JP2015106654A - Joining method, method for manufacturing semiconductor device, and semiconductor device - Google Patents

Joining method, method for manufacturing semiconductor device, and semiconductor device Download PDF

Info

Publication number
JP2015106654A
JP2015106654A JP2013248326A JP2013248326A JP2015106654A JP 2015106654 A JP2015106654 A JP 2015106654A JP 2013248326 A JP2013248326 A JP 2013248326A JP 2013248326 A JP2013248326 A JP 2013248326A JP 2015106654 A JP2015106654 A JP 2015106654A
Authority
JP
Japan
Prior art keywords
conductor
metal layer
electrode
heating
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013248326A
Other languages
Japanese (ja)
Other versions
JP6255949B2 (en
Inventor
赤松 俊也
Toshiya Akamatsu
俊也 赤松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2013248326A priority Critical patent/JP6255949B2/en
Publication of JP2015106654A publication Critical patent/JP2015106654A/en
Application granted granted Critical
Publication of JP6255949B2 publication Critical patent/JP6255949B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Abstract

PROBLEM TO BE SOLVED: To reduce connection failures by suppressing warpage of substrates in joining the substrates to each other with a connection terminal.SOLUTION: A metal layer for joining is formed on one of a first conductor on a first substrate and a second conductor on a second substrate; metal particles having a sintering temperature lower than a melting point of the metal layer is disposed between the first conductor and the second conductor, and the first conductor is laid over the second conductor; the metal particles are heated at a first temperature lower than a melting point of the metal layer to be sintered and thereby the first conductor and the second conductor are fixed temporarily; and, after having been fixed temporarily, the first conductor and the second conductor are heated at a second temperature equal to or higher than a melting point of the metal layer to be joined.

Description

本発明は、接合方法、半導体装置の製造方法、及び半導体装置に関する。   The present invention relates to a bonding method, a semiconductor device manufacturing method, and a semiconductor device.

電子機器には、小型化と低消費電力化が求められる一方で、高速、大容量化が求められている。演算処理速度の向上と消費電力の低減を実現するためには、クロック速度を増加させるよりも、並列で処理するコアの数を増大させるメニーコアプロセッサ構成が有効である。2次元平面上での接続構造(2.5次元実装を含む)で、1チップ内に入れるコアの数を増やすと、チップサイズが増大しチップ内配線長が長くなるため、特性向上との両立が難しい。そこで、従来は平面で接続されていたLSI(Large Scale Integrated circuit)チップをシリコン貫通電極(TSV:Through Si Via)で接続して基板と垂直方向に積層する3次元実装(3D−LSI)が開発されている。   Electronic devices are required to be small in size and low in power consumption, but are also required to have high speed and large capacity. In order to improve the calculation processing speed and reduce the power consumption, a many-core processor configuration that increases the number of cores to be processed in parallel rather than increasing the clock speed is effective. With a connection structure on a two-dimensional plane (including 2.5-dimensional mounting), increasing the number of cores in one chip increases the chip size and lengthens the wiring length in the chip, making it difficult to achieve both improved characteristics . Therefore, three-dimensional mounting (3D-LSI) has been developed in which LSI (Large Scale Integrated circuit) chips that have been conventionally connected in a plane are connected by through silicon vias (TSV: Through Si Via) and stacked vertically with the substrate. Has been.

3次元に積層されるLSIチップは、上述のようにTSVと呼ばれる貫通電極で接続されるが、貫通電極のサイズとして10μm以下の径が検討されている。このような小径のTSVを形成するには、アスペクト比の制限があり、チップはより薄くなる傾向がある。他方で、サーバやスーパーコンピュータなどのHPC(High Performance Computer)に用いられるLSIチップのサイズは、年々大きくなる傾向にある。   LSI chips that are three-dimensionally stacked are connected by through electrodes called TSV as described above, and a diameter of 10 μm or less has been studied as the size of the through electrodes. In order to form such a small-diameter TSV, the aspect ratio is limited, and the chip tends to be thinner. On the other hand, the size of LSI chips used in HPC (High Performance Computer) such as servers and supercomputers tends to increase year by year.

図1(A)に示すように、基板110上に半導体チップ120を搭載する場合、一般に基板110上の電極112にフラックス(不図示)を塗布し、フリップチップボンダで半導体チップ120を仮搭載した後、リフロー炉で加熱して接続する。半導体チップ120は、銅(Cu)ピラー122の先端にはんだ125が形成された接続端子126を有し、はんだ125を溶融、凝固させて、接続端子126を基板110上の電極112に接続する。積層を続ける場合は、搭載した半導体チップ120の背面の電極(不図示)にフラックスを塗布して、順次半導体チップを搭載する。   As shown in FIG. 1A, when mounting the semiconductor chip 120 on the substrate 110, generally, a flux (not shown) is applied to the electrode 112 on the substrate 110, and the semiconductor chip 120 is temporarily mounted by a flip chip bonder. Then, it connects by heating in a reflow furnace. The semiconductor chip 120 has a connection terminal 126 in which solder 125 is formed at the tip of a copper (Cu) pillar 122, and the solder 125 is melted and solidified to connect the connection terminal 126 to the electrode 112 on the substrate 110. In the case of continuing the stacking, flux is applied to the electrode (not shown) on the back surface of the mounted semiconductor chip 120, and the semiconductor chips are sequentially mounted.

先端にはんだ125が形成された接続端子126を用いてフリップチップ接続を行う場合、半導体チップ120を加熱する際に発生する反りを、溶融するはんだ125で吸収して接続する。逆にいうと、はんだ125が半導体チップ120の反りを吸収するマージンとなる。はんだ125の量を多くすることでチップ反りのマージンは大きくなるが、溶融したはんだ125による隣接端子間のショートが問題となり、接続端子126に形成されるはんだ125の量には限界がある。また、接合部の微細化によって、形成されるはんだ125も微細化されることから、接続端子126に形成できるはんだ125の厚さは減少する傾向にある。   When flip chip connection is performed using the connection terminal 126 having the solder 125 formed at the tip, the warp generated when the semiconductor chip 120 is heated is absorbed by the molten solder 125 and connected. In other words, the solder 125 becomes a margin for absorbing the warp of the semiconductor chip 120. Increasing the amount of solder 125 increases the margin of chip warpage, but short-circuiting between adjacent terminals due to molten solder 125 becomes a problem, and the amount of solder 125 formed on connection terminal 126 is limited. Further, since the solder 125 to be formed is also miniaturized by miniaturization of the joint portion, the thickness of the solder 125 that can be formed on the connection terminal 126 tends to decrease.

接続端子126の微細化にともなって反りの許容量が減少し、図1(B)に示すように、半導体チップ120の接続端子126と基板110の電極112との間に接続不良が多発する懸念がある。この問題は、チップサイズが大きくなるほど顕在化すると考えられる。   With the miniaturization of the connection terminal 126, the allowable amount of warpage decreases, and there is a concern that poor connection frequently occurs between the connection terminal 126 of the semiconductor chip 120 and the electrode 112 of the substrate 110 as shown in FIG. There is. This problem is considered to become more apparent as the chip size increases.

