの中心付近から広がった気液界面14bは、時間T1に小領域52d及び小領域52eに到達する。この時、図6の制御部55は、小領域52d及び小領域52eに照射光50が照射されるように光変調素子53を制御する。次に、気液界面14bは、時間T2に小領域52c及び小領域52fに到達する。この時、制御部55は、小領域52c及び小領域52fに照射光50が照射されるように光変調素子53を制御する。次に気液界面14bは、時間T3に小領域52b及び小領域52gに到達する。この時、制御部55は、小領域52b及び小領域52gに照射光50が照射されるように光変調素子53を制御する。最後に気液界面14bは、時間T4に小領域52a及び小領域52hに到達する。この時、制御部55は、小領域52a及び小領域52hに照射光50が照射されるように光変調素子53を制御する。 After the sealing process starts, the gas-liquid interface 14b that has spread from the vicinity of the center of the pattern area 8a reaches the small area 52d and the small area 52e at time T1. At this time, the control unit 55 of FIG. 6 controls the light modulation element 53 so that the irradiation light 50 is irradiated to the small area 52 d and the small area 52 e. Next, the gas-liquid interface 14b reaches the small area 52c and the small area 52f at time T2. At this time, the control unit 55 controls the light modulation element 53 so that the irradiation light 50 is irradiated to the small area 52c and the small area 52f. Next, the gas-liquid interface 14b reaches the small area 52b and the small area 52g at time T3. At this time, the control unit 55 controls the light modulation element 53 so that the irradiation light 50 is irradiated to the small area 52 b and the small area 52 g. Finally, the gas-liquid interface 14b reaches the small area 52a and the small area 52h at time T4. At this time, the control unit 55 controls the light modulation element 53 so that the irradiation light 50 is irradiated to the small area 52a and the small area 52h.
 各小領域に照射光50を照射する時間は任意に設定することができる。図8Bに示す例では、各小領域に照射光50を照射する時間はΔTとする。また、各小領域に照射する照射光の強度は同じとする。 The time to irradiate the irradiation light 50 to each small area can be set arbitrarily. In the example shown to FIG. 8B, the time which irradiates the irradiation light 50 to each small area | region is set to (DELTA) T. Moreover, the intensity of the irradiation light irradiated to each small area is the same.
 照射光50の照射タイミングの代わりに照射強度を変えてもよい。例えば、図9Aに示す通り、照射領域52の各小領域52a、52b、…、52hの照射強度を変えてもよい。横軸は時間、縦軸は各小領域の照射強度を示す。最初に気液界面14bが到達する小領域に対する照射光50の照射強度を強くして、気液界面14bが到達する順番に照射強度を順に弱くする。図9Aは横軸に時間を示し、縦軸に各小領域(小領域52a~小領域52h)に対する照射光50の照射強度を示している。 Instead of the irradiation timing of the irradiation light 50, the irradiation intensity may be changed. For example, as shown in FIG. 9A, the irradiation intensity of each of the small areas 52a, 52b,..., 52h of the irradiation area 52 may be changed. The horizontal axis represents time, and the vertical axis represents the irradiation intensity of each small area. The irradiation intensity of the irradiation light 50 with respect to the small area which the gas-liquid interface 14b reaches first is made strong, and the irradiation intensity is weakened in the order in which the gas-liquid interface 14b reaches. In FIG. 9A, the horizontal axis indicates time, and the vertical axis indicates the irradiation intensity of the irradiation light 50 for each small area (small area 52a to small area 52h).
 図8では、照射領域52のうちパターン領域8aの左辺の小領域に限定して説明を行ったが、実際には全ての小領域52a、52b、…、52nにおいて、照射タイミング、あるいは、照射強度を決定する。このように照射領域を分割することで、型のパターン領域8aと基板上のインプリント材14との接触領域の広がりに応じて最適なタイミングで照射光50を照射することができる。 In FIG. 8, the explanation was given by limiting to the small area on the left side of the pattern area 8a in the irradiation area 52, but in actuality, the irradiation timing or the irradiation intensity in all the small areas 52a, 52b,. Decide. By dividing the irradiation area in this manner, the irradiation light 50 can be irradiated at an optimal timing according to the spread of the contact area between the pattern area 8a of the mold and the imprint material 14 on the substrate.
 (第2実施形態)
 第2実施形態は、第1実施形態で説明した照射領域52の各小領域(小領域52a~52n)に対して照射光50の照射量を変える場合について説明する。
Second Embodiment
In the second embodiment, the case where the irradiation amount of the irradiation light 50 is changed with respect to each small area (small areas 52a to 52n) of the irradiation area 52 described in the first embodiment will be described.
 第1実施形態で説明した気液界面14bが照射領域52の各小領域52a、52b、…、52nのそれぞれを通過する時の速度、すなわち、エネルギー量は異なる。このため、第2実施形態では、気液界面14bが広がるときの粘性をより正確に制御するため、各小領域で照射光50の照射量を変えて、照射光50を照射する。 The speed at which the gas-liquid interface 14b described in the first embodiment passes through each of the small areas 52a, 52b, ..., 52n of the irradiation area 52, that is, the amount of energy differs. Therefore, in the second embodiment, in order to control the viscosity when the gas-liquid interface 14b spreads more accurately, the irradiation amount of the irradiation light 50 is changed in each small area, and the irradiation light 50 is irradiated.
 図7に示すように、パターン領域8aの中心から気液界面14bが外側に向かって広がる場合の、照射領域52の小領域に対する照射光50の照射タイミングチャートを図9A、図9Bに示す。説明の簡略化のため、照射領域52のうちパターン領域8aの左辺に限定して、小領域52a、52b、…、52hそれぞれの照射タイミングチャートを示す。横軸は時間を示し、縦軸は各小領域の照射強度を示す。図9Aは照射時間が一定で照射強度を変えた例、図9Bは照射強度が一定で照射時間を変えた例である。図9に示す通り、押印工程を開始した後、気液界面14bが早く到達する小領域ほど、照射量は多くなる。 As shown in FIG. 7, the irradiation timing chart of the irradiation light 50 to the small area of the irradiation area 52 when the gas-liquid interface 14b spreads outward from the center of the pattern area 8a is shown in FIGS. 9A and 9B. In order to simplify the description, the irradiation timing chart of each of the small areas 52a, 52b,..., 52h is shown by limiting to the left side of the pattern area 8a in the irradiation area 52. The horizontal axis shows time, and the vertical axis shows the irradiation intensity of each small area. FIG. 9A is an example in which the irradiation time is constant and the irradiation intensity is changed, and FIG. 9B is an example in which the irradiation intensity is constant and the irradiation time is changed. As shown in FIG. 9, after the sealing step is started, the irradiation amount increases as the gas-liquid interface 14 b reaches the smaller region earlier.
 図7に示すように、パターン領域8aの中心から気液界面14bが外側に向かって広がる場合には、一般に、中心に近い小領域52d、52eの露光量を多く、端部の小領域52a、52hの露光量を少なく設定する。さらに、各小領域の露光量の変更に加えて、第1実施形態で示した通り、各小領域の照射タイミングを変えてもよい。 As shown in FIG. 7, when the air-liquid interface 14b extends outward from the center of the pattern area 8a, generally, the small areas 52d and 52e close to the center have a large exposure amount, and the small area 52a of the end, The exposure amount of 52 h is set small. Furthermore, in addition to the change of the exposure amount of each small area, as shown in the first embodiment, the irradiation timing of each small area may be changed.
 図9では、照射領域52のうちパターン領域8aの左辺の小領域に限定して説明を行ったが、実際には全ての小領域52a、52b、…、52nにおいて、照射強度を決定する。このように照射領域52を分割することで、型のパターン領域8aと基板上のインプリント材14との接触領域の広がりに応じて最適な露光量で照射光50を照射することができる。 In FIG. 9, the explanation has been made by limiting to the small area on the left side of the pattern area 8a in the irradiation area 52, but the irradiation intensity is actually determined in all the small areas 52a, 52b,. By dividing the irradiation area 52 in this manner, it is possible to irradiate the irradiation light 50 with the optimum exposure amount according to the spread of the contact area between the pattern area 8a of the mold and the imprint material 14 on the substrate.
 (第3実施形態)
 第3実施形態は、第1実施形態で説明した照射領域52の各小領域(小領域52a~52n)と、ショット領域の中心位置61との距離に基づき、各小領域に対して照射光50の照射タイミングを変える場合について説明する。
Third Embodiment
In the third embodiment, the irradiation light 50 is applied to each small area based on the distance between each small area (small areas 52a to 52n) of the irradiation area 52 described in the first embodiment and the center position 61 of the shot area. The case of changing the irradiation timing of will be described.
 図7に示すように、パターン領域8aの中心から気液界面14bが外側に向かって広がる場合の、照射領域52の小領域に対する照射光50の照射タイミングチャートを図10Bに示す。説明の簡略化のため、照射領域52のうちパターン領域8aの左辺に限定して、小領域52a、52b、…、52hのそれぞれの照射タイミングチャートを示す。横軸は時間を示す。ここで、ショット領域の中心位置61と小領域52a、52b、…、52hとのそれぞれの距離をLa、Lb、…、Lhとする。 As shown in FIG. 7, an irradiation timing chart of the irradiation light 50 to the small area of the irradiation area 52 when the gas-liquid interface 14b spreads outward from the center of the pattern area 8a is shown in FIG. 10B. In order to simplify the description, the irradiation timing chart of each of the small areas 52a, 52b,..., 52h is shown by limiting to the left side of the pattern area 8a in the irradiation area 52. The horizontal axis shows time. Here, the distances between the center position 61 of the shot area and the small areas 52a, 52b,..., 52h are La, Lb,.
 第3実施形態では、押印工程の開始時間を0とし、各小領域の照射タイミングを、関数Tx=f(Lx)で決定する。ここで、x=a、b、…、hである。つまり、第3実施形態の各小領域の照射タイミングは、距離に応じて決定する。例えば、比例定数Kを用いて、照射タイミングをTx=K×Lxで決定することができる。また、一次関数、あるいは、二次以上の高次関数で照射タイミングを決定してもよい。図10Bに示す通り、押印工程を開始した後、一般に、ショット領域の中心位置61と、照射領域52の各小領域との距離が短いほど、照射タイミングは早くなる。図10Bのタイミングチャートは押印工程の開始時間を0として説明したが、型8とインプリント材14とが接触したタイミングを時間0としてもよい。 In the third embodiment, the start time of the sealing step is set to 0, and the irradiation timing of each small area is determined by the function Tx = f (Lx). Here, x = a, b, ..., h. That is, the irradiation timing of each small area in the third embodiment is determined according to the distance. For example, using the proportional constant K, the irradiation timing can be determined by Tx = K × Lx. In addition, the irradiation timing may be determined by a linear function or a second or higher order function. As shown in FIG. 10B, after the sealing process is started, generally, the shorter the distance between the center position 61 of the shot area and each small area of the irradiation area 52, the earlier the irradiation timing. Although the timing chart of FIG. 10B has been described assuming that the start time of the sealing process is 0, the timing at which the mold 8 and the imprint material 14 are in contact with each other may be 0.
 さらに、上記の距離La、Lb、…、Lhを基に、第2実施形態で説明した方法と同様に照射強度や照射時間を変えてもよい。例えば、距離に応じて照射強度を変える場合には、距離が短いほど照射強度を大きくすることができる。また、距離に応じて照射時間を変える場合には、距離が短いほど照射時間を長くすることができる。また、第2実施形態で示した方法と同様に照射量を変えてもよい。また、照射タイミングと、照射強度、あるいは、照射量の両方を変えてもよい。 Furthermore, based on the distances La, Lb,..., Lh, the irradiation intensity and the irradiation time may be changed as in the method described in the second embodiment. For example, in the case where the irradiation intensity is changed according to the distance, the irradiation intensity can be increased as the distance is shorter. Moreover, when changing irradiation time according to distance, irradiation time can be lengthened, so that distance is short. Moreover, you may change irradiation amount similarly to the method shown by 2nd Embodiment. In addition, both the irradiation timing and the irradiation intensity or the irradiation amount may be changed.
