JP2004146731A - Manufacturing method of multilayer wiring substrate - Google Patents

Manufacturing method of multilayer wiring substrate Download PDF

Info

Publication number
JP2004146731A
JP2004146731A JP2002312522A JP2002312522A JP2004146731A JP 2004146731 A JP2004146731 A JP 2004146731A JP 2002312522 A JP2002312522 A JP 2002312522A JP 2002312522 A JP2002312522 A JP 2002312522A JP 2004146731 A JP2004146731 A JP 2004146731A
Authority
JP
Japan
Prior art keywords
semiconductor chip
wiring substrate
electrode
bump
pad electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002312522A
Other languages
Japanese (ja)
Inventor
Yasumichi Hatanaka
畑中 康道
Seiji Oka
岡 誠次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002312522A priority Critical patent/JP2004146731A/en
Publication of JP2004146731A publication Critical patent/JP2004146731A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81191Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • H01L2224/8182Diffusion bonding
    • H01L2224/8183Solid-solid interdiffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a multilayer wiring substrate for bonding a semiconductor chip or a bumped electrode and a pad electrode on a wiring substrate firmly without storing a semiconductor chip bumped electrodes in a non-oxidizing ambient atmosphere or also without removing the oxide film or contamination on the surface of the pad electrode. <P>SOLUTION: The manufacturing method of a multilayer wiring substrate includes: a step of forming a bump electrode on a first wiring substrate; a step of forming a pad electrode on a second wiring substrate; a step of attaching metallic particulate on an end of the bump electrode; and a step of locating the first wiring substrate and the second wiring substrate oppositely, pressing while the pad electrode is put in contact with the bump electrode having the end, to which the metallic particulate is attached, and joining the pressed part by heating. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
この発明は、半導体チップや配線基板などの配線基体をお互いにフリップチップ構造で接続する多層配線基体の製造方法に関するものである。
【0002】
【従来の技術】
近年の電子機器の小形化、高密度化に伴い、半導体チップや配線基板のような配線基体が相互に接続された多層配線基体の製造方法として、半導体チップの所定位置に複数のバンプを形成し、配線基板の前記バンプと相対する位置にパット電極を形成し、前記バンプ電極と前記パッド電極とを直接に接続するフリップチップ構造の接続方法が用いられている。
【0003】
従来のフリップチップ構造を有する多層配線基体の製造方法においては、まず半導体チップに、金属細線を溶融、圧潰し、この圧潰部から延びる細線を引き切るワイヤボンディング法により、酸化膜や異物ない金属素地が露呈した凸部を有するバンプ電極を形成する。次に、配線基板に、導体パターンの要部に硬質金属を被覆し、更にその上に金の薄膜を形成することによりパット電極を形成する。そして、前記半導体チップのバンプ電極と前記配線基板のパット電極とを重合させ、加熱圧着により、バンプ電極とパット電極の金の薄膜を被覆した硬質金属との間に合金層を形成することにより、半導体チップと配線基板とを接続している(例えば特許文献1参照。)。
【0004】
【特許文献1】
特開平10−275826号公報(第3ー4頁、第4図)
【0005】
【発明が解決しようとする課題】
従来のフリップチップ構造を有する多層配線基体の製造方法においては、半導体チップは、細線を引き切ることにより酸化膜や異物ない金属素地が露呈した凸部を有するバンプ電極が形成されるため、バンプ電極形成後直ちに、半導体チップを非酸化性雰囲気中に収納し、配線基板との重合作業まで保管し、その接合性の劣化を抑える必要があるという問題があった。
また、配線基板は、真空容器に投入され、その表面に真空雰囲気中でアルゴンガスなどの原子やイオンを照射して、パッド電極表面をエッチングすることにより酸化膜や異物を除去する必要があり、多層配線基体の製造効率が低下するとの問題があった。
【0006】
この発明は、上述のような課題を解決するためになされたものであり、その目的は、バンプ電極が形成された半導体チップを、非酸化性雰囲気中に収納し配線基板との重合作業まで保管しなくても、そして、配線基板のパッド電極を真空雰囲気中でアルゴンガスなどの原子やイオンを照射して、パッド電極表面の酸化膜や異物を除去しなくても、半導体チップのバンプ電極と配線基板のパッド電極とを強固に接合できる多層配線基体の製造方法を提供することである。
【0007】
【課題を解決するための手段】
この発明にかかわる多層配線基体の製造方法は、第1の配線基体にバンプ電極を形成する工程と、第2の配線基体にパッド電極を形成する工程と、前記バンプ電極の先端部に金属の微粒子を付着する工程と、前記第1の配線基体と前記第2の配線基体とを対向させ、前記先端部に金属の微粒子を付着したバンプ電極を前記パッド電極に接触させて加圧し、この加圧部を加熱して接合する工程とを備えたものである。
【0008】
【発明の実施の形態】
実施の形態1.