最近では、電子部品の接着用に金属ナノ粒子や金属ナノペーストが開発されている。回路基板電極の表面とチップ電極の表面にそれぞれ低融点金属層を形成した後、低融点金属層上に金属粉末を配置し、低融点金属層が溶融する温度で加熱加圧して、低融点金属層をチップ電極、回路基板電極、及び金属粉末に固液拡散させて接合する方法が提案されている(たとえば、特許文献1参照)。   Recently, metal nanoparticles and metal nano pastes have been developed for bonding electronic components. After forming a low melting point metal layer on the surface of the circuit board electrode and the surface of the chip electrode, a metal powder is placed on the low melting point metal layer, and heated and pressed at a temperature at which the low melting point metal layer melts to form a low melting point metal. There has been proposed a method in which a layer is solid-liquid diffused and bonded to a chip electrode, a circuit board electrode, and a metal powder (see, for example, Patent Document 1).

特開2007−19360号公報JP 2007-19360 A

接続端子で基板同士を接合する際に、基板の反りを抑制し、接続不良を低減することのできる接合方法と、これを利用した半導体装置の製造を提供する。   Provided are a bonding method capable of suppressing warpage of a substrate and reducing connection failure when bonding the substrates to each other with a connection terminal, and manufacturing a semiconductor device using the bonding method.

ひとつの態様では、接合方法を提供する。この接合方法において、
第1基板上の第1導体と、第2基板上の第2導体のいずれか一方に接合用の金属層を形成し、
前記第1導体と前記第2導体の間に、前記金属層の融点よりも低い焼結温度を有する金属粒子を配置して、前記第1導体と前記第2導体を重ね合わせ、
前記金属層の融点よりも低い第1温度で加熱して前記金属粒子を焼結させて前記第1導体と前記第2導体を仮固定し、
前記仮固定の後に、前記金属層の融点以上の第2温度で加熱して前記第1導体と前記第2導体を接合する。
In one aspect, a joining method is provided. In this joining method,
Forming a bonding metal layer on one of the first conductor on the first substrate and the second conductor on the second substrate;
Disposing metal particles having a sintering temperature lower than the melting point of the metal layer between the first conductor and the second conductor, and superimposing the first conductor and the second conductor,
Heating at a first temperature lower than the melting point of the metal layer to sinter the metal particles to temporarily fix the first conductor and the second conductor;
After the temporary fixing, the first conductor and the second conductor are joined by heating at a second temperature equal to or higher than the melting point of the metal layer.

接続端子で基板同士を接合する際に基板の反りを抑制し、接続不良を低減することができる。その結果、製品の接続信頼性が向上する。   When the substrates are joined to each other with the connection terminals, the warpage of the substrates can be suppressed and connection defects can be reduced. As a result, the connection reliability of the product is improved.

従来のチップ実装に生じる問題点を示す図である。It is a figure which shows the problem which arises in the conventional chip mounting. 実施形態の接合方法を示す図である。It is a figure which shows the joining method of embodiment. 実施形態の半導体装置の製造工程図である。It is a manufacturing process figure of the semiconductor device of an embodiment. 実施形態の方法で作製された半導体装置の接合部の構成を示す図である。It is a figure which shows the structure of the junction part of the semiconductor device produced by the method of embodiment. 実施形態の効果を示す図である。It is a figure which shows the effect of embodiment. 3次元実装された半導体装置の構成例を示す図である。It is a figure which shows the structural example of the semiconductor device mounted three-dimensionally.

図2は、実施形態の接合方法を示す図である。図2の例では、基板60に形成された導体62と、基板70に形成された導体72を、接合用の金属層25と、金属粒子30を用いて接合する。   FIG. 2 is a diagram illustrating the bonding method according to the embodiment. In the example of FIG. 2, the conductor 62 formed on the substrate 60 and the conductor 72 formed on the substrate 70 are bonded using the bonding metal layer 25 and the metal particles 30.

図2(A)に示すように、たとえば、導体62と導体72のいずれか一方の側に金属層25を形成し、他方の側に金属粒子30を配置し、導体62と導体72を位置合わせする。金属層25は、たとえば接合用のはんだバンプであり、Sn-Cu、Sn-Ag、Sn-Ag-Cu、Sn-Cu-Co、Sn-Cu-Ni-Ge、Sn-Ag-Cu-Ni-Geなど、2元合金、3元合金、4元合金、あるいはそれ以上の元素を主成分として含む。金属層25は、金属粒子30と合金を形成することのできる任意の材料で形成される。   As shown in FIG. 2A, for example, the metal layer 25 is formed on one side of the conductor 62 and the conductor 72, the metal particle 30 is disposed on the other side, and the conductor 62 and the conductor 72 are aligned. To do. The metal layer 25 is, for example, a solder bump for bonding, and includes Sn—Cu, Sn—Ag, Sn—Ag—Cu, Sn—Cu—Co, Sn—Cu—Ni—Ge, Sn—Ag—Cu—Ni—. It contains a binary alloy, ternary alloy, quaternary alloy, or higher elements such as Ge as a main component. The metal layer 25 is formed of any material capable of forming an alloy with the metal particles 30.

金属粒子30は、粉末状の粒子であってもよいし、溶剤中に金属粒子が分散されたペースト状のものであってもよい。金属粒子30の径が1μ未満の場合は「金属ナノ粒子」と呼ばれる。実施形態では、金属粒子30の焼結温度が金属層25の融点よりも低いという条件を満たす限り、金属粒子30のサイズは問わない。   The metal particles 30 may be powder particles or may be a paste in which metal particles are dispersed in a solvent. When the diameter of the metal particle 30 is less than 1 μm, it is called “metal nanoparticle”. In the embodiment, the size of the metal particles 30 is not limited as long as the condition that the sintering temperature of the metal particles 30 is lower than the melting point of the metal layer 25 is satisfied.

金属粒子30として、銀(Ag)、金(Au)、銅(Cu)、ニッケル(Ni)の単体、あるいはこれらの1種類以上を含む混合物を用いることができる。金属粒子30のサイズがナノオーダーになるとその金属の本来の融点よりも低い温度で焼結可能になる。したがって、接合用の金属層25の材料との関係で、1μm未満の径を有するナノ粒子を用いるのが望ましい場合もある。   As the metal particles 30, silver (Ag), gold (Au), copper (Cu), nickel (Ni) alone, or a mixture containing one or more of these can be used. When the size of the metal particle 30 becomes nano-order, the metal particle 30 can be sintered at a temperature lower than the original melting point of the metal. Therefore, it may be desirable to use nanoparticles having a diameter of less than 1 μm in relation to the material of the metal layer 25 for bonding.

一例として、金属層25に錫-銀(Sn−Ag)合金25を用い、金属粒子30として、銀(Ag)ナノ粒子30または銀(Ag)ナノペースト30を用いる。   As an example, a tin-silver (Sn—Ag) alloy 25 is used for the metal layer 25, and silver (Ag) nanoparticles 30 or silver (Ag) nanopaste 30 is used as the metal particles 30.