 図10では、照射領域52のうちパターン領域8aの左辺の小領域に限定して説明を行ったが、実際には全ての小領域52a、52b、…、52nにおいて、中心位置61からの距離に応じて照射タイミング、あるいは、照射量を決定する。なお、照射領域52の小領域52a、52b、…、52nの分割個数、および、分割形状は図10Aに限定されないことは、前述した通りである。このように照射領域52を分割することで、ショット領域の中心と各ショット領域の距離に応じて最適な露光量で照射光50を照射することができる。第3実施形態の場合、撮像部6による撮像結果が無い場合でもショット領域の形状から照射タイミングを制御することができる。 In FIG. 10, only the small area on the left side of the pattern area 8a in the irradiation area 52 has been described, but in actuality, in all the small areas 52a, 52b,. The irradiation timing or the irradiation amount is determined accordingly. The number of divisions of the small regions 52a, 52b,..., 52n of the irradiation region 52 and the division shape are not limited to FIG. 10A as described above. By dividing the irradiation area 52 in this manner, it is possible to irradiate the irradiation light 50 with the optimum exposure amount according to the distance between the center of the shot area and each shot area. In the case of the third embodiment, even when there is no imaging result by the imaging unit 6, the irradiation timing can be controlled from the shape of the shot area.
 (第4実施形態)
 第4実施形態は、第1実施形態で説明した照射領域52の各小領域(小領域52a~52n)と、型8の押印中心位置62との距離に基づき、各小領域に対して照射光50の照射タイミングを変える場合について説明する。照射タイミングの代わりに照射強度を変えてもよい。ここで、型8の押印中心位置62とは、型8のパターン領域8aと基板上のインプリント材とが最初に接触する位置を示している。一般的には、型8のパターン領域8aの中心が最初にインプリント材と接触するが、例えば、基板の外周を含むショット領域(周辺ショット、エッジショット)にパターンを形成する場合は、パターン領域8aの中心とは限らない。
Fourth Embodiment
In the fourth embodiment, the irradiation light is applied to each small area based on the distance between each small area (small areas 52a to 52n) of the irradiation area 52 described in the first embodiment and the impression center position 62 of the mold 8. The case of changing the irradiation timing of 50 will be described. The irradiation intensity may be changed instead of the irradiation timing. Here, the impression center position 62 of the mold 8 indicates the position where the pattern area 8a of the mold 8 and the imprint material on the substrate first come in contact with each other. Generally, the center of the pattern area 8a of the mold 8 first contacts the imprint material, but, for example, when forming a pattern in a shot area (peripheral shot, edge shot) including the outer periphery of the substrate, the pattern area It is not necessarily the center of 8a.
 図11Aは、第4実施形態の照射領域52と型8の押印中心位置62を示した図である。この時の照射領域52の小領域に対する照射光の照射タイミングを図11Bに示す。説明の簡略化のため、照射領域52のうち、パターン領域8aの左辺に限定して、小領域52a、52b、…、52hのそれぞれの照射タイミングチャートを示す。横軸は時間を示す。ここで、押印中心位置62と小領域52a、52b、…、52hとのそれぞれの距離をLa、Lb、…、Lhとする。 FIG. 11A is a view showing the irradiation area 52 and the imprint center position 62 of the mold 8 according to the fourth embodiment. The irradiation timing of the irradiation light with respect to the small area | region of the irradiation area | region 52 at this time is shown to FIG. 11B. In order to simplify the description, the irradiation timing chart of each of the small areas 52a, 52b,..., 52h is shown, limited to the left side of the pattern area 8a in the irradiation area 52. The horizontal axis shows time. Here, distances between the seal center position 62 and the small areas 52a, 52b, ..., 52h are La, Lb, ..., Lh.
 第4実施形態では、押印工程の開始時間を0とし、各小領域の照射タイミングを、関数Tx=f(Lx)で決定する。ここで、x=a、b、…、hである。つまり、第4実施形態の各小領域の照射タイミングは、第3実施形態と同様に距離に応じて決定する。図11Bに示す通り、押印工程を開始した後、一般に、押印中心位置62と、照射領域52の各小領域との距離が短いほど、照射タイミングは早くなる。図11Bのタイミングチャートは押印工程の開始時間を0として説明したが、型8とインプリント材14とが接触したタイミングを時間0としてもよい。 In the fourth embodiment, the start time of the sealing step is set to 0, and the irradiation timing of each small area is determined by the function Tx = f (Lx). Here, x = a, b, ..., h. That is, the irradiation timing of each small area of the fourth embodiment is determined according to the distance as in the third embodiment. As shown in FIG. 11B, after the sealing process is started, generally, the shorter the distance between the sealing center position 62 and each small area of the irradiation area 52, the earlier the irradiation timing. Although the timing chart of FIG. 11B has been described assuming that the start time of the sealing step is 0, the timing at which the mold 8 and the imprint material 14 are in contact with each other may be 0.
 さらに、上記の距離La、Lb、…、Lhを基に、第2実施形態で説明した方法と同様に照射強度や照射時間を変えてもよい。例えば、距離に応じて照射強度を変える場合には、距離が短いほど照射強度を大きくすることができる。また、距離に応じて照射時間を変える場合には、距離が短いほど照射時間を長くすることができる。また、第2実施形態で示した方法と同様に照射量を変えてもよい。また、照射タイミングと、照射強度、あるいは、照射量の両方を変えてもよい。 Furthermore, based on the distances La, Lb,..., Lh, the irradiation intensity and the irradiation time may be changed as in the method described in the second embodiment. For example, in the case where the irradiation intensity is changed according to the distance, the irradiation intensity can be increased as the distance is shorter. Moreover, when changing irradiation time according to distance, irradiation time can be lengthened, so that distance is short. Moreover, you may change irradiation amount similarly to the method shown by 2nd Embodiment. In addition, both the irradiation timing and the irradiation intensity or the irradiation amount may be changed.
 図11では、照射領域52のうちパターン領域8aの左辺の小領域に限定して説明を行ったが、実際には全ての小領域52a、52b、…、52nにおいて、押印中心位置62からの距離に応じて照射タイミング、あるいは、照射量を決定する。なお、照射領域52の小領域52a、52b、…、52nの分割個数、および、分割形状は図11Aに限定されないことは、前述した通りである。また、基板の外周を含むショット領域にパターンを形成する場合には、基板10の外側の領域に対応するパターン領域8aにインプリント材が接触しないため、型8の側面8bにインプリント材が接触する恐れがない。そのため、基板10の外側の領域の照射領域52の小領域には照射光50を照射しなくてもよい。 In FIG. 11, the explanation was given by limiting to the small area on the left side of the pattern area 8a in the irradiation area 52, but in actuality, the distance from the seal center position 62 in all the small areas 52a, 52b,. The irradiation timing or the irradiation amount is determined in accordance with. The number of divisions of the small regions 52a, 52b,..., 52n of the irradiation region 52 and the division shape are not limited to FIG. 11A as described above. When the pattern is formed in the shot area including the outer periphery of the substrate, the imprint material does not contact the pattern area 8a corresponding to the area outside the substrate 10, so the imprint material contacts the side surface 8b of the mold 8. There is no fear of Therefore, the irradiation light 50 may not be irradiated to a small area of the irradiation area 52 of the area outside the substrate 10.
 このように照射領域52を分割することで、ショット領域の中心と各ショット領域の距離に応じて最適な露光量で照射光50を照射することができる。第4実施形態の場合、撮像部6による撮像結果が無い場合でもショット領域の形状から照射タイミングを制御することができる。 By dividing the irradiation area 52 in this manner, it is possible to irradiate the irradiation light 50 with the optimum exposure amount according to the distance between the center of the shot area and each shot area. In the case of the fourth embodiment, even when there is no imaging result by the imaging unit 6, the irradiation timing can be controlled from the shape of the shot area.
 (第5実施形態)
 第5実施形態は、上述の実施形態で説明した照射領域52の小領域とは異なる形状の照射領域52の小領域の場合について説明する。第5実施形態は、図12Aに示すように、照射領域52を縦方向(y方向)の小領域52yと、横方向(x方向)の小領域52xに分割し、それぞれの小領域に対して照射タイミング、あるいは、照射強度を変えて照射光50を照射する。
Fifth Embodiment
In the fifth embodiment, the case of the small area of the irradiation area 52 having a shape different from the small area of the irradiation area 52 described in the above embodiment will be described. In the fifth embodiment, as shown in FIG. 12A, the irradiation area 52 is divided into small areas 52y in the vertical direction (y direction) and small areas 52x in the horizontal direction (x direction), and for each small area, Irradiation timing or irradiation intensity is changed and irradiation light 50 is irradiated.
 図12Aは、第5実施形態の照射領域52を示した図である。この時の照射領域52の小領域52x、52yに対する照射光50の照射タイミングを図12Bに示す。図12Bは小領域52x、52yのそれぞれの照射タイミングチャートを示しており、横軸は時間を示している。ここで、ショット領域の中心位置、あるいは、押印中心位置と、小領域52yおよび小領域52xとの距離をそれぞれLy、Lxとする。図12Aに示すように距離Ly<Lxの場合、一般に小領域52yに対する照射タイミングが小領域52xよりも早くなる。 FIG. 12A is a view showing an irradiation area 52 of the fifth embodiment. The irradiation timing of the irradiation light 50 with respect to small area | region 52x of the irradiation area | region 52 at this time and 52y is shown to FIG. 12B. FIG. 12B shows an irradiation timing chart of each of the small areas 52x and 52y, and the horizontal axis shows time. Here, distances between the center position of the shot area or the seal center position and the small area 52y and the small area 52x are denoted by Ly and Lx, respectively. As shown in FIG. 12A, when the distance Ly <Lx, the irradiation timing for the small area 52y is generally earlier than that for the small area 52x.
 第5実施形態において、照射光50は、実験等によりあらかじめ決定したタイミングで、縦方向の小領域52yと、横方向の小領域52xそれぞれの照射を行うことができる。あるいは、上述の実施形態で説明した気液界面14bが、縦方向の小領域52yと、横方向の小領域52xそれぞれに到達するタイミングをカメラ等の撮像部6を用いて観察し、その結果に基づき照射光50の照射タイミングを決定できる。あるいは、ショット領域の中心位置や、押印中心位置からの距離Ly、Lxを用いて、第3実施形態で示した照射タイミングを求める方法で、照射光50の照射タイミングを決定できる。 In the fifth embodiment, the irradiation light 50 can irradiate each of the small region 52y in the vertical direction and the small region 52x in the horizontal direction at a timing previously determined by an experiment or the like. Alternatively, the timing at which the gas-liquid interface 14b described in the above embodiment reaches each of the small area 52y in the vertical direction and the small area 52x in the horizontal direction is observed using the imaging unit 6 such as a camera. The irradiation timing of the irradiation light 50 can be determined based on that. Alternatively, the irradiation timing of the irradiation light 50 can be determined by the method of determining the irradiation timing shown in the third embodiment using the center position of the shot area and the distances Ly and Lx from the seal center position.
 さらに、上記の距離Lx、Lyを基に、第2実施形態で説明した方法と同様に照射強度や照射時間を変えてもよい。例えば、距離に応じて照射強度を変える場合には、距離が短いほど照射強度を大きくすることができる。また、距離に応じて照射時間を変える場合には、距離が短いほど照射時間を長くすることができる。また、第2実施形態で示した方法と同様に照射量を変えてもよい。また、照射タイミングと、照射強度、あるいは、照射量の両方を変えてもよい。 Furthermore, based on the above-mentioned distances Lx and Ly, the irradiation intensity and the irradiation time may be changed similarly to the method described in the second embodiment. For example, in the case where the irradiation intensity is changed according to the distance, the irradiation intensity can be increased as the distance is shorter. Moreover, when changing irradiation time according to distance, irradiation time can be lengthened, so that distance is short. Moreover, you may change irradiation amount similarly to the method shown by 2nd Embodiment. In addition, both the irradiation timing and the irradiation intensity or the irradiation amount may be changed.
 なお、縦方向の小領域52yと、横方向の小領域52xの分割方法は、図12Aに示した方法に限られず、例えば、図12Cに示すように縦方向の小領域52yと、横方向の小領域52xとなるように分割してもよい。例えば、縦方向の小領域52yと横方向の小領域52xの照射領域の面積が同じになるように分割することができる。 The method of dividing the small area 52y in the vertical direction and the small area 52x in the horizontal direction is not limited to the method shown in FIG. 12A. For example, as shown in FIG. 12C, the small area 52y in the vertical direction and It may be divided into small regions 52x. For example, it is possible to divide so that the areas of the irradiation regions of the small regions 52y in the vertical direction and the small regions 52x in the horizontal direction become the same.
 このように照射領域52を分割することで、簡易的にショット領域の中心と各ショット領域の距離に応じて最適な露光量で照射光50を照射することができる。 By dividing the irradiation area 52 in this manner, the irradiation light 50 can be irradiated with an optimum exposure amount according to the distance between the center of the shot area and each shot area.
 (第6実施形態)