図1は、この発明の実施の形態1における多層配線基体の製造方法の工程を示す断面模式図である。
図1に示すように、まず、第1の半導体チップ1表面に形成された電極パッド上に金製のバンプ電極3をワイヤボンディング法にて形成する(a)。第1の半導体チップ1は、例えば5mm四角のシリコンチップであり、バンプ電極3が96個形成されている。
次に、第2の半導体チップ2の表面には、第1の半導体チップ1のバンプ電極3と相対する位置に同数の表面が金メッキされたパッド電極4を形成する(b)。第2の半導体チップ2は、第1の半導体チップ1より大きく、例えば8mm四角のシリコンチップである。
【0009】
次に、バンプ電極3を形成した第1の半導体チップ1をヘッド5に位置決めして固定し、この第1の半導体チップ1が固定されたヘッド5を金属微粒子ペースト7が入った転写ステージ6に移動して、第1の半導体チップ1のバンプ電極先端部を金属微粒子ペースト7に浸漬する(c)。
次に、ヘッド5を移動して、バンプ電極3の先端部に金属微粒子ペースト7が転写された第1の半導体チップ1を、加熱ステージ8に位置決めして固定された第2の半導体チップ2と対向させる(d)。この時、ヘッド5は例えば200℃に加熱し、加熱ステージ8は例えば100℃に加熱する。
第1の半導体チップ1と第2の半導体チップ2とを接合する装置は、特に制限はないが、ヘッド5と加熱ステージ8とを備え、これらの加熱機能と位置決め精度の点からフリップチップボンダーが好ましい。
【0010】
次に、ヘッド5を動かし、ヘッド5に固定した第1の半導体チップ1のバンプ電極3と加熱ステージ7に固定した第2の半導体チップ2のパッド電極4とを接触させる。続いて、加熱状態を保持したまま、第1の半導体チップ1に荷重を加え、荷重が例えば、半導体チップ1個あたり5kgに達したときに、速やかにヘッド5を昇温し、例えば240℃に達したら10秒間保持し、ヘッド5により第1の半導体チップ1を加熱する。この加熱条件ではヘッド5を介してバンプ電極3とパッド電極4との接触部が200℃に加熱され、この加圧と加熱によりバンプ電極3の金と、パッド電極4表面の金メッキが固相拡散層を形成して、バンプ電極3とパッド電極4とが金属結合により接合される(e)。
【0011】
次に、第1半導体チップ1と第2半導体チップ2との間隙に、ディスペンサ(表示せず)によりアンダーフィル樹脂10を注入した後、アンダーフィル樹脂10を硬化させて(f)、第1半導体チップ1と第2半導体チップ2とを接合した多層配線基体20が完成する。アンダーフィル樹脂の使用は、第1半導体チップ1と第2半導体チップ2との接続強度を更に高め、接続信頼性を向上させる。
【0012】
本実施の形態に用いる金属微粒子ペースト7としては、金属微粒子が凝集することなく溶剤中に安定して分散しているものであれば特に制限はない。
金属微粒子としては、導電性が高い金属の、金、銀、銅、パラジウム、アルミニウム、錫などがあり、単独またはその混合物が挙げられる。このうち金、銀が、導電性と接合部の固相拡散層性が良く接合信頼性が優れているので好ましい。
金属微粒子のサイズは1〜100nmの粒子であることが好ましく、特に、金属微粒子は、表面活性が高く良好な接合を形成して接合信頼性が向上する観点から、粒径が1〜10nmのものが好ましい。
金属微粒子ペースト7には、金属微粒子、溶剤の他に、分散剤や増粘剤等を配合することも可能である。
【0013】
本実施の形態の製造方法で得られた多層配線基体のバンプ電極3とパッド電極4との接合特性の評価を以下の(A)〜(D)の手順で行った。
(A)前記製造工程における(e)工程後のバンプ電極3とパッド電極4とが接合された第1の半導体チップ1と第2の半導体チップ2とからなる多層配線基体(試験体イ)を準備する。
(B)試験体イを水酸化カリウム水溶液に浸漬し、第1の半導体チップ1のアルミパッドを溶解し、接合部にダメージを与えずに試験体イから第1の半導体チップ1を取り外す。
(C)第2の半導体チップ2に転写されたバンプ電極数を確認後、各バンプ電極のバンプシェア強度を測定する。
(D)顕微鏡にて、(B)にて取り外した第1の半導体チップ1の電極パッド部を観察し、クラック等の損傷発生の有無を確認する。
この評価において、第1の半導体チップ1に形成した全てのバンプ電極3が第2の半導体チップ2のパッド電極4に接合転写され、かつ全てのバンプ電極3のバンプシェア強度がバンプ電極1個あたり20gf以上であり、バンプ電極3とパッド電極4とが、固層拡散よる金属結合を形成していることが確認された。また、第1の半導体チップの電極パッド部にはクラック等の損傷は認められなかった。
【0014】
本実施の形態の多層配線基体の製造方法によれば、第1の半導体チップ1のバンプ電極3と第2の半導体チップ2のパット電極4との間に、表面活性の高い金属微粒子を介在させており、ワイヤボンディング法にて形成したバンプ電極の接合劣化を防止するための、バンプ電極が形成された半導体チップの非酸化性雰囲気容器での保管や、パッド電極表面の酸化物や異物を除去するための、パッド電極が形成された半導体チップのアルゴンガスなどの原子やイオンを照射によるエッチングをすることなしに、200℃の低温と、第1の半導体チップの電極パッド部にクラックを発生させない低い荷重とで、バンプ電極3とパッド電極4との間に固相拡散層による金属結合を形成でき、信頼性が高い電気的接続が可能となる。
また、半導体チップを非酸化性雰囲気容器での保管が必要なく、特別の管理が不要であり、半導体チップのパッド電極表面のエッチングが必要なく、真空雰囲気中での工程が不要となるため生産効率が向上する。
【0015】
実施の形態2.
第1の半導体チップ1のバンプ電極3の形成を、めっき方式で行った以外は、実施の形態1と同様にして多層配線基体20を製造する。
第1の半導体チップ1の電極パッド上に電気めっき方式により、縦30μm×横30μm×高さ15μmの金めっきのバンプ電極3を形成する。
【0016】
本実施の形態の製造方法で得られ多層配線基体20のバンプ電極3とパッド電極4との接合特性の評価を以下の(E)〜(G)の手順で行った。
(E)図1の(e)工程後のバンプ電極3とパッド電極4とが接合された多層配線基体(試験体ロ)を準備する。
(F)試験体ロの第1の半導体チップ1と第2の半導体チップ2とのシェア強度を測定する。
(G)シェア強度測定後、第2の半導体チップ2のパッド電極4表面を観察する。
この評価において、半導体チップのバンプ電極3のシェア強度が半導体チップ1個あたり3kgf以上であり、シェア強度を測定後、第2の半導体チップ2のパッド電極部の観察から固層拡散よる金属結合が形成していることがを確認された。
【0017】
本実施の形態における多層配線基体の製造方法においても、半導体チップの非酸化性雰囲気容器での保管や半導体チップのパッド電極表面のエッチングをすることなしに、信頼性が高い電気的接続が可能となる。
また、めっき方式では、微細なバンプ電極の形成が可能であるので、高密度な接合が可能となる。
本実施の形態では、バンプ電極の形成方法として電気めっき方式を用いたが、蒸着方式、無電解めっき方式、印刷方式、ボール搭載方式、インクジェットプリンタ方式の原理を利用し溶解した金属をジェッティングしてバンプを形成する方式などのいずれのものでも、半導体チップの非酸化性雰囲気容器での保管や半導体チップのパッド電極表面のエッチングをすることなしに、信頼性が高い電気的接続が可能となる。
【0018】
実施の形態3.