次に、図2(B)に示すように、金属層25の融点よりも低い第1温度で加熱を行い、金属粒子30の焼結体31を形成して、導体72と導体62を仮固定する。焼結は、金属粒子30自体の融点よりも低い温度で加熱することで、金属粒子30同士が表面で接着するとともに、全体的に収縮して粒子間の隙間が小さくなって緻密化する現象である。金属粒子30としてナノ粒子を用いる場合は、バルク材に比べて融点が低くなることが知られており、比較的低温で焼結させることができる。これは、粒径が小さくなることで単位重量当たりの総表面積が増大して表面エネルギーの寄与が大きくなり、溶解に必要な熱エネルギーが低減するためであると説明されている。焼結温度は金属ナノ粒子の粒径と相関すると考えられ、接合用の金属層25の融点に応じて、適切なサイズの金属ナノ粒子を用いることができる。   Next, as shown in FIG. 2B, heating is performed at a first temperature lower than the melting point of the metal layer 25 to form a sintered body 31 of the metal particles 30, and the conductor 72 and the conductor 62 are temporarily fixed. To do. Sintering is a phenomenon in which the metal particles 30 adhere to each other on the surface by heating at a temperature lower than the melting point of the metal particles 30 themselves, and shrink as a whole and the gaps between the particles become smaller and become denser. is there. In the case of using nanoparticles as the metal particles 30, it is known that the melting point is lower than that of the bulk material and can be sintered at a relatively low temperature. This is explained by the fact that the total surface area per unit weight increases as the particle size decreases, the contribution of surface energy increases, and the thermal energy required for dissolution decreases. The sintering temperature is considered to correlate with the particle size of the metal nanoparticles, and metal nanoparticles having an appropriate size can be used according to the melting point of the metal layer 25 for bonding.

接合用の金属層25をSn−3.5Agや、Sn−3.0Agで形成した場合、固相線での融点は221℃である。この場合、Agナノ粒子(またはAgナノペースト)30をそのサイズに応じて120℃〜200℃で焼結させることができる。Agナノペーストを用いる場合は、焼結の過程で溶剤が揮発し、Ag粒子表面を覆う保護剤(分散剤)が分解されて、粒子同士の表面接合が進行する。   When the bonding metal layer 25 is formed of Sn-3.5Ag or Sn-3.0Ag, the melting point at the solidus is 221 ° C. In this case, the Ag nanoparticles (or Ag nanopaste) 30 can be sintered at 120 ° C. to 200 ° C. depending on the size. When Ag nanopaste is used, the solvent volatilizes during the sintering process, the protective agent (dispersant) covering the surface of the Ag particles is decomposed, and surface bonding of the particles proceeds.

焼結後に降温して焼結体31を安定化させる。この段階では、接合用の金属層25は溶融しておらず、導体72と金属層25は焼結体31を介して導体62上に仮に固定されている。   The temperature is lowered after sintering to stabilize the sintered body 31. At this stage, the joining metal layer 25 is not melted, and the conductor 72 and the metal layer 25 are temporarily fixed on the conductor 62 via the sintered body 31.

次に、図2(c)に示すように、金属層25の融点以上の第2温度でリフロー加熱を行い、導体72を導体62に最終的に接合する。リフロー加熱により、金属層25が溶融して焼結体31と合金を構成して、リフロー後の冷却により強固な接合が実現する。また、溶融した金属層25は、焼結体31の隙間に入り込んで、導体62とも合金を形成する。このようにして、接合後は導体72と導体62の間に、焼結体31と合金層27とを含む接合部33が形成される。   Next, as shown in FIG. 2C, reflow heating is performed at a second temperature equal to or higher than the melting point of the metal layer 25 to finally join the conductor 72 to the conductor 62. By the reflow heating, the metal layer 25 is melted to form an alloy with the sintered body 31, and the strong bonding is realized by the cooling after the reflow. In addition, the molten metal layer 25 enters the gap between the sintered bodies 31 and forms an alloy with the conductor 62. In this way, the joined portion 33 including the sintered body 31 and the alloy layer 27 is formed between the conductor 72 and the conductor 62 after joining.

リフロー温度での加熱工程で、従来は基板60と基板70の熱膨張係数の相違等に起因して反りが発生していた。導体72のパターンが微細な場合は、金属層25のリフローによっても基板70の反りを吸収することができなかった。これに対し、図2の方法によると、焼結体31によって導体72と導体62が仮固定されているため、リフロー時に基板70の反りを抑制することができる。焼成による仮固定は、最終的な接合強度は有していないが、応力による反りを抑制できるだけの固定力を有するからである。これによって、接続の信頼性が向上する。   In the heating process at the reflow temperature, a warp has conventionally occurred due to a difference in thermal expansion coefficient between the substrate 60 and the substrate 70. When the pattern of the conductor 72 was fine, the warp of the substrate 70 could not be absorbed even by reflow of the metal layer 25. On the other hand, according to the method of FIG. 2, since the conductor 72 and the conductor 62 are temporarily fixed by the sintered body 31, warping of the substrate 70 can be suppressed during reflow. This is because temporary fixing by firing does not have final bonding strength, but has a fixing force that can suppress warping due to stress. This improves connection reliability.

図3は、図2の接合方法を用いた半導体装置の製造工程図である。図3(A)で、回路基板10上の電極12に、半導体チップ20の接続端子26を位置合わせする。半導体チップ20は、たとえば13mm角、厚さが50μmのシリコン(Si)ウェハの主面に、銅(Cu)ピラー22を有する接続端子26を有する。Cuピラー22は、たとえばフォトリソグラフィと電解めっきにより、半導体チップ20の所定の電極(不図示)上に形成される。Cuピラー22のサイズは、たとえば、直径30μm、ピッチ50μm、高さ15μmである。Cuピラー22の先端に、Sn-3.5Agはんだ材料で厚さ10μmの金属層25を形成する。これにより、半導体チップ20の接続端子26が形成される。   FIG. 3 is a manufacturing process diagram of a semiconductor device using the bonding method of FIG. In FIG. 3A, the connection terminal 26 of the semiconductor chip 20 is aligned with the electrode 12 on the circuit board 10. The semiconductor chip 20 has connection terminals 26 having copper (Cu) pillars 22 on the main surface of a silicon (Si) wafer having a 13 mm square and a thickness of 50 μm, for example. The Cu pillar 22 is formed on a predetermined electrode (not shown) of the semiconductor chip 20 by, for example, photolithography and electrolytic plating. The size of the Cu pillar 22 is, for example, a diameter of 30 μm, a pitch of 50 μm, and a height of 15 μm. A metal layer 25 having a thickness of 10 μm is formed of Sn—3.5Ag solder material at the tip of the Cu pillar 22. Thereby, the connection terminal 26 of the semiconductor chip 20 is formed.

回路基板10は、たとえば20mm角のチップであり、別のLSIチップ10であってもよい。回路基板10上には、半導体チップ20の接続端子26と相対する位置に、銅(Cu)電極12が形成されている。Cu電極12の径は30μm、基板表面からの高さは5μmである。Cu電極12上にAgナノペースト30を供給した後、フリップチップボンダで、上側の半導体チップ20を回路基板10に対して位置合わせし、仮搭載する。Agナノペースト30は、粒子径が数nm〜数百nmのAgナノ粒子を主成分として含み、たとえばインクジェット法やスクリーン印刷で塗布することができる。   The circuit board 10 is a 20 mm square chip, for example, and may be another LSI chip 10. A copper (Cu) electrode 12 is formed on the circuit board 10 at a position facing the connection terminal 26 of the semiconductor chip 20. The diameter of the Cu electrode 12 is 30 μm, and the height from the substrate surface is 5 μm. After the Ag nano paste 30 is supplied onto the Cu electrode 12, the upper semiconductor chip 20 is aligned with the circuit board 10 by a flip chip bonder and temporarily mounted. The Ag nano paste 30 contains Ag nanoparticles having a particle diameter of several nm to several hundreds of nm as a main component, and can be applied by, for example, an inkjet method or screen printing.