 第6実施形態は、上述の実施形態で説明した照射領域52の小領域とは異なる形状の照射領域52の小領域の場合について説明する。第6実施形態は、図13Aに示すように、第1実施形態の図8で説明した照射領域52の小領域52a~52nのそれぞれを、照射領域52をさらにショット領域の中心から外部に向かう方向に分割する。例えば、図13Aに示すように小領域52cをショット領域の中心から3つの小領域52c1、52c2、52c3に分割する。分割個数は任意であり、それぞれの小領域の形状も任意に設定してよい。それぞれの小領域に対して照射タイミング、あるいは、照射強度を変えて照射光50を照射する。
Sixth Embodiment
In the sixth embodiment, the case of the small area of the irradiation area 52 having a shape different from the small area of the irradiation area 52 described in the above embodiment will be described. In the sixth embodiment, as shown in FIG. 13A, each of the small regions 52a to 52n of the irradiation region 52 described in FIG. 8 of the first embodiment is further directed from the center of the shot region to the outside of the irradiation region 52. Divide into For example, as shown in FIG. 13A, the small area 52c is divided into three small areas 52c1, 52c2 and 52c3 from the center of the shot area. The number of divisions is arbitrary, and the shape of each small area may be set arbitrarily. Irradiation light 50 is irradiated to each small area by changing the irradiation timing or the irradiation intensity.
 図13Aは、第6実施形態の照射領域52を示した図である。この時の照射領域52の小領域52c1、52c2、52c3に対する照射光50の照射タイミングを図13Bに示す。図13Bは小領域52c1、52c2、52c3それぞれの照射タイミングチャートを示しており、横軸は時間を示している。図13Bに示すように、例えば、ショット領域の内側の小領域より順次、照射光50を照射する。図13では、図8に示した小領域52cについて説明したが、他の小領域についても同様に内側より順次照射光50を照射することで、照射領域52の全小領域を照射することができる。 FIG. 13A is a view showing an irradiation area 52 of the sixth embodiment. The irradiation timing of the irradiation light 50 with respect to small area | region 52c1, 52c2, 52c3 of the irradiation area | region 52 at this time is shown to FIG. 13B. FIG. 13B shows an irradiation timing chart of each of the small areas 52c1, 52c2 and 52c3, and the horizontal axis shows time. As shown in FIG. 13B, for example, the irradiation light 50 is emitted sequentially from the small area inside the shot area. Although the small area 52c shown in FIG. 8 is described in FIG. 13, the entire small area of the irradiation area 52 can be irradiated by similarly irradiating the irradiation light 50 sequentially from the inside to the other small areas. .
 また、第6実施形態は、第1実施形態に限らず、第2実施形態から第5実施形態で示したいずれかの照射領域52の分割方法にも適用することができる。 Further, the sixth embodiment is not limited to the first embodiment, and can be applied to any method of dividing the irradiation area 52 shown in the second to fifth embodiments.
 このように照射領域52を分割することで、型8のパターン領域8aとインプリント材14の接触領域の広がり(気液界面14bの移動)に応じて最適な露光量で照射光50を照射することができる。 By dividing the irradiation area 52 in this manner, the irradiation light 50 is irradiated with the optimum exposure amount according to the spread of the contact area of the pattern area 8a of the mold 8 and the imprint material 14 (movement of the gas-liquid interface 14b). be able to.
 (第7実施形態)
 第7本実施形態では、パターン領域8aの側面8bにインプリント材が付着するのを低減し、パターン形成の不良や型8の破壊を防ぐことにより、歩留まりの高いインプリント装置を提供する。また、未充填が生じやすい部分に対してインプリント材の充填性を低下させずにインプリント材のパターンを形成するインプリント装置を提供する。
Seventh Embodiment
In the seventh embodiment, adhesion of the imprint material to the side surface 8b of the pattern area 8a is reduced, and defects in pattern formation and breakage of the mold 8 are prevented, thereby providing an imprint apparatus with high yield. Further, the present invention provides an imprint apparatus which forms a pattern of an imprint material without reducing the fillability of the imprint material with respect to a portion which is likely to be unfilled.
 そこで、本実施形態のインプリント装置1は、図2の工程104において、側面8bに近いショット領域(パターン領域8a)のコーナー部にも照射光50が照射されると、インプリント材14がコーナー部に充填しにくくなり、未充填欠陥が生じる恐れがある。そこで、第7実施形態のインプリント装置1は、工程104においてパターン領域8aのコーナー部(第2領域)には照射光50の強度を低くする。 Therefore, in the imprint apparatus 1 of the present embodiment, when the irradiation light 50 is applied also to the corner portion of the shot area (pattern area 8a) near the side surface 8b in step 104 of FIG. It becomes difficult to fill the part and there is a possibility that an unfilled defect may occur. Therefore, the imprint apparatus 1 of the seventh embodiment lowers the intensity of the irradiation light 50 at the corner portion (second region) of the pattern region 8 a in the step 104.
 工程104で行う光の照射について詳細に説明する。図4は、工程104で行う光の照射を説明する図である。図4Aに示すように、照射光50を型8のパターン領域8aの外周部である側面8bを含む周辺領域(照射領域52)に照射する。照射光50はインプリント材14が重合反応する光であれば良く、紫外光に限らない。照射光50によってインプリント材14が硬化してしまうと工程105で位置合わせを行うことができない。そのため、工程104で行う光の照射はインプリント材14を硬化させずに、パターン領域8a付近のインプリント材14の粘性が高くなる程度の光を照射する。照射光50は、インプリント材14の材料の性質などを考慮して、照射する光の波長や、照射時間、強度などを適宜決めることができる。 The light irradiation performed in step 104 will be described in detail. FIG. 4 is a view for explaining the light irradiation performed in step 104. As shown in FIG. 4A, the irradiation light 50 is applied to the peripheral area (irradiation area 52) including the side surface 8b which is the outer peripheral portion of the pattern area 8a of the mold 8. The irradiation light 50 may be any light as long as the imprint material 14 causes a polymerization reaction, and is not limited to the ultraviolet light. If the imprint material 14 is cured by the irradiation light 50, alignment can not be performed in step 105. Therefore, the light irradiation performed in step 104 does not cure the imprint material 14, but applies light to such an extent that the viscosity of the imprint material 14 in the vicinity of the pattern area 8 a becomes high. The irradiation light 50 can appropriately determine the wavelength of irradiation light, irradiation time, intensity and the like in consideration of the property of the material of the imprint material 14 and the like.
 図14Aに示すように、パターン領域8aのコーナー部はインプリント材が充填しにくい。そのため、第1実施形態では照射光50を図4Bに示す照射領域52に対して照射光50を均一に照射するのではなく、コーナー部に相当する位置の照射光50の強度を低くする。 As shown in FIG. 14A, the corner portion of the pattern area 8a is difficult to be filled with the imprint material. Therefore, in the first embodiment, the irradiation light 50 is not irradiated uniformly to the irradiation area 52 shown in FIG. 4B, but the intensity of the irradiation light 50 at a position corresponding to the corner portion is lowered.
 そこで、第7実施形態では、図14Bに示すように照射領域52を複数の小領域に分割する。かつ、それぞれの小領域に対し照射強度を変えて照射光50を照射する。後述する光変調素子53を用いることで、照射領域52に対する照射光50の照射領域や照射強度を設定することができる。図14Bでは、照射領域52を縦方向8個、横方向6個のそれぞれ正方形状の小領域に分割する例を示したが、分割個数はこれに限らず任意数に設定してよい。また、それぞれの小領域の形状は長方形状、三角形状その他任意形状に設定してよい。 Therefore, in the seventh embodiment, the irradiation area 52 is divided into a plurality of small areas as shown in FIG. 14B. And irradiation light 50 is irradiated to each small area by changing the irradiation intensity. By using the light modulation element 53 described later, the irradiation area and the irradiation intensity of the irradiation light 50 to the irradiation area 52 can be set. Although FIG. 14B shows an example in which the irradiation area 52 is divided into small areas of eight squares in the longitudinal direction and six squares in the lateral direction, the number of divisions is not limited to this and may be set to an arbitrary number. In addition, the shape of each small area may be set to a rectangular shape, a triangular shape, or any other shape.
 照射領域52が図14Bに示すように複数の小領域が設けられている場合には、例えば小領域52a、52b、52c、52d(第2領域)を他の領域(第1領域)よりも照射光50の強度を低くする。この時、制御部55は、小領域52a、52b、52c、52dを介して照射する照射光の強度を他の領域を介して照射する照射光50の強度が低くなるように光変調素子53を制御する。また、制御部55は、小領域52a、52b、52c、52dに照射光50が照射されないように光変調素子53を制御してもよい。ここでは、型とインプリント材を接触させた際に、インプリント材が型のパターン領域の側面に到達する時間が第1領域よりも遅い領域を第2領域とする。 When the irradiation area 52 is provided with a plurality of small areas as shown in FIG. 14B, for example, the small areas 52a, 52b, 52c, 52d (second areas) are irradiated more than other areas (first areas). Decrease the intensity of light 50. At this time, the control unit 55 causes the light modulation element 53 to decrease the intensity of the irradiation light 50 irradiating the intensity of the irradiation light irradiated through the small regions 52a, 52b, 52c, 52d through the other regions. Control. Further, the control unit 55 may control the light modulation element 53 so that the irradiation light 50 is not irradiated to the small regions 52a, 52b, 52c, 52d. Here, when the mold and the imprint material are brought into contact with each other, the area where the time for the imprint material to reach the side surface of the pattern area of the mold is later than the first area is taken as the second area.
 このように照射領域を分割して、パターン領域8aのコーナー部と他の領域とで照射光50の強度に分布を設けることで、インプリント材のはみ出しを低減しつつ、パターン領域8aのコーナー部への充填性の低下を防ぐことができる。 In this manner, the irradiation area is divided, and the intensity of the irradiation light 50 is distributed in the corner portions of the pattern area 8a and the other areas, thereby reducing the protrusion of the imprint material while the corner areas of the pattern area 8a are reduced. It is possible to prevent the decrease in the filling property.
 (第8実施形態)
 インプリント材の充填性はパターン領域8aに形成されたパターンの幅に影響を受ける。例えば、アライメントマークのように、他の凹凸形状と比較して凹部の幅が広いパターンはインプリント材が充填しにくい。そこで、第8実施形態のインプリント装置1は、照射領域52にアライメントマークなどの凹部の幅が広いパターンが形成されている領域について、他の領域よりも照射光50の強度を低くする。
Eighth Embodiment
The filling property of the imprint material is influenced by the width of the pattern formed in the pattern area 8a. For example, as in the case of an alignment mark, a pattern in which the width of the recess is wider than that of the other asperities is less likely to be filled with the imprint material. Therefore, in the imprint apparatus 1 of the eighth embodiment, the intensity of the irradiation light 50 is made lower in the irradiation area 52 than in the other areas in the area where the pattern having the wide width of the recess such as the alignment mark is formed.
 図15Aに示すように、パターン領域8aのアライメントマークが形成されている領域はインプリント材が充填しにくい。そのため、第2実施形態では照射光50を図4Bに示す照射領域52に対して照射光50を均一に照射するのではなく、アライメントマークに相当する位置の照射光50の強度を低くする。 As shown in FIG. 15A, it is difficult for the imprint material to be filled in the area where the alignment mark of the pattern area 8a is formed. Therefore, in the second embodiment, the irradiation light 50 is not irradiated uniformly to the irradiation area 52 shown in FIG. 4B, but the intensity of the irradiation light 50 at the position corresponding to the alignment mark is lowered.
 そこで、第8実施形態では、図15Bに示すように照射領域52を複数の小領域に分割する。かつ、それぞれの小領域に対し照射強度を変えて照射光50を照射する。前述の光変調素子53を用いることで、照射領域52に対する照射光50の照射領域や照射強度を設定することができる。図15Bでは、照射領域52を縦方向8個、横方向6個のそれぞれ正方形状の小領域に分割する例を示したが、分割個数はこれに限らず任意数に設定してよい。また、それぞれの小領域の形状は長方形状、三角形状などその他任意形状に設定してよい。 So, in 8th Embodiment, as shown to FIG. 15B, the irradiation area | region 52 is divided | segmented into several small area | regions. And irradiation light 50 is irradiated to each small area by changing the irradiation intensity. By using the light modulation element 53 described above, the irradiation area and irradiation intensity of the irradiation light 50 to the irradiation area 52 can be set. Although FIG. 15B shows an example in which the irradiation area 52 is divided into small areas of eight squares in the longitudinal direction and six squares in the lateral direction, the number of divisions is not limited to this and may be set to an arbitrary number. In addition, the shape of each small area may be set to any other shape such as a rectangular shape or a triangular shape.