図2は、この発明の実施の形態3における多層配線基体の製造方法の工程を示す断面模式図である。
図2に示すように、本実施の形態における多層配線基体の製造方法は、まず、実施の形態1と同様にして、第1の半導体チップ1表面に形成された電極パッド上に金製のバンプ電極3をワイヤボンディング法にて形成する(a)。
次に、第2の半導体チップ2表面に、表面が金メッキされたパッド電極4を形成した後、このパッド電極4を覆うように熱硬化性樹脂層11を形成する(b)。
次に、実施の形態1と同様にして、転写ステージ6中の金属微粒子ペースト7に、第1の半導体チップ1のバンプ電極先端部を浸漬する(c)。
次に、ヘッド5に固定され、バンプ電極3の先端部に金属微粒子ペースト7が転写された第1の半導体チップ1を、加熱ステージ8に位置決めして固定された第2の半導体チップ2と対向させる(d)。
次に、第1の半導体チップ1のバンプ電極3と第2の半導体チップ2のパッド電極4とを接触させ、この接触部を実施の形態1と同じ条件で加圧加熱し、バンプ電極3とパッド電極4とを金属結合により接合する。その後、熱硬化性樹脂層11を硬化して封止樹脂層12を形成する(e)。本実施の形態の製造方法では、アンダーフィル樹脂の注入はない。
【0019】
本実施の形態の製造方法で得られ多層配線基体30のバンプ電極3とパッド電極4との接合特性の評価を以下の(H)〜(G)の手順で行った。
(H)試験体ハとして、(e)工程後の多層配線基体30を準備する。
(I)試験体ハを、テトラヒドロフランの有機溶剤中に浸漬し封止樹脂層12を溶解する。
(J)封止樹脂層12が取り除かれた試験体ハを、水酸化カリウム水溶液に浸漬し、第1の半導体チップ1のアルミパッドを溶解し、接合部にダメージを与えずに試験体ハから第1の半導体チップ1を取り外す。
(K)第2の半導体チップ2に転写されたバンプ電極数を確認後、各バンプ電極のバンプシェア強度を測定する。
(L)顕微鏡にて(J)にて取り外した第1の半導体チップ1の電極パッド部を観察し、クラック等の損傷発生の有無を確認する。
この評価において、第1の半導体チップ1に形成したすべてのバンプ電極3が第2の半導体チップ2のパッド電極4に接合転写され、かつ全てのバンプ電極のバンプシェア強度がバンプ電極1個あたり20gf以上であり、バンプ電極3とパッド電極4とが、固層拡散よる金属結合を形成していることが確認された。また、第1の半導体チップ1の電極パッド部にはクラック等の損傷は認められなかった。
【0020】
本実施の形態における多層配線基体の製造方法においても、半導体チップの非酸化性雰囲気容器での保管や半導体チップのパッド電極表面のエッチングをすることなしに、200℃の低温と、第1の半導体チップの電極パッド部にクラックを発生させない低い荷重とで、信頼性が高い電気的接続が可能となる。
それと、熱硬化性樹脂層を予め形成しておき、接合と封止を一括で行えるために、接合後アンダーフィル樹脂の注入工程がなく製造効率が向上する。また、半導体チップ間へのアンダーフィル樹脂の注入が不要なため、半導体チップ間が狭い場合にも樹脂封止可能となる。
【0021】
実施の形態4.
本実施の形態では、接合時に超音波を印加し、ヘッド5の温度を100℃一定として接合した以外は、実施の形態3と同様にして、多層配線基体30を製造する。
接合時に超音波は、例えば振幅4μmの超音波振動を0.5秒間、印加する。
本実施の形態における多層配線基体の製造方法にて得られた多層配線基体を、実施の形態3と同様の評価をした結果、第1の半導体チップ1に形成した全てのバンプ電極が第2の半導体チップに接合転写され、かつ全てのバンプ電極3のバンプシェア強度がバンプ電極1個あたり20gf以上となり、第1の半導体チップ1のパッド電極部にはクラック等の損傷は認められなかった。
【0022】
本実施の形態における多層配線基体の製造方法においても、半導体チップの非酸化性雰囲気容器での保管や半導体チップのパッド電極表面のエッチングをすることなしに、信頼性が高い電気的接続が可能となり、接合時に、超音波振動を併用することにより、接合時間が0.5秒と大幅な短縮が可能となり生産効率が向上する。
【0023】
実施の形態5.
図3は、この発明の実施の形態5における多層配線基体の製造方法の工程を示す断面模式図である。
図3に示すように、本実施の形態における多層配線基体の製造方法では、第2の半導体チップ2の替わりに、ランド14を有する配線基板13を用いた以外、実施の形態3と同様にして、多層配線基体40を製造する。
具体的には、(b)工程において、配線基板13、例えばガラスエポキシ銅張り基板に、一般の配線基板製造方法であるサブトラクティブ法によりバンプ電極接合用のランド14を形成する。ランド14の表面は金メッキがなされている。更に、配線基板13の表面に、ランド14を覆うように熱硬化性樹脂層11を形成する。
半導体チップ1にバンプ電極3を形成する(a)工程と、(c)〜(e)の工程は実施の形態3と同様である。
【0024】
本実施の形態における多層配線基体の製造方法にて得られた多層配線基体40を、実施の形態3と同様の評価をした結果、半導体チップ1に形成した全てのバンプ電極3が、配線基板13のランド14に接合転写され、かつ全てのバンプ電極3のバンプシェア強度がバンプ電極1個あたり20gf以上であり、また、配線基板13のランド14にはクラック等の損傷は認められなかった。
【0025】
本実施の形態における多層配線基体の製造方法においても、半導体チップの非酸化性雰囲気容器での保管や配線基板のランド表面のエッチングをすることなしに、信頼性が高い電気的接続が可能となる。
【0026】
なお、配線基板に複数個の半導体チップの搭載個所を設け、複数個の半導体チップを1枚の配線基板に接合しても良い。
なお、配線基板の基板材料に関して特に制限はないが、一般的なガラスエポキシ基板以外の耐熱エポキシ樹脂、ビスマレイミド・トリアジン(BT)樹脂、シアン酸エステル樹脂およびポリフェニレンエーテル等の熱可塑性樹脂を変成した基板材料など各種の基板材料が適用可能である。
また、各種のセラミックの配線基板、セラミック絶縁層と有機絶縁層を複合した配線基板およびポリイミドなどのフィルムを用いた配線基板も適用できる。
更に、異なった基板材料の配線基板の組み合わせでも良い。
【0027】
比較例1.
金属微粒子ペーストにバンプ電極3の先端部を浸漬する(c)工程を省いた以外実施の形態1と同様にして、多層配線基体を製造する。すなわち、バンプ電極3の先端部の表面に金属微粒子ペーストを転写することなしに、バンプ電極3をパッド電極4に熱圧着をする。
この比較例で得られた第1の半導体チップと第2の半導体チップとの接合体(アンダーフィル樹脂はなし)について、実施の形態1と同様にして評価した。その結果、第1の半導体チップ1に形成したすべてのバンプ電極3が第2の半導体チップ2に転写されず、200℃の低温では固層拡散よる金属結合形成ができず、信頼性が高い電気的接続が得られなかった。
【0028】
比較例2.