次に、図3(B)で、150℃、60分で第1加熱を行い、Agナノペースト30を焼結させて仮固定を行う。フリップチップボンダで回路基板10への半導体チップ20の仮搭載を行なう場合は、金属層(はんだ)25の融点より低い加熱温度で加熱しながら半導体チップ20を搭載してもよい。この場合は、位置合わせ及び仮搭載と、仮固定を一体的に行なうことができる。図3(B)の段階では、Agナノペースト30は焼結して焼結体31を構成するが、半導体チップ20の接続端子26の金属層25に変化はなく、接続端子26が焼結体31を介して電極12に仮に固定されている。   Next, in FIG. 3B, first heating is performed at 150 ° C. for 60 minutes to sinter the Ag nanopaste 30 and perform temporary fixing. When the semiconductor chip 20 is temporarily mounted on the circuit board 10 by the flip chip bonder, the semiconductor chip 20 may be mounted while heating at a heating temperature lower than the melting point of the metal layer (solder) 25. In this case, positioning, temporary mounting, and temporary fixing can be performed integrally. In the stage of FIG. 3B, the Ag nano paste 30 is sintered to form the sintered body 31, but the metal layer 25 of the connection terminal 26 of the semiconductor chip 20 is not changed, and the connection terminal 26 is the sintered body. It is temporarily fixed to the electrode 12 via 31.

次に、図3(C)で、コンベア式窒素リフロー炉で第2加熱を行い、リフロー処理を行なう。金属層25にSn-3.5Agはんだ25を用いる場合は、221℃以上の温度で、ピーク温度250℃、60秒の条件で加熱する。第2加熱のプロファイルにより、金属層25が溶融、凝固して、半導体チップ20のCuピラー22と回路基板10の電極12の間に、接合部33が形成される。接合部33は、リフロー後のはんだ層27と焼結体31を含む。これにより、半導体チップ20は回路基板10に強固に接合され、半導体装置1Aが完成する。   Next, in FIG. 3C, second heating is performed in a conveyor type nitrogen reflow furnace to perform a reflow process. When the Sn-3.5Ag solder 25 is used for the metal layer 25, heating is performed at a temperature of 221 ° C. or higher and a peak temperature of 250 ° C. for 60 seconds. Due to the second heating profile, the metal layer 25 is melted and solidified, and a joint 33 is formed between the Cu pillar 22 of the semiconductor chip 20 and the electrode 12 of the circuit board 10. The joint portion 33 includes the solder layer 27 and the sintered body 31 after reflow. As a result, the semiconductor chip 20 is firmly bonded to the circuit board 10 to complete the semiconductor device 1A.

図4は、仮固定後にリフロー接合した場合の接合部33の構成を、1度の加熱処理で接合部を形成したときと比較して示す図である。   FIG. 4 is a diagram illustrating the configuration of the joint portion 33 in the case where reflow joining is performed after temporary fixing in comparison with the case where the joint portion is formed by a single heat treatment.

図4(A)では、回路基板10の電極12上にAgナノペーストを配置し、1回のリフロー加熱でCuピラー22先端の金属層(はんだ)25とAgナノペーストを溶融して接合する。接合部133とCu電極12の界面領域Aの拡大図で示すように、Ag粒子28はリフロー後のはんだ(Sn-3.5Ag)の中に均一に分散してAg3Snの合金層29を構成する。また、Cu電極12と合金層29の界面には、Cu-Sn合金層21が形成されている。   4A, an Ag nano paste is disposed on the electrode 12 of the circuit board 10, and the metal layer (solder) 25 at the tip of the Cu pillar 22 and the Ag nano paste are melted and bonded by one reflow heating. As shown in the enlarged view of the interface region A between the joint 133 and the Cu electrode 12, the Ag particles 28 are uniformly dispersed in the reflowed solder (Sn-3.5Ag) to form an Ag3Sn alloy layer 29. A Cu—Sn alloy layer 21 is formed at the interface between the Cu electrode 12 and the alloy layer 29.

これに対し、図4(B)では実施形態の方法にしたがって、第1温度での焼結と、第2温度でのリフローという2回の加熱を行っている。界面領域Bの拡大図で示すように、リフロー後のはんだ層27とCu電極12の界面に、Agナノ粒子の焼結体31とAgリッチな合金層32を含む中間層35が存在する。Agナノ粒子の焼結体31は、リフロー工程後も焼結形状を維持してCu電極12との界面に溶着している。リフロー後のはんだ層27へのAg粒子28の拡散は微量であり、焼結体31の近傍にAg濃度が高いSnAg合金層32が形成される。焼結体31は粒子同士が接着して緻密性が高くなっているが、内部に隙間(ボイド)が存在する。焼結体31の隙間を通過したSnは、Cu電極12の銅と反応してCu-Sn合金層21を形成する。   On the other hand, in FIG. 4B, in accordance with the method of the embodiment, the heating at the first temperature and the reflow at the second temperature are performed twice. As shown in the enlarged view of the interface region B, an intermediate layer 35 including a sintered body 31 of Ag nanoparticles and an Ag-rich alloy layer 32 exists at the interface between the solder layer 27 and the Cu electrode 12 after reflow. The sintered body 31 of Ag nanoparticles maintains the sintered shape even after the reflow process and is welded to the interface with the Cu electrode 12. The diffusion of the Ag particles 28 into the solder layer 27 after reflow is very small, and the SnAg alloy layer 32 having a high Ag concentration is formed in the vicinity of the sintered body 31. The sintered body 31 has a high density due to adhesion between particles, but there are gaps (voids) inside. Sn that has passed through the gaps between the sintered bodies 31 reacts with the copper of the Cu electrode 12 to form the Cu—Sn alloy layer 21.

このように、実施形態の方法で製造された半導体装置1Aの接合部33は、回路基板10上のCu電極12とリフロー後のはんだ層27の間に、金属粒子の焼結体31とAgリッチな合金層32を含む中間層35を有する点で、一回のリフローで製造された半導体装置の接合部133とは異なる構成を有する。   As described above, the bonding portion 33 of the semiconductor device 1A manufactured by the method of the embodiment includes the metal particle sintered body 31 and the Ag rich between the Cu electrode 12 on the circuit board 10 and the solder layer 27 after reflow. The semiconductor device has a configuration different from that of the junction portion 133 of the semiconductor device manufactured by one reflow in that the intermediate layer 35 including the alloy layer 32 is included.

リフロー溶解した金属層(はんだ)25と金属粒子30の焼結体31が合金化することで、接合部33が強固になり、応力による破断に対しても耐性を有する。   When the reflow-melted metal layer (solder) 25 and the sintered body 31 of the metal particles 30 are alloyed, the joint portion 33 becomes strong and has resistance to breakage due to stress.

図5は、実施形態の方法及び構成の効果を示す図である。半導体チップ20の接続端子26の先端の金属層25を形成するはんだ材料と、金属粒子30の材料を変えて、焼結による仮固定の後にリフローを行った場合と、仮固定を行わないで1回のリフロー加熱を行った場合の導通試験の結果を比較する。   FIG. 5 is a diagram illustrating the effects of the method and configuration of the embodiment. When the solder material for forming the metal layer 25 at the tip of the connection terminal 26 of the semiconductor chip 20 and the material of the metal particles 30 are changed and reflowing is performed after temporary fixing by sintering, 1 is performed without performing temporary fixing. Compare the results of the continuity test when reflow heating is performed.