 照射領域52が図15Bに示すように複数の小領域が設けられている場合には、例えば小領域52e、52f(第2領域)を他の領域(第1領域)よりも照射光50の強度を低くする。この時、制御部55は、小領域52e、52fを他の領域より照射光50の強度が低くなるように光変調素子53を制御する。また、制御部55は、小領域52e、52fに照射光50が照射されないように光変調素子53を制御してもよい。ここでは、型とインプリント材を接触させた際に、インプリント材が型のパターン領域の側面に到達する時間が第1領域よりも遅い領域を第2領域とする。特に、アライメントマークが形成されている領域を含む領域を第2領域とする。 When the irradiation area 52 is provided with a plurality of small areas as shown in FIG. 15B, for example, the small areas 52e and 52f (second area) have an intensity of the irradiation light 50 than the other areas (first area). Lower the At this time, the control unit 55 controls the light modulation element 53 so that the intensity of the irradiation light 50 is lower in the small regions 52e and 52f than in the other regions. Further, the control unit 55 may control the light modulation element 53 so that the irradiation light 50 is not irradiated to the small regions 52e and 52f. Here, when the mold and the imprint material are brought into contact with each other, the area where the time for the imprint material to reach the side surface of the pattern area of the mold is later than the first area is taken as the second area. In particular, a region including the region in which the alignment mark is formed is taken as a second region.
 このように照射領域を分割して、パターン領域8aのアライメントマークの領域と他の領域とで照射光50の強度に分布を設けることで、インプリント材のはみ出しを低減しつつ、パターン領域8aのアライメントマークへの充填性の低下を防ぐことができる。アライメントマークに限らず、型に形成された凹部のパターンの幅が他の幅と比較して広いパターンが形成されている領域に対して照射光50の強度を低くしてもよい。このようにすることで、インプリント材の充填性を保ちつつ、インプリント材のはみ出しを低減することができる。 By dividing the irradiation area in this manner and providing a distribution in the intensity of the irradiation light 50 in the area of the alignment mark of the pattern area 8a and the other areas, the protrusion of the imprint material is reduced while the projection area of the pattern area 8a is reduced. It is possible to prevent the decrease in the filling property of the alignment mark. Not only the alignment mark but also the intensity of the irradiation light 50 may be lowered relative to the area where the pattern of the recess pattern formed in the mold is wider than the other widths. In this way, the protrusion of the imprint material can be reduced while maintaining the filling property of the imprint material.
 (第9実施形態)
 第7実施形態と第8実施形態のインプリント装置は、パターン領域8aに対してインプリント材の充填しにくい領域の有無に応じて照射光50の強度に分布を設ける場合について説明した。第9実施形態のインプリント装置は、インプリント材がパターン領域8aからはみ出しやすい領域(インプリント材が型のパターン領域の側面に到達する時間が他より早い領域)の有無に応じて照射光50の強度に分布を設ける場合について説明する。
The ninth embodiment
In the imprint apparatus of the seventh embodiment and the eighth embodiment, the case where the distribution of the intensity of the irradiation light 50 is provided in accordance with the presence or absence of the region where the imprint material is difficult to be filled in the pattern region 8a has been described. In the imprint apparatus according to the ninth embodiment, the irradiation light 50 is applied according to the presence or absence of an area where the imprint material easily protrudes from the pattern area 8 a (an area where the imprint material reaches the side of the pattern area of the mold earlier than others). The case where a distribution is provided in the intensity of will be described.
 インプリント材のはみ出しやすさ(インプリント材が型のパターン領域の側面に到達する時間の違い)は、パターン領域8aに形成されているパターン方向に影響を受ける。例えば、図16に示すように、インプリント材14の液滴と型8が接触するとパターン領域8aに形成されている凹凸パターンのパターン方向に沿ってインプリント材が拡がりやすい。そのため、パターン方向に対して交わる方向にパターン領域8aの端(側面8b)が存在している場合は、パターン方向に沿った方向にパターン領域8aの端が存在している場合よりも、インプリント材がはみ出しやすい。ここで、パターン方向とは、ライン状の凹凸パターンが延びている方向を示す。複数の方向が混在している場合には、パターン領域8aの端に最も近いパターン形状をパターン方向としたり、領域内に含まれる凹凸形状の平均値からパターン方向を求めたりする方法がある。 The ease of protrusion of the imprint material (difference in time for the imprint material to reach the side surface of the pattern area of the mold) is influenced by the direction of the pattern formed in the pattern area 8a. For example, as shown in FIG. 16, when the droplet of the imprint material 14 comes in contact with the mold 8, the imprint material easily spreads along the pattern direction of the concavo-convex pattern formed in the pattern area 8a. Therefore, when the end (side surface 8b) of the pattern area 8a exists in the direction intersecting the pattern direction, imprint is performed more than in the case where the end of the pattern area 8a exists in the direction along the pattern direction. It is easy for materials to stick out Here, the pattern direction indicates the direction in which the linear concavo-convex pattern extends. When a plurality of directions are mixed, there is a method of setting the pattern shape closest to the end of the pattern area 8a as the pattern direction or obtaining the pattern direction from the average value of the concavo-convex shapes included in the area.
 図16に示すように、パターン領域8aの端がy方向に沿っている場合、型8と接触したインプリント材は、パターン方向がy方向の領域(第2領域)よりもパターン方向がx方向の領域(第1領域)の方がはみ出しやすい。そのため、インプリント材がはみ出しやすい領域に対して照射光50の強度を高くすることにより、照射光50の強度に分布を設けてもよい。また、インプリント材がはみ出しにくい領域に対して照射光50の強度を小さくすることにより、照射光50の強度に分布を設けてもよい。パターン方向に加えてパターン密度によって照射光50の強度に分布を設けてもよい。ここでは、型とインプリント材を接触させた際に、インプリント材が型のパターン領域の側面に到達する時間が第1領域よりも遅い領域を第2領域とする。 As shown in FIG. 16, when the end of the pattern area 8a is in the y direction, the imprint material in contact with the mold 8 has the pattern direction in the x direction as compared to the area in the y direction (second area). Region (first region) is more likely to protrude. Therefore, the intensity of the irradiation light 50 may be distributed by increasing the intensity of the irradiation light 50 with respect to the region in which the imprint material easily protrudes. In addition, the intensity of the irradiation light 50 may be distributed by reducing the intensity of the irradiation light 50 with respect to the region where the imprint material does not easily protrude. A distribution may be provided to the intensity of the irradiation light 50 by the pattern density in addition to the pattern direction. Here, when the mold and the imprint material are brought into contact with each other, the area where the time for the imprint material to reach the side surface of the pattern area of the mold is later than the first area is taken as the second area.
 パターン方向によって、パターン領域の端(ショット領域の端)におけるインプリント材のはみ出しやすさ、および充填性が異なる。このように、パターン方向に応じて照射光50の強度に分布を設けることで、インプリント材の充填性を保ちつつ、インプリント材のはみ出しを低減することができる。 Depending on the pattern direction, the ease of protrusion of the imprint material at the end of the pattern area (the end of the shot area) and the fillability are different. As described above, the distribution of the intensity of the irradiation light 50 according to the pattern direction can reduce the protrusion of the imprint material while maintaining the filling property of the imprint material.
 (第10実施形態)
 第10実施形態のインプリント装置は、インプリント材がパターン領域8aからはみ出しやすい領域の有無に応じて照射光50の強度に分布を設ける場合について説明する。
Tenth Embodiment
The imprint apparatus according to the tenth embodiment will be described in the case where the distribution of the intensity of the irradiation light 50 is provided according to the presence or absence of an area where the imprint material is likely to protrude from the pattern area 8a.
 インプリント材のはみ出しやすさは、ショット領域の端に近いインプリント材の液滴の配置に影響を受ける。例えば、図17に示すように、インプリント材14の液滴の滴下位置とパターン領域8aの端(ショット領域の端)との距離が短いほどインプリント材は、はみ出しやすい。また、基板上に配置されたインプリント材14の液滴の密度が高い領域ほどインプリント材は、はみ出しやすい。 The protrusion of the imprint material is influenced by the placement of the droplets of imprint material near the edge of the shot area. For example, as shown in FIG. 17, as the distance between the droplet dropping position of the imprint material 14 and the end of the pattern area 8a (end of the shot area) is shorter, the imprint material is more likely to protrude. Further, as the density of the droplets of the imprint material 14 disposed on the substrate is higher, the imprint material is more likely to protrude.
 そこで、照射光50の照射強度は、インプリント材14の液滴の滴下位置とショット領域の端の距離が短い領域(第1領域)を他の領域(第2領域)よりも大きくするように分布を設ける。また、インプリント材がはみ出しにくい領域(インプリント材が型のパターン領域の側面に到達する時間が他より遅い領域)に対して照射光50の強度を低くすることにより、照射光50の強度に分布を設けてもよい。同様に、照射光50の照射強度は、インプリント材14の液滴の密度が高い領域(第1領域)を他の領域(第2領域)よりも高くするように分布を設けることができる。液滴の密度の代わりに、インプリント材の量に関する情報に基づいて照射光50の照射強度に分布を設けてもよい。ここでは、型とインプリント材を接触させた際に、インプリント材が型のパターン領域の側面に到達する時間が第1領域よりも遅い領域を第2領域とする。 Therefore, the irradiation intensity of the irradiation light 50 is such that a region (first region) in which the distance between the drop position of the droplet of the imprint material 14 and the end of the shot region is short (first region) is larger than other regions (second region). Establish a distribution. In addition, the intensity of the irradiation light 50 is reduced by reducing the intensity of the irradiation light 50 with respect to the region in which the imprint material does not easily protrude (the region where the imprint material reaches the side of the pattern region of the mold is later than others). A distribution may be provided. Similarly, the irradiation intensity of the irradiation light 50 can be distributed such that the area (first area) in which the density of the droplets of the imprint material 14 is high is made higher than the other areas (second area). Instead of the density of the droplets, a distribution may be provided to the irradiation intensity of the irradiation light 50 based on the information on the amount of imprint material. Here, when the mold and the imprint material are brought into contact with each other, the area where the time for the imprint material to reach the side surface of the pattern area of the mold is later than the first area is taken as the second area.
 基板上のショット領域に供給されるインプリント材14の液滴の配置によって、パターン領域の端(ショット領域の端)におけるインプリント材のはみ出しやすさ、および充填性が異なる。このように、インプリント材の液滴の滴下位置とショット領域の端までの距離や、液滴の密度に応じて照射光50の強度に分布を設けることで、インプリント材の充填性を保ちつつ、インプリント材のはみ出しを低減することができる。 Depending on the arrangement of the droplets of the imprint material 14 supplied to the shot area on the substrate, the ease with which the imprint material protrudes at the end of the pattern area (the end of the shot area) and the fillability differ. As described above, the filling property of the imprint material is maintained by providing the distribution of the intensity of the irradiation light 50 according to the distance between the droplet dropping position of the imprint material and the end of the shot area and the density of the droplets. At the same time, the protrusion of the imprint material can be reduced.
 (第11実施形態)
 第11実施形態のインプリント装置は、インプリント材がパターン領域8aからはみ出しやすい領域の有無に応じて照射光50の強度に分布を設ける場合について説明する。
Eleventh Embodiment
The imprint apparatus of the eleventh embodiment will be described in the case where the distribution of the intensity of the irradiation light 50 is provided according to the presence or absence of the area where the imprint material is likely to protrude from the pattern area 8a.
 インプリント材のはみ出しやすさは、ショット領域の端に近いインプリント材の液滴の配置と型8に形成されたパターン領域8aの形状に影響を受ける。ショット領域の端の形状は図18に示すように直線に限らない。インプリント材のはみ出しやすさは、基板上に供給されたインプリント材の液滴のうち、ショット領域の端に近い液滴の滴下位置とショット領域の端との距離が影響を与える。 The ease of protrusion of the imprint material is influenced by the arrangement of droplets of the imprint material near the end of the shot area and the shape of the pattern area 8 a formed on the mold 8. The shape of the end of the shot area is not limited to a straight line as shown in FIG. The ease of protrusion of the imprint material is influenced by the distance between the drop position of the droplet close to the edge of the shot area and the edge of the shot area among the droplets of imprint material supplied onto the substrate.
