TW201225209A - Semiconductor device and method of confining conductive bump material with solder mask patch - Google Patents

Semiconductor device and method of confining conductive bump material with solder mask patch Download PDF

Info

Publication number
TW201225209A
TW201225209A TW100102450A TW100102450A TW201225209A TW 201225209 A TW201225209 A TW 201225209A TW 100102450 A TW100102450 A TW 100102450A TW 100102450 A TW100102450 A TW 100102450A TW 201225209 A TW201225209 A TW 201225209A
Authority
TW
Taiwan
Prior art keywords
bump
interconnect
conductive
semiconductor
die
Prior art date
Application number
TW100102450A
Other languages
Chinese (zh)
Other versions
TWI553775B (en
Inventor
Rajendra D Pendse
Original Assignee
Stats Chippac Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/963,919 external-priority patent/US8659172B2/en
Application filed by Stats Chippac Ltd filed Critical Stats Chippac Ltd
Publication of TW201225209A publication Critical patent/TW201225209A/en
Application granted granted Critical
Publication of TWI553775B publication Critical patent/TWI553775B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/64Manufacture or treatment of solid state devices other than semiconductor devices, or of parts thereof, not peculiar to a single device provided for in groups H01L31/00 - H10K99/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/11Manufacturing methods
    • H01L2224/113Manufacturing methods by local deposition of the material of the bump connector
    • H01L2224/1133Manufacturing methods by local deposition of the material of the bump connector in solid form
    • H01L2224/1134Stud bumping, i.e. using a wire-bonding apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • H01L2224/13018Shape in side view comprising protrusions or indentations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/1301Shape
    • H01L2224/13016Shape in side view
    • H01L2224/13018Shape in side view comprising protrusions or indentations
    • H01L2224/13019Shape in side view comprising protrusions or indentations at the bonding interface of the bump connector, i.e. on the surface of the bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13082Two-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/27Manufacturing methods
    • H01L2224/27011Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature
    • H01L2224/27013Involving a permanent auxiliary member, i.e. a member which is left at least partly in the finished device, e.g. coating, dummy feature for holding or confining the layer connector, e.g. solder flow barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8138Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/81385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Abstract

A semiconductor device has a semiconductor die having a plurality of die bump pad and substrate having a plurality of conductive trace with an interconnect site. A solder mask patch is formed interstitially between the die bump pads or interconnect sites. A conductive bump material is deposited on the interconnect sites or die bump pads. The semiconductor die is mounted to the substrate so that the conductive bump material is disposed between the die bump pads and interconnect sites. The conductive bump material is reflowed without a solder mask around the die bump pad or interconnect site to form an interconnect structure between the semiconductor die and substrate. The solder mask patch confines the conductive bump material within the die bump pad or interconnect site. The interconnect structure can include a fusible portion and non-fusible portion. An encapsulant is deposited between the semiconductor die and substrate.

Description

201225209 六、發明說明: 【優先權主張】 本申請案是2009年12月8曰申請的美國申請案號 12/633,53 1的一部分接續案,並且根據美國專利法第12〇 條主張前述基礎申請案的優先權。 【發明所屬之技術領域】 本發明係大致有關於半導體裝置,並且更具體而言係 有關於一種利用焊料遮罩補片(patch)在回焊期間局限導電 凸塊材料的半導體裝置及方法。 【先前技術】 半導體裝置吊見於現代的電子產品中。半導體裝置在 電性構件的數目及密度上有所不同^離散的半導體裝置一 般包含一種類型的電氣構件,例如,發光二極體(led)、小 信號的電晶體、電阻器、電容器、電感器以及功率金屬氧 化物半導體場效電晶體(M〇SFE1>積體化半導體裝置通常 包含數百個到數百萬個電性構件。積體化半導體褒置的例 子包含微控制器、微處理器、電荷輕合裝置(ccd)、太陽能 電池以及數位微鏡裝置(DMD)。 半導體裝置可執行廣大範圍 高速的計算、傳送及接收電磁信 太陽光成為電力以及產生用於電 半導體裝置可見於娛樂、通訊、 的功能’例如:信號處理、 號、控制電子裝置、轉換 視顯示器之可見的投影。 電力轉換 '網路、電腦以 4 201225209 及消費性產品的領域中。半導體穸 * 干等體裒置亦可見於軍事應用 工、汽車、工業用控制器以及辦公室設備。 半導體裝置係利用半導體材料的電氣特性。半導體材 料的原子結構係容許其導電度可藉由電場或基極電流的施 加或是透過摻雜的製程來操控。摻雜係將雜質引入半導體 材料中以操控及控制半導體裝置的導電度。 -半導體裝置係包含主動及被動的電氣結構。包含雙 载子及場效電晶體的主動結構係控制電流的流動。藉由改 變摻雜的程度以及電場或基極電流施加的位準,電晶體不 疋提升就是限制電流的流動。包含電阻器、電容器及電感 器的被動結構係產生執行各種電氣功能所必要的一種電壓 及電流間之關係。被動及主動結構係電連接以形成電路, 此係使得半導體裝置能夠執行高速的計算以及其它有用的 功能。 半導體裝置一般是利用兩種複雜的製程,亦即,前端 製造及後端製造來製成,每一種都牽涉到可能有數百道的 步驟。前端製造係牵涉到在半導體晶圓的表面上複數個晶 粒的形成。每個晶粒通常是相同的並且包含由電連接主動 及被動構件所形成的電路。後端製造係牽涉到從晶圓成品 單切(singulating)個別的晶粒及封裝該晶粒以提供結構的支 撐及環境的隔離。 半導體製造的一項目標是生產出更小的半導體裝置。 越小的裝置通常消耗更低的電力,具有更高的效能,並且 可更有效率地被生產出。此外’越小的半導體裝置具有更 201225209 小的覆蓋區(footprint),j;[•在生 匕係為更小的最終產品所期 更小的晶粒尺寸可囍ώA 丨切里的。 在則力而製程中以更小及更高密 主動及被動構件來產生曰抑从并* 门在度的 ^ , , 座生日日粒的改良而達成。後端製程可藉 由在電氣互連及封裝材料 稽 衣何科上的改良以產生更小的 半導體裝置封裝。 復盈k之 圖!及2係料覆晶類型半導體晶粒1()的__部份 冶金且電連接在半導體晶粒1()上所形成的凸塊墊^其 板30上所形成的線路導線2〇及22之間的互連或凸塊& 的橫截面圖及俯視圓。線路導線22係繞線在基板3〇上的 線路導線2〇及凸塊12之間。線路導線20及22是且有選 配的用於配接到凸塊12_14的凸塊墊之電氣信號導體。焊料 遮罩26隸蓋線路導線2G及22。料料或對準開口 (SRO)28係形成在基板3〇之上以露出線路導線2〇及& SRO 28係在回焊期間局限導電凸塊材料在線路導線2〇及 22的凸塊墊上並且避免熔化的凸塊材料滲到該些線路導線 之上此可旎會造成至相鄰結構的電氣短路。sr〇 28係被 做成大於線路導線或凸塊墊。SR0 28在形狀上典型是圓形 的並且做成儘可能小的,以縮小線路導線2〇及22的間距 並且增加繞線密度。 在典型的设sf規則中,線路導線3 〇之最小的逸散間距 是藉由P=(l.lD+W)/2+L所界定,其中d是凸塊基底直徑, W是線路線寬’並且L是在SRO及相鄰結構間的孔帶 (ligament)間隔。利用上30微米(μηι)的焊料對準設計規則、 ΙΟΟμπι的D、20μιη的W、以及L的30μιη,線路導線3〇_34 201225209 之最小的逸散間距是(1 1 *100+20)/2+30=95μηι。在該些凸塊 墊周圍的SRO 28係限制了逸散間距及半導體晶粒的繞線密 度0 【發明内容】 對於最小化線路導線的逸散間距以得到較高的繞線密 度係存在著需求。於是,在一實施例中,本發明是一種製 造半導體裝置之方法,其係包括以下步驟:提供具有複數 個晶粒凸塊墊的半導體晶粒;提供具有帶有互連位置的複 數個導電線路的基板;在該些晶粒凸塊墊或互連位置間的 空隙形成焊料遮罩補片;在該些互連位置或晶粒凸塊墊上 沉積導電凸塊材料;將該半導體晶粒安裝至該基板以使得 該導電凸塊材料被設置在該些晶粒凸塊墊及互連位置之 間;在該晶粒凸塊墊或互連位置周圍沒有焊料遮罩下回焊 該導電凸㈣料以在該半導體晶粒及基板之間形成互連結 構;以及在該半導體晶粒及基板之間沉積封裝材料。該^ 料遮罩補片係將該導電凸塊材料局限在該晶粒凸塊墊或互 連位置内。 在另一實施例中,本發明是一種製造半導體裝置之方 法,其係包括以下步驟:提供具有複數個第一互連位置的 第一半導體結構;提供具有複數個第二互連位置的第二半 導體結構;在該些第一互連位置或第二互連位置之間形成 焊料遮罩補片;在該些第一及第二互連位置之間沉積導電 凸塊材料;從該導電凸塊材料形成互連結構以連结㈣— 7 201225209 及第二半導體結構;以及在該第一及第二半導體 沉積封裝材料。該焊料遮罩# θ 罩補片係將该導電凸塊材料局限 在°亥些第一互連位置或第二互連位置内。 在實施例中,本發明是—種製造_半導體裝置之 方法、、係包括以下步驟··提供具有複數個第一互連位置 的第一半導體結構;提供具有複數個第二互連位置的第二 半導體結構;在該些第一互連 < ,i 弟一互連位置之間开多 成焊料遮罩補片,·以及形成互連結構以連結該第―及第二 半導體結構。該焊料遮罩補片係將該互連結構局限在該些 第一互連位置或第二互連位置内。 在另一實施例中,本發明是一種半導體裝置,其係包 括具有複數個第-互連位置的第一半導體結構以及具有複 數個第二互連位置的第二半導體結構。焊料遮罩補片係形 成在該些第-互連位置或第二互連位置之間。互連結構係 連結該第-及第二半導體結構。該焊料遮罩補片係將該互 連結構局限在該些第一互連位置或第2互連位置内。封裝 材料係沉積在該第一及第二半導體結構之間。 【實施方式】 本發明在以下參考圖式的說明中係以一或多個實施例 加以描述,其中相同元件符號代表相同或類似元件。儘管 本發明是依據達成本發明目的之最佳模式描述,但熟習此 項技術者將瞭解本發明欲涵蓋如隨附申請專利範圍所界定 之可内含於本發明之精神及範疇内的替代物、修改及等效 201225209 物以及如以下揭示内容及圖式所支持之其等效物。 半導體裝置一般是使用兩個複雜的製程來製造〔前端 製造與後端製造。前端製造係牵涉到在半導體晶圓表面上 形成多個晶粒。該晶圓上之各晶粒含有主動及被動電性構 件〃係電連接以形成功能電路。諸如電晶體及二極體之 主動電性構件係具有控制電流流動之能力。諸如電容器、 電感器、電阻器及變壓器之被動電性構件係產生執行電路 功能所必要的一種電壓及電流間之關係。 被動及主動構件藉由一系列製程步驟形成於半導體晶 圓表面上,包括摻雜、沉積、微影、蝕刻及平坦化。摻雜 係藉由諸如離子植入或熱擴散之技術將雜質引入半導體材 料中。摻雜製程改變主動裝置中半導體材料之導電度,從 而將該半導體材料轉變成絕緣體、導體,或是響應於電場 或基極電流而動態地改變該半導體材料之導電度。電晶體 含有摻雜類型及程度不同之區域,其視需要來加以配=以 使該電晶體能夠在施加電場或基極電流時促進或限制電流 流動。 主動及被動構件係由具有不同電特性之材料層形成。 該等層可藉由多種沉積技術形成,該些沉積技術部分是由 所,積之材料類型決定的。舉例而言,薄膜沉積可包括化 學氣相沉積(CVD)、物理氣相沉積(pVD)、電解的電鍍及無 電的電錄製程。每個層—般是經圖案化以形成主動構件、 被動構件或各構件間電連接的部分。 該些層可使用微影進行圖案化,其牽涉到使光敏材料 9 201225209 先阻)沉積於待圆案化的層之上❶ 罩轉印於光阻上 使用先以將圓案自光 上。使用一溶劑移除光 露出待圓案化之丁思加、 回系曝先之部分, ^ ^ ^ 下層邛为。移除該光阻之其餘部分,留下 一經圖案化的層。哎去,坌敁#s丨 刀留下 的電铲及雷魅二材料係使用諸如無電 沉積/㈣1 技術藉由使材料直接沉積於由先前 魏刻製程所形成的區域或空隙中而加以圓宰化。 案:見=之上沉積一材料薄膜可能會放大下面的圖 翻 :二平坦的表面。生產較小且較密集封裝之主 圓表面移除材料且表:使:… 座生均勺+坦的表面。平坦化係牽涉到 用拋光塾拋光晶圓的表面。在抛光期間將研磨材料及腐蝕 性化學品添加至晶圓的表面。研磨劑的機械作用與化學。 的腐钮作用組合可移除任何不規則的表面構形從而產生 均勻平坦的表面。 “後端製造係指將晶圓成品切割或單切成個別晶粒且接 者封裝該晶粒以提供結構的支撐及環境的隔離。為了單切 晶粒’沿著晶圓非功能區(稱為切割道或劃線)將晶圓劃痕並 切斷。使用雷射切割工具或鋸條單切晶圓。在單切之後, 將個別晶粒安裝於—封裝基板上’該封裝基板包括接腳或 接觸塾以供與其他系統構件互連。接著使半導體晶粒上所 形成之接觸墊連接至封裝内之接觸墊。該電連接可由焊料 凸塊、柱形凸塊、導電膏或焊線(wirebond)形成。使一封裝 材料或其它模製材料沉積於封裝之上以提供物理支樓及電 隔離。接著將成品封裝插入一電系統中,且使半導體裴置 10 201225209 之功能可供其他系統構件利用。 圖3係描繪具有多個安裝於其表面上之半導體封裝的 晶片《基板或印刷電路板(pcB)52之電子裝! Μ。視應 用而疋電子裝置50可具有一種類型之半導體封裝或多種 類型之半導體封裝。不同類型之半導體封裝係為了說明之 目的而展示於圖3中。 電子裝置5G可以是—使用該些半導體封裝以執行一或 夕種電功此之獨立的系'統。或者,電子裝置Μ可以是一較 大系統之子構件。舉例而言,電子裝£5〇可以是行動電話、 個人數位助理(PDA)、數位視訊攝影機⑺V。)、或是直它電 子通訊裝置的-部份。或者是,電子裝置50可以是二可插 入電腦中之顯示卡、網路介面卡或其他信號處理卡。該半 導體封裝可包括微處理器、記憶體、特殊應用積體電路 (ASIC)、邏輯電路、類比電路、rf電路、離散裝置或其他 半導體晶粒或電性構件。小型化及重量減輕是這些產品能 夠被市場接受所不可少的。在半導體裝置間的距離必須縮 短以達到更高的密度。 、、 在圖3中,PCB 52係提供一般的基板以供安裝在該pcB ^半導體封裝的結構支樓及電氣互連。導電的信號線路 =糸利用蒸鍍、電解的電鑛、無電的電鑛、網版印刷、或 其^適合的金屬沉積製程而被形成在PCB 52的一表面之上 ^ ^ ^層内。信號線路54提供在半導體封裝、安裝的構件' 以,其它外部的系統構件的每-個之間的電通訊。線路54 亦提供電源及接地連接給每個半導體封裝。 11 201225209 在某些實施例中,-半導體裝置具有兩個封裝層級。 第-層級的封裝是一種用於將半導體晶粒機械及電氣地附 接至-中間載體的技術。第二層級的封裝係牵涉到將該中 間載體機械及電氣地附接至PCB。在其它實施例中,一半 導體裝置可以只有該第一層級的封裝,其中晶粒是直接機 械及電氣地安裝到PCB上。 為了說明之目的,包含打線接合封裝%及覆晶58之 數種類型的第-層級的封裝係被展示在咖52上。此外, 包含球狀柵格陣列(BGA)6G、凸塊晶片載體(Bee)。、雙排 型封裝(DIP)64、平台柵格陣列(LGA)66、多晶片^組 (MCM)68、四邊扁平無引腳封裝(QFN)7〇及四邊扁平封裝 Μ之數種類型的第二層級的封裝係被展示安裝在pcB ^ ^。視系統需求而定,以第一及第二層級的封裝類型的任 …组合來組態的半導體封裝的任何組合及其它電子構件可 連接至PCB 52。在某些實施例中,電子裝置5〇包含 接的:導體封裝’而其它實施例需要多個互連的封裝。藉 由在單-基板之上組合一或多個半導體封裝,製造商 預製的構件納入電子裝置及系統中。由於半導體封裝包括 複雜的功能,因此可使用較便宜構件及流線化製程來製造 電子裝置。所產生的裝置不太可能發生故障且製造費用較 低,從而降低消費者成本。 圖4a-4C係展示範例的半導體封裝。圖4a係描繪 :PCB52上的跡64之進一步的細節。半導體晶粒 括3有類比或數位電路的主動區域,該些類比或數位 12 201225209 電路係被實施為形成在晶粒内之主動裝置、被動裝置、導 電層及介電層並且根據該晶粒的電設計而電互連。例如, 該電路可包含形成在半導體晶粒74的主動區域内之一或多 個電晶體、二極體、電感器、電容器、電阻器、以及其: 電路7G件。接觸墊76是一或多層的導電材料,例如鋁(A1)、 銅(Cu)、錫(Sn)、鎳(Ni)、金(Au)或銀(Ag),並且電連接至 形成在半導體晶粒74内之電路元件。在Dip Μ的組裝期 間’半導體晶粒74係利用—金碎共晶層或例如是熱環氧樹 脂的黏著劑材料而被安裝至-中間載冑78。封裝主體係包 含-種例如是聚合物或陶瓷的絕緣封裝材料。導線⑼及焊 線82係在半導體晶粒74及pCB52之間提供電互連。封裝 材料84係為了環境保護而沉積在該封裝之上以防止濕氣及 微粒進入該封裝且污染晶粒74或焊線82。 圖4b係描繪安裝在pCB 52上之Bcc 62的進一步細 節。半導體晶粒88係、利用—種底膠填充或是環氧樹脂點著 材料92而被安裝在載體9〇之上。焊線94係在接觸墊% 及98之間提供第-層級的封裝互連。模製化合物或封裝材 料1〇〇係沉積在半導體晶本立88及焊線94之上以提供物理 支撐及電氣隔離給該裝置。接觸墊1〇2係利用一例如是電 解的電鐘或無電的電鍵之合適的金屬沉積製程而被形成在 PCB 52的-表面之上以避免氧化。接觸墊1〇2係電連接至 PCB52㈣-或多個導電信號線路M。凸塊1〇4係形成在 BCC62的接觸墊98以及PCB52的接觸墊1〇2之間。 在圖4c中,半導體晶粒58係以覆晶型第一層級的封裝 13 201225209 方式面向下安裝到中間載體1〇6。半導體晶粒58的主動區 域1 〇 8係包含類比或數位電路,該些類比或數位電路係被 實施為根據該晶粒的電設計所形成的主動裝置、被動裝 置、導電層及介電層。例如,該電路可包含一或多個電晶 體一極體、電感器、電容器、電阻器以及主動區域108 内之其它電路元件。半導體晶粒58係透過凸塊i 10電氣及 機械地連接至載體106。 BGA60係以BGA型第二層級的封裝方式利用凸塊112 電氣及機械地連接至PCB 52〇半導體晶粒58係透過凸塊 、信號線114及凸塊112電連接至PcB 52中的導電信 號線路54。一種模製化合物或封裝材料i 16係沉積在半導 體曰S粒58及載體106之上以提供物理支撐及電氣隔離給該 裝置。該覆晶半導體裝置係提供從半導體晶粒58上的主動 裝置到PCB 52上的導電跡線之短的導電路徑,以便縮短信 號傳播距離、降低電容以及改善整體電路效能。在另一實 施例中,半導體晶粒58可在無中間載體1〇6的情況下,利 用覆晶型第一層級的封裝直接機械及電連接至PCB 52。 在另一實施例中’半導體晶粒58的主動區域1 〇8係直 接向下安裝到PCB 115,亦即,在無中間載體下直接向下安 裝,即如同在圖4d中所示者。凸塊墊丨丨丨係利用一蒸鍍、 電解的電鍍、無電的電鍍、網版印刷或其它合適的金屬沉 積製程而形成在主動區域1〇8上。凸塊墊ηι係藉由主動 區域108中的導電跡線以連接至主動及被動電路。凸塊墊 Π 1可以是Al、Sn、Ni、Au、Ag或Cu。一導電凸塊材料 14 201225209 係利用-錢、電解的電鑛、無電的電鑛、球式滴落(副 drop)或網版印刷製程以沉積在凸塊m戈導電跡線ιι8 之上。該凸塊材料可以是八卜Sn、Ni、Au、“、鉛州、 Bi Cu焊料及其組合,其具有一選配的助熔(fiux)材料。 例如,該凸塊材料可以是共晶Sn/pb、高㈣焊料或無船的 焊料。言亥&塊材料係利用一合適的附著或連結製程連結在 晶粒凸塊墊111及PCB 115上的導電跡線118之間。在一 實施例中,該凸塊材料係藉由加熱該材料超過其熔點來進 行回焊以形成球或凸塊1丨7。該覆晶半導體裝置係提供從半 導體晶粒58上的主動裝置到pcB 115上的導電跡線ιΐ8之 一短的導電路徑,以便於縮短信號傳播、降低電容及達成 整體較佳的電路效能。 圖5係描繪具有凸塊墊122的覆晶類型半導體晶粒12〇 的一部份的橫截面圖。線路導線13〇及132係形成在基板 136上。線路導線130及132是具有一體型(integrated)凸塊 墊138之直的電導體,即如同在圖^中所示者。該一體型 凸塊墊138係和線路導線13〇及132共線的。或者是,線 路導線130及132可具有如同在圖6b中所示之圓形的一體 型凸塊墊139、或是如同在圖6c中所示之矩形的一體型凸 塊墊140。該一體型凸塊墊典型是以一陣列來加以配置的, 以得到最大的互連密度及容量。 在圖7中,焊料遮罩142係沉積在導電線路13〇及132 的一部伤之上。然而,焊料遮罩丨42並未形成在一體型凸 塊墊138之上。因此,在基板上的每個凸塊墊都沒有如同 15 201225209 在習知技術的圖2中可見的SRO。一非濕性焊料遮罩補片 144係被形成在基板136上且在一體型凸塊墊138的陣列内 的空隙中,亦即,在相鄰的凸塊墊之間。該焊料遮罩補片 亦可形成在半導體晶粒1〇上且在晶粒凸塊墊122的陣列内 的空隙中。更一般而言,該焊料遮罩補片係被形成在任何 配置中的-體型凸塊墊附近,以避免溢出到較不濕潤的區 域。圖8係展示形成在一體型凸塊墊138之上且藉由焊料 遮罩補片144加以局限的凸塊15〇及152。 