導通試験では、異なるサンプル1〜6を10個ずつ作製し、導通を得ることができなかったサンプルの割合を導通チェック結果として示している。サンプルの寸法はすべて、図3と関連して述べた半導体チップ20のサイズ、Cuピラー22のサイズとピッチ、回路基板10のサイズとCu電極12サイズで統一されている。   In the continuity test, ten different samples 1 to 6 were produced, and the ratio of the samples that could not obtain continuity was shown as a continuity check result. All the sample dimensions are the same as the size of the semiconductor chip 20, the size and pitch of the Cu pillar 22, the size of the circuit board 10, and the size of the Cu electrode 12 described in connection with FIG. 3.

サンプル1では、Cuピラー22の先端にSn-3.5Agで金属層25を形成し、仮固定用の金属ペーストとしてAgペーストを用いている。150℃で第1加熱を行ってAgペーストを焼結させ、その後、ピーク温度260℃で第2加熱(リフロー加熱)を行って接合した。サンプル1の導通チェック結果は、10個のサンプルのすべてで導通をとることができ、不良の発生はゼロである。   In Sample 1, a metal layer 25 is formed of Sn-3.5Ag at the tip of the Cu pillar 22, and an Ag paste is used as a temporary fixing metal paste. The first heating was performed at 150 ° C. to sinter the Ag paste, and then the second heating (reflow heating) was performed at the peak temperature of 260 ° C. to join. As for the continuity check result of sample 1, continuity can be obtained in all of the ten samples, and the occurrence of defects is zero.

サンプル2では、金属層25のはんだ材料はサンプル1と同じであるが、仮固定用の金属ペーストを塗布せず、仮固定なしでリフロー加熱のみを行っている。サンプル2の導通チェック結果は、10個中6個の不良が発生している。これは、半田材料のリフローだけではチップ10の反りを吸収することができず、接触不良が発生したためと考えられる。   In the sample 2, the solder material of the metal layer 25 is the same as that in the sample 1, but the metal paste for temporary fixing is not applied and only reflow heating is performed without temporary fixing. In the continuity check result of sample 2, 6 out of 10 defects have occurred. This is presumably because the warpage of the chip 10 cannot be absorbed only by reflow of the solder material, and contact failure occurred.

サンプル3では、Cuピラー22の先端にSn-3Ag-0.5Cuで金属層25を形成し、仮固定用の金属ペーストとしてAuペーストを用いている。200℃で第1加熱を行ってAuペーストを焼結させ、その後、ピーク温度260℃で第2加熱(リフロー加熱)を行って接合した。サンプル3の導通チェック結果は、10個のサンプルすべてで導通をとることができ、不良の発生はゼロである。   In Sample 3, a metal layer 25 is formed of Sn-3Ag-0.5Cu at the tip of the Cu pillar 22, and Au paste is used as a temporary fixing metal paste. The first heating was performed at 200 ° C. to sinter the Au paste, and then the second heating (reflow heating) was performed at the peak temperature of 260 ° C. to join. The continuity check result of sample 3 can be continuity in all ten samples, and the occurrence of defects is zero.

サンプル4では、金属層25のはんだ材料はサンプル3と同じであるが、仮固定用の金属ペーストを塗布せず、仮固定のための焼結なしで、リフロー加熱のみを行っている。サンプル4の導通チェック結果は、10個中5個の不良が発生している。   In the sample 4, the solder material of the metal layer 25 is the same as that in the sample 3, but only the reflow heating is performed without applying the temporary fixing metal paste and without sintering for the temporary fixing. As for the continuity check result of sample 4, 5 out of 10 defects have occurred.

サンプル5では、Cuピラー22の先端にSn-0.75Cuで金属層25を形成し、仮固定用の金属ペーストとしてCuペーストを用いている。200℃で第1加熱を行ってCuペーストを焼結させ、その後、ピーク温度265℃で第2加熱(リフロー加熱)を行って接合した。サンプル5の導通チェック結果は、10個のサンプルすべてで導通をとることができ、不良の発生はゼロである。   In Sample 5, a metal layer 25 is formed of Sn-0.75Cu at the tip of the Cu pillar 22, and Cu paste is used as a temporary fixing metal paste. The first heating was performed at 200 ° C. to sinter the Cu paste, and then the second heating (reflow heating) was performed at the peak temperature of 265 ° C. for bonding. As for the continuity check result of sample 5, continuity can be obtained in all 10 samples, and the occurrence of defects is zero.

サンプル6では、金属層25のはんだ材料はサンプル5と同じであるが、仮固定用の金属ペーストを塗布せず、仮固定のための焼結なしで、リフロー加熱のみを行っている。サンプル6の導通チェック結果は、10個中6個の不良が発生している。   In the sample 6, the solder material of the metal layer 25 is the same as that of the sample 5, but only the reflow heating is performed without applying the temporary fixing metal paste and without sintering for temporary fixing. In the continuity check result of sample 6, 6 out of 10 defects have occurred.

この試験結果からわかるように、基板同士を表面に形成された導体で接合する場合に、金属粒子を焼結させて基板同士を仮固定した後に、リフロー加熱を行うことによって、基板の反りを抑制して、導体間の接合を確実にすることができる。   As can be seen from the test results, when the substrates are joined with the conductors formed on the surfaces, the metal particles are sintered and the substrates are temporarily fixed, and then reflow heating is performed to suppress the warpage of the substrates. Thus, the bonding between the conductors can be ensured.

図5では、特定のはんだ材料と金属ペーストの試験結果が示されているが、3元合金、4元合金、それ以上の元素を主成分とする合金を金属層25に用いた場合でも、金属層25の融点よりも低い温度で焼結する金属粒子あるいは金属ペーストを用いて仮固定した後にリフローすることで、同様の効果が得られる。   FIG. 5 shows the test results of a specific solder material and metal paste, but even when a ternary alloy, a quaternary alloy, or an alloy mainly composed of more elements is used for the metal layer 25, the metal layer 25 The same effect can be obtained by reflowing after temporarily fixing using metal particles or metal paste sintered at a temperature lower than the melting point of the layer 25.

図6は、図2及び図3に示す方法を、3次元実装の半導体装置1Bに適用した図である。半導体装置1Bでは、回路基板51上に複数のチップ60、40a〜40dが積層されている。この例では、回路基板51上にロジックチップ60を配置し、ロジックチップ60上にメモリチップ40a〜40dを積層する。ロジックチップ60とメモリチップ40a〜40bは、シリコン貫通ビア(TSV)47により垂直配線で接続されている。ロジックチップ60とメモリチップ40a〜40dを合わせて、「チップ40」と総称する。   FIG. 6 is a diagram in which the method shown in FIGS. 2 and 3 is applied to a three-dimensionally mounted semiconductor device 1B. In the semiconductor device 1 </ b> B, a plurality of chips 60 and 40 a to 40 d are stacked on the circuit board 51. In this example, the logic chip 60 is disposed on the circuit board 51, and the memory chips 40 a to 40 d are stacked on the logic chip 60. The logic chip 60 and the memory chips 40 a to 40 b are connected to each other by a vertical wiring by a through silicon via (TSV) 47. The logic chip 60 and the memory chips 40a to 40d are collectively referred to as “chip 40”.

3次元実装は、個々の半導体チップが有する機能を変えることなく並列処理を可能にして、処理速度を上げることができる。また、チップ間の配線距離を短くできるので消費電力を低減することができる。チップ占有面積を増やさずに積層することで、実装面積当たりの性能を向上することができる。   Three-dimensional mounting enables parallel processing without changing the functions of individual semiconductor chips, and can increase the processing speed. In addition, since the wiring distance between chips can be shortened, power consumption can be reduced. By stacking without increasing the chip occupation area, the performance per mounting area can be improved.