 例えば、ショット領域の端の形状が図18に示すような場合であっても、インプリント材14の液滴の滴下位置とショット領域の端との距離が短いほどインプリント材は、はみ出しやすい。図18に示すように、ショット領域の端からのインプリント材の液滴の滴下位置が液滴15(a)から順に15(a)、15(b)、15(c)、15(d)とショット領域の端に対する液滴の滴下位置は遠くなる。そこで、インプリント材の液滴の滴下位置とショット領域の端との距離が短い領域(第1領域)ほど他の領域(第2領域)よりも照射光50の照射強度が高くなるように強度に分布を設ける。ここでは、型とインプリント材を接触させた際に、インプリント材が型のパターン領域の側面に到達する時間が第1領域よりも遅い領域を第2領域とする。 For example, even if the shape of the end of the shot area is as shown in FIG. 18, the shorter the distance between the droplet dropping position of the imprint material 14 and the end of the shot area, the more easily the imprint material protrudes. As shown in FIG. 18, the drop positions of the droplets of the imprint material from the end of the shot area are 15 (a), 15 (b), 15 (c), and 15 (d) in order from droplet 15 (a). And the dropping position of the droplet to the edge of the shot area is far. Therefore, the intensity is such that the irradiation intensity of the irradiation light 50 is higher in the region (first region) where the distance between the droplet position of the imprint material and the end of the shot region is shorter (the first region). Provide a distribution. Here, when the mold and the imprint material are brought into contact with each other, the area where the time for the imprint material to reach the side surface of the pattern area of the mold is later than the first area is taken as the second area.
 基板上のショット領域に供給されるインプリント材14の液滴の配置とパターン領域の端の形状によって、パターン領域の端におけるインプリント材のはみ出しやすさが異なる。このようにインプリント材の液滴の滴下位置とショット領域の端までの距離に応じて照射光50の強度に分布を設けることで、インプリント材の充填性を保ちつつ、インプリント材のはみ出しを低減することができる。 Depending on the arrangement of droplets of the imprint material 14 supplied to the shot area on the substrate and the shape of the end of the pattern area, the ease of the imprint material at the end of the pattern area is different. As described above, the distribution of the intensity of the irradiation light 50 is provided according to the distance between the droplet dropping position of the imprint material and the end of the shot area, whereby the imprint material protrudes while maintaining the filling property of the imprint material. Can be reduced.
 (第12実施形態)
 第12実施形態のインプリント装置は、インプリント材がパターン領域8aからはみ出しやすい領域の有無に応じて照射光50の強度に分布を設ける場合について説明する。
(Twelfth embodiment)
The imprint apparatus of the twelfth embodiment will be described in the case where the distribution of the intensity of the irradiation light 50 is provided according to the presence or absence of the area where the imprint material is likely to protrude from the pattern area 8a.
 インプリント材のはみ出しやすさは、基板上のインプリント材14とパターン領域8aが接触を開始した時間から、インプリント材を硬化するまでの押印時間に影響を受ける。図19Aの点線が示すように、型8のパターン領域8aとショット領域上のインプリント材とが中心から広がるように接触する場合、液滴15(e)、15(f)、15(g)の順に押印時間は長くなる。このように、ショット領域の端から液滴の位置と、押印時間が異なる場合、押印時間とショット領域の端の位置に応じて照射光50の強度に分布を設ける。 The ease of protrusion of the imprint material is influenced by the imprinting time until the imprint material is cured from the time when the imprint material 14 on the substrate and the pattern area 8a start to make contact. As shown by the dotted line in FIG. 19A, when the pattern area 8a of the mold 8 and the imprint material on the shot area contact from the center, the droplets 15 (e), 15 (f), 15 (g) The sealing time becomes longer in the order of. As described above, when the position of the droplet from the end of the shot area is different from the position of the imprinting time, the intensity of the irradiation light 50 is distributed according to the imprinting time and the position of the end of the shot area.
 図19Bに示すように、照射領域52をショット領域の中心から外側に向かう方向に分割することにより、パターン領域8aの形状に応じて照射光50の分布を設けることができる。照射領域52の分割個数は任意であり、それぞれの小領域の形状も任意に設定してよい。ショット領域(パターン領域8a)の外形のパターンに合わせて照射光50の照射強度に分布を設けることができる。また、インプリント材が型8aのパターン領域8aと接触する押印時間に応じて照射光50の照射強度に分布を設けることができる。例えば、図19Bに示した照射領域52の斜線で示された領域(第1領域)の照射強度を他の領域(第2領域)よりも大きくすることができる。ここでは、型とインプリント材を接触させた際に、インプリント材が型のパターン領域の側面に到達する時間が第1領域よりも遅い領域(押印時間が短い領域)を第2領域とする。 As shown in FIG. 19B, by dividing the irradiation area 52 in the direction from the center of the shot area toward the outside, the distribution of the irradiation light 50 can be provided according to the shape of the pattern area 8a. The number of divisions of the irradiation area 52 is arbitrary, and the shape of each small area may be set arbitrarily. A distribution can be provided to the irradiation intensity of the irradiation light 50 in accordance with the pattern of the outline of the shot area (pattern area 8a). In addition, the irradiation intensity of the irradiation light 50 can be distributed according to the imprinting time in which the imprint material contacts the pattern area 8a of the mold 8a. For example, the irradiation intensity of the hatched area (first area) of the irradiation area 52 shown in FIG. 19B can be made larger than that of the other areas (second area). Here, when the mold and the imprint material are brought into contact with each other, the area where the time for the imprint material to reach the side surface of the pattern area of the mold is later than the first area (the area where the imprinting time is short) is taken as the second area. .
 このように、型8のパターン領域8aの形状や押印時間に応じて照射光50の強度に分布を設けることで、インプリント材の充填性を保ちつつ、インプリント材の充填性を保ちつつ、インプリント材のはみ出しを低減することができる。 As described above, by providing the distribution in the intensity of the irradiation light 50 according to the shape of the pattern area 8 a of the mold 8 and the imprinting time, the filling property of the imprint material is maintained while the filling property of the imprint material is maintained. The protrusion of the imprint material can be reduced.
 (第13実施形態)
 第13実施形態のインプリント装置は、インプリント材がパターン領域8aからはみ出しやすい領域の有無を確認して、得られた充填性の状況から照射光50の強度に分布を設ける場合について説明する。
(13th Embodiment)
In the imprint apparatus of the thirteenth embodiment, the presence or absence of an area in which the imprint material is likely to protrude from the pattern area 8a is confirmed, and the distribution of the intensity of the irradiation light 50 is provided based on the obtained filling condition.
 第13実施形態のインプリント方法について図20のフローチャートを用いて説明する。まず、工程201において上述の図2で説明したインプリント工程により、型を用いて基板上にインプリント材のパターンを形成する。工程202において、工程201で形成されたパターンのショット領域の端部の充填性を確認する。工程203において、工程201の観察結果から照射光の照射強度の分布を最適化する必要があるかを確認する。工程203で充填性の最適化の必要がないと判断された場合は、工程204で現行のパラメータ(照射強度の分布)を最適値として設定する。 The imprint method of the thirteenth embodiment will be described with reference to the flowchart of FIG. First, in step 201, a pattern of an imprint material is formed on a substrate using a mold in the imprint step described in FIG. 2 described above. In step 202, the fillability of the end of the shot area of the pattern formed in step 201 is confirmed. In step 203, it is confirmed from the observation result of step 201 whether it is necessary to optimize the distribution of the irradiation intensity of the irradiation light. If it is determined in step 203 that the optimization of the filling property is not necessary, the current parameter (irradiation intensity distribution) is set as the optimum value in step 204.
 工程203で充填性の最適化の必要があると判断された場合は、工程205で液滴の配置情報、型のパターン条件からパターン領域の端部の充填性を求め、照射光50の照射強度、照射位置を含む照射強度の分布を計算する。そして工程207において、工程205で得られた照射強度の分布を新しいパラメータとして設定する。さらに、インプリント後のショット領域の端部の充填性を確認し、工程206において液滴の配置情報や押印プロファイルなどのパラメータの最適化の必要性を判断し、必要であれば工程208で液滴の配置情報などを最適化することができる。 If it is determined in step 203 that the filling property needs to be optimized, the filling property of the end of the pattern area is determined in step 205 from the droplet arrangement information and the pattern condition of the mold, and the irradiation intensity of the irradiation light 50 is obtained. , Calculate the distribution of irradiation intensity including the irradiation position. Then, in step 207, the distribution of the irradiation intensity obtained in step 205 is set as a new parameter. Furthermore, the fillability of the end of the shot area after imprinting is confirmed, and in step 206 the necessity for optimization of parameters such as droplet placement information and imprint profile is judged, and if necessary, the liquid in step 208 Drop placement information can be optimized.
 これらのインプリント工程と充填性の確認をしてパラメータの修正を繰り返すことによって、インプリント材の充填性を保ちつつ、インプリント材のはみ出しを低減することができる。 By checking the imprint process and the filling property and repeating the parameter correction, it is possible to reduce the protrusion of the imprint material while maintaining the filling property of the imprint material.
 また、上述の何れの実施形態も、光硬化法を採用したインプリント装置1について説明したが、光硬化法に限らず、熱を利用してインプリント材を硬化させるインプリント装置でもよい。その場合、インプリント装置は、インプリント材の粘性を増加させるために照射光をインプリント材に照射する光学系の代わりに、熱によりインプリント材の粘性を上げる加熱部を硬化部として備える。加熱部(硬化部)は、型とインプリント材とが接触した状態で、第1領域に対応するインプリント材に対して与える単位面積当たりの熱量を、第2領域に対応するインプリント材に対して与える単位面積当たりの熱量よりも多くなるように基板を加熱する。 Moreover, although the above-mentioned embodiment demonstrated the imprint apparatus 1 which employ | adopted the photocuring method, it may be an imprint apparatus which hardens an imprint material using not only the photocuring method but heat. In that case, the imprint apparatus includes, as a curing unit, a heating unit that raises the viscosity of the imprint material by heat instead of the optical system that irradiates the imprint material with irradiation light to increase the viscosity of the imprint material. The heating unit (hardening unit) is the imprint material corresponding to the second area, with the amount of heat per unit area given to the imprint material corresponding to the first area in a state where the mold and the imprint material are in contact with each other. The substrate is heated so as to be more than the amount of heat per unit area given to it.
 (平坦加工装置の実施形態)
 本発明を適用した平坦化装置の実施形態について図21を用いて説明する。上記の実施形態は型(原版、テンプレート)に予め描画されたパターンを基板(ウエハ)に転写する方法であることに対し、本実施形態は型(平面テンプレート)には凹凸パターンが形成されていない。基板上の下地パターンは、前の工程で形成されたパターン起因の凹凸プロファイルを有しており、特に近年のメモリ素子の多層構造化にともないプロセスウエハは1100nm前後の段差を持つものも出てきている。基板全体の緩やかなうねりに起因する段差は、露光工程で使われている走査型の露光装置のフォーカス追従機能によって補正可能であるが、露光装置の露光スリット面積内に収まってしまうピッチの細かい凹凸は、そのまま露光装置のDOF(Depth Of Focus)を消費してしまう。基板上の下地パターンを平滑化する従来手法としてSOC(Spin On Carbon),CMP(Chemical Mechanical Polishing)のような平坦化層を形成する手段が用いられている。しかし従来例においては、図21Aにおける孤立パターン領域Aと繰り返しDense(ライン&スペースパターンの密集)パターン領域Bとの境界部分においては40%~70%の凹凸抑制率で十分な平坦化性能が得られない問題があり、今後多層化による下地の凹凸差は更に増加する傾向にある。
(Embodiment of flat processing apparatus)