バンプ電極3とパッド電極4との接合条件を、半導体チップ1個あたりの荷重を15Kg、加熱ステージ温度150℃、バンプ電極3とパッド電極4との接合部の温度を温度300℃とした以外、比較例1と同様にして、多層配線基体を製造する。
この比較例で得られた第1の半導体チップ1と第2の半導体チップ2との接合体(アンダーフィル樹脂はなし)について、実施の形態1と同様にして評価した。その結果、第1の半導体チップ1に形成したバンプ電極3の70%が第2の半導体チップ2に転写され、一部のバンプ電極3は固層拡散よる金属結合を形成した。しかし、第1の半導体チップ1におけるパッド電極部の20%にクラック等の損傷が認められた。
【0029】
本比較例でのバンプ電極とパッド電極との接合では、一部のバンプ電極は金属結合を形成したが、接合条件が高温高荷重であるために半導体チップに損傷を発生した。
【0030】
【発明の効果】
この発明にかかわる多層配線基体の製造方法は、第1の配線基体にバンプ電極を形成する工程と、第2の配線基体にパッド電極を形成する工程と、前記バンプ電極の先端部に金属の微粒子を付着する工程と、前記第1の配線基体と前記第2の配線基体とを対向させ、前記先端部に金属の微粒子を付着したバンプ電極を前記パッド電極に接触させて加圧し、この加圧部を加熱して接合する工程とを備えたものであり、バンプ電極が形成された配線基体を非酸化性雰囲気容器で保管することなく、そしてパッド電極が形成された配線基体をアルゴンガスなどの原子やイオンの照射によるエッチングをすることなく、200℃の低温でバンプ電極とパッド電極との間の固相拡散により金属結合を形成でき、信頼性が高い電気的接続が可能となる。
【図面の簡単な説明】
【図1】この発明の実施の形態1における多層配線基体の製造方法を示す断面図である。
【図2】この発明の実施の形態3における多層配線基体の製造方法を示す断面図である。
【図3】この発明の実施の形態5における多層配線基体の製造方法を示す断面図である。
【符号の説明】
1 第1の半導体チップ、2 第2の半導体チップ、3 バンプ電極、4 パット電極、5 ヘッド、6 転写ステージ、7 金属微粒子ペースト、8 加熱ステージ、10 アンダーフィル樹脂、11 熱硬化性樹脂層、12 封止樹脂層、13 配線基板、14 ランド、20,30,40 多層配線基体。
[0001]
The present invention relates to a method for manufacturing a multilayer wiring substrate for connecting wiring substrates such as a semiconductor chip and a wiring substrate to each other in a flip-chip structure.
[0002]
[Prior art]
In recent years, as electronic devices have become smaller and higher in density, a method of manufacturing a multilayer wiring substrate in which wiring substrates such as semiconductor chips and wiring substrates are connected to each other has been known. A flip-chip connection method is used in which a pad electrode is formed on a wiring substrate at a position facing the bump, and the bump electrode and the pad electrode are directly connected.
[0003]
In a conventional method of manufacturing a multilayer wiring substrate having a flip-chip structure, first, a thin metal wire is melted and crushed on a semiconductor chip, and a thin metal wire extending from the crushed portion is cut by a wire bonding method. To form a bump electrode having a convex portion exposed. Next, a hard metal is coated on the main part of the conductive pattern on the wiring board, and a gold thin film is formed thereon to form a pad electrode. Then, by polymerizing the bump electrode of the semiconductor chip and the pad electrode of the wiring substrate, and by heating and pressing, an alloy layer is formed between the bump electrode and the hard metal coated with the gold thin film of the pad electrode, The semiconductor chip and the wiring board are connected (for example, see Patent Document 1).
[0004]
[Patent Document 1]
JP-A-10-275826 (pages 3-4, FIG. 4)
[0005]
[Problems to be solved by the invention]
In a conventional method for manufacturing a multilayer wiring substrate having a flip-chip structure, a semiconductor chip is formed with a bump electrode having a projection in which an oxide film or a metal base free from foreign matter is exposed by cutting a thin wire. Immediately after the formation, there is a problem that it is necessary to store the semiconductor chip in a non-oxidizing atmosphere, store the semiconductor chip until the operation of superimposing it on the wiring board, and suppress the deterioration of the bonding property.
In addition, the wiring substrate needs to be put into a vacuum vessel, and the surface thereof is irradiated with atoms or ions such as argon gas in a vacuum atmosphere to etch the pad electrode surface, thereby removing an oxide film and foreign substances. There has been a problem that the manufacturing efficiency of the multilayer wiring base is reduced.
[0006]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problem, and an object of the present invention is to store a semiconductor chip on which bump electrodes are formed in a non-oxidizing atmosphere and store the semiconductor chip until an operation of stacking with a wiring board. And without irradiating the pad electrode of the wiring board with atoms or ions such as argon gas in a vacuum atmosphere to remove oxide films and foreign substances on the pad electrode surface, and to make contact with the bump electrode of the semiconductor chip. An object of the present invention is to provide a method for manufacturing a multilayer wiring substrate capable of firmly joining a pad electrode of a wiring substrate.
[0007]
[Means for Solving the Problems]
A method of manufacturing a multilayer wiring substrate according to the present invention includes a step of forming a bump electrode on a first wiring substrate, a step of forming a pad electrode on a second wiring substrate, and a step of forming fine metal particles on the tip of the bump electrode. And pressing the first wiring base and the second wiring base in contact with each other, and bringing a bump electrode having fine metal particles attached to the tip end thereof into contact with the pad electrode to apply pressure. And a step of heating and joining the portions.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a schematic cross-sectional view showing steps of a method for manufacturing a multilayer wiring substrate according to Embodiment 1 of the present invention.
As shown in FIG. 1, first, a gold bump electrode 3 is formed on an electrode pad formed on the surface of a first semiconductor chip 1 by a wire bonding method (a). The first semiconductor chip 1 is, for example, a 5 mm square silicon chip, and has 96 bump electrodes 3 formed thereon.
Next, pad electrodes 4 having the same number of gold-plated surfaces are formed on the surface of the second semiconductor chip 2 at positions opposed to the bump electrodes 3 of the first semiconductor chip 1 (b). The second semiconductor chip 2 is larger than the first semiconductor chip 1 and is, for example, an 8 mm square silicon chip.