3次元実装を行うために、チップ40iの背面(積層方向に上側の面)に、TSV47と接続する電極41が形成され、電極41上に金属粒子(あるいは金属ペースト)30が配置される。チップ40i上に配置されるチップ40i+1の素子面(積層方向に下側の面)に接続端子46が形成されている。接続端子46は、ピラー電極42の先端に接合用の金属層45を有する。金属粒子30を、金属層45の融点よりも低い温度で焼結させることで、接続端子46を下側のチップ40iの電極41に仮固定する。積層を継続する場合は、上側のチップ40i+1の背面の電極(不図示)に金属粒子30を配置して、同様の方法で仮固定を行う。   In order to perform three-dimensional mounting, an electrode 41 connected to the TSV 47 is formed on the back surface (the upper surface in the stacking direction) of the chip 40i, and metal particles (or metal paste) 30 are disposed on the electrode 41. Connection terminals 46 are formed on the element surface (the lower surface in the stacking direction) of the chip 40i + 1 disposed on the chip 40i. The connection terminal 46 has a metal layer 45 for bonding at the tip of the pillar electrode 42. By sintering the metal particles 30 at a temperature lower than the melting point of the metal layer 45, the connection terminals 46 are temporarily fixed to the electrodes 41 of the lower chip 40i. In the case of continuing the lamination, the metal particles 30 are arranged on the electrode (not shown) on the back surface of the upper chip 40i + 1 and temporarily fixed by the same method.

積層されるすべてのチップ40の仮固定を行った後に、一回のリフローで接合する。焼結温度に加熱しながらフリップチップボンダでチップを積み重ねる場合は、下側のチップ40iに上側のチップ40i+1を配置すると同時に仮固定を行うことができる。この方法は、垂直配線に高い位置合わせ精度が求められる3次元実装に有利である。また、積層全体が仮固定された状態で、一括してリフロー接合することができるので、製造工程が複雑化しない。   After all the chips 40 to be stacked are temporarily fixed, they are joined by one reflow. When stacking chips with a flip chip bonder while heating to the sintering temperature, the upper chip 40i + 1 can be placed on the lower chip 40i and simultaneously fixed temporarily. This method is advantageous for three-dimensional mounting in which high alignment accuracy is required for the vertical wiring. In addition, since the reflow bonding can be performed in a lump in a state where the entire stack is temporarily fixed, the manufacturing process is not complicated.

実施形態の方法と構成は、3次元実装に限らず、平面配線により回路基板上に混載された異種チップを接続する2.5次元実装にも適用可能である。従来の接合方法では、回路基板上に配置される各チップに局所的な反りが生じていたが、実施形態の方法と構成によると、各チップの反りを抑制して、接合を確実にすることができる。この場合も、回路基板上の所定の位置に各チップ40iを配置して、焼結による仮固定を行い、その後、一括してリフローすることで、工程の簡易さと接合の確実性を実現することができる。リフローに先立って金属粒子あるいは金属ペーストを焼結させて仮固定を行うことで、リフロー工程ではんだが溶融するまでの間に発生するチップの反りが抑制され、接続不良が低減する。特に薄型の積層チップや、端子が微細化した大面積チップを搭載する場合に、リフロー加熱時のそりを抑制して接続不良を低減することができる。   The method and configuration of the embodiment are not limited to three-dimensional mounting but can be applied to 2.5-dimensional mounting in which different types of chips mixedly mounted on a circuit board are connected by planar wiring. In the conventional bonding method, local warpage has occurred in each chip disposed on the circuit board. However, according to the method and configuration of the embodiment, the warpage of each chip is suppressed to ensure bonding. Can do. In this case as well, each chip 40i is arranged at a predetermined position on the circuit board, temporarily fixed by sintering, and then reflowed in a lump to realize the simplicity of the process and the certainty of joining. Can do. Prior to the reflow, the metal particles or the metal paste are sintered and temporarily fixed, whereby the warpage of the chip that occurs until the solder is melted in the reflow process is suppressed, and the connection failure is reduced. In particular, when a thin laminated chip or a large-area chip whose terminals are miniaturized is mounted, warping during reflow heating can be suppressed and connection failures can be reduced.

以上の説明に対し、以下の付記を提示する。
(付記1)
第1基板上の第1導体と、第2基板上の第2導体のいずれか一方に接合用の金属層を形成し、
前記第1導体と前記第2導体の間に、前記金属層の融点よりも低い焼結温度を有する金属粒子を配置して、前記第1導体と前記第2導体を重ね合わせ、
前記金属層の融点よりも低い第1温度で加熱して前記金属粒子を焼結させて前記第1導体と前記第2導体を仮固定し、
前記仮固定の後に、前記金属層の融点以上の第2温度で加熱して前記第1導体と前記第2導体を接合する、
ことを特徴とする接合方法。
(付記2)
前記仮固定は、前記第1温度での加熱の後に降温することを特徴とする付記1に記載の接合方法。
(付記3)
前記金属粒子の粒径は1μm未満であることを特徴とする付記1に記載の接合方法。
(付記4)
前記金属粒子は、Cu,Ni,Ag,Auの単体、またはこれらの二種以上の組合せであることを特徴とする付記1に記載の接合方法。
(付記5)
半導体素子の接続端子の先端に接合用の金属層を形成し、
前記接続端子と回路基板上の電極の間に、前記金属層の融点よりも低い焼結温度を有する金属粒子を配置して、前記半導体素子と前記回路基板を重ね合わせ、
前記金属層の融点よりも低い第1温度で加熱して前記金属粒子を焼結させて前記接続端子を前記電極に仮固定し、
前記仮固定の後に、前記金属層の融点以上の第2温度で加熱して、前記接続端子と前記電極を接合する
ことを特徴とする半導体装置の製造方法。
(付記6)
前記仮固定は、前記第1温度での加熱の後に降温することを特徴とする付記5に記載の半導体装置の製造方法。
(付記7)
前記重ね合わせと前記仮固定は、前記回路基板を前記第1温度で加熱しながら前記半導体素子を前記回路基板上に配置することによって同時に行うことを特徴とする付記5に記載の半導体装置の製造方法。
(付記8)
前記回路基板上に複数の前記半導体素子を前記金属粒子を間に介在させて積層し、
前記第1温度で前記金属粒子を焼結させて、複数の前記半導体素子を積層状態で仮固定し、
前記積層状態で仮固定した後に、前記第2温度での加熱を行って接合することを特徴とする付記5に記載の半導体装置の製造方法。
(付記9)
前記積層状態での仮固定は、一層積層するごとに、上層の半導体素子を下層の半導体素子に仮固定することを特徴とする付記8に記載の半導体装置の製造方法。
(付記10)
第1電極を有する基板と、
第2電極を有し、前記基板に実装される半導体素子と、
前記第1電極と前記第2電極の間に位置する接合部と、
を有し、
前記接合部は、前記第1電極との界面領域に、金属粒子の焼結体を含む中間層を有することを特徴とする半導体装置。
(付記11)
前記中間層は、前記焼結体の近傍に前記金属粒子を構成する元素の濃度が前記接合部の他の領域よりも高い合金層を有することを特徴とする付記10に記載の半導体装置。
(付記12)
前記基板は、前記半導体素子の下層に配置される別の半導体素子であることを特徴とする付記11に記載の半導体装置。
(付記13)
前記基板は、絶縁性の回路基板であることを特徴とする付記11に記載の半導体装置。
The following notes are presented for the above explanation.
(Appendix 1)
Forming a bonding metal layer on one of the first conductor on the first substrate and the second conductor on the second substrate;
Disposing metal particles having a sintering temperature lower than the melting point of the metal layer between the first conductor and the second conductor, and superimposing the first conductor and the second conductor,
Heating at a first temperature lower than the melting point of the metal layer to sinter the metal particles to temporarily fix the first conductor and the second conductor;
After the temporary fixing, the first conductor and the second conductor are joined by heating at a second temperature equal to or higher than the melting point of the metal layer.
The joining method characterized by the above-mentioned.
(Appendix 2)
The joining method according to appendix 1, wherein the temporary fixing is performed after the heating at the first temperature.
(Appendix 3)
The joining method according to appendix 1, wherein the particle size of the metal particles is less than 1 μm.
(Appendix 4)
The joining method according to appendix 1, wherein the metal particles are a simple substance of Cu, Ni, Ag, or Au, or a combination of two or more thereof.
(Appendix 5)
Form a metal layer for bonding at the tip of the connection terminal of the semiconductor element,
Between the connection terminal and the electrode on the circuit board, metal particles having a sintering temperature lower than the melting point of the metal layer are arranged, and the semiconductor element and the circuit board are overlapped,
Heating at a first temperature lower than the melting point of the metal layer to sinter the metal particles and temporarily fixing the connection terminal to the electrode;
After the temporary fixing, the connection terminal and the electrode are joined by heating at a second temperature equal to or higher than the melting point of the metal layer.
(Appendix 6)
6. The method of manufacturing a semiconductor device according to appendix 5, wherein the temporary fixing is performed after the heating at the first temperature.
(Appendix 7)
6. The manufacturing of a semiconductor device according to appendix 5, wherein the superposition and the temporary fixing are performed simultaneously by placing the semiconductor element on the circuit board while heating the circuit board at the first temperature. Method.
(Appendix 8)
Laminating a plurality of the semiconductor elements on the circuit board with the metal particles interposed therebetween,
Sintering the metal particles at the first temperature, temporarily fixing the plurality of semiconductor elements in a stacked state,
6. The method of manufacturing a semiconductor device according to appendix 5, wherein the semiconductor device is bonded by performing heating at the second temperature after being temporarily fixed in the stacked state.
(Appendix 9)
9. The method of manufacturing a semiconductor device according to appendix 8, wherein the temporary fixing in the stacked state temporarily fixes an upper semiconductor element to a lower semiconductor element every time one layer is stacked.
(Appendix 10)
A substrate having a first electrode;
A semiconductor element having a second electrode and mounted on the substrate;
A joint located between the first electrode and the second electrode;
Have
The junction unit includes an intermediate layer including a sintered body of metal particles in an interface region with the first electrode.
(Appendix 11)
11. The semiconductor device according to appendix 10, wherein the intermediate layer has an alloy layer in the vicinity of the sintered body that has a higher concentration of elements constituting the metal particles than other regions of the joint.
(Appendix 12)
The semiconductor device according to appendix 11, wherein the substrate is another semiconductor element disposed below the semiconductor element.
(Appendix 13)
The semiconductor device according to appendix 11, wherein the substrate is an insulating circuit substrate.