一導電凸塊材料係利用一蒸鍍、電解的電鍍、無電的 電鍍、球式滴落、或網版印刷製程沉積在晶粒凸塊墊122 或一體型凸塊墊138之上。該凸塊材料可以是八卜Sn、Ni、 Au、Ag' Pb、Bi、Cu、焊料及其組合,其具有一選配的助 熔溶劑。例如,該凸塊材料可以是共晶Sn/pb、高鉛的焊料 或無鉛的焊料。該凸塊材料係利用一合適的附著或連結製 程以連結到一體型凸塊墊138。在一實施例中,該凸塊材料 係藉由加熱該材料超過其熔點來進行回焊以形成球或凸塊 150及152。在某些應用中,凸塊15〇及152係進行二次回 焊以改善在晶粒凸塊墊122及一體型凸塊墊138間之電接 觸°亥凸塊亦可以疋壓縮連結到晶粒凸塊塾1 22及一體型 凸塊塾138。凸塊150及152係代表可形成在一體型凸塊塾 138之上的互連結構的一種類型。該互連結構亦可使用柱形 凸塊' 微凸塊、或其它電互連。 在高繞線密度的應用巾’最小化逸散間距是所期望 的。為了縮小線路導線13G* 132間的間距,該凸塊材料 16 201225209 係在-體型凸塊I 138周圍無焊料遮罩下進行回焊。在線 路導線130及132間之逸散間距可藉由消除在該一體型凸 塊塾周圍用於焊料回焊限制的焊料遮罩及相關# sr〇,亦 即’藉由在無焊料遮罩下回焊凸塊材料來加以縮小。焊料 遮罩142可形成在線路導線13〇及132以及基板136中遠 離體型凸塊塾138的一部份之上,即如同在圖7中所示 者。然而,焊料遮罩142並未形成在一體型巴㈣138之 上換。之線路導線i3〇 & i 32中被設計以和凸塊材料 配接的部份並沒有形成在焊料遮罩142中的sr〇。 此外,焊料遮罩補片144係被形成在基板136上且在 -體型凸塊墊138的陣列内的空隙中。焊料遮罩…44 是非濕性材料。焊料遮罩㈣144可以是和焊料遮罩M2 相同的材料並且在相同的處理步驟期間施加、或為不同的 材料而在不同的處理步驟期間施加。焊料遮罩補片144可 藉由對於—體型凸塊墊138的陣列内之線路或墊的部份選 擇性的氧化、電鍍、或其它處理來加以形成。焊料遮罩補 片U4係局限焊料流到一體型凸㈣138且避免導電凸塊 材料滲到相鄰的結構。 當該凸塊材料利用設置在一體型凸塊塾138的陣列内 的空隙中之焊料遮罩補# 144回焊時,潤濕及表面張力係 使得該凸塊材料被局限且保持在晶粒凸㈣122 “體型 凸塊墊138及基板136中緊鄰線路導線13〇及132且實質 在該-體型凸塊墊138的覆蓋區中的部份之間的空間内。 為了達成該所要的局限性質,凸塊材料可在置放於晶 17 201225209 粒凸塊墊122或一體型凸塊墊138上之前先被浸沒在一助 熔溶劑中’以選擇性地使得該凸塊材料所接觸的區域比線 路導線130及132周圍的區域更濕潤。該熔化的凸塊材料 係由於該助熔溶劑的可濕性而維持局限在實質由凸塊墊所 界定的區域内。該凸塊材料並不溢出到較不濕潤的區域。 一薄的氧化層或是其它絕緣層可形成在其中不打算有凸塊 材料的區域之上’以使該區域較不濕潤。因此,晶粒凸塊 墊122或一體型凸塊墊138周圍並不需要有焊料遮罩142。 由於沒有SRO被形成在晶粒凸塊墊丨22或一體型凸塊 墊138的周圍,線路導線13〇及132可用較細的間距來加 以形成,亦即,線路導線13〇及132可被設置成較靠近相 鄰的結構而不接觸且形成電氣短路。假設為相同的焊料對 準設計規則,在線路導線130及132間的間距係給定為 P = (^1D + W)/2,其中D是凸塊15〇_152的基底直徑並且 w是該線路導線130及132的寬度。在一實施例中,給定 μηι的凸塊直徑以及2〇pm的線路線寬,線路導線1 %及 132之最小的逸散間距是65μιη。該凸塊形成係免去需要考 量到如習知技術中可£的相鄰開口間之焊料遮罩材料的孔 帶間隔以及最小可解析的SR〇。 圖9-14係描述其它具有各種互連結構的實施例,該些 互連結構可應用到如圖5_8中所述之利用烊料遮罩補片= 成的互連結構。圖9a係展示—具有_種例如是石夕、錯、石中 化鎵、碟化銦或碳化石夕的主體基板材料如以供結構支撲 的半導體晶圓220。複數個半導體晶粒或構件224係形成在 18 201225209 晶圓2 2 0上且藉由如上所述的切割道2 2 6分開。 圖9b係展示半導體晶圓220的一部份的橫截面圖。每 個半導體晶粒224具有一背表面228以及包含類比或數位 電路的主動表面230’該類比或數位電路被實施為形成在該 晶粒内且根據該晶粒的電設計及功能電互連的主動果置、 被動裝置、導電層以及介電層。例如,該電路可包含一咬 多個電晶體、二極體以及其它形成在主動表面23〇内之電 路元件以實施類比電路或數位電路,例如數位信號處理器 (DSP)、ASIC、記憶體或是其它信號處理電路。半導體晶粒 224亦可包含整合被動裝置^?!)),例如電感器、電容器及 電阻器,以供RF信號處理使用。在一實施例中,半導體晶 粒224是一覆晶類型的半導體晶粒。 -導電層232係利用PVD、CVD'電解的電鍍、無電 的電鍍製程、或是其它合適的金屬沉積製程而形成在主動 表面230之上。導電層232可以是八卜Cu、如、犯、A”201225209 VI. INSTRUCTIONS: [Priority Claim] This application is part of the continuation of US Application No. 12/633, 53 1 of December 28, 2009, and claims the foregoing basis in accordance with Article 12 of the US Patent Law. Priority of the application. BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates generally to semiconductor devices and, more particularly, to a semiconductor device and method for confining conductive bump materials during solder reflow using solder mask patches. [Prior Art] Semiconductor devices are found in modern electronic products. Semiconductor devices differ in the number and density of electrical components. Discrete semiconductor devices typically include one type of electrical component, such as a light-emitting diode (LED), a small-signal transistor, a resistor, a capacitor, an inductor. And power metal oxide semiconductor field effect transistors (M〇SFE1> integrated semiconductor devices usually contain hundreds to millions of electrical components. Examples of integrated semiconductor devices include microcontrollers, microprocessors , charge coupled device (ccd), solar cell, and digital micromirror device (DMD). The semiconductor device can perform a wide range of high-speed calculations, transmit and receive electromagnetic signals, and generate electricity for the electrical semiconductor device. Communication, functions 'eg signal processing, number, control electronics, visible projection of the visual display. Power conversion 'network, computer to 4 201225209 and consumer products in the field. Semiconductor 穸 * dry etc. It can also be found in military applications, automotive, industrial controllers, and office equipment. The electrical properties of a semiconductor material. The atomic structure of a semiconductor material allows its conductivity to be manipulated by the application of an electric field or base current or by a doping process. Doping introduces impurities into the semiconductor material to manipulate and control the semiconductor. Conductivity of the device - The semiconductor device contains active and passive electrical structures. The active structure containing the bipolar and field effect transistors controls the flow of current by varying the degree of doping and the application of the electric or base current. The level of transistor growth is limited by the flow of current. The passive structure of resistors, capacitors and inductors produces a voltage and current relationship necessary to perform various electrical functions. The passive and active structures are electrically connected. Forming a circuit that enables semiconductor devices to perform high-speed calculations and other useful functions. Semiconductor devices are typically fabricated using two complex processes, namely front-end manufacturing and back-end manufacturing, each of which involves a possible number. A hundred steps. The front-end manufacturing system involves the surface of the semiconductor wafer. The formation of a plurality of dies. Each dies are generally identical and comprise circuitry formed by electrically connecting active and passive components. The back end fabrication involves singulating individual dies and packages from wafer fabrication. The die provides structural support and environmental isolation. One goal of semiconductor manufacturing is to produce smaller semiconductor devices. Smaller devices typically consume lower power, are more efficient, and are more efficient. The ground is produced. In addition, the smaller the semiconductor device has a smaller footprint of 201225209, j; [• the smaller grain size of the enamel system for the smaller final product can be 丨A 丨In the process of force and process, the smaller and higher-density active and passive components are used to produce the suppression of the ^, the birthday of the door, and the improvement of the birthday. The back-end process can be modified to produce smaller semiconductor device packages by improving the electrical interconnect and packaging materials. The picture of the complex surplus k! And the __ portion of the two-layer flip-chip type semiconductor die 1() is metallurgically and electrically connected to the bump pad formed on the semiconductor die 1 (), and the line wires 2 and 22 formed on the board 30 thereof A cross-sectional view of the interconnection or bump & The line conductors 22 are wound between the line conductors 2 and the bumps 12 on the substrate 3A. The line conductors 20 and 22 are and have an optional electrical signal conductor for mating to the bump pads of the bumps 12-14. The solder mask 26 covers the line conductors 2G and 22. A material or alignment opening (SRO) 28 is formed over the substrate 3 to expose the line conductors 2 and & SRO 28 series to limit the conductive bump material on the bump pads of the line conductors 2 and 22 during reflow. And avoiding the molten bump material from penetrating over the line conductors, which can cause electrical shorts to adjacent structures. The sr〇 28 series is made larger than the line conductor or bump pad. The SR0 28 is typically circular in shape and made as small as possible to reduce the spacing of the line conductors 2 and 22 and increase the winding density. In a typical sf rule, the minimum escape spacing of the line conductor 3 is defined by P = (l.lD + W) / 2 + L, where d is the diameter of the bump base and W is the line width 'And L is the ligament spacing between the SRO and adjacent structures. Using the upper 30 micron (μηι) solder alignment design rule, ΙΟΟμπι D, 20μηη W, and L 30μιη, the minimum escape spacing of the line conductor 3〇_34 201225209 is (1 1 *100+20)/ 2+30=95μηι. The SRO 28 system around the bump pads limits the escape pitch and the winding density of the semiconductor die. [Invention] There is a need to minimize the escape pitch of the line conductors to obtain a higher winding density. . Thus, in one embodiment, the invention is a method of fabricating a semiconductor device comprising the steps of: providing a semiconductor die having a plurality of die bump pads; providing a plurality of conductive traces having interconnected locations a substrate; forming a solder mask patch at the gap between the die bump pads or interconnect locations; depositing a conductive bump material on the interconnect locations or the die bump pads; mounting the semiconductor die to The substrate is such that the conductive bump material is disposed between the die bump pads and the interconnection locations; the conductive bumps (four) are reflowed without a solder mask around the die bump pads or interconnection locations Forming an interconnect structure between the semiconductor die and the substrate; and depositing an encapsulation material between the semiconductor die and the substrate. The solder mask patch confines the conductive bump material to the die bump pads or interconnect locations. In another embodiment, the invention is a method of fabricating a semiconductor device comprising the steps of: providing a first semiconductor structure having a plurality of first interconnect locations; providing a second having a plurality of second interconnect locations a semiconductor structure; forming a solder mask patch between the first interconnect locations or the second interconnect locations; depositing a conductive bump material between the first and second interconnect locations; from the conductive bumps The material forms an interconnect structure to bond (4)-7 201225209 and the second semiconductor structure; and depositing the encapsulation material in the first and second semiconductors. The solder mask # θ hood patch confines the conductive bump material to some of the first interconnect locations or the second interconnect locations. In an embodiment, the present invention is a method of fabricating a semiconductor device, comprising the steps of: providing a first semiconductor structure having a plurality of first interconnect locations; providing a plurality of second interconnect locations a semiconductor structure; a plurality of solder mask patches are interposed between the first interconnects, and an interconnect structure is formed to connect the first and second semiconductor structures. The solder mask patch confines the interconnect structure to the first interconnect locations or the second interconnect locations. In another embodiment, the invention is a semiconductor device comprising a first semiconductor structure having a plurality of first interconnect locations and a second semiconductor structure having a plurality of second interconnect locations. A solder mask patch is formed between the first interconnected locations or the second interconnected locations. An interconnect structure connects the first and second semiconductor structures. The solder mask patch confines the interconnect structure to the first interconnect locations or the second interconnect locations. An encapsulation material is deposited between the first and second semiconductor structures. The