An embodiment of a planarization apparatus to which the present invention is applied will be described with reference to FIG. While the above embodiment is a method of transferring a pattern drawn in advance on a mold (original plate, template) to a substrate (wafer), in the present embodiment, no concavo-convex pattern is formed on the mold (planar template). . The base pattern on the substrate has a concavo-convex profile derived from the pattern formed in the previous step, and in particular, with recent memory element multi-layering, a process wafer having a level difference of around 1100 nm has come out There is. The unevenness due to the gentle waviness of the whole substrate can be corrected by the focus following function of the scanning exposure apparatus used in the exposure process, but fine irregularities of the pitch that fall within the exposure slit area of the exposure apparatus Directly consumes DOF (Depth Of Focus) of the exposure apparatus. As a conventional method for smoothing an underlying pattern on a substrate, means for forming a planarizing layer such as SOC (Spin On Carbon) or CMP (Chemical Mechanical Polishing) is used. However, in the conventional example, in the boundary portion between the isolated pattern area A and the repetitive Dense (density of line & space patterns) pattern area B in FIG. 21A, sufficient flattening performance is obtained with an unevenness suppression rate of 40% to 70%. In the future, there is a tendency that the unevenness difference of the substrate due to the multi-layering further increases.
 この問題に対する解決策としてUS9415418では、平坦化層となるレジストのインクジェットディスペンサーによる塗布と平面テンプレートによる押印で連続膜を形成する手法が提案されている。また、US8394282では、ウエハ側のトポグラフィ計測結果をインクジェットディスペンサーによって塗布指示するポジション毎の濃淡情報に反映する方法が提案されている。本実施形態は、特に予め塗布された未硬化のレジスト(インプリント材、未硬化樹脂)に対して平面テンプレート(型)を押し当てて基板面内の局所平面化を行う平坦加工(平坦化)装置に対して本発明を適用したものである。 As a solution to this problem, U.S. Pat. No. 4,915,418 proposes a method of forming a continuous film by applying a resist to be a planarizing layer with an ink jet dispenser and imprinting with a flat template. Further, in US Pat. No. 8,3942, there is proposed a method of reflecting the topography measurement result on the wafer side in the density information for each position where the application is instructed by the ink jet dispenser. In the present embodiment, in particular, flattening processing (planarization) is performed in which a planar template (mold) is pressed against a previously applied uncured resist (imprint material, uncured resin) to planarize the substrate surface locally. The present invention is applied to an apparatus.
 図21Aは、平坦化加工を行う前の基板を示している。領域Aは孤立パターンエリアでパターン凸部分の面積が少なく、領域BはDenseエリアでパターン凸部分の占める面積は凹部分の占める面積と1:1である。領域Aと領域Bの平均の高さは凸部分の占める割合で異なった値をとる。 FIG. 21A shows the substrate before the planarization process. The area A is an isolated pattern area and the area of the pattern convex portion is small, and the area B is a dense area and the area occupied by the pattern convex portion is 1: 1 with the area occupied by the concave portion. The average height of the region A and the region B takes different values depending on the proportion of the convex portion.
 図21Bは、基板に対して平坦化層を形成するレジストを塗布した状態を示す図である。この図においては、US9415418に基づいてインクジェットディスペンサーによってレジストを塗布した状態を示しているが、レジストの塗布にあたってはスピンコーターを用いていても本発明の適用は可能である。すなわち、予め塗布してある未硬化のレジストに対して平面テンプレートを接触させて平坦化する工程を含んでいれば、本発明の適用は可能である。 FIG. 21B is a view showing a state in which a resist for forming a planarizing layer is applied to a substrate. In this figure, although the state which apply | coated the resist with the ink jet dispenser based on US9415418 is shown, the application of this invention is possible, even if it uses a spin coater at the time of application | coating of a resist. That is, the application of the present invention is possible if it includes the step of contacting and planarizing a flat template to a previously applied uncured resist.
 図21Cは、平面テンプレートは紫外線を透過するガラスまたは石英で構成されたものであり、露光光源からの露光光の照射によってレジストが硬化する工程を示した図である。このとき、平面テンプレートは基板の全体のなだらかな凹凸に対しては基板の表面のプロファイルにならう。 FIG. 21C is a view showing a process in which the flat template is made of glass or quartz which transmits ultraviolet light, and the resist is cured by the irradiation of the exposure light from the exposure light source. At this time, the planar template follows the profile of the surface of the substrate for the gentle asperity of the entire substrate.
 図21Dは、レジスト硬化後、平面テンプレートを引き離した状態を示す図である。 FIG. 21D is a view showing a state in which the planar template is pulled away after resist curing.
 本発明は、平坦加工装置の実施形態においても適用可能で、上述の何れの実施形態と同じく、メサ部にパターンが形成されていない型(平面テンプレート)を用いる際に、メサ部から、レジスト(インプリント材)のはみ出しを低減することができる。 The present invention is also applicable to the embodiment of the planarizing apparatus, and when using a mold (planar template) in which no pattern is formed in the mesa as in any of the above-described embodiments, the resist ( The protrusion of the imprint material can be reduced.
 また、上述の何れの実施形態も、気液界面14bは型のパターン領域(メサ部)の中心から均等に外側に向かって移動する場合について説明した。しかし、気液界面14bは均等に(同心円状に)移動するとは限られず、基板上に供給されたインプリント材の位置や供給量によってはインプリント材がパターン領域の側面に到達する時間は小領域によって変化することがある。そのため、インプリント装置の制御部は基板上に供給されるインプリント材の供給位置や供給量に応じて照射領域52の小領域の照射順を変更することができる。 Further, in any of the above-described embodiments, the air-liquid interface 14b has been described as being moved outward from the center of the pattern area (mesa portion) of the mold. However, the air-liquid interface 14b does not necessarily move uniformly (concentrically), and the time for the imprint material to reach the side surface of the pattern area is short depending on the position and supply amount of the imprint material supplied on the substrate. It may change depending on the area. Therefore, the control unit of the imprint apparatus can change the irradiation order of the small area of the irradiation area 52 according to the supply position and the supply amount of the imprint material supplied onto the substrate.
 また、上述の何れの実施形態も、光硬化法を採用したインプリント装置1について説明したが、光硬化法に限らず、熱を利用してインプリント材を硬化させるインプリント装置でもよい。その場合、インプリント装置は、インプリント材の粘性を増加させるために照射光をインプリント材に照射する光学系の代わりに、熱によりインプリント材の粘性を上げる加熱部を硬化部として備える。 Moreover, although the above-mentioned embodiment demonstrated the imprint apparatus 1 which employ | adopted the photocuring method, it may be an imprint apparatus which hardens an imprint material using not only the photocuring method but heat. In that case, the imprint apparatus includes, as a curing unit, a heating unit that raises the viscosity of the imprint material by heat instead of the optical system that irradiates the imprint material with irradiation light to increase the viscosity of the imprint material.
 (物品の製造方法)
 インプリント装置を用いて形成した硬化物のパターンは、各種物品の少なくとも一部に恒久的に、或いは各種物品を製造する際に一時的に、用いられる。物品とは、電気回路素子、光学素子、MEMS、記録素子、センサ、或いは、型等である。電気回路素子としては、DRAM、SRAM、フラッシュメモリ、MRAMのような、揮発性或いは不揮発性の半導体メモリや、LSI、CCD、イメージセンサ、FPGAのような半導体素子等が挙げられる。型としては、インプリント用のモールド等が挙げられる。
(Product manufacturing method)
The pattern of the cured product formed using the imprint apparatus is used permanently on at least a part of various articles or temporarily for manufacturing various articles. The article is an electric circuit element, an optical element, a MEMS, a recording element, a sensor, or a mold. Examples of the electric circuit element include volatile or nonvolatile semiconductor memories such as DRAM, SRAM, flash memory and MRAM, and semiconductor elements such as LSI, CCD, image sensor, and FPGA. The mold may, for example, be a mold for imprinting.
 硬化物のパターンは、上記物品の少なくとも一部の構成部材として、そのまま用いられるか、或いは、レジストマスクとして一時的に用いられる。基板の加工工程においてエッチング又はイオン注入等が行われた後、レジストマスクは除去される。 The pattern of the cured product is used as it is as a component member of at least a part of the article or temporarily used as a resist mask. After etching, ion implantation, or the like is performed in the substrate processing step, the resist mask is removed.
 次に、物品の具体的な製造方法について説明する。図22Aに示すように、絶縁体等の被加工材2zが表面に形成されたシリコンウエハ等の基板1zを用意し、続いて、インクジェット法等により、被加工材2zの表面にインプリント材3zを付与する。ここでは、複数の液滴状になったインプリント材3zが基板上に付与された様子を示している。 Next, a specific method of manufacturing an article will be described. As shown in FIG. 22A, a substrate 1z such as a silicon wafer on which a workpiece 2z such as an insulator is formed is prepared, and then an imprint material 3z is formed on the surface of the workpiece 2z by an inkjet method or the like. Grant Here, a state in which a plurality of droplet-shaped imprint materials 3z are applied onto a substrate is shown.
 図22Bに示すように、インプリント用の型4zを、その凹凸パターンが形成された側を基板上のインプリント材3zに向け、対向させる。図22Cに示すように、インプリント材3zが付与された基板1zと型4zとを接触させ、圧力を加える。インプリント材3zは型4zと被加工材2zとの隙間に充填される。この状態で硬化用のエネルギーとして光を型4zを透して照射すると、インプリント材3zは硬化する。 As shown in FIG. 22B, the mold 4z for imprint is faced with the side on which the concavo-convex pattern is formed facing the imprint material 3z on the substrate. As shown in FIG. 22C, the substrate 1z provided with the imprint material 3z is brought into contact with the mold 4z, and pressure is applied. The imprint material 3z is filled in the gap between the mold 4z and the workpiece 2z. In this state, when light is irradiated through the mold 4z as energy for curing, the imprint material 3z is cured.
 図22Dに示すように、インプリント材3zを硬化させた後、型4zと基板1zを引き離すと、基板1z上にインプリント材3zの硬化物のパターンが形成される。この硬化物のパターンは、型の凹部が硬化物の凸部に、型の凹部が硬化物の凸部に対応した形状になっており、即ち、インプリント材3zに型4zの凹凸パターンが転写されたことになる。 As shown in FIG. 22D, after the imprint material 3z is cured, when the mold 4z and the substrate 1z are separated, a pattern of a cured product of the imprint material 3z is formed on the substrate 1z. In the pattern of the cured product, the concave portions of the mold correspond to the convex portions of the cured product, and the concave portions of the mold correspond to the convex portions of the cured product, that is, the uneven pattern of the mold 4z is transferred to the imprint material 3z. It will be done.
 図22Eに示すように、硬化物のパターンを耐エッチングマスクとしてエッチングを行うと、被加工材2zの表面のうち、硬化物が無いか或いは薄く残存した部分が除去され、溝5zとなる。なお、当該エッチングとは異種のエッチングにより当該残存した部分を予め除去しておくのも好ましい。図22Fに示すように、硬化物のパターンを除去すると、被加工材2zの表面に溝5zが形成された物品を得ることができる。ここでは硬化物のパターンを除去したが、加工後も除去せずに、例えば、半導体素子等に含まれる層間絶縁用の膜、つまり、物品の構成部材として利用してもよい。 As shown in FIG. 22E, when etching is performed using the pattern of the cured product as an etching resistant mask, a portion of the surface of the workpiece 2z which has no cured product or remains thin is removed to form a groove 5z. Note that it is also preferable to previously remove the remaining portion by etching different from the etching. As shown in FIG. 22F, when the pattern of the cured product is removed, an article having grooves 5z formed on the surface of the workpiece 2z can be obtained. Although the pattern of the cured product is removed here, it may be used, for example, as a film for interlayer insulation included in a semiconductor element or the like, that is, as a component of an article without removing it even after processing.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Accordingly, the following claims are attached to disclose the scope of the present invention.
 本願は、2017年10月17日提出の日本国特許出願特願2017-201415と2017年10月23日提出の日本国特許出願特願2017-204553と2018年9月21日提出の日本国特許出願特願2018-177272と日本国特許出願特願2018-177271を基礎として優先権を主張するものであり、その記載内容の全てをここに援用する。 Priority is claimed on Japanese Patent Application No. 2017-201415, filed Oct. 17, 2017, and Japanese Patent Application No. 2017-204553, filed Oct. 23, 2017, and Japanese Patents filed on September 21, 2018. The present application claims priority based on Japanese Patent Application Nos. 2018-177272 and Japanese Patent Application No. 2018-71727, the entire contents of which are incorporated herein by reference.