[0009]
Next, the first semiconductor chip 1 on which the bump electrodes 3 are formed is positioned and fixed on the head 5, and the head 5 on which the first semiconductor chip 1 is fixed is placed on the transfer stage 6 containing the metal fine particle paste 7. Then, the tip of the bump electrode of the first semiconductor chip 1 is immersed in the metal fine particle paste 7 (c).
Next, the head 5 is moved so that the first semiconductor chip 1 with the metal fine particle paste 7 transferred to the tip of the bump electrode 3 is positioned on the heating stage 8 and fixed to the second semiconductor chip 2. (D). At this time, the head 5 is heated to, for example, 200 ° C., and the heating stage 8 is heated to, for example, 100 ° C.
The apparatus for joining the first semiconductor chip 1 and the second semiconductor chip 2 is not particularly limited, but includes a head 5 and a heating stage 8, and a flip chip bonder is used in view of these heating functions and positioning accuracy. preferable.
[0010]
Next, the head 5 is moved to bring the bump electrodes 3 of the first semiconductor chip 1 fixed to the head 5 into contact with the pad electrodes 4 of the second semiconductor chip 2 fixed to the heating stage 7. Subsequently, a load is applied to the first semiconductor chip 1 while maintaining the heating state, and when the load reaches, for example, 5 kg per semiconductor chip, the temperature of the head 5 is quickly increased to, for example, 240 ° C. When reaching, the first semiconductor chip 1 is held by the head 5 and heated for 10 seconds. Under this heating condition, the contact portion between the bump electrode 3 and the pad electrode 4 is heated to 200 ° C. via the head 5, and the gold of the bump electrode 3 and the gold plating on the surface of the pad electrode 4 are solid-phase diffused by this pressurization and heating. A layer is formed, and the bump electrode 3 and the pad electrode 4 are joined by metal bonding (e).
[0011]
Next, the underfill resin 10 is injected into the gap between the first semiconductor chip 1 and the second semiconductor chip 2 by a dispenser (not shown), and then the underfill resin 10 is cured (f) to form the first semiconductor chip. The multilayer wiring substrate 20 in which the chip 1 and the second semiconductor chip 2 are joined is completed. The use of the underfill resin further increases the connection strength between the first semiconductor chip 1 and the second semiconductor chip 2 and improves the connection reliability.
[0012]
The metal fine particle paste 7 used in the present embodiment is not particularly limited as long as the metal fine particles are stably dispersed in a solvent without agglomeration.
Examples of the metal fine particles include highly conductive metals such as gold, silver, copper, palladium, aluminum, and tin, and a single metal or a mixture thereof. Among them, gold and silver are preferable because they have good conductivity and solid-phase diffusion layer properties at the junction and have excellent junction reliability.
The metal fine particles preferably have a size of 1 to 100 nm. In particular, the metal fine particles have a particle size of 1 to 10 nm from the viewpoint of forming a high surface activity and good bonding to improve bonding reliability. Is preferred.
In addition to the metal fine particles and the solvent, a dispersant, a thickener, and the like can be blended in the metal fine particle paste 7.
[0013]
Evaluation of the bonding characteristics between the bump electrode 3 and the pad electrode 4 of the multilayer wiring substrate obtained by the manufacturing method of the present embodiment was performed according to the following procedures (A) to (D).
(A) A multilayer wiring substrate (test piece a) composed of the first semiconductor chip 1 and the second semiconductor chip 2 to which the bump electrode 3 and the pad electrode 4 are bonded after the step (e) in the above manufacturing process is used. prepare.
(B) The specimen A is immersed in an aqueous potassium hydroxide solution to dissolve the aluminum pad of the first semiconductor chip 1, and the first semiconductor chip 1 is removed from the specimen A without damaging the joint.
(C) After confirming the number of bump electrodes transferred to the second semiconductor chip 2, the bump shear strength of each bump electrode is measured.
(D) Using a microscope, observe the electrode pad portion of the first semiconductor chip 1 removed in (B) and confirm whether or not damage such as a crack has occurred.
In this evaluation, all the bump electrodes 3 formed on the first semiconductor chip 1 were bonded and transferred to the pad electrodes 4 of the second semiconductor chip 2, and the bump shear strength of all the bump electrodes 3 was reduced per bump electrode. It was 20 gf or more, and it was confirmed that the bump electrode 3 and the pad electrode 4 formed a metal bond by solid layer diffusion. Also, no damage such as cracks was found in the electrode pad portion of the first semiconductor chip.
[0014]
According to the method of manufacturing a multilayer wiring substrate of the present embodiment, metal fine particles having high surface activity are interposed between bump electrode 3 of first semiconductor chip 1 and pad electrode 4 of second semiconductor chip 2. In order to prevent the bonding deterioration of the bump electrode formed by the wire bonding method, the semiconductor chip on which the bump electrode is formed is stored in a non-oxidizing atmosphere container, and oxides and foreign substances on the pad electrode surface are removed. The semiconductor chip on which the pad electrode is formed is not etched by irradiating atoms or ions such as argon gas and the like at a low temperature of 200 ° C. and no crack is generated in the electrode pad portion of the first semiconductor chip. With a low load, a metal bond can be formed between the bump electrode 3 and the pad electrode 4 by the solid phase diffusion layer, and highly reliable electrical connection can be achieved.
In addition, the semiconductor chip does not need to be stored in a non-oxidizing atmosphere container, no special management is required, the surface of the pad electrode of the semiconductor chip is not required to be etched, and the process in a vacuum atmosphere is not required. Is improved.
[0015]
Embodiment 2 FIG.
A multilayer wiring substrate 20 is manufactured in the same manner as in the first embodiment, except that the bump electrodes 3 of the first semiconductor chip 1 are formed by a plating method.
A gold-plated bump electrode 3 having a length of 30 μm, a width of 30 μm, and a height of 15 μm is formed on the electrode pad of the first semiconductor chip 1 by electroplating.
[0016]
Evaluation of the bonding characteristics between the bump electrode 3 and the pad electrode 4 of the multilayer wiring substrate 20 obtained by the manufacturing method of the present embodiment was performed according to the following procedures (E) to (G).
(E) A multilayer wiring substrate (test piece B) in which the bump electrode 3 and the pad electrode 4 after the step (e) in FIG. 1 are joined is prepared.
(F) The shear strength between the first semiconductor chip 1 and the second semiconductor chip 2 of the test body B is measured.
(G) After the shear strength measurement, the surface of the pad electrode 4 of the second semiconductor chip 2 is observed.
In this evaluation, the shear strength of the bump electrode 3 of the semiconductor chip was 3 kgf or more per semiconductor chip, and after measuring the shear strength, the pad electrode portion of the second semiconductor chip 2 was observed. It was confirmed that they had formed.