invention is described in one or more embodiments in the following description with reference to the drawings, wherein the same element symbols represent the same or similar elements. Although the present invention has been described in terms of the best mode of the present invention, those skilled in the art will appreciate that the invention is intended to cover alternatives as may be included in the spirit and scope of the invention as defined by the appended claims. , Modifications, and equivalents of 201225209 and equivalents as supported by the following disclosure and drawings. Semiconductor devices are typically fabricated using two complex processes [front end manufacturing and back end manufacturing. Front end manufacturing involves the formation of multiple dies on the surface of a semiconductor wafer. Each die on the wafer contains active and passive electrical components that are electrically connected to form a functional circuit. Active electrical components such as transistors and diodes have the ability to control the flow of current. Passive electrical components such as capacitors, inductors, resistors, and transformers produce a relationship between voltage and current necessary to perform circuit functions. The passive and active components are formed on the surface of the semiconductor wafer by a series of processing steps including doping, deposition, lithography, etching, and planarization. Doping introduces impurities into the semiconductor material by techniques such as ion implantation or thermal diffusion. The doping process changes the conductivity of the semiconductor material in the active device, thereby converting the semiconductor material into an insulator, a conductor, or dynamically changing the conductivity of the semiconductor material in response to an electric field or base current. The transistor contains regions of varying doping type and extent that are optionally matched to enable the transistor to promote or limit current flow when an electric or base current is applied. Active and passive components are formed from layers of material having different electrical properties. The layers can be formed by a variety of deposition techniques that are determined in part by the type of material being deposited. For example, thin film deposition can include chemical vapor deposition (CVD), physical vapor deposition (pVD), electrolytic plating, and electroless electrical recording. Each layer is generally patterned to form an active member, a passive member, or a portion that is electrically connected between the members. The layers can be patterned using lithography, which involves depositing the photosensitive material 9 201225209 on the layer to be rounded and transferring it onto the photoresist to first use the film to self-illuminate. Use a solvent to remove the light and expose the portion of the Dingsi, which is to be rounded, and the first part of the system. ^ ^ ^ The lower layer is 。. The rest of the photoresist is removed leaving a patterned layer.哎,坌敁#s 丨 留下 的 及 及 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷 雷Chemical. Case: Seeing a film deposited on top of the material may magnify the image below: two flat surfaces. Produce a smaller and denser packaged main round surface to remove material and table: Make: ... the seat is scoop + tanned surface. The planarization involves polishing the surface of the wafer with a polishing pad. Abrasive materials and corrosive chemicals are added to the surface of the wafer during polishing. The mechanical action and chemistry of the abrasive. The combination of the button action removes any irregular surface configuration resulting in a uniformly flat surface. “Back-end manufacturing refers to cutting or simply cutting a finished wafer into individual dies and encapsulating the dies to provide structural support and environmental isolation. For single-cut dies' along the non-functional area of the wafer The wafer is scratched and cut for cutting or scribing. The wafer is cut by a laser cutting tool or a saw blade. After the single cutting, the individual die is mounted on the package substrate. Or contacting the germanium for interconnection with other system components. The contact pads formed on the semiconductor die are then connected to the contact pads in the package. The electrical connections may be by solder bumps, stud bumps, conductive paste or bonding wires ( Wirebond) is formed by depositing a packaging material or other molding material on the package to provide physical support and electrical isolation. The finished package is then inserted into an electrical system, and the function of the semiconductor device 10 201225209 is available for other systems. Figure 3 is a depiction of a wafer "substrate or printed circuit board (pcB) 52 having a plurality of semiconductor packages mounted on its surface. The electronic device 50 may have one type depending on the application. A semiconductor package or a plurality of types of semiconductor packages. Different types of semiconductor packages are shown in Fig. 3 for illustrative purposes. The electronic device 5G may be an independent system that uses the semiconductor packages to perform one or one kind of electrical work. Alternatively, the electronic device can be a sub-component of a larger system. For example, the electronic device can be a mobile phone, a personal digital assistant (PDA), a digital video camera (7) V, or a direct electronic device. A portion of the communication device. Alternatively, the electronic device 50 can be a display card, a network interface card, or other signal processing card that can be inserted into a computer. The semiconductor package can include a microprocessor, a memory, and a special application integrated body. Circuits (ASICs), logic circuits, analog circuits, rf circuits, discrete devices or other semiconductor die or electrical components. Miniaturization and weight reduction are essential for these products to be accepted by the market. The distance between semiconductor devices must be Shortened to achieve higher density. In Figure 3, PCB 52 provides a general substrate for mounting in the junction of the pcB ^ semiconductor package. Branches and electrical interconnections. Conductive signal lines = 形成 formed on a surface of PCB 52 by evaporation, electrolytic electrowinning, electroless ore, screen printing, or a suitable metal deposition process thereof Within the layer, the signal line 54 provides electrical communication between the semiconductor package, the mounted component, and each of the other external system components. The line 54 also provides power and ground connections to each semiconductor package. 201225209 In certain embodiments, the semiconductor device has two package levels. The first level package is a technique for mechanically and electrically attaching a semiconductor die to an intermediate carrier. A second level of package is involved. To the intermediate carrier is mechanically and electrically attached to the PCB. In other embodiments, a semiconductor device may have only the first level of packaging, wherein the die is directly mechanically and electrically mounted to the PCB. For purposes of illustration, a plurality of types of first-level packages including wire bond package % and flip chip 58 are shown on the coffee maker 52. In addition, a ball grid array (BGA) 6G and a bump wafer carrier (Bee) are included. , Double-row package (DIP) 64, platform grid array (LGA) 66, multi-chip package (MCM) 68, four-sided flat leadless package (QFN) 7-inch and four-sided flat package Μ several types of A two-level package is shown installed on pcB ^ ^. Any combination of semiconductor packages and other electronic components configured in any combination of package types of the first and second levels may be coupled to PCB 52, depending on system requirements. In some embodiments, the electronic device 5A includes a conductor package and other embodiments require a plurality of interconnected packages. Manufacturers prefabricated components are incorporated into electronic devices and systems by combining one or more semiconductor packages on a single-substrate. Since semiconductor packages include complex functions, electronic devices can be fabricated using less expensive components and streamlined processes. The resulting device is less likely to fail and is less expensive to manufacture, thereby reducing consumer costs. 4a-4C show an exemplary semiconductor package. Figure 4a depicts further details of trace 64 on PCB 52. The semiconductor die includes three active regions having analog or digital circuits, and the analog or digital 12 201225209 circuit is implemented as an active device, a passive device, a conductive layer, and a dielectric layer formed in the die and according to the die Electrically designed and electrically interconnected. For example, the circuit can include one or more of a transistor, a diode, an inductor, a capacitor, a resistor, and the like: formed in the active region of the semiconductor die 74. The contact pad 76 is one or more layers of a conductive material such as aluminum (A1), copper (Cu), tin (Sn), nickel (Ni), gold (Au) or silver (Ag), and is electrically connected to the semiconductor crystal. Circuit components within the particles 74. The semiconductor die 74 is mounted to the intermediate carrier 78 during the assembly of the Dip® by means of a gold eutectic layer or an adhesive material such as a thermal epoxy resin. The package main system comprises an insulating encapsulating material such as a polymer or ceramic. Wire (9) and wire 82 provide electrical interconnection between semiconductor die 74 and pCB 52. The encapsulation material 84 is deposited over the package for environmental protection to prevent moisture and particulates from entering the package and contaminating the die 74 or bond wires 82. Figure 4b depicts a further detail of Bcc 62 mounted on pCB 52. The semiconductor die 88 is mounted on the carrier 9 by padding with a primer or epoxy resin. Wire bond 94 provides a first level of package interconnection between contact pads % and 98. A molding compound or encapsulating material 1 is deposited on the semiconductor substrate 88 and bond wires 94 to provide physical support and electrical isolation to the device. The contact pads 1 2 are formed over the surface of the PCB 52 using a suitable metal deposition process such as an electrolytic clock or an electroless bond to avoid oxidation. The contact pads 1 2 are electrically connected to the PCB 52 (four) - or a plurality of conductive signal lines M. The bumps 1〇4 are formed between the contact pads 98 of the BCC 62 and the contact pads 1〇2 of the PCB 52. In Fig. 4c, the semiconductor die 58 is mounted face down to the intermediate carrier 1〇6 in a flip-chip type first package 13 201225209. The active region 1 〇 8 of the semiconductor die 58 includes analog or digital circuitry that is implemented as an active device, a passive device, a conductive layer, and a dielectric layer formed in accordance with the electrical design of the die. For example, the circuit can include one or more of a transistor body, an inductor, a capacitor, a resistor, and other circuit components within the active region 108. Semiconductor die 58 is electrically and mechanically coupled to carrier 106 via bumps i 10 . The BGA 60 is electrically and mechanically connected to the PCB by bumps 112 in a BGA type second level package. The semiconductor die 58 is electrically connected to the conductive signal lines in the PcB 52 through the bumps, the signal lines 114 and the bumps 112. 