Claims (21)

  1.  型を用いて基板上にインプリント材のパターンを形成するインプリント装置であって、前記型のメサ部を前記インプリント材に接触させた状態での前記メサ部の端を含み、前記メサ部を囲む周辺領域に対して、前記インプリント材の粘性を増加させるための照射光を照射する光学系と、
     前記型のメサ部を前記基板上のインプリント材に接触させた状態で、前記周辺領域のうちの前記メサ部の中心からの距離が互いに異なる複数の領域に対する前記照射光の照射のタイミングが互いに異なるように前記光学系を制御する制御部と、を有することを特徴とするインプリント装置。
    An imprint apparatus for forming a pattern of an imprint material on a substrate using a mold, comprising: an end of the mesa in a state in which the mesa of the mold is in contact with the imprint material, the mesa An optical system for irradiating an irradiation light for increasing the viscosity of the imprint material to a peripheral area surrounding the
    In a state where the mesa portion of the mold is in contact with the imprint material on the substrate, the timings of the irradiation of the irradiation light with respect to a plurality of regions of the peripheral region which are different in distance from the center of the mesa And a controller configured to control the optical system to be different.
  2.  前記型と前記インプリント材とが接触する状態を撮像する撮像部を有し、
     前記撮像部の撮像結果から求まる前記インプリント材が前記周辺領域の複数の領域のそれぞれに到達する時間に応じて前記照射光の照射を開始する時間を変えることを特徴とする請求項1に記載のインプリント装置。
    It has an imaging part which picturizes the state where the above-mentioned model and the above-mentioned imprint material contact.
    The irradiation start time of the irradiation light is changed according to the time when the imprint material obtained from the imaging result of the imaging unit reaches each of the plurality of areas in the peripheral area. Imprint device.
  3.  前記メサ部の中心と前記周辺領域の複数の領域のそれぞれまでの距離が短い順に前記照射光を照射することを特徴とする請求項1に記載のインプリント装置。 The imprint apparatus according to claim 1, wherein the irradiation light is irradiated in order of decreasing distance from the center of the mesa portion to each of the plurality of regions in the peripheral region.
  4.  前記メサ部の中心から前記周辺領域の複数の領域のそれぞれに向かって移動するインプリント材に対して、前記照射光の照射を開始する時間を変えることを特徴とする請求項1に記載のインプリント装置。 2. The in-line according to claim 1, wherein the irradiation light irradiation start time is changed with respect to the imprint material moving from the center of the mesa portion toward each of the plurality of regions in the peripheral region. Printing device.
  5.  前記制御部は、前記周辺領域のうち前記型のメサ部のコーナーを含む領域が、前記周辺領域の他の領域よりも前記照射光の照射のタイミングが遅くなるように前記光学系を制御することを特徴とする請求項1に記載のインプリント装置。 The control unit controls the optical system such that, in the peripheral area, the area including the corner of the mesa unit has a timing of irradiation of the irradiation light later than that of the other area of the peripheral area. The imprint apparatus according to claim 1,
  6.  前記インプリント材が前記周辺領域の複数の領域のそれぞれに到達する前に、前記照射光の照射を開始することを特徴とする請求項1に記載のインプリント装置。 The imprint apparatus according to claim 1, wherein the irradiation of the irradiation light is started before the imprint material reaches each of the plurality of areas in the peripheral area.
  7.  前記光学系は、前記照射光の照射を開始する時間を変える光変調素子を有することを特徴とする請求項1に記載のインプリント装置。 The imprint apparatus according to claim 1, wherein the optical system includes a light modulation element that changes a time to start irradiation of the irradiation light.
  8.  型を用いて基板上にインプリント材のパターンを形成するインプリント装置であって、前記型のメサ部を前記インプリント材に接触させた状態の前記メサ部の端を含み前記メサ部を囲む周辺領域に対して、前記インプリント材の粘性を増加させるための照射光を照射する光学系と、
     前記型のメサ部を前記基板上のインプリント材に接触させた状態で、前記インプリント材が前記周辺領域のうちの前記メサ部の側面に到達する時間が互いに異なる複数の領域に対する前記照射光の照射量が互いに異なるように前記光学系を制御する制御部と、を有することを特徴とするインプリント装置。
    An imprint apparatus for forming a pattern of an imprint material on a substrate using a mold, including an end of the mesa in a state where the mesa of the mold is in contact with the imprint material, and surrounding the mesa An optical system for irradiating the peripheral region with irradiation light for increasing the viscosity of the imprint material;
    In the state where the mesa portion of the mold is in contact with the imprint material on the substrate, the irradiation light for a plurality of regions different in time for the imprint material to reach the side surface of the mesa portion in the peripheral region A control unit configured to control the optical system such that the amount of irradiation of the light beams differs from one another.
  9.  前記制御部は、前記周辺領域の複数の領域のそれぞれに向かって移動するインプリント材が前記周辺領域の複数の領域のそれぞれに到達する時間に応じて前記照射光の照射時間を変えることを特徴とする請求項1に記載のインプリント装置。 The control unit may change the irradiation time of the irradiation light according to the time for the imprint material moving toward each of the plurality of areas in the peripheral area to reach each of the plurality of areas in the peripheral area. The imprint apparatus according to claim 1.
  10.  型を用いて基板上にインプリント材のパターンを形成するインプリント装置であって、前記基板上にインプリント材を供給する供給部と、
     前記基板上のインプリント材の粘性を増加させるための照射光をインプリント材に照射する光学系と、
     前記型を前記基板上のインプリント材に接触させた状態で、型のメサ部の端を含み、前記メサ部を囲む周辺領域に対して、前記照射光を照射するように前記光学系を制御する制御部と、を有し、
     前記制御部は、前記供給部が前記基板上に対して前記インプリント材を供給する位置に応じて、前記周辺領域の中の複数の領域に対する前記照射光の照射順を決める、ことを特徴とするインプリント装置。
    An imprint apparatus for forming a pattern of an imprint material on a substrate using a mold, wherein the supply section supplies the imprint material on the substrate;
    An optical system for irradiating the imprint material with irradiation light for increasing the viscosity of the imprint material on the substrate;
    The optical system is controlled to irradiate the irradiation light to a peripheral region including the end of the mesa of the mold and surrounding the mesa while the mold is in contact with the imprint material on the substrate. Control unit, and
    The control unit determines an irradiation order of the irradiation light to a plurality of regions in the peripheral region according to a position at which the supply unit supplies the imprint material to the substrate. Imprint device.
  11.  型を用いて基板上にインプリント材のパターンを形成するインプリント装置であって、前記基板上のインプリント材の粘性を上げる硬化部と、
     前記型を前記基板上のインプリント材に接触させた状態で、型のメサ部の端を含み、前記メサ部を囲む周辺領域のインプリント材の粘性を上げるように、前記硬化部を制御する制御部と、を有し、
     前記制御部は、前記型を前記基板上のインプリント材に接触させた状態で、前記インプリント材が前記周辺領域の複数の領域のそれぞれに到達する時間に応じて、前記周辺領域の中の複数の領域に供給されたインプリント材の粘性を上げる順番を決める、ことを特徴とするインプリント装置。
    A imprinting apparatus for forming a pattern of an imprinting material on a substrate using a mold, wherein the curing unit raises the viscosity of the imprinting material on the substrate;
    The cured portion is controlled to increase the viscosity of the imprint material in the peripheral region surrounding the mesa portion, including the end of the mesa portion, while the die is in contact with the imprint material on the substrate. And a control unit,
    The control unit is configured to, according to the time for the imprint material to reach each of the plurality of areas in the peripheral area, in the peripheral area, in a state in which the mold is in contact with the imprint material on the substrate. What is claimed is: 1. An imprint apparatus comprising: determining an order of increasing viscosity of an imprint material supplied to a plurality of regions.
  12.  型を用いて基板上にインプリント材のパターンを形成するインプリント装置であって、前記基板上のインプリント材の粘性を増加させるための照射光を前記型を介してインプリント材に照射する光学系と、を有し、
     前記型のメサ部の端を含み、前記メサ部を囲む周辺領域は、第1領域と、前記型と前記インプリント材を接触させた状態で、前記インプリント材が前記周辺領域の複数の領域のそれぞれに到達する時間が前記第1領域よりも遅い第2領域とを含んでおり、
     前記型と前記インプリント材とを接触させた状態で、前記第1領域を介して前記インプリント材を照射する照射光の強度が、前記第2領域を介して前記インプリント材を照射する照射光の強度よりも高くなるように、前記光学系を制御する制御部を備える、
     ことを特徴とするインプリント装置。
    An imprint apparatus for forming a pattern of an imprint material on a substrate using a mold, wherein irradiation light is applied to the imprint material through the mold to increase the viscosity of the imprint material on the substrate. And an optical system,
    In the peripheral region including the end of the mesa portion of the mold, the peripheral region surrounding the mesa portion is a plurality of regions of the peripheral region in which the imprint material is in contact with the first region and the mold and the imprint material. And the second region, which has a time to reach each of the later than the first region,
    In a state in which the mold and the imprint material are in contact with each other, the intensity of the irradiation light for irradiating the imprint material via the first region is the irradiation for irradiating the imprint material via the second region A controller configured to control the optical system to be higher than the light intensity;
    An imprint apparatus characterized in that
  13.  前記第2領域は、前記周辺領域のうち前記型のメサ部のコーナーを含む領域であることを特徴とする請求項12に記載のインプリント装置。 The imprint apparatus according to claim 12, wherein the second area is an area including a corner of the mesa portion of the peripheral area.
  14.  前記第2領域は、前記周辺領域のうち前記型のメサ部に形成されているパターンがアライメントマークを含む領域であることを特徴とする請求項12に記載のインプリント装置。 The imprint apparatus according to claim 12, wherein the second region is a region of the peripheral region in which the pattern formed in the mesa portion of the mold includes an alignment mark.
  15.  前記第2領域は、前記周辺領域のうち前記型のメサ部に形成されているパターン方向が前記型のメサ部の端に沿っていることを特徴とする請求項12に記載のインプリント装置。 The imprint apparatus according to claim 12, wherein in the second region, a pattern direction formed in the mesa portion of the peripheral region is along an edge of the mesa portion.
  16.  前記第2領域に供給される前記インプリント材の液滴の滴下位置と、前記型のメサ部に形成されたパターンが転写される前記基板のショット領域の端部との距離は、
     前記第1領域に供給される前記インプリント材の液滴の滴下位置と、前記周辺領域の複数の領域のそれぞれとの距離よりも長いことを特徴とする請求項12に記載のインプリント装置。
    The distance between the dropping position of the droplet of the imprint material supplied to the second region and the end of the shot region of the substrate to which the pattern formed on the mesa portion of the mold is transferred is
    The imprint apparatus according to claim 12, characterized in that the distance between the dropping position of the droplet of the imprint material supplied to the first area and each of the plurality of areas in the peripheral area is longer than the distance.
  17.  前記光学系は、前記照射光の照射強度の分布を形成する光変調素子を有することを特徴とする請求項12に記載のインプリント装置。 The imprint apparatus according to claim 12, wherein the optical system includes a light modulation element that forms a distribution of the irradiation intensity of the irradiation light.
  18.  前記制御部は、前記第2領域に前記照射光を照射しないように前記光学系を制御することを特徴とする請求項12に記載のインプリント装置。 The imprint apparatus according to claim 12, wherein the control unit controls the optical system so as not to irradiate the irradiation light to the second region.
  19.  前記インプリント装置は、前記インプリント材を硬化させる光を照射する光照射系を備え、
     前記制御部は、前記インプリント材の粘性を増加させ、前記型と前記基板の位置合わせを行った後、
     前記光照射系は、前記インプリント材を硬化させるために前記メサ部の全体に光を照射することを特徴とする請求項12に記載のインプリント装置。
    The imprint apparatus includes a light irradiation system that irradiates light for curing the imprint material,
    The control unit increases the viscosity of the imprint material and aligns the mold and the substrate.
    The imprint apparatus according to claim 12, wherein the light irradiation system irradiates light to the entire mesa unit in order to cure the imprint material.
  20.  型を用いて基板上にインプリント材のパターンを形成するインプリント装置であって、前記基板上のインプリント材の粘性を上げる硬化部と、を有し、
     前記型のメサ部の端を含み、前記メサ部を囲む周辺領域は、第1領域と、前記型と前記インプリント材を接触させた状態で、前記インプリント材が前記周辺領域の複数の領域のそれぞれに到達する時間が前記第1領域よりも遅い第2領域とを含んでおり、
     前記型と前記インプリント材とを接触させた状態で、前記硬化部が前記第1領域に対応する前記インプリント材に対して与える単位面積当たりの熱量が、前記硬化部が前記第2領域に対応する前記インプリント材に対して与える単位面積当たりの熱量よりも多くなるように、前記硬化部を制御する制御部を備える、
     ことを特徴とするインプリント装置。
    An imprint apparatus for forming a pattern of an imprint material on a substrate using a mold, comprising: a curing unit that raises the viscosity of the imprint material on the substrate,
    In the peripheral region including the end of the mesa portion of the mold, the peripheral region surrounding the mesa portion is a plurality of regions of the peripheral region in which the imprint material is in contact with the first region and the mold and the imprint material. And the second region, which has a time to reach each of the later than the first region,
    In a state in which the mold and the imprint material are in contact with each other, the amount of heat per unit area given by the curing part to the imprint material corresponding to the first region is the curing part in the second region. A control unit that controls the curing unit so as to be greater than the amount of heat per unit area given to the corresponding imprint material;
    An imprint apparatus characterized in that
  21.  請求項1乃至20の何れか1項に記載のインプリント装置を用いて、基板上にパターンを形成する工程と、
     パターンが形成された基板を加工する工程と、を有し、
     加工された基板から物品を製造することを特徴とする物品の製造方法。
    A process of forming a pattern on a substrate using the imprint apparatus according to any one of claims 1 to 20;
    Processing the substrate on which the pattern has been formed,
    A method of producing an article comprising producing an article from a processed substrate.
PCT/JP2018/037705 2017-10-17 2018-10-10 Imprint device and article manufacturing method WO2019078060A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880068085.3A CN111247623B (en) 2017-10-17 2018-10-10 Imprint apparatus and article manufacturing method
US16/843,677 US20200333704A1 (en) 2017-10-17 2018-10-10 Imprint apparatus and article manufacturing method
KR1020207011769A KR102426957B1 (en) 2017-10-17 2018-10-10 Imprint apparatus, and method of manufacturing an article