[0017]
Also in the method of manufacturing a multilayer wiring substrate according to the present embodiment, highly reliable electrical connection can be achieved without storing the semiconductor chip in a non-oxidizing atmosphere container or etching the pad electrode surface of the semiconductor chip. Become.
Further, in the plating method, since a fine bump electrode can be formed, high-density bonding can be performed.
In the present embodiment, the electroplating method is used as a method of forming the bump electrode, but the molten metal is jetted using the principles of a vapor deposition method, an electroless plating method, a printing method, a ball mounting method, and an ink jet printer method. In any of the methods such as forming bumps by soldering, highly reliable electrical connection is possible without storing the semiconductor chip in a non-oxidizing atmosphere container or etching the pad electrode surface of the semiconductor chip. .
[0018]
Embodiment 3 FIG.
FIG. 2 is a schematic sectional view showing steps of a method for manufacturing a multilayer wiring substrate according to Embodiment 3 of the present invention.
As shown in FIG. 2, in the method of manufacturing a multilayer wiring substrate according to the present embodiment, first, a gold bump is formed on an electrode pad formed on the surface of the first semiconductor chip 1 in the same manner as in the first embodiment. The electrode 3 is formed by a wire bonding method (a).
Next, after a pad electrode 4 having a gold-plated surface is formed on the surface of the second semiconductor chip 2, a thermosetting resin layer 11 is formed so as to cover the pad electrode 4 (b).
Next, as in the first embodiment, the tip of the bump electrode of the first semiconductor chip 1 is immersed in the metal fine particle paste 7 in the transfer stage 6 (c).
Next, the first semiconductor chip 1 fixed to the head 5 and having the fine metal particle paste 7 transferred to the tip of the bump electrode 3 faces the second semiconductor chip 2 fixed and positioned on the heating stage 8. (D).
Next, the bump electrode 3 of the first semiconductor chip 1 and the pad electrode 4 of the second semiconductor chip 2 are brought into contact with each other. The pad electrode 4 is joined by metal bonding. After that, the thermosetting resin layer 11 is cured to form the sealing resin layer 12 (e). In the manufacturing method of the present embodiment, no underfill resin is injected.
[0019]
Evaluation of the bonding characteristics between the bump electrode 3 and the pad electrode 4 of the multilayer wiring substrate 30 obtained by the manufacturing method of the present embodiment was performed according to the following procedures (H) to (G).
(H) The multilayer wiring substrate 30 after the step (e) is prepared as a test sample C.
(I) The specimen C is immersed in an organic solvent of tetrahydrofuran to dissolve the sealing resin layer 12.
(J) The specimen C from which the sealing resin layer 12 has been removed is immersed in an aqueous solution of potassium hydroxide to dissolve the aluminum pad of the first semiconductor chip 1 and remove the aluminum pad from the specimen without damaging the joint. The first semiconductor chip 1 is removed.
(K) After confirming the number of bump electrodes transferred to the second semiconductor chip 2, the bump shear strength of each bump electrode is measured.
(L) The electrode pad portion of the first semiconductor chip 1 removed in (J) is observed with a microscope to check for occurrence of damage such as cracks.
In this evaluation, all the bump electrodes 3 formed on the first semiconductor chip 1 were bonded and transferred to the pad electrodes 4 of the second semiconductor chip 2, and the bump share strength of all the bump electrodes was 20 gf per bump electrode. As described above, it was confirmed that the bump electrode 3 and the pad electrode 4 formed a metal bond by solid layer diffusion. Further, no damage such as cracks was observed in the electrode pad portion of the first semiconductor chip 1.
[0020]
In the method of manufacturing the multilayer wiring substrate according to the present embodiment, the low temperature of 200 ° C. and the first semiconductor temperature can be maintained without storing the semiconductor chip in a non-oxidizing atmosphere container or etching the pad electrode surface of the semiconductor chip. With a low load that does not cause cracks in the electrode pad portion of the chip, highly reliable electrical connection is possible.
In addition, since a thermosetting resin layer is formed in advance and bonding and sealing can be performed at once, there is no step of injecting an underfill resin after bonding, thereby improving the manufacturing efficiency. Further, since it is not necessary to inject the underfill resin between the semiconductor chips, resin sealing can be performed even when the space between the semiconductor chips is narrow.
[0021]
Embodiment 4 FIG.
In the present embodiment, a multilayer wiring substrate 30 is manufactured in the same manner as in Embodiment 3, except that ultrasonic waves are applied at the time of bonding and the temperature of the head 5 is kept constant at 100 ° C.
At the time of joining, ultrasonic waves having an amplitude of 4 μm are applied for 0.5 seconds, for example.
The multilayer wiring substrate obtained by the method for manufacturing a multilayer wiring substrate according to the present embodiment was evaluated in the same manner as in the third embodiment. As a result, all the bump electrodes formed on the first semiconductor chip 1 The bumps were transferred to the semiconductor chip and the bump shear strength of all the bump electrodes 3 became 20 gf or more per bump electrode. No damage such as cracks was observed in the pad electrode portion of the first semiconductor chip 1.
[0022]
Also in the method of manufacturing a multilayer wiring substrate according to the present embodiment, highly reliable electrical connection can be achieved without storing the semiconductor chip in a non-oxidizing atmosphere container or etching the pad electrode surface of the semiconductor chip. In addition, by using ultrasonic vibration at the time of joining, the joining time can be greatly reduced to 0.5 seconds, and the production efficiency is improved.
[0023]
Embodiment 5 FIG.
FIG. 3 is a schematic sectional view showing steps of a method for manufacturing a multilayer wiring substrate according to Embodiment 5 of the present invention.
As shown in FIG. 3, in the method for manufacturing a multilayer wiring substrate according to the present embodiment, a wiring substrate 13 having lands 14 is used instead of the second semiconductor chip 2 in the same manner as in the third embodiment. Then, the multilayer wiring substrate 40 is manufactured.
Specifically, in step (b), lands 14 for bump electrode bonding are formed on a wiring board 13, for example, a glass epoxy copper-clad board by a subtractive method which is a general wiring board manufacturing method. The surface of the land 14 is plated with gold. Further, the thermosetting resin layer 11 is formed on the surface of the wiring board 13 so as to cover the lands 14.
The step (a) of forming the bump electrodes 3 on the semiconductor chip 1 and the steps (c) to (e) are the same as in the third embodiment.