54. A molding compound or encapsulating material i 16 is deposited over the semiconductor bismuth S particles 58 and the carrier 106 to provide physical support and electrical isolation to the device. The flip chip semiconductor device provides a short conductive path from the active device on the semiconductor die 58 to the conductive traces on the PCB 52 to reduce signal propagation distance, reduce capacitance, and improve overall circuit performance. In another embodiment, the semiconductor die 58 can be directly and mechanically and electrically connected to the PCB 52 using a flip-chip type 1 package without the intermediate carrier 1〇6. In another embodiment, the active region 1 〇 8 of the semiconductor die 58 is mounted directly down to the PCB 115, i.e., directly down without the intermediate carrier, as shown in Figure 4d. The bump pads are formed on the active regions 1 〇 8 by a vapor deposition, electrolytic plating, electroless plating, screen printing or other suitable metal deposition process. The bump pads ηι are connected to the active and passive circuits by conductive traces in the active region 108. The bump pad Π 1 may be Al, Sn, Ni, Au, Ag or Cu. A conductive bump material 14 201225209 is deposited on the bump m 导电 conductive trace ιι8 using - money, electrolyzed electromine, electroless ore, ball drop (drop) or screen printing process. The bump material may be Babu Sn, Ni, Au, ", Lead, Bi Cu solder, and combinations thereof, having an optional fiux material. For example, the bump material may be eutectic Sn /pb, high (four) solder or no-ship solder. The haihai & block material is bonded between the die bump pads 111 and the conductive traces 118 on the PCB 115 using a suitable attachment or bonding process. In the example, the bump material is reflowed by heating the material beyond its melting point to form a ball or bump 1 丨 7. The flip chip semiconductor device is provided from the active device on the semiconductor die 58 to the pcB 115. One of the conductive traces ι 8 has a short conductive path to facilitate signal propagation, reduce capacitance, and achieve overall better circuit performance. Figure 5 depicts a portion of a flip-chip type semiconductor die 12 with a bump pad 122 Cross-sectional views of the portions. The line conductors 13 and 132 are formed on the substrate 136. The line conductors 130 and 132 are straight electrical conductors having integrated bump pads 138, as shown in FIG. The integrated bump pad 138 and the line conductors 13 and 132 Alternatively, the line conductors 130 and 132 may have a circular integral bump pad 139 as shown in Figure 6b, or a rectangular integral bump pad 140 as shown in Figure 6c. The integral bump pads are typically arranged in an array for maximum interconnect density and capacity. In Figure 7, the solder mask 142 is deposited on one of the conductive traces 13 and 132. However, the solder mask 42 is not formed over the integral bump pad 138. Therefore, each bump pad on the substrate does not have the SRO as seen in Figure 2 of the prior art as in 15 201225209. A non-wetting solder mask patch 144 is formed on the substrate 136 and in the voids within the array of integral bump pads 138, that is, between adjacent bump pads. Sheets may also be formed on the semiconductor die 1 且 and in the voids within the array of die bump pads 122. More generally, the solder mask patches are formed in any configuration - body bump pads Nearby to avoid spilling into less humid areas. Figure 8 shows the formation of a one-piece bump pad Bumps 15 and 152 overlying 138 and limited by solder mask patch 144. A conductive bump material utilizes an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing The process is deposited on the die bump pad 122 or the integrated bump pad 138. The bump material may be Bab Sn, Ni, Au, Ag' Pb, Bi, Cu, solder, and combinations thereof, which have an option A fluxing solvent, for example, the bump material may be a eutectic Sn/pb, a high lead solder or a lead-free solder. The bump material is bonded to the integral bump pad using a suitable attachment or bonding process. 138. In one embodiment, the bump material is reflowed by heating the material beyond its melting point to form balls or bumps 150 and 152. In some applications, the bumps 15 and 152 are secondarily reflowed to improve the electrical contact between the die bump pads 122 and the integral bump pads 138. The bumps can also be compression bonded to the die bumps. Block 塾 1 22 and integral bump 塾 138. Bumps 150 and 152 represent one type of interconnect structure that can be formed over integral bump 138. The interconnect structure can also use stud bumps, microbumps, or other electrical interconnects. It is desirable to minimize the escape spacing at high winding density applications. In order to reduce the spacing between the line conductors 13G*132, the bump material 16 201225209 is reflowed around the body-shaped bumps I 138 without a solder mask. The dissipation spacing between the line conductors 130 and 132 can be achieved by eliminating the solder mask and associated #sr〇 used for solder reflow restrictions around the integral bump 〇, ie, by no solder mask Reflow the bump material to reduce it. A solder mask 142 may be formed over the line conductors 13 and 132 and a portion of the substrate 136 that is further away from the body bumps 138, as shown in FIG. However, the solder mask 142 is not formed on the integral type bar (four) 138. The portion of the line conductor i3〇 & i 32 that is designed to mate with the bump material does not form sr〇 in the solder mask 142. In addition, solder mask patches 144 are formed on substrate 136 and in voids within the array of body-type bump pads 138. The solder mask...44 is a non-wetting material. The solder mask (four) 144 may be the same material as the solder mask M2 and applied during the same processing step, or applied for different materials during different processing steps. The solder mask patch 144 can be formed by selective oxidation, electroplating, or other processing of portions of the lines or pads within the array of body-type bump pads 138. The solder mask patch U4 is a localized solder that flows to the integral bump (four) 138 and prevents the conductive bump material from seeping into adjacent structures. When the bump material is reflowed using solder mask fills 144 disposed in the voids in the array of integral bumps 138, the wetting and surface tension are such that the bump material is confined and remains in the grain bump (d) 122 "in the space between the body bump pads 138 and the substrate 136 adjacent to the line conductors 13 and 132 and substantially in the portion of the footprint of the body-type bump pad 138. To achieve this desired property, convex The bulk material may be immersed in a fluxing solvent prior to placement on the crystal 17 201225209 grain bump pad 122 or the integral bump pad 138 to selectively contact the area of the bump material with the line conductor 130. The area around 132 is more humid. The molten bump material is maintained confined within the area substantially defined by the bump pads due to the wettability of the fluxing solvent. The bump material does not spill to less humid. A thin oxide layer or other insulating layer may be formed over the region where the bump material is not intended to make the region less humid. Therefore, the die bump pad 122 or the integral bump pad There is no need to have around 138 The material mask 142. Since no SRO is formed around the grain bump pad 22 or the integral bump pad 138, the line wires 13 and 132 can be formed with a fine pitch, that is, the line wires 13〇 And 132 can be placed closer to the adjacent structure without contact and forming an electrical short. Assuming the same solder alignment design rule, the spacing between line conductors 130 and 132 is given as P = (^1D + W / 2, where D is the base diameter of the bump 15 〇 152 and w is the width of the line conductors 130 and 132. In one embodiment, given the bump diameter of μηι and the line width of 2 〇 pm, The minimum escape spacing of the line conductors 1% and 132 is 65 μm. This bump formation eliminates the need to consider the hole spacing of the solder mask material between adjacent openings as is known in the prior art and minimally resolvable Figure 9-14 illustrates other embodiments having various interconnect structures that can be applied to an interconnect structure using a dip mask patch as described in Figure 5-8. 9a shows - has _ species such as Shi Xi, wrong, gallium in the stone, indium or The fossil eve body substrate material is, for example, a semiconductor wafer 220 for the structure. A plurality of semiconductor dies or members 224 are formed on the 18 201225209 wafer 220 and separated by a scribe line 2 26 as described above. Figure 9b is a cross-sectional view showing a portion of a semiconductor wafer 220. Each semiconductor die 224 has a back surface 228 and an active surface 230' including an analog or digital circuit that is implemented to be formed in An active fruit, a passive device, a conductive layer, and a dielectric layer within the die and electrically interconnected according to electrical design and function of the die. For example, the circuit can include a plurality of transistors, diodes, and others Circuit elements formed within active surface 23A to implement analog circuits or digital circuits, such as digital signal processors (DSPs), ASICs, memory, or other signal processing circuits. The semiconductor die 224 may also include integrated passive devices, such as inductors, capacitors, and resistors, for use in RF signal processing. In one embodiment, the semiconductor crystal grain 224 is a flip chip type semiconductor die. - Conductive layer 232 is formed over active surface 230 by PVD, CVD 'electrolytic plating, electroless plating process, or other suitable metal deposition process. The conductive layer 232 can be an octa-Cu, a ruin, an A"