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2017201415 2017-10-17
JP2017-201415 2017-10-17
JP2017204553 2017-10-23
JP2017-204553 2017-10-23
JP2018177271A JP6686090B2 (en) 2017-10-23 2018-09-21 Imprint apparatus and method of manufacturing article
JP2018177272A JP6650980B2 (en) 2017-10-17 2018-09-21 Imprint apparatus and article manufacturing method
JP2018-177271 2018-09-21
JP2018-177272 2018-09-21

Publications (1)

Publication Number Publication Date
WO2019078060A1 true WO2019078060A1 (en) 2019-04-25

Family

ID=66174367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037705 WO2019078060A1 (en) 2017-10-17 2018-10-10 Imprint device and article manufacturing method

Country Status (2)

Country Link
TW (1) TWI756856B (en)
WO (1) WO2019078060A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10663869B2 (en) 2017-12-11 2020-05-26 Canon Kabushiki Kaisha Imprint system and imprinting process with spatially non-uniform illumination
US10976657B2 (en) 2018-08-31 2021-04-13 Canon Kabushiki Kaisha System and method for illuminating edges of an imprint field with a gradient dosage
JP2021082672A (en) * 2019-11-15 2021-05-27 キヤノン株式会社 Imprint device, imprint method, and article manufacturing method
US11181819B2 (en) 2019-05-31 2021-11-23 Canon Kabushiki Kaisha Frame curing method for extrusion control
US11209730B2 (en) 2019-03-14 2021-12-28 Canon Kabushiki Kaisha Methods of generating drop patterns, systems for shaping films with the drop pattern, and methods of manufacturing an article with the drop pattern
US11327409B2 (en) 2019-10-23 2022-05-10 Canon Kabushiki Kaisha Systems and methods for curing an imprinted field
US11366384B2 (en) 2019-12-18 2022-06-21 Canon Kabushiki Kaisha Nanoimprint lithography system and method for adjusting a radiation pattern that compensates for slippage of a template
US11747731B2 (en) 2020-11-20 2023-09-05 Canon Kabishiki Kaisha Curing a shaped film using multiple images of a spatial light modulator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521438A (en) * 2008-02-08 2011-07-21 モレキュラー・インプリンツ・インコーポレーテッド Reduction of protrusion in imprint lithography
JP2011181548A (en) * 2010-02-26 2011-09-15 Dainippon Printing Co Ltd Imprinting method and device
JP2013069919A (en) * 2011-09-22 2013-04-18 Toshiba Corp Imprint method and imprint apparatus
JP2013069918A (en) * 2011-09-22 2013-04-18 Toshiba Corp Imprint method and imprint apparatus
JP2014188869A (en) * 2013-03-27 2014-10-06 Dainippon Printing Co Ltd Imprint method and imprint device
JP2015106670A (en) * 2013-12-02 2015-06-08 パナソニックIpマネジメント株式会社 Method of forming microstructure and manufacturing device of microstructure
JP2017147283A (en) * 2016-02-16 2017-08-24 パナソニックIpマネジメント株式会社 Transfer method for fine structure and transfer device for fine structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6415120B2 (en) * 2014-06-09 2018-10-31 キヤノン株式会社 Imprint apparatus and article manufacturing method
JP6661397B2 (en) * 2015-04-22 2020-03-11 キヤノン株式会社 Imprint apparatus, imprint method, and article manufacturing method
JP2017188556A (en) * 2016-04-05 2017-10-12 キヤノン株式会社 Imprint device, imprint method, method of manufacturing article, and mold

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521438A (en) * 2008-02-08 2011-07-21 モレキュラー・インプリンツ・インコーポレーテッド Reduction of protrusion in imprint lithography
JP2011181548A (en) * 2010-02-26 2011-09-15 Dainippon Printing Co Ltd Imprinting method and device
JP2013069919A (en) * 2011-09-22 2013-04-18 Toshiba Corp Imprint method and imprint apparatus
JP2013069918A (en) * 2011-09-22 2013-04-18 Toshiba Corp Imprint method and imprint apparatus
JP2014188869A (en) * 2013-03-27 2014-10-06 Dainippon Printing Co Ltd Imprint method and imprint device
JP2015106670A (en) * 2013-12-02 2015-06-08 パナソニックIpマネジメント株式会社 Method of forming microstructure and manufacturing device of microstructure
JP2017147283A (en) * 2016-02-16 2017-08-24 パナソニックIpマネジメント株式会社 Transfer method for fine structure and transfer device for fine structure

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10663869B2 (en) 2017-12-11 2020-05-26 Canon Kabushiki Kaisha Imprint system and imprinting process with spatially non-uniform illumination
US10976657B2 (en) 2018-08-31 2021-04-13 Canon Kabushiki Kaisha System and method for illuminating edges of an imprint field with a gradient dosage
US11209730B2 (en) 2019-03-14 2021-12-28 Canon Kabushiki Kaisha Methods of generating drop patterns, systems for shaping films with the drop pattern, and methods of manufacturing an article with the drop pattern
US11181819B2 (en) 2019-05-31 2021-11-23 Canon Kabushiki Kaisha Frame curing method for extrusion control
US11327409B2 (en) 2019-10-23 2022-05-10 Canon Kabushiki Kaisha Systems and methods for curing an imprinted field
JP2021082672A (en) * 2019-11-15 2021-05-27 キヤノン株式会社 Imprint device, imprint method, and article manufacturing method
JP7337670B2 (en) 2019-11-15 2023-09-04 キヤノン株式会社 IMPRINT APPARATUS, IMPRINT METHOD, AND ARTICLE MANUFACTURING METHOD
US11841616B2 (en) * 2019-11-15 2023-12-12 Canon Kabushiki Kaisha Imprint apparatus, imprint method, and method of manufacturing article
US11366384B2 (en) 2019-12-18 2022-06-21 Canon Kabushiki Kaisha Nanoimprint lithography system and method for adjusting a radiation pattern that compensates for slippage of a template
US11747731B2 (en) 2020-11-20 2023-09-05 Canon Kabishiki Kaisha Curing a shaped film using multiple images of a spatial light modulator

Also Published As

Publication number Publication date
TWI756856B (en) 2022-03-01
TW202105470A (en) 2021-02-01

Similar Documents

Publication Publication Date Title
WO2019078060A1 (en) Imprint device and article manufacturing method
JP6686090B2 (en) Imprint apparatus and method of manufacturing article
JP6650980B2 (en) Imprint apparatus and article manufacturing method
JP7210155B2 (en) Apparatus, methods, and methods of making articles
US11175598B2 (en) Imprint apparatus and method of manufacturing article
JP7286400B2 (en) Molding Apparatus, Determining Method, and Article Manufacturing Method
JP2019186404A (en) Molding equipment and manufacturing method of article
KR102426957B1 (en) Imprint apparatus, and method of manufacturing an article
JP7134055B2 (en) Molding apparatus and article manufacturing method
US11841616B2 (en) Imprint apparatus, imprint method, and method of manufacturing article
US11454896B2 (en) Imprint apparatus, imprinting method, and manufacturing method of article
JP2019216143A (en) Molding apparatus for molding composition on substrate using mold and manufacturing method for article
JP7383564B2 (en) Imprint method, imprint device, and article manufacturing method
JP7433949B2 (en) Imprint equipment, imprint method, and article manufacturing method
JP7451141B2 (en) Imprint device, imprint method, and article manufacturing method
JP7237646B2 (en) IMPRINT METHOD, IMPRINT APPARATUS, AND ARTICLE MANUFACTURING METHOD
JP7089411B2 (en) Molding equipment and manufacturing method of articles
JP7362429B2 (en) Molding equipment, molding method, and article manufacturing method
JP7466375B2 (en) Imprinting method, imprinting apparatus and method for manufacturing article
JP2023003227A (en) Imprint device, imprint method, and method for manufacturing article
JP2024090242A (en) IMPRINT APPARATUS, IMPRINT METHOD, AND ARTICLE MANUFACTURING METHOD
KR20230161886A (en) Planarization process, apparatus and method of manufacturing an article
KR20230070501A (en) Film formation method, article manufacturing method, supply device, film formation device and substrate
JP2023125837A (en) Molding method, molding device, and manufacturing method of article
JP2021027252A (en) Shaping method, manufacturing method of article, substrate used in shaping method, and mold

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867721

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207011769

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18867721

Country of ref document: EP

Kind code of ref document: A1