[0024]
The multilayer wiring substrate 40 obtained by the method for manufacturing a multilayer wiring substrate according to the present embodiment was evaluated in the same manner as in the third embodiment. As a result, all the bump electrodes 3 formed on the semiconductor chip 1 were replaced with the wiring substrate 13. And the bump shear strength of all the bump electrodes 3 was 20 gf or more per bump electrode 3, and no damage such as cracks was observed in the land 14 of the wiring board 13.
[0025]
Also in the method for manufacturing a multilayer wiring substrate according to the present embodiment, highly reliable electrical connection can be achieved without storing the semiconductor chip in a non-oxidizing atmosphere container or etching the land surface of the wiring substrate. .
[0026]
Note that a mounting position for a plurality of semiconductor chips may be provided on the wiring substrate, and the plurality of semiconductor chips may be joined to one wiring substrate.
Although there is no particular limitation on the substrate material of the wiring board, a heat-resistant epoxy resin other than a general glass epoxy substrate, a thermoplastic resin such as a bismaleimide-triazine (BT) resin, a cyanate ester resin, and a polyphenylene ether are modified. Various substrate materials such as a substrate material can be applied.
In addition, various ceramic wiring boards, a wiring board in which a ceramic insulating layer and an organic insulating layer are combined, and a wiring board using a film such as polyimide can also be applied.
Further, a combination of wiring boards of different substrate materials may be used.
[0027]
Comparative Example 1
A multilayer wiring substrate is manufactured in the same manner as in the first embodiment except that the step (c) of dipping the tip of the bump electrode 3 in the metal fine particle paste is omitted. That is, the bump electrode 3 is thermocompression-bonded to the pad electrode 4 without transferring the metal fine particle paste to the surface of the tip of the bump electrode 3.
The bonded body (without underfill resin) of the first semiconductor chip and the second semiconductor chip obtained in this comparative example was evaluated in the same manner as in the first embodiment. As a result, all of the bump electrodes 3 formed on the first semiconductor chip 1 are not transferred to the second semiconductor chip 2, and at a low temperature of 200 ° C., a metal bond cannot be formed by solid layer diffusion, and a highly reliable electric Connection was not obtained.
[0028]
Comparative Example 2.
The bonding conditions between the bump electrode 3 and the pad electrode 4 were as follows, except that the load per semiconductor chip was 15 kg, the heating stage temperature was 150 ° C., and the temperature of the junction between the bump electrode 3 and the pad electrode 4 was 300 ° C. A multilayer wiring substrate is manufactured in the same manner as in Comparative Example 1.
The joined body (without underfill resin) of the first semiconductor chip 1 and the second semiconductor chip 2 obtained in this comparative example was evaluated in the same manner as in the first embodiment. As a result, 70% of the bump electrodes 3 formed on the first semiconductor chip 1 were transferred to the second semiconductor chip 2, and some of the bump electrodes 3 formed metal bonds by solid layer diffusion. However, damage such as cracks was observed in 20% of the pad electrode portions in the first semiconductor chip 1.
[0029]
In the bonding between the bump electrode and the pad electrode in this comparative example, some of the bump electrodes formed a metal bond, but the bonding condition was high temperature and high load, and the semiconductor chip was damaged.
[0030]
【The invention's effect】
A method of manufacturing a multilayer wiring substrate according to the present invention includes a step of forming a bump electrode on a first wiring substrate, a step of forming a pad electrode on a second wiring substrate, and a step of forming fine metal particles on the tip of the bump electrode. And pressing the first wiring base and the second wiring base in contact with each other, and bringing a bump electrode having fine metal particles attached to the tip end thereof into contact with the pad electrode to apply pressure. And heating and joining the portions, without storing the wiring substrate on which the bump electrodes are formed in a non-oxidizing atmosphere container, and cleaning the wiring substrate on which the pad electrodes are formed with argon gas or the like. A metal bond can be formed by solid-phase diffusion between a bump electrode and a pad electrode at a low temperature of 200 ° C. without performing etching by irradiation of atoms or ions, and highly reliable electrical connection can be achieved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating a method for manufacturing a multilayer wiring substrate according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a method for manufacturing a multilayer wiring substrate according to Embodiment 3 of the present invention.
FIG. 3 is a sectional view illustrating a method for manufacturing a multilayer wiring substrate according to a fifth embodiment of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 first semiconductor chip, 2 second semiconductor chip, 3 bump electrode, 4 pad electrode, 5 head, 6 transfer stage, 7 metal fine particle paste, 8 heating stage, 10 underfill resin, 11 thermosetting resin layer, 12 sealing resin layer, 13 wiring board, 14 lands, 20, 30, 40 multilayer wiring base.

Claims (5)

第1の配線基体にバンプ電極を形成する工程と、第2の配線基体にパッド電極を形成する工程と、前記バンプ電極の先端部に金属の微粒子を付着する工程と、前記第1の配線基体と前記第2の配線基体とを対向させ、前記先端部に金属の微粒子を付着したバンプ電極を前記パッド電極に接触させて加圧し、この加圧部を加熱して接合する工程とを備えた多層配線基体の製造方法。A step of forming a bump electrode on the first wiring base, a step of forming a pad electrode on the second wiring base, a step of attaching metal fine particles to a tip end of the bump electrode, and a step of forming the first wiring base And the second wiring substrate are opposed to each other, and a bump electrode having fine metal particles attached to the tip is brought into contact with the pad electrode and pressurized, and the pressurized portion is heated and joined. A method for manufacturing a multilayer wiring substrate. 第1の配線基体と第2の配線基体との間に熱硬化性樹脂層を形成する工程を備えたことを特徴とする請求項1に記載の多層配線基体の製造方法。The method according to claim 1, further comprising a step of forming a thermosetting resin layer between the first wiring substrate and the second wiring substrate. 金属の微粒子が、粒径が1〜100nmの金属の微粒子であることを特徴とする請求項1に記載の多層配線基体の製造方法。The method according to claim 1, wherein the metal fine particles are metal fine particles having a particle size of 1 to 100 nm. バンプ電極の形成が、メッキにより行うことを特徴とする請求項1に記載の多層配線基体の製造方法。2. The method according to claim 1, wherein the bump electrodes are formed by plating. バンプ電極とパッド電極との接合時、前記バンプ電極と前記パッド電極との接合部に超音波を印加することを特徴とする請求項1に記載の多層配線基体の製造方法。2. The method according to claim 1, wherein an ultrasonic wave is applied to a joint between the bump electrode and the pad electrode when the bump electrode and the pad electrode are joined.