1A、1B 半導体装置
10、51 回路基板
12 基板側電極(Cu電極)
20,40 半導体チップ(半導体素子)
22 素子側電極(Cuピラー)
25 接合用金属層
26 接続端子
30 金属粒子
31 金属粒子の焼結体
32 合金層
33 接合部
1A, 1B Semiconductor devices 10, 51 Circuit board 12 Substrate side electrode (Cu electrode)
20, 40 Semiconductor chip (semiconductor element)
22 Element side electrode (Cu pillar)
25 Joining metal layer 26 Connection terminal 30 Metal particle 31 Sintered metal particle 32 Alloy layer 33

Claims (7)

第1基板上の第1導体と、第2基板上の第2導体のいずれか一方に接合用の金属層を形成し、
前記第1導体と前記第2導体の間に、前記金属層の融点よりも低い焼結温度を有する金属粒子を配置して、前記第1導体と前記第2導体を重ね合わせ、
前記金属層の融点よりも低い第1温度で加熱して前記金属粒子を焼結させて前記第1導体と前記第2導体を仮固定し、
前記仮固定の後に、前記金属層の融点以上の第2温度で加熱して前記第1導体と前記第2導体を接合する、
ことを特徴とする接合方法。
Forming a bonding metal layer on one of the first conductor on the first substrate and the second conductor on the second substrate;
Disposing metal particles having a sintering temperature lower than the melting point of the metal layer between the first conductor and the second conductor, and superimposing the first conductor and the second conductor,
Heating at a first temperature lower than the melting point of the metal layer to sinter the metal particles to temporarily fix the first conductor and the second conductor;
After the temporary fixing, the first conductor and the second conductor are joined by heating at a second temperature equal to or higher than the melting point of the metal layer.
The joining method characterized by the above-mentioned.
前記仮固定は、前記第1温度での加熱の後に降温することを特徴とする請求項1に記載の接合方法。   The joining method according to claim 1, wherein the temporary fixing is performed after the heating at the first temperature. 半導体素子の接続端子の先端に接合用の金属層を形成し、
前記接続端子と回路基板上の電極の間に、前記金属層の融点よりも低い焼結温度を有する金属粒子を配置して、前記半導体素子と前記回路基板を重ね合わせ、
前記金属層の融点よりも低い第1温度で加熱して前記金属粒子を焼結させて前記接続端子を前記電極に仮固定し、
前記仮固定の後に、前記金属層の融点以上の第2温度で加熱して、前記接続端子と前記電極を接合する
ことを特徴とする半導体装置の製造方法。
Form a metal layer for bonding at the tip of the connection terminal of the semiconductor element,
Between the connection terminal and the electrode on the circuit board, metal particles having a sintering temperature lower than the melting point of the metal layer are arranged, and the semiconductor element and the circuit board are overlapped,
Heating at a first temperature lower than the melting point of the metal layer to sinter the metal particles and temporarily fixing the connection terminal to the electrode;
After the temporary fixing, the connection terminal and the electrode are joined by heating at a second temperature equal to or higher than the melting point of the metal layer.
前記仮固定は、前記第1温度での加熱の後に降温することを特徴とする請求項3に記載の半導体装置の製造方法。   The method of manufacturing a semiconductor device according to claim 3, wherein the temporary fixing is performed after the heating at the first temperature. 前記重ね合わせと前記仮固定は、前記回路基板を前記第1温度で加熱しながら前記半導体素子を前記回路基板上に配置することによって同時に行うことを特徴とする請求項3に記載の半導体装置の製造方法。   4. The semiconductor device according to claim 3, wherein the superposition and the temporary fixing are simultaneously performed by arranging the semiconductor element on the circuit board while heating the circuit board at the first temperature. Production method. 前記回路基板上に複数の前記半導体素子を前記金属粒子を間に介在させて積層し、
前記第1温度で前記金属粒子を焼結させて、複数の前記半導体素子を積層状態で仮固定し、
前記積層状態で仮固定した後に、前記第2温度での加熱を行って接合することを特徴とする請求項3に記載の半導体装置の製造方法。
Laminating a plurality of the semiconductor elements on the circuit board with the metal particles interposed therebetween,
Sintering the metal particles at the first temperature, temporarily fixing the plurality of semiconductor elements in a stacked state,
The method for manufacturing a semiconductor device according to claim 3, wherein the semiconductor device is bonded by performing heating at the second temperature after being temporarily fixed in the stacked state.
第1電極を有する基板と、
第2電極を有し、前記基板に実装される半導体素子と、
前記第1電極と前記第2電極の間に位置する接合部と、
を有し、
前記接合部は、前記第1電極との界面領域に、金属粒子の焼結体を含む中間層を有することを特徴とする半導体装置。
A substrate having a first electrode;
A semiconductor element having a second electrode and mounted on the substrate;
A joint located between the first electrode and the second electrode;
Have
The junction unit includes an intermediate layer including a sintered body of metal particles in an interface region with the first electrode.
JP2013248326A 2013-11-29 2013-11-29 Bonding method and semiconductor device manufacturing method Expired - Fee Related JP6255949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013248326A JP6255949B2 (en) 2013-11-29 2013-11-29 Bonding method and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013248326A JP6255949B2 (en) 2013-11-29 2013-11-29 Bonding method and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2015106654A true JP2015106654A (en) 2015-06-08
JP6255949B2 JP6255949B2 (en) 2018-01-10