Ag、或是其它合適的導電材料的一或多層。導電層232係 運作為電連接至主動表® 23〇上的電路之接觸墊3或晶粒凸 塊墊。 圖9c係展示具有一形成在接觸墊232之上的互連結構 的半導體晶圓220的一部份…導電凸塊材料234細;用 -蒸鍍、電解的㈣、無電的電鑛、球式滴落㈣^)、 或是網版印刷製程而沉積在接觸塾232之上。凸塊材料^ 可以是A卜Sn、Ni、Au、Ag、Pb、Bi、Cu、焊料及幻且 合’其具有一選配的助熔(flux)溶齊卜例如,凸塊材料Mi 19 201225209 可以是共晶Sn/Pb、向船的焊料或是無紐的焊料。凸塊材料 234是大致順應的(compliant)並且在相當於約2〇〇克的垂直 荷重的力下進行大於約25 μιη的塑性變形。凸塊柯料234係 利用一合適的附著或連結製程連結到接觸墊232。例如,凸 塊材料234可以壓縮連結到接觸墊232 ^凸塊材料234亦可 藉由加熱該材料超過其熔點來進行回焊以形成球或凸塊 236 ’即如同在圖9d中所示者。在某些應用中,凸塊236 係進行二次回焊以改善至接觸墊232的電連接。凸塊236 係代表一種可形成在接觸墊232之上的互連結構類型。該 互連結構亦可以使用柱形凸塊、微凸塊或是其它電互連。 圖9e係展示互連結構的另一實施例,其係以複合的凸 塊238形成在接觸墊232之上,該凸塊238包含一不可炼 或不可分解的部份240以及可熔或可分解的部份242。該可 熔或可分解的特質以及不可熔或不可分解的特質係針對凸 塊238關於回焊條件所界定的。該不可熔的部份2的可以 是Au、Cu、Ni、高鉛的焊料、或是鉛錫合金。該可熔的部 份242可以是Sn、無鉛的合金、Sn_Ag合金、合 金、Sn-Ag-銦(ιη)合金、共晶焊料、錫和Ag、&或外的合 金、或是其它相對低溫熔化的焊料。在一實施例中,給定 :接觸墊232 1〇〇μηι的寬度或直徑’該不可溶的部份 咼度大約是45μηι並且可熔的部份242高度大約是35μιη。 圖9f係展示互連結構的另一實施例,其係形成在接觸 塾232之上而成為導電柱246之上的凸塊244。凸塊244是 可熔或可分解的,並且導電柱246是不可熔或不可分解的。 20 201225209 該可熔或可>解的4寺質以及不可溶或不可分解的特質係相 關於回焊條件加以界定。凸塊244可以是Sn、無鉛的合金、 Sn-Ag合金、Sn.Ag_Cu合金、Sn Ag in合金共晶焊料、 錫和Ag、Cu或Pb的合金、或是其它相對低溫熔化的焊料。 導電柱246可以是Au、Cu、Ni、高錯的桿料、或是錯錫合 金。在-實施例中’導電柱246是一 Cu柱,並且凸塊244 是焊料蓋。給定一接觸墊232 ΙΟΟμπι的寬度或直徑,導 電柱246高度大約是45^m,並且凸塊244高度大約是35μιη。 圖9g係展示互連結構的另一實施例,其係形成在接觸 墊232之上而為具有突點(asperity)25〇的凸塊材料248。類 似於凸塊材料234 ’凸塊材料248在回焊條件下是軟的且可 變形的,具有低的屈伏強度(yield strength)以及高的致衰壞 伸長率(elongation to failure)。突點250係以電鍍的表面處 理而形成,並且為了說明之目的係在圖式中被誇大展示。 突點250的等級一般是在大約的數量級。該突點亦 可开》成在凸塊236、複合的凸塊238以及凸塊244上。 在圖9h中,半導體晶圓22〇係利用一鋸條或雷射切割 工具252透過切割道226被單切為個別的半導體晶粒224。 圖l〇a係展示一具有導電線路256的基板或Ρ(:β 254。 基板254可以是單面FR5層壓板或是雙面BT_樹脂層壓板。 半導體晶粒224係被設置以使得凸塊材料234係和導電線 路256上之互連位置對準,請參見圖6a_6c、7_8及18a_18c。 或者是,凸塊材料234可和形成在基板254上的導電墊或 是其它互連位置對準。凸塊材料234係比導電線路256寬。 21 201225209 在一實施例中,對於150μιη的凸塊間距,凸塊材料234具 有小於ΙΟΟμιη的寬度,並且導電線路或墊256具有35μιη 的寬度。導電線路256係可應用到如圖5-8中所述之利用焊 料遮罩補片形成的互連結構。 一壓力或力F係被施加至半導體晶粒224的背表面228 以將凸塊材料234壓到導電線路256之上》該力F可在高 溫下施加。由於凸塊材料2 3 4之順應的本質,該凸塊材料 係變形或突出在導電線路256的頂表面及側表面周圍,被 稱為BOL。尤其,在相當於大約200克的垂直荷重之力F 下,壓力的施加係使得凸塊材料234進行大於約25μηι的塑 性變形並且覆蓋導電線路的頂表面及側表面,即如同在圖 l〇b中所示者。凸塊材料234亦可藉由將該凸塊材料和導電 線路實體接觸並且接著在一回焊溫度下回焊該凸塊材料以 冶金連接至導電線路256。 藉由使得導電線路256比凸塊材料234窄,導電線路 的間距可被降低以增加繞線密度以及1/〇數目。較窄的導電 線路256係降低使凸塊材料234變形在導電線路的周圍所 需的力F。例如’該必要的力F可以是使凸塊材料抵靠比凸 塊材料寬的導電線路或墊變形所需的力之3〇鄕。較小的 壓力F對於細間距互連及小的晶粒維持具有—指定容限之 共面性以及達成均句的z向變形及高可靠度的互連結合是 ^用的。此外,將凸塊材料234變形在導電線路25 圍係將該凸塊機械地鎖到該線路以避免 = 動或是晶粒浮接。 冲朋間日0粒移 22 201225209 圖10c係展示形成在半導體晶粒224的接觸墊232之上 的凸塊236 ^半導體晶粒224係被設置以使得凸塊236和導 電線路256上的互連位置對準。或者是,凸塊236可和形 成在基板254上的導電墊或其它互連位置對準。凸塊236 係比導電線路256寬。導電線路256係可應用到如圖5-8 中所述之利用焊料遮罩補片形成的互連結構。 一壓力或力F係被施加至半導體晶粒224的背表面228 以將凸塊236壓到導電線路256之上。該力F可在高溫下 施加。由於凸塊236之順應的本質,該凸塊係變形或突出 在導電線路256的頂表面及側表面周圍。尤其,壓力的施 加係使得凸塊材料236進行塑性變形並且覆蓋導電線路256 的頂表面及側表面。凸塊236亦可藉由在回焊溫度下使該 凸塊和該導電線路實體接觸以冶金連接至導電線路256。 藉由使得導電線路256比凸塊236窄’導電線路的間 距可被降低以增加繞線密度及1/〇數目。較窄的導電線路 256係降低將凸塊236變形在導電線路的周圍所需的力f。 例如,該必要的力F可以是使一凸塊抵靠一比該凸塊寬的 導電線路或墊變形所需的力之3〇_5〇%。較低的壓力『對於 細間距互連及小的晶粒維持在—指定容限内的共面性以及 達成均勾@ z向變形及高可靠度的互連結合是有用的。此 卜將凸塊236炎形在導電線路256的周圍係將該凸塊機 械地鎖到該線路以避免在回焊期間的晶粒移動或晶粒浮 接。 圖1〇d係展示形成在半導體晶粒224的接觸塾232之 23 201225209 上的複合的凸塊238。半導體晶粒224係被設置以使得複合 的凸塊238和導電線路256上的互連位置對準。或者是, 複合的凸塊238可和形成在基板254上的導電墊或其它互 連位置對準。複合的凸塊238係比導電線路256寬。導電 線路256係可應用到如圖5_8中所述之利用焊料遮罩補片形 成的互連結構。 壓力或力F係被施加至半導體晶粒224的背表面228 以將可熔的部份242壓到導電線路256之上。該力F可在 高溫下施加。由於可熔的部份242之順應的本質,該可熔 的部份係變形或突出在導電線路256的頂表面及側表面周 圍。尤其,壓力的施加係使得可熔的部份242進行塑性變 形並且覆蓋導電線路256的頂表面及側表面❶複合的凸塊 238亦可藉由在回焊溫度下使可熔的部份242和該導電線路 實體接觸以冶金連接至導電線路256。該不可熔的部份24〇 在壓力或溫度的施加期間並不熔化或變形,並且保持其高 度及形狀而作為在半導體晶粒224及基板254間之一垂直 的間隙。该在半導體晶粒224及基板254間之額外的位移 係在配接的表面之間提供較大的共面性容限。 可熔的凸塊材料相對於不可熔的基底材料之高度或量 係被選擇成確保藉由表面張力的局限。在回焊期間,可熔 的基底材料係由於該焊料遮罩補片而局限在不可熔的基底 材料的周圍《該不可熔的基底周圍之可熔的凸塊材料亦在 回焊期間維持晶粒的設置。一般而言,該複合的互連的高 度疋和D玄凸塊的直徑相同或是小於該凸塊的直徑。在某些 24 201225209 情形中’該複合的互連的高度係大於該互連的直徑。在一 實施例中’給定丨00μιη的凸塊基底直徑該不可缚的基底 在间度上大約是45(im’並且該可熔的蓋在高度上大約是 35μπι。因為該焊料遮罩補片並且沉積以形成該複合的凸塊 (包含不可熔的基底以及可熔的蓋)之凸塊材料的量係被選 擇成使得所產生的表面張力足以將該凸塊材料實質保持在 該凸塊墊的覆蓋區之内並且避免溢出到非所要的相鄰或附 近的區域’所以該熔化的凸塊材料係維持實質局限在由凸 塊墊所界定的區域内。因此,在凸塊墊的陣列空隙中形成 的焊料遮罩補片係縮小線路導線間距且增加繞線密度。 在一回焊製程期間’半導體晶粒224上之大數目的(例 如,數千個)複合的凸塊238係附接到基板254的導電線路 256上之互連位置。某些凸塊238可能未能夠適當地連接到 導電線路256 ’特別是當晶粒224被扭曲時。回想起複合的 凸塊238係比導電線路256寬。在施加一適當的力之下, •亥可熔的部份242係變形或突出在導電線路256的頂表面 及側表面周圍,並且將複合的凸塊238機械地鎖到該導電 線路。該機械地緊密連接係藉由該可熔的部份242的本質 而形成,該本質是比導電線路256軟且更順應,因而變形 在該導電線路的頂纟面之上以及在該導電線路的側表面周 圍以彳于到較大的接觸表面積。在複合的凸塊238以及導電 線路256 <間的機械地緊密連接係在回焊期間將該凸塊保 持,該導電線路,亦即,該凸塊及導電線路並不失去接觸。 於疋,複合的凸塊238配接到導電線路256係減少凸塊互 25 201225209 連的失敗。 圖10e係展示形成在半導體晶粒224的接觸墊232之上 的導電柱246及凸塊244。半導體晶粒224係被設置以使得 凸塊244和導電線路256上之互連位置對準。或者是,凸 塊244可和形成在基板254上的導電墊或其它互連位置對 準。凸塊244係比導電線路256寬。導電線路256係可應 用到如圖5-8中所述之利用焊料遮罩補片形成的互連結構。 一壓力或力F係被施加至半導體晶粒224的背表面228 以將凸塊244壓到導電線路256之上。該力f可在高溫下 施加。由於凸塊244之順應的本質,該凸塊係變形或突出 在導電線路256的頂表面及側表面周圍。尤其,壓力的施 加係使得凸塊244進行塑性變形並且覆蓋導電線路256的 頂表面及側表面。導電柱246及凸塊244亦可藉由在回焊 溫度下使該凸塊和該導電線路實體接觸以冶金連接至導電 線路256。導電柱246在壓力或溫度的施加期間並不熔化或 變形,並且保持其高度及形狀而成為在半導體晶粒224及 基板254間之一垂直的間隙。該在半導體晶粒224及基板 254間之額外的位移係在配接的表面之間提供較大的共面 性容限。該較寬的凸塊244及較窄的導電線路256具有類 似以上針對凸塊材料234及凸塊236所述的低必要的壓力 及機械地鎖住的特點及優點。 圖1 Of係展示形成在半導體晶粒224的接觸塾232之上 的具有突點250的凸塊材料248。半導體晶粒224係被設置 以使得凸塊材料248係和導電線路256上的互連位置對 26 201225209 準或者疋,凸塊材料248可和形成在基板254上的導電 或八匕互連位置對準。凸塊材料248係比導電線路256 寬。壓力或力F係被施加至半導體晶粒224的背表面228 =將凸塊材料248壓到導電線路256之上。該力f可在高 恤下施加。由於凸塊材料248之順應的本質,該凸塊係變 形或犬出在導電線路256的頂表面及側表面周圍。尤其, 壓力的施加係使得凸塊材料248進行塑性變形並且覆蓋導 電線路256的頂表面及側表面。此外,突點25〇係冶金連 接至導電線路256。突點250的尺寸係做成大約的 數量級。 圖l〇g係展示基板或PCB 258具有成角度或傾斜的側 邊之梯形導電線路26〇。凸塊材料261係被形成在半導體晶 粒224的接觸墊232之上。半導體晶粒224係被設置以使 得凸塊材料261和導電線路260上的互連位置對準。或者 疋’凸塊材料261可和形成在基板258上的導電墊或其它 互連位置對準。凸塊材料261係比導電線路260寬。導電 線路260係可應用到如圖5_8中所述之利用焊料遮罩補片形 成的互連結構。 一壓力或力F係被施加至半導體晶粒224的背表面228 以將凸塊材料261壓到導電線路260之上。該力F可在高 溫下施加。由於凸塊材料261之順應的本質’該凸塊材料 係變形或突出在導電線路260的頂表面及側表面周圍。尤 其’壓力的施加係使得凸塊材料261在力F下進行塑性變 形’以覆蓋導電線路260的頂表面以及傾斜的側表面。凸 27 201225209 塊材料261亦可藉由將該凸塊材料和導電線路實體接觸並 且接著在一目焊溫度下回焊該^鬼材料以冶金連接至常 線路260。 圖11 a-11 d係展示半導體晶粒224以及且古 π -、,一不可熔或 不可分解的部份264及可熔或可分解的 66之細長複 δ的凸塊262之一 BOL實施例。該不可熔的部份264可以 是Au、Cu、Ni、高鉛的焊料、或是鉛錫合金。該可熔的= 份266可以是Sn '無鉛的合金、Sn-Ag合金、Sn_Ag Cu人 金、Sn-Ag-In合金 '共晶焊料、錫和Ag、Cu或外的人金 或是其它相對低溫熔化的焊料。該不可熔的部份比= 可熔的部份266構成複合的凸塊262之較大的—邛八| 不可熔的部份264係固定到半導體晶粒224的接觸塾7 半導體晶粒224係被設置以使得複合的凸塊262係和 形成在基板270上之導電線路268上的互連位置對準即 如同在圖1 la中所示者。複合的凸塊262係沿著導電線路 268漸縮,亦即,該複合的凸塊具有楔形,沿著導電線路 268的長度方向上較長,而橫跨該導電線路的方向上較窄。 複合的凸塊262之漸縮特點係出現在沿著導電線路的 長度方向上。圖1U中的繪圖係展示該較短的特點或變窄的 漸縮是與導電線路268共線的。垂直於圖丨la的圖丨lb中的 繪圖係展示該楔形複合的凸塊262之較長的特點。複合的 凸塊262之較短的特點係比導電線路268寬。該可熔的部 份266在壓力施加及/或以熱回焊時分解在導電線路的 周圍,即如圖1 lc及1 ld中所示者。該不可熔的部份264 28 201225209 在回焊期❹不炼化或變形,並且保持其外形及形狀。該 不可溶的部份264的尺寸可被設為在半導體晶纟224及基 板270之間提供-間隙距離。-例如是CuOSP的處理可施 加到基板270。導電線路268係可應用到如圖5_8中所述之 利用焊料遮罩補片形成的互連結構。 在一回焊製程期間,半導體晶粒224上之大數目的(例 如數千個)複合的凸塊262係附接到基板27〇的導電線路 268上之互連位置。某些凸塊262可能未能夠適當地連接到 導電線路268 ’特別是半導體晶粒224被扭曲時。回想起複 合的凸塊262係比導電線路268寬。在施加一適當的力之 下’該可熔的部份266係變形或突出在導電線路⑽的頂 表面及側表面周圍,並且將複合的凸@ 262機械地鎖到該 導電線路。該機械地緊密連接係藉由該可熔的部份之 本質而形成’該本質係比導電線$ 268軟且較順應的,因 而變形在豸導電、線路的Μ面及側表面周圍以得到較大的 接觸面積。複合的凸塊262的楔形係增加在該凸塊及導電 線路間的接觸面積,例如,沿著圖i lb及i丨d之較長的特 徵方向增加,而沒有犧牲到沿著圖Ua及Uc之較短的特徵 方向上的間距。在複合的凸塊262及導電線路268間之機 械地緊密連接係在回焊期間將該凸塊保持在該導電線路, 亦即,該凸塊及導電線路並不失去接觸。於是,配接到導 電線路268之複合的凸塊262係減少凸塊互連的失敗。 圖12a-12d係展示半導體晶粒224的一 B〇L實施例, 其中類似於圖9c ’凸塊材料274係形成在接觸墊232之上。 29 201225209 在圖12a中’凸塊材料274是大致順應的,並且在一相當於 大約200克的垂直荷重之力下進行大於約25μιη的塑性變 形。凸塊材料2 7 4係比基板2 7 8上的導電線路2 7 6寬。複 數個突點280係以一大約1-25μτη的數量級之高度形成在導 電線路276上。 半導體晶粒224係被設置以使得凸塊材料274和導電 線路276上的互連位置對準。或者是,凸塊材料274可和 形成在基板278上的導電墊或其它互連位置對準。—壓力 或力F係被施加至半導體晶粒224的背表面228以將凸塊 材料274壓到導電線路276及突點280之上,即如同在圖 12b中所示者。s亥力F可在向溫下施加。由於凸塊材料274 之順應的本質,該凸塊材料係變形或突出在導電線路276 的頂表面及側表面以及突點280周圍。尤其,壓力的施加 係使得凸塊材料274進行塑性變形並且覆蓋導電線路276 的頂表面及側表面以及突點280。凸塊材料274的塑性流動 係在該凸塊材料與導電線路276的頂表面及側表面以及突 點280之間產生巨觀的機械地緊密連接點。凸塊材料274 的塑性流動係發生在導電線路276的頂表面及側表面以及 突點280周圍’但並不過度地延伸到基板278之上,否則 可此造成電氣短路及其它缺陷。在該凸塊材料與導電線路 276的頂表面及側表面以及突點280之間的機械地緊密連接 係在不顯著增加連結力之下,提供一具有個別的表面間較 大的接觸面積之強健的連接。在該凸塊材料與導電線路276 的頂表面及側表面以及突點280之間的機械地緊密連接亦 201225209 降低在例如是封裝的後續製程期間橫向的晶粒移動。 圖12c係展示其中凸塊材料274比導電線路276窄的另 一 BOL實施例。一壓力或力F係被施加至半導體晶粒224 的责表面228以將凸塊材料274壓到導電線路276及突點 280之上》该力F可在咼溫下施加。由於凸塊材料之順 應的本質,該凸塊材料係變形或突出在導電線路276的頂 表面及突點280之上。尤其,壓力的施加係使得凸塊材料 274進行塑性變形並且覆蓋導電線路276的頂表面及突點 280。凸塊材料274的塑性流動係在該凸塊材料以及導電線 路276的頂表面及突點28〇之間產生巨觀的機械地緊密連 接點。在該凸塊材料以及導電線路276的頂表面及突點28〇 之間的機械地緊密連接係在不顯著增加連結力之下,提供 一具有個別的表面間較大的接觸面積之強健的連接。在該 凸塊材料以及導電線路276的頂表面及突點28〇之間的機 械地緊密連接亦降低在例如是封裝的後續製程期間橫向的 晶粒移動。 、 圖12d係展示另-B〇L實施例,其中凸塊材料π形 成在導電線路276的一邊緣之上,亦即,部份的凸塊材料 在該導電線路之上,而部份的凸塊材料則不在該導電線路 之上。一壓力或力F係被施加至半導體晶粒224的背表面 228以將凸塊材料274壓到導電線路276及突點28〇之上。 該力F可在高溫下施加。由於凸塊材料274之順應的本質, 該凸塊材料係變形或突出在導電線路276的頂表面及側表 面及突點280之上。尤其,壓力的施加係使得凸塊材料”4 31 201225209 進行塑性變形並且覆蓋導電線路276的頂表面及側表面及 突點280。凸塊材料274的塑性流動係在該凸塊材料與導電 線路276的頂表面及側表面以及突點28〇之間產生巨觀的 機械地緊密連接。在該凸塊材料與導電線路276的頂表面 及側表面以及突點280之間的機械地緊密連接係在不顯著 增加連結力之下提供一具有個別的表面間較大的接觸面積 之強健的連接。在該凸塊材料與導電線路276的頂表面及 側表面以及突點280之間的機械地緊密連接亦降低在例如 是封裝的後續製程期間橫向的晶粒移動。 圖1 3a-1 3c係展示半導體晶粒224的一 b〇l實施例, 其中類似於圖9c,凸塊材料284形成在接觸墊232之上。 一尖端286係從凸塊材料284的主體延伸成為一階梯形凸 塊’其中尖端286比凸塊材料284的主體窄,即如同在圖 13a中所示者。半導體晶粒224係被設置以使得凸塊材料284 和基板290上的導電線路288上之互連位置對準。更明確 地說’尖端286係被設置在導電線路288上的互連位置之 中央上。或者是,凸塊材料284及尖端286可和形成在基 板290上的導電墊或其它互連位置對準。凸塊材料284係 比基板290上的導電線路288寬。 導電線路288是大致順應的,並且在一相當於大約2〇〇 克的垂直荷重的力之下進行大於約25μηι的塑性變形。一廢 力或力F係被施加至半導體晶粒224的背表面228以將尖 端284壓到導電線路288之上。該力f可在高溫下施加。 由於導電線路288之順應的本質,該導電線路係變形在尖 32 201225209 端286的周圍,即如同在圖丨3b中所示者。尤其,壓力的 施加係使得導電線路288進行塑性變形並且覆蓋尖端286 的頂表面及側表面。 圖1 3c係展示另一 B0L實施例,其中圓形的凸塊材料 294係形成在接觸墊232之上。一尖端296係從凸塊材料 294的主體延伸以形成一柱形凸塊,其中該尖端比凸塊材料 294的主體窄。半導體晶粒224係被設置以使得凸塊材料 294和基板300上的導電線路298上之互連位置對準。更明 確地說’尖端296係被設置在導電線路298上的互連位置 之中央上。或者是,凸塊材料294及尖端296可和形成在 基板300上的導電墊或其它互連位置對準。凸塊材料294 係比基板300上的導電線路298寬。 導電線路298是大致順應的,並且在一相當於大約2〇〇 克的垂直荷重的力之下進行大於約25 μιη的塑性變形。一壓 力或力F係被施加至半導體晶粒224的背表面228以將尖 端296壓到導電線路298之上。該力f可在高溫下施加。 由於導電線路298之順應的本質,該導電線路係變形在尖 端296周圍。尤其’壓力的施加係使得導電線路298進行 塑性變形,並且覆蓋尖端296的頂表面及側表面。 圖10a-10g、1 la-1 Id及12a-12d中所述的導電線路亦可 以是如圖1 3 a-13 c中所述之順應的材料。 圖14a-14b係展示半導體晶粒224的一 BOL實施例, 其中類似於圖9c’凸塊材料304係形成在接觸墊232之上。 凸塊材料304是大致順應的’並且在一相當於大約2〇〇克 33 201225209 的垂直荷重的力之下進行大於約2 5 μ m的塑性變形。凸塊材 料304係比基板308上的導電線路3〇6寬。一具有開口 312 及導電的側壁314之導電貫孔31〇係穿過導電線路3〇6而 形成,即如同在圖14a中所示者。導電線路3〇6係可應用到 如圖5-8中所述之利用焊料遮罩補片形成的互連結構。 半導體晶粒224係被設置以使得凸塊材料3〇4和導電 線路306上的互連位置對準’請參見圖6a 6c、7_8及 18a-18c。或者是,凸塊材料3〇4可和形成在基板3〇8上的 導電墊或其它互連位置對準。一壓力或力F係被施加至半 導體晶粒224的背表面228以將凸塊材料304壓到導電線 路306之上並且壓入導電貫孔31〇的開口 312中。該力f 可在高溫下施加。由於凸塊材料3〇4之順應的本質,該凸 塊材料係變形或突出在導電線路3〇6的頂表面及側表面周 圍且進入到導電貫孔31〇的開口 312中,即如同在圖夏仆 中所示者。尤其,壓力的施加係使得凸塊材料3〇4進行塑 性變形並且覆蓋導電線路3〇6的頂表面及側表面且進入到 導電貫孔310的開口 312中。因此,凸塊材料3〇4係電連 接至導電線路306及導電的側壁314以供穿過基板3〇8的z 向垂直的互連使用。凸塊材料3〇4的塑性流動係在該凸塊 材料與導電線路306的頂表面及側表面以及導電貫孔3丄〇 的開口 312之間產生機械地緊密連接。在該凸塊材料與導 電線路306的頂表面及側表面以及導電貫孔31〇的開口 312 之間的機械地緊密連接係在不顯著增加連結力之下提供一 具有個別的表面間較大的接觸面積之強健的連接。在該凸 34 201225209 塊材料與導電線路306的頂表面及側表面以及導電貫孔3 i 〇 的開口 3 12之間的機械地緊密連接亦降低在例如是封裝的 後續製程期間橫向的晶粒移動。由於導電貫孔3丨〇係和凸 塊材料304 —起被形成在該互連位置之内,因此總基板互 連·面積係減少。 在圖 10a-10g、Ua_lld、12a_12d、⑴⑴及 14a l4b 的BOL實施例中,藉由使導電線路比互連結構窄,導電線 路的間距可被降低以増加繞線密度及1/〇數目。較窄的導電 線路係降低將互連結構變形在導電線路的周圍所需的力 F。例如,該必要的力F可以是使一凸塊抵靠一比該凸塊寬Ag, or one or more layers of other suitable electrically conductive materials. Conductive layer 232 operates as contact pads 3 or die bump pads that are electrically connected to circuitry on the active meter® 23®. Figure 9c shows a portion of a semiconductor wafer 220 having an interconnect structure formed over a contact pad 232. The conductive bump material 234 is fine; with - evaporation, electrolysis (4), electroless ore, ball Dropping (4)^), or a screen printing process, is deposited on the contact pad 232. The bump material ^ may be A, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and illusion, which has an optional flux dissolve, for example, bump material Mi 19 201225209 It can be a eutectic Sn/Pb, a solder to the ship, or a solder without a button. The bump material 234 is substantially compliant and undergoes a plastic deformation of greater than about 25 μη under a force corresponding to a vertical load of about 2 gram. The bump 234 is bonded to the contact pad 232 by a suitable attachment or bonding process. For example, the bump material 234 can be compressively bonded to the contact pad 232. The bump material 234 can also be reflowed by heating the material beyond its melting point to form a ball or bump 236', as shown in Figure 9d. In some applications, bumps 236 are subjected to secondary reflow to improve electrical connection to contact pads 232. Bump 236 represents a type of interconnect structure that can be formed over contact pads 232. The interconnect structure can also use stud bumps, microbumps, or other electrical interconnects. Figure 9e shows another embodiment of an interconnect structure formed with a composite bump 238 over a contact pad 232 that includes a non-refinable or indecomposable portion 240 and a fusible or decomposable portion. Part 242. The fusible or decomposable trait and the non-meltable or non-decomposable trait are defined for the bump 238 with respect to the reflow condition. The non-meltable portion 2 may be Au, Cu, Ni, high lead solder, or a lead tin alloy. The fusible portion 242 can be Sn, a lead-free alloy, a Sn_Ag alloy, an alloy, a Sn-Ag-indium alloy, a eutectic solder, a tin and an Ag, an alloy, or other relatively low temperature. Melted solder. In one embodiment, given: the width or diameter of the contact pad 232 1 〇〇 η ι η η η η η π π π π π π π π π π π π π π π π π π π π π π π π π π π Figure 9f shows another embodiment of an interconnect structure formed over bumps 232 to form bumps 244 over conductive pillars 246. The bumps 244 are fusible or decomposable and the conductive posts 246 are non-meltable or non-decomposable. 20 201225209 The fusible or solvable 4 temples and the insoluble or indecomposable traits are defined in terms of reflow conditions. The bumps 244 may be Sn, a lead-free alloy, a Sn-Ag alloy, a Sn.Ag_Cu alloy, a Sn Agin alloy eutectic solder, an alloy of tin and Ag, Cu or Pb, or other relatively low temperature molten solder. The conductive pillars 246 may be Au, Cu, Ni, high-error bars, or mis-tin alloys. In the embodiment the conductive pillar 246 is a Cu pillar and the bump 244 is a solder cap. Given the width or diameter of a contact pad 232 ΙΟΟμπι, the height of the conductive post 246 is approximately 45 μm, and the height of the bump 244 is approximately 35 μm. Figure 9g shows another embodiment of an interconnect structure formed over contact pads 232 and having bump material 248 having an aperture 25 turns. Similar to bump material 234', bump material 248 is soft and deformable under reflow conditions, has low yield strength and high elongation to failure. The bumps 250 are formed by electroplated surface treatment and are shown exaggerated in the drawings for purposes of illustration. The level of the bump 250 is generally on the order of magnitude. The bumps can also be formed on the bumps 236, the composite bumps 238, and the bumps 244. In Figure 9h, the semiconductor wafer 22 is individually diced into individual semiconductor dies 224 through a scribe line 226 using a saw blade or laser cutting tool 252. Figure 10A shows a substrate or crucible having a conductive trace 256 (: β 254. The substrate 254 can be a single-sided FR5 laminate or a double-sided BT_resin laminate. The semiconductor die 224 is configured such that the bumps are The material 234 is aligned with the interconnect locations on the conductive traces 256, see Figures 6a-6c, 7-8, and 18a-18c. Alternatively, the bump material 234 can be aligned with conductive pads or other interconnect locations formed on the substrate 254. The bump material 234 is wider than the conductive traces 256. 21 201225209 In one embodiment, for a bump pitch of 150 μηη, the bump material 234 has a width less than ΙΟΟμηη, and the conductive traces or pads 256 have a width of 35 μm. An interconnect structure formed using a solder mask patch as described in Figures 5-8 can be applied. A pressure or force F is applied to the back surface 228 of the semiconductor die 224 to press the bump material 234 to Above the conductive line 256, the force F can be applied at a high temperature. Due to the compliant nature of the bump material 234, the bump material is deformed or protrudes around the top surface and the side surface of the conductive line 256, which is called BOL. Especially, At a force F corresponding to a vertical load of about 200 grams, the pressure is applied such that the bump material 234 undergoes plastic deformation greater than about 25 μm and covers the top and side surfaces of the conductive trace, as shown in FIG. The bump material 234 can also be metallurgically bonded to the conductive traces 256 by contacting the bump material with the conductive traces and then reflowing the bump material at a reflow temperature. The block material 234 is narrow and the pitch of the conductive traces can be lowered to increase the wire density and the number of turns. The narrower conductive traces 256 reduce the force F required to deform the bump material 234 around the conductive traces. The necessary force F may be 3 所需 required to deform the bump material against a conductive line or pad wider than the bump material. The smaller pressure F has a fine pitch interconnect and a small die retention - Specifying the coplanarity of the tolerances and achieving a z-direction deformation of the uniform sentence and a high-reliability interconnection combination is used. Further, the bump material 234 is deformed in the conductive line 25 to mechanically lock the bump Go to the line to avoid = moving or grain floating. Between the epochs and the granules 22 201225209 Figure 10c shows the bumps 236 formed over the contact pads 232 of the semiconductor die 224. The semiconductor die 224 is arranged such that the bumps 236 is aligned with the interconnection locations on conductive traces 256. Alternatively, bumps 236 can be aligned with conductive pads or other interconnect locations formed on substrate 254. Bumps 236 are wider than conductive traces 256. Conductive traces 256 An interconnect structure formed using a solder mask patch as described in Figures 5-8 can be applied. A pressure or force F is applied to the back surface 228 of the semiconductor die 224 to press the bump 236 to the conductive Above line 256. This force F can be applied at high temperatures. Due to the compliant nature of the bumps 236, the bumps deform or protrude around the top and side surfaces of the conductive traces 256. In particular, the application of pressure causes the bump material 236 to plastically deform and cover the top and side surfaces of the conductive traces 256. Bumps 236 can also be metallurgically connected to conductive traces 256 by physically contacting the bumps with the conductive traces at reflow temperatures. By making the conductive traces 256 narrower than the bumps 236, the spacing of the conductive traces can be reduced to increase the winding density and the number of turns. The narrower conductive line 256 reduces the force f required to deform the bump 236 around the conductive trace. For example, the necessary force F may be 3 〇 5 % of the force required to deform a bump against a conductive line or pad wider than the bump. The lower pressure "is useful for fine-pitch interconnects and small die-maintained--coplanarity within specified tolerances and for achieving a combination of uniformity and high reliability interconnects. The bump 236 is shaped to mechanically lock the bump around the conductive trace 256 to avoid grain movement or grain floating during reflow. 1 〇 d shows a composite bump 238 formed on the contact 232 of the semiconductor die 224 23 201225209. The semiconductor die 224 is arranged such that the composite bumps 238 and the interconnect locations on the conductive traces 256 are aligned. Alternatively, the composite bumps 238 can be aligned with conductive pads or other interconnect locations formed on the substrate 254. The composite bumps 238 are wider than the conductive traces 256. Conductive lines 256 can be applied to interconnect structures formed using solder mask patches as described in Figures 5-8. A pressure or force F is applied to the back surface 228 of the semiconductor die 224 to press the fusible portion 242 onto the conductive trace 256. This force F can be applied at high temperatures. Due to the compliant nature of the fusible portion 242, the fusible portion is deformed or protrudes around the top and side surfaces of the conductive trace 256. In particular, the application of pressure causes the fusible portion 242 to be plastically deformed and covers the top surface and the side surface of the conductive trace 256. The composite bump 238 can also be made by remelting the portion 242 at the reflow temperature. The conductive traces are physically contacted to metallurgically connected to conductive traces 256. The non-fusible portion 24 is not melted or deformed during application of pressure or temperature, and maintains its height and shape as a vertical gap between the semiconductor die 224 and the substrate 254. This additional displacement between the semiconductor die 224 and the substrate 254 provides a greater coplanarity tolerance between the mated surfaces. The height or amount of fusible bump material relative to the non-fusible base material is selected to ensure limitations by surface tension. During reflow, the fusible base material is confined around the non-fusible base material due to the solder mask patch. "The fusible bump material around the non-fusible substrate also maintains the grain during reflow. setting. In general, the height of the composite interconnect and the diameter of the D meta-bump are the same or smaller than the diameter of the bump. In some 24 201225209 cases the height of the composite interconnect is greater than the diameter of the interconnect. In one embodiment, the diameter of the bump base of a given 丨00 μηη is about 45 (im' in the degree of difference and the thickness of the fusible cover is about 35 μm in height. Because of the solder mask patch And the amount of bump material deposited to form the composite bump (including the non-meltable substrate and the fusible cover) is selected such that the resulting surface tension is sufficient to substantially retain the bump material in the bump pad Within the footprint and avoid spilling into undesired adjacent or nearby regions' so the molten bump material remains substantially confined within the area defined by the bump pads. Therefore, the array gap in the bump pads The solder mask patch formed in the system reduces the line conductor pitch and increases the winding density. A large number (e.g., thousands) of composite bumps 238 on the semiconductor die 224 are attached during a reflow process. The interconnection locations on the conductive traces 256 of the substrate 254. Some of the bumps 238 may not be properly connected to the conductive traces 256', particularly when the die 224 is twisted. Recall that the composite bumps 238 are more conductive than the conductive traces. The path 256 is wide. Under application of a suitable force, the fused portion 242 is deformed or protrudes around the top surface and side surfaces of the conductive trace 256, and the composite bump 238 is mechanically locked to the conductive The mechanically tight connection is formed by the nature of the fusible portion 242, which is softer and more compliant than the conductive trace 256, thus deforming over the top surface of the conductive trace and at the conductive The side surface of the line is surrounded by a larger contact surface area. The mechanically tight connection between the composite bump 238 and the conductive line 256 <RTIgt; is held during reflow, the conductive line, i.e. The bump and the conductive line do not lose contact. In the meantime, the composite bump 238 is coupled to the conductive line 256 to reduce the failure of the bump 25 201225209. Figure 10e shows the contact pad formed on the semiconductor die 224 Conductive posts 246 and bumps 244 over 232. Semiconductor die 224 is disposed to align bumps 244 with interconnect locations on conductive traces 256. Alternatively, bumps 244 can be formed on substrate 254. Conductive pad or The interconnect locations are aligned. The bumps 244 are wider than the conductive traces 256. The conductive traces 256 can be applied to interconnect structures formed using solder mask patches as described in Figures 5-8. A back surface 228 is applied to the semiconductor die 224 to press the bumps 244 onto the conductive traces 256. The force f can be applied at high temperatures. Due to the compliant nature of the bumps 244, the bumps are deformed or protruded The top surface and the side surface of the conductive line 256. In particular, the pressure is applied such that the bump 244 is plastically deformed and covers the top surface and the side surface of the conductive line 256. The conductive post 246 and the bump 244 can also be reflowed. The bump is in physical contact with the conductive trace to metallurgically connect to the conductive trace 256. The conductive post 246 does not melt or deform during application of pressure or temperature and maintains its height and shape to become a vertical gap between the semiconductor die 224 and the substrate 254. This additional displacement between semiconductor die 224 and substrate 254 provides a greater coplanar tolerance between the mated surfaces. The wider bumps 244 and the narrower conductive traces 256 have similar low pressure and mechanical locking characteristics and advantages as described above for the bump material 234 and the bumps 236. 1 shows a bump material 248 having bumps 250 formed over contact pads 232 of semiconductor die 224. The semiconductor die 224 is disposed such that the bump material 248 and the interconnect location on the conductive trace 256 are aligned or 疋, and the bump material 248 can be aligned with the conductive or gossip interconnect formed on the substrate 254. quasi. The bump material 248 is wider than the conductive trace 256. A pressure or force F is applied to the back surface 228 of the semiconductor die 224 = the bump material 248 is pressed onto the conductive trace 256. This force f can be applied under a high shirt. Due to the compliant nature of the bump material 248, the bumps are deformed or canineed around the top and side surfaces of the conductive traces 256. In particular, the application of pressure causes the bump material 248 to plastically deform and cover the top and side surfaces of the conductive line 256. In addition, the bumps 25 are metallurgically connected to the conductive traces 256. The size of the bump 250 is approximately the order of magnitude. Figure 10g shows a substrate or PCB 258 having an angled or slanted side of the trapezoidal conductive line 26A. A bump material 261 is formed over the contact pads 232 of the semiconductor wafer 224. The semiconductor die 224 is arranged to align the bump locations on the bump material 261 and the conductive traces 260. Alternatively, the ' bump material 261 can be aligned with conductive pads or other interconnect locations formed on the substrate 258. The bump material 261 is wider than the conductive trace 260. Conductive line 260 can be applied to an interconnect structure formed using a solder mask patch as described in Figures 5-8. A pressure or force F is applied to the back surface 228 of the semiconductor die 224 to press the bump material 261 over the conductive traces 260. This force F can be applied at a high temperature. Due to the compliant nature of the bump material 261, the bump material is deformed or protrudes around the top and side surfaces of the conductive trace 260. In particular, the application of pressure causes the bump material 261 to plastically deform under force F to cover the top surface of the conductive trace 260 and the inclined side surface. The bump 27 201225209 block material 261 can also be metallurgically connected to the normal line 260 by physically contacting the bump material with the conductive traces and then reflowing the ghost material at a mesh soldering temperature. 11 a-11 d show a BOL embodiment of a semiconductor die 224 and an ancient π -, a non-meltable or indecomposable portion 264 and a fusible or decomposable 66 elongated δ bump 262 . The non-fusible portion 264 can be Au, Cu, Ni, high lead solder, or a lead tin alloy. The fusible = 266 may be Sn 'lead-free alloy, Sn-Ag alloy, Sn_Ag Cu human gold, Sn-Ag-In alloy 'eutectic solder, tin and Ag, Cu or other human gold or other relative Low temperature melting solder. The infusible portion ratio = the fusible portion 266 constitutes a larger one of the composite bumps 262 - the non-meltable portion 264 is fixed to the contact of the semiconductor die 224 7 semiconductor die 224 It is arranged such that the composite bumps 262 are aligned with the interconnections formed on the conductive traces 268 on the substrate 270, as shown in Figure 1 la. The composite bumps 262 are tapered along the conductive traces 268, i.e., the composite bumps have a wedge shape that is longer along the length of the conductive traces 268 and narrower across the conductive traces. The tapered features of the composite bumps 262 appear along the length of the conductive traces. The drawing in Figure 1U shows that the shorter feature or the narrowed taper is collinear with the conductive traces 268. The drawing in the figure 丨b perpendicular to the figure 丨la shows the longer features of the wedge-shaped composite bump 262. The shorter features of the composite bumps 262 are wider than the conductive traces 268. The fusible portion 266 is decomposed around the conductive traces during pressure application and/or thermal reflow, i.e., as shown in Figures 1 lc and 1 ld. The non-meltable portion 264 28 201225209 does not refine or deform during reflow, and maintains its shape and shape. The insoluble portion 264 can be sized to provide a gap-to-gap distance between the semiconductor wafer 224 and the substrate 270. - A process such as CuOSP can be applied to the substrate 270. Conductive traces 268 can be applied to interconnect structures formed using solder mask patches as described in Figures 5-8. During a reflow process, a large number (e.g., thousands) of composite bumps 262 on semiconductor die 224 are attached to interconnect locations on conductive traces 268 of substrate 27. Some of the bumps 262 may not be properly connected to the conductive traces 268', particularly when the semiconductor die 224 is distorted. Recall that the composite bump 262 is wider than the conductive trace 268. The fusible portion 266 is deformed or protruded around the top and side surfaces of the conductive trace (10) and a composite bump @262 is mechanically locked to the conductive trace under application of a suitable force. The mechanically tight connection is formed by the nature of the fusible portion. 'The essence is softer and more conformable than the conductive line $ 268, and thus deformed around the tantalum conductive, the tantalum and side surfaces of the line to obtain Large contact area. The wedge shape of the composite bump 262 increases the contact area between the bump and the conductive line, for example, increases along the longer characteristic direction of the figures i lb and i 丨 d without sacrificing along the figures Ua and Uc The spacing in the shorter characteristic direction. The mechanically tight connection between the composite bumps 262 and the conductive traces 268 maintains the bumps on the conductive traces during reflow, i.e., the bumps and conductive traces do not lose contact. Thus, the composite bumps 262 that are coupled to the conductive traces 268 reduce the failure of the bump interconnects. 12a-12d show an embodiment of a semiconductor die 224 in which a bump material 274 is formed over contact pad 232, similar to Fig. 9c'. 29 201225209 In Figure 12a, the bump material 274 is substantially conformable and undergoes a plastic deformation of greater than about 25 μηη under a force equivalent to a vertical load of about 200 grams. The bump material 2 7 4 is wider than the conductive line 276 on the substrate 278. A plurality of bumps 280 are formed on the conductive line 276 at a height on the order of about 1-25 μτη. The semiconductor die 224 is arranged to align the bump locations on the bump material 274 and the conductive traces 276. Alternatively, bump material 274 can be aligned with conductive pads or other interconnect locations formed on substrate 278. - Pressure or force F is applied to the back surface 228 of the semiconductor die 224 to press the bump material 274 over the conductive traces 276 and bumps 280, as shown in Figure 12b. sH force F can be applied to the temperature. Due to the compliant nature of the bump material 274, the bump material deforms or protrudes around the top and side surfaces of the conductive traces 276 and around the bumps 280. In particular, the application of pressure causes the bump material 274 to plastically deform and cover the top and side surfaces of the conductive traces 276 and the bumps 280. The plastic flow of the bump material 274 creates a giant mechanically tight junction between the bump material and the top and side surfaces of the conductive traces 276 and the bumps 280. The plastic flow of the bump material 274 occurs around the top and side surfaces of the conductive traces 276 and around the bumps 280' but does not excessively extend over the substrate 278, which can otherwise cause electrical shorts and other defects. The mechanically tight connection between the bump material and the top and side surfaces of the conductive traces 276 and the bumps 280 provides a robust contact area with a large contact area between the individual surfaces without significantly increasing the bonding force. Connection. The mechanically tight connection between the bump material and the top and side surfaces of the conductive traces 276 and the bumps 280 also reduces the lateral grain movement during subsequent processes such as packaging. Figure 12c shows another BOL embodiment in which the bump material 274 is narrower than the conductive traces 276. A pressure or force F is applied to the responsible surface 228 of the semiconductor die 224 to press the bump material 274 onto the conductive traces 276 and the bumps 280. This force F can be applied at the temperature. Due to the compliant nature of the bump material, the bump material deforms or protrudes above the top surface of the conductive trace 276 and over the bump 280. In particular, the application of pressure causes the bump material 274 to plastically deform and cover the top surface of the conductive trace 276 and the bump 280. The plastic flow of the bump material 274 creates a giant mechanically tight joint between the bump material and the top surface of the conductive trace 276 and the bump 28〇. The mechanically tight connection between the bump material and the top surface of the conductive trace 276 and the bump 28 提供 provides a robust connection with a large contact area between the individual surfaces without significantly increasing the bonding force. . The mechanically tight connection between the bump material and the top surface of the conductive traces 276 and the bumps 28A also reduces lateral grain movement during subsequent processes such as packaging. Figure 12d shows an alternative embodiment in which the bump material π is formed over an edge of the conductive trace 276, i.e., a portion of the bump material is over the conductive trace and a portion of the bump The block material is not above the conductive trace. A pressure or force F is applied to the back surface 228 of the semiconductor die 224 to press the bump material 274 onto the conductive traces 276 and the bumps 28A. This force F can be applied at high temperatures. Due to the compliant nature of the bump material 274, the bump material deforms or protrudes above the top and side surfaces of the conductive traces 276 and over the bumps 280. In particular, the application of pressure causes the bump material "4 31 201225209 to plastically deform and cover the top and side surfaces of the conductive traces 276 and the bumps 280. The plastic flow of the bump material 274 is between the bump material and the conductive traces 276. A mechanically tight connection between the top surface and the side surfaces and the bumps 28A. The mechanically tight connection between the bump material and the top and side surfaces of the conductive traces 276 and the bumps 280 is Providing a robust connection with a large contact area between individual surfaces without significantly increasing the bonding force. A mechanically tight connection between the bump material and the top and side surfaces of the conductive traces 276 and the bumps 280 The lateral grain movement during subsequent processes such as encapsulation is also reduced. Figure 1 3a-1 3c shows a b〇l embodiment of a semiconductor die 224, wherein similar to Figure 9c, bump material 284 is formed in the contact pad. Above the 232. A tip 286 extends from the body of the bump material 284 to a stepped bump 'where the tip 286 is narrower than the body of the bump material 284, as shown in Figure 13a. The bulk die 224 is configured to align the bump material 284 with the interconnect locations on the conductive traces 288 on the substrate 290. More specifically, the tip 286 is disposed centrally at the interconnect location on the conductive traces 288. Alternatively, the bump material 284 and the tip 286 can be aligned with conductive pads or other interconnect locations formed on the substrate 290. The bump material 284 is wider than the conductive traces 288 on the substrate 290. The conductive traces 288 are substantially Compliant, and plastic deformation greater than about 25 μm is performed under a force corresponding to a vertical load of about 2 gram. A waste force or force F is applied to the back surface 228 of the semiconductor die 224 to bring the tip 284 Pressed onto conductive line 288. This force f can be applied at high temperatures. Due to the compliant nature of conductive line 288, the conductive line is deformed around tip 32, 201225209 end 286, as shown in Figure 3b. In particular, the application of pressure causes the conductive traces 288 to plastically deform and cover the top and side surfaces of the tip 286. Figure 1c shows another embodiment of the BOL in which a circular bump material 294 is formed in contact. Above the 232. A tip 296 extends from the body of the bump material 294 to form a stud bump, wherein the tip is narrower than the body of the bump material 294. The semiconductor die 224 is configured such that the bump material 294 and The interconnections on the conductive traces 298 on the substrate 300 are aligned. More specifically, the 'tips 296 are disposed on the center of the interconnect locations on the conductive traces 298. Alternatively, the bump material 294 and the tips 296 can The conductive pads or other interconnects formed on the substrate 300 are aligned. The bump material 294 is wider than the conductive traces 298 on the substrate 300. Conductive line 298 is generally compliant and undergoes a plastic deformation of greater than about 25 μηη under a force corresponding to a vertical load of about 2 gram. A pressure or force F is applied to the back surface 228 of the semiconductor die 224 to press the tip 296 onto the conductive trace 298. This force f can be applied at high temperatures. Due to the compliant nature of the conductive traces 298, the conductive traces are deformed around the tips 296. In particular, the application of pressure causes the conductive traces 298 to plastically deform and cover the top and side surfaces of the tip 296. The conductive traces described in Figures 10a-10g, 1 la-1 Id and 12a-12d may also be compliant materials as described in Figures 13a-13c. Figures 14a-14b illustrate a BOL embodiment of a semiconductor die 224 in which a bump material 304 is formed over contact pad 232, similar to Figure 9c'. The bump material 304 is substantially compliant' and undergoes a plastic deformation greater than about 25 μιη under a force corresponding to a vertical load of about 2 gram 33 201225209. The bump material 304 is wider than the conductive traces 3〇6 on the substrate 308. A conductive via 31 having an opening 312 and a conductive sidewall 314 is formed through the conductive traces 3, 6 as shown in Figure 14a. Conductive lines 3〇6 can be applied to interconnect structures formed using solder mask patches as described in Figures 5-8. The semiconductor die 224 is arranged to align the bump locations on the bump material 3〇4 and the conductive traces 306. See Figures 6a, 6c, 7-8, and 18a-18c. Alternatively, the bump material 3〇4 can be aligned with the conductive pads or other interconnect locations formed on the substrate 3〇8. A pressure or force F is applied to the back surface 228 of the semiconductor die 224 to press the bump material 304 over the conductive traces 306 and into the openings 312 of the conductive vias 31'. This force f can be applied at high temperatures. Due to the compliant nature of the bump material 3〇4, the bump material is deformed or protrudes around the top surface and the side surface of the conductive trace 3〇6 and into the opening 312 of the conductive via 31〇, as in the figure The one shown in the summer servant. In particular, the application of pressure causes the bump material 3〇4 to be plastically deformed and covers the top and side surfaces of the conductive traces 3〇6 and into the openings 312 of the conductive vias 310. Thus, the bump material 3〇4 is electrically connected to the conductive traces 306 and the conductive sidewalls 314 for use in the z-direction vertical interconnect through the substrate 3〇8. The plastic flow of the bump material 3〇4 creates a mechanically tight connection between the bump material and the top and side surfaces of the conductive traces 306 and the openings 312 of the conductive vias 3丄〇. The mechanically tight connection between the bump material and the top and side surfaces of the conductive traces 306 and the openings 312 of the conductive vias 31 is provided to provide a larger surface between the individual surfaces without significantly increasing the bonding force. A robust connection to the contact area. The mechanically tight connection between the bumps of the 201225209 block material and the top and side surfaces of the conductive traces 306 and the openings 3 12 of the conductive vias 3 i 亦 also reduces lateral grain movement during subsequent processes such as packaging. . Since the conductive via 3 and the bump material 304 are formed together within the interconnection position, the total substrate interconnection/area is reduced. In the BOL embodiments of Figures 10a-10g, Ua_lld, 12a-12d, (1), (1), and 14a l4b, by making the conductive traces narrower than the interconnect structure, the pitch of the conductive traces can be reduced to increase the wire density and the number of turns. The narrower conductive circuitry reduces the force F required to deform the interconnect structure around the conductive traces. For example, the necessary force F may be such that a bump abuts a width wider than the bump

的導電線路或墊變形所需的力之3〇_5〇%。該較低的壓力F 對於細間距互連及小的晶粒維持在一指定容限内的共面性 以及達成均勻的Z向變形及高可靠度的互連結合是有用 的。此外,將互連結構變形在導電線路的周圍係將該凸塊 機械地鎖到該線路以避免在回焊期間的晶粒移動或晶粒浮 接。 圖15a-15c係展示一種模具底膠填充(Muf)製程以將封 裝材料沉積在半導體晶粒及基板間的凸塊周圍。圖l5a係展 示半導體晶粒224利用_ 1()b的凸塊材料m而安裝到基 板254,並且被設置在凹槽(chase)模具32〇的上方模具支撐 件316及下方模具支撑件318之間。圖i〇ai〇g、⑴⑴、 12a-12d、13a-13c及14a-14b之其它的半導體晶粒及基板之 組合亦可設置在凹槽模具32〇的上方模具支撑件316及下 方模具支樓件318之間。該上方模具支揮件316係包含可 35 201225209 壓縮的離型膜(releasing film)322。 在圖15b中’上方模具支撐件316及下方模具支撐件 318被放在一起以封入半導體晶粒224及基板254,其具有 一開放空間在該基板之上且在該半導體晶粒及基板之間。 可壓縮的離型膜322係貼合半導體晶粒224的背表面228 及側表面以阻擋封裝材料在這些表面上的形成。一種處於 液態的封裝材料324係利用喷嘴326而被注入到凹槽模具 320的一側中,而一選配的真空輔助328從相反的側邊吸壓 以將該封裝材料均勻地填入基板254之上的開放空間以及 在半導體晶粒224及基板254之間的開放空間。封裝材料 324可以是聚合物複合材料(例如,具有填充劑的環氧樹 脂、具有填充劑的環氧丙烯酸酯)、或是具有適合的填充劑 之聚合物。封裝材料324是非導電的並且在環境上保護半 導體裝置免於接觸到外部的元素及污染物。可壓縮的材料 322係避免封裝材料324流到半導體晶粒224的背表面228 之上及側表面的周圍。封裝材料324係被固化。半導體晶 粒224的背表面228及側表面係保持露出自封裝材料324。 圖15c係展示MUF及模具過度填充(MOF),亦即,在 沒有可壓縮的材料322下的一實施例。半導體晶粒224及 基板254係被設置在凹槽模具32〇的上方模具支擇件316 及下方模具支撐件318之間。該上方模具支撐件316及丁 方模具支撐件318係被放在一起以封入半導體晶粒224及 基板254,其具有一開放空間在該基板之上、在該半導體晶 粒的周圍且在該半導體晶粒及基板之間。處於液態的封裝 36 201225209 材料324係利用喷嘴326而被注入到凹槽模具32〇的一側 中,而一選配的真空輔助328係從相反的侧邊吸壓以將該 封裝材料均勻地填入在半導體晶粒224的周圍且在基板254 之上的開放空間以及在半導體晶粒224及基板254之間的 開放空間。封裝材料324係被固化。 圖16係展示將封裝材料沉積在半導體晶粒224的周圍 且在半導體晶粒224及基板254之間的間隙中的另一實施 例。半導體晶粒224及基板254係藉由屏障(dam)33()圍住。 封裝材料332係以液態從喷嘴334分配到屏障33〇中以 填入基板254之上的開放空間以及在半導體晶粒224及基 板254之間的開放空間。從喷嘴334分配的封裝材料332 的ϊ係被控制在不覆蓋半導體晶粒224的背表面228或側 表面下填入屏障330。封裝材料332係被固化。 圖17係展示在圖16a、16c及17的MUF製程之後的半 導體晶粒224及基板25扣封裝材料324係均勻地散佈在基 板254之上且在半導體晶粒224及基板254之間的凸塊材 料234的周圍。 圖18a-18c係展示在基板或PCB 34〇上之各種的導電線 路佈局的俯視圖。在圖l8a中,導電線路342是一形成在基 板340上具有一體型凸塊墊或互連位置344之直的導體。 基板凸塊墊344的側邊可以是和導電線路342共線的。在 習知技術中,SRO通常是形成在該互連位置之上,以在回 焊期間限制凸塊材料。該SR〇會增加互連間距且減少"〇 數目。相對地,遮罩層346可形成在基板34〇的一部份之 37 201225209 上;然而,該遮罩層並未形成在導電線路342的基板凸塊 墊344的周圍。換言之,導電線路342中被設計來和凸塊 材料配接的部份並沒有原本用於在回焊期間凸塊限制的遮 罩層346的任何SRO。 半導體晶粒224係被設置在基板34〇之上,並且凸塊 材料係和基板凸㈣344對準。凸塊材料係藉由使該凸塊 材料和該凸塊墊實體接觸並且接著在一回焊溫度下回焊該 凸塊材料以電氣且冶金連接至基板凸塊墊344。 在另—實施例中,一導電凸塊材料係利用一蒸鍍、電 解的電鍍、無電的電鍍、球式滴落或網版印刷製程以沉積 在基板凸塊塾344之上。該&塊材料可以是M、以、犯、 Au、Ag、Pb、Bi、Cu、焊料以及其組合,其具有一選配的 助熔洛劑。例如,該凸塊材料可以是共晶Sn/pb、高鉛的焊 料、或是無鉛的焊料.該凸塊材料係利用一合適的附著或 連:製程來連結到基板凸塊墊344。在一實施例中,該凸塊 材料係藉由加熱該材料超過其熔點來回焊,以形成凸塊或 互連34\即如同在圖m中所示者。在某些應用中,凸塊 > 1進行—次回焊以改善到基板凸塊墊344的電氣接觸。 在该窄的基板凸塊| 344周圍的凸塊材料係在回焊期間維 在尚繞線密度的應用中,最 —,〜叮电、咏纷 的逸: B疋所期望的。在導電線路342之間的逸散間距可藉 層用:回焊限制目的之遮罩層,亦即,藉由在沒有遮. 下回焊凸塊材料而被減少。由於沒有SR〇被形成在^ 38 201225209 凸塊墊232或基板凸塊墊344的周圍,所以導電線路342 可用較細的間距形成’亦即,導電線路342可被設置成較 靠在一起或是較靠近附近的結構。在基板凸塊墊344周圍 沒有SRO之下,導電線路342間的間距係給定為 P=D + PLT+W/2,其中D是凸塊348的基底直徑,pLT是晶 粒设置容限,並且W是導電線路342的寬度。在一實施例 中’給定ΙΟΟμιη的凸塊基底直徑、1〇μηι的PLT、以及30μιη 的線路線寬,導電線路342之最小的逸散間距是125pm。 s亥無遮罩的凸塊形成係免去需要考量到如習知技術中可見 的相鄰開口間之遮罩材料的孔帶間隔、焊料遮罩對準容限 (SRT)、以及最小可解析的sr〇。 當該凸塊材料在沒有遮罩層下被回焊以將晶粒凸塊墊 232冶金且電連接至基板凸塊墊344時,潤濕及表面張力係 使得該凸塊材料維持自我局限(self c〇nfinement)且被保持 在晶粒凸塊墊232與基板凸塊墊344及基板340中緊鄰導 電線路342且貫質在該凸塊墊的覆蓋區中的部份之間的空 間内。 為了達成该所要的自我局限性質,凸塊材料可在置放 於晶粒凸塊墊232或基板凸塊墊344上之前被浸沒在一助 熔洛劑中,以選擇性地使得該凸塊材料所接觸的區域比導 電線路342周圍的區域更濕潤。