JP2002312522A 2002-10-28 2002-10-28 Manufacturing method of multilayer wiring substrate Pending JP2004146731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002312522A JP2004146731A (en) 2002-10-28 2002-10-28 Manufacturing method of multilayer wiring substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002312522A JP2004146731A (en) 2002-10-28 2002-10-28 Manufacturing method of multilayer wiring substrate

Publications (1)

Publication Number Publication Date
JP2004146731A true JP2004146731A (en) 2004-05-20

Family

ID=32457390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002312522A Pending JP2004146731A (en) 2002-10-28 2002-10-28 Manufacturing method of multilayer wiring substrate

Country Status (1)

Country Link
JP (1) JP2004146731A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083288A (en) * 2005-09-22 2007-04-05 Harima Chem Inc Forming method of conductive joint
JP2007184408A (en) * 2006-01-06 2007-07-19 Nec Corp Electrode bonding method
JP2007208082A (en) * 2006-02-02 2007-08-16 Fujitsu Ltd Method of manufacturing semiconductor device
JP2007330980A (en) * 2006-06-13 2007-12-27 Nissan Motor Co Ltd Joining method
US7367108B2 (en) 2005-12-20 2008-05-06 Fujitsu Limited Method of bonding flying leads
JP2008244191A (en) * 2007-03-28 2008-10-09 Fujitsu Ltd Method for manufacturing circuit board including built-in components
JP2009130313A (en) * 2007-11-28 2009-06-11 Nec Electronics Corp Method of manufacturing electronic apparatus
US7582553B2 (en) 2005-12-20 2009-09-01 Fujitsu Limited Method of bonding flying leads
WO2013027354A1 (en) * 2011-08-25 2013-02-28 パナソニック株式会社 Bonded body, power semiconductor device and method for manufacturing bonded body and power semiconductor device
JP2014175519A (en) * 2013-03-11 2014-09-22 Panasonic Corp Manufacturing method of circuit arrangement, mounting structure of semiconductor component and circuit arrangement
JP2015106654A (en) * 2013-11-29 2015-06-08 富士通株式会社 Joining method, method for manufacturing semiconductor device, and semiconductor device
JP2019179826A (en) * 2018-03-30 2019-10-17 東レエンジニアリング株式会社 Mounting device and mounting method
JP2019179834A (en) * 2018-03-30 2019-10-17 東レエンジニアリング株式会社 Mounting device, and mounting method and method for manufacturing semiconductor device using mounting method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007083288A (en) * 2005-09-22 2007-04-05 Harima Chem Inc Forming method of conductive joint
US7367108B2 (en) 2005-12-20 2008-05-06 Fujitsu Limited Method of bonding flying leads
US7582553B2 (en) 2005-12-20 2009-09-01 Fujitsu Limited Method of bonding flying leads
JP2007184408A (en) * 2006-01-06 2007-07-19 Nec Corp Electrode bonding method
JP4731340B2 (en) * 2006-02-02 2011-07-20 富士通株式会社 Manufacturing method of semiconductor device
JP2007208082A (en) * 2006-02-02 2007-08-16 Fujitsu Ltd Method of manufacturing semiconductor device
JP2007330980A (en) * 2006-06-13 2007-12-27 Nissan Motor Co Ltd Joining method
JP2008244191A (en) * 2007-03-28 2008-10-09 Fujitsu Ltd Method for manufacturing circuit board including built-in components
JP2009130313A (en) * 2007-11-28 2009-06-11 Nec Electronics Corp Method of manufacturing electronic apparatus
WO2013027354A1 (en) * 2011-08-25 2013-02-28 パナソニック株式会社 Bonded body, power semiconductor device and method for manufacturing bonded body and power semiconductor device
US9013029B2 (en) 2011-08-25 2015-04-21 Panasonic Intellectual Property Management Co., Ltd. Joined body having an anti-corrosion film formed around a junction portion, and a semiconductor device having the same
JP2014175519A (en) * 2013-03-11 2014-09-22 Panasonic Corp Manufacturing method of circuit arrangement, mounting structure of semiconductor component and circuit arrangement
JP2015106654A (en) * 2013-11-29 2015-06-08 富士通株式会社 Joining method, method for manufacturing semiconductor device, and semiconductor device
JP2019179826A (en) * 2018-03-30 2019-10-17 東レエンジニアリング株式会社 Mounting device and mounting method
JP2019179834A (en) * 2018-03-30 2019-10-17 東レエンジニアリング株式会社 Mounting device, and mounting method and method for manufacturing semiconductor device using mounting method
JP7103822B2 (en) 2018-03-30 2022-07-20 東レエンジニアリング株式会社 Mounting device and mounting method
JP7163047B2 (en) 2018-03-30 2022-10-31 東レエンジニアリング株式会社 Mounting apparatus, mounting method, and semiconductor device manufacturing method using the same

Similar Documents

Publication Publication Date Title
JP3891838B2 (en) Semiconductor device and manufacturing method thereof
JP5156658B2 (en) Electronic components for LSI
US8569109B2 (en) Method for attaching a metal surface to a carrier, a method for attaching a chip to a chip carrier, a chip-packaging module and a packaging module
US20100159645A1 (en) Semiconductor apparatus and process of production thereof
US7833831B2 (en) Method of manufacturing an electronic component and an electronic device
US5877079A (en) Method for manufacturing a semiconductor device and a method for mounting a semiconductor device for eliminating a void
JP2004146731A (en) Manufacturing method of multilayer wiring substrate
JPH04251945A (en) Method for electrically connecting micropoint and semiconductor device formed by the method
JP2010118534A (en) Semiconductor device and method of manufacturing same
JP3252745B2 (en) Semiconductor device and manufacturing method thereof
JP2012038790A (en) Electronic member and electronic component and manufacturing method thereof
US6245582B1 (en) Process for manufacturing semiconductor device and semiconductor component
JP2002368039A (en) Flip-chop mounting structure and method of manufacturing the same
JP2001168140A (en) Method for mounting semiconductor element and semiconductor device
JP2014146638A (en) Method of manufacturing semiconductor device
JP2005259848A (en) Semiconductor device and its manufacturing method
KR101113438B1 (en) Mounting method for the semiconductor chip
JP4031383B2 (en) Semiconductor device bonding method
JP4182611B2 (en) Manufacturing method of semiconductor device
JP2002118210A (en) Interposer for semiconductor device and semiconductor using the same
JP4285140B2 (en) Manufacturing method of semiconductor device
JP5331929B2 (en) Electronic member, electronic component and method for manufacturing the same
JP2002016104A (en) Mounting method of semiconductor device and manufacturing method of semiconductor device mounted assembly
JP2010278193A (en) Electronic component, electronic component device using the same and method of manufacturing them
JP2003100805A (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040712