Family

ID=53436608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013248326A Expired - Fee Related JP6255949B2 (en) 2013-11-29 2013-11-29 Bonding method and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP6255949B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006512A (en) * 2016-06-30 2018-01-11 株式会社 日立パワーデバイス Semiconductor device and mobile body
WO2018207177A1 (en) * 2017-05-07 2018-11-15 Printcb Ltd. Method and kit for attaching metallic surfaces
CN109121319A (en) * 2018-08-21 2019-01-01 北京无线电测量研究所 Microwave submatrix three-dimensional stacked collapse control method, equipment and storage medium
CN112310053A (en) * 2019-08-02 2021-02-02 株式会社东芝 Semiconductor device with a plurality of semiconductor chips
WO2021131620A1 (en) 2019-12-27 2021-07-01 昭和電工マテリアルズ株式会社 Connection structure and manufucturing method therefor
WO2023106219A1 (en) * 2021-12-06 2023-06-15 株式会社ダイセル Laminate and joining member
WO2023153163A1 (en) * 2022-02-09 2023-08-17 パナソニックIpマネジメント株式会社 Flip-chip mounting structure and flip-chip mounting method
JP7463681B2 (en) 2019-09-30 2024-04-09 株式会社レゾナック Method for manufacturing joined body and joined body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146731A (en) * 2002-10-28 2004-05-20 Mitsubishi Electric Corp Manufacturing method of multilayer wiring substrate
JP2006202944A (en) * 2005-01-20 2006-08-03 Nissan Motor Co Ltd Joining method and joining structure
JP2007019360A (en) * 2005-07-11 2007-01-25 Fuji Electric Holdings Co Ltd Mounting method of electric component
JP2007083288A (en) * 2005-09-22 2007-04-05 Harima Chem Inc Forming method of conductive joint
JP2007208082A (en) * 2006-02-02 2007-08-16 Fujitsu Ltd Method of manufacturing semiconductor device
WO2009098831A1 (en) * 2008-02-07 2009-08-13 Murata Manufacturing Co., Ltd. Method for manufacturing electronic component device
JP2013102092A (en) * 2011-11-09 2013-05-23 Sekisui Chem Co Ltd Semiconductor device manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004146731A (en) * 2002-10-28 2004-05-20 Mitsubishi Electric Corp Manufacturing method of multilayer wiring substrate
JP2006202944A (en) * 2005-01-20 2006-08-03 Nissan Motor Co Ltd Joining method and joining structure
JP2007019360A (en) * 2005-07-11 2007-01-25 Fuji Electric Holdings Co Ltd Mounting method of electric component
JP2007083288A (en) * 2005-09-22 2007-04-05 Harima Chem Inc Forming method of conductive joint
JP2007208082A (en) * 2006-02-02 2007-08-16 Fujitsu Ltd Method of manufacturing semiconductor device
WO2009098831A1 (en) * 2008-02-07 2009-08-13 Murata Manufacturing Co., Ltd. Method for manufacturing electronic component device
JP2013102092A (en) * 2011-11-09 2013-05-23 Sekisui Chem Co Ltd Semiconductor device manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006512A (en) * 2016-06-30 2018-01-11 株式会社 日立パワーデバイス Semiconductor device and mobile body
WO2018207177A1 (en) * 2017-05-07 2018-11-15 Printcb Ltd. Method and kit for attaching metallic surfaces
CN109121319A (en) * 2018-08-21 2019-01-01 北京无线电测量研究所 Microwave submatrix three-dimensional stacked collapse control method, equipment and storage medium
CN112310053A (en) * 2019-08-02 2021-02-02 株式会社东芝 Semiconductor device with a plurality of semiconductor chips
JP7463681B2 (en) 2019-09-30 2024-04-09 株式会社レゾナック Method for manufacturing joined body and joined body
WO2021131620A1 (en) 2019-12-27 2021-07-01 昭和電工マテリアルズ株式会社 Connection structure and manufucturing method therefor
KR20220123241A (en) 2019-12-27 2022-09-06 쇼와덴코머티리얼즈가부시끼가이샤 Bonded structure and manufacturing method of bonded structure
WO2023106219A1 (en) * 2021-12-06 2023-06-15 株式会社ダイセル Laminate and joining member
WO2023153163A1 (en) * 2022-02-09 2023-08-17 パナソニックIpマネジメント株式会社 Flip-chip mounting structure and flip-chip mounting method

Also Published As

Publication number Publication date
JP6255949B2 (en) 2018-01-10

Similar Documents

Publication Publication Date Title
JP6255949B2 (en) Bonding method and semiconductor device manufacturing method
TWI483357B (en) Package structure
JP5991915B2 (en) Manufacturing method of semiconductor device
JP5789431B2 (en) Manufacturing method of semiconductor device
US20090090543A1 (en) Circuit board, semiconductor device, and method of manufacturing semiconductor device
JPWO2007122925A1 (en) Electronic component, electronic component device using the same, and manufacturing method thereof
JP2012209424A (en) Method of manufacturing semiconductor device
US9412715B2 (en) Semiconductor device, electronic device, and semiconductor device manufacturing method
JP2017092094A (en) Electronic device, method of manufacturing electronic device and electronic apparatus
JP2009004454A (en) Electrode structure, forming method thereof, electronic component, and mounting substrate
JP4877046B2 (en) Semiconductor device and manufacturing method thereof
JP2015008254A (en) Circuit board, method of manufacturing the same, method of manufacturing semiconductor device, and method of manufacturing mounting substrate
JP2012151487A (en) Processing method and apparatus for flat solder grid array and computer system
JP2016058526A (en) Electronic device and method of manufacturing electronic device
JP6350967B2 (en) Semiconductor device and manufacturing method thereof
JP2009009994A (en) Semiconductor device, and manufacturing method thereof
JP5848139B2 (en) Wiring board, wiring board with solder bump, and semiconductor device
JP5345814B2 (en) Mounting circuit board and semiconductor device
TW201225209A (en) Semiconductor device and method of confining conductive bump material with solder mask patch
JP2013175578A (en) Wiring board and semiconductor device
JP4065264B2 (en) Substrate with relay substrate and method for manufacturing the same
JP2002076605A (en) Semiconductor module and circuit board for connecting semiconductor device
JPH10209591A (en) Wiring board
JP2017195267A (en) Electronic device, and method for manufacturing electronic device
JP6379342B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171120

R150 Certificate of patent or registration of utility model

Ref document number: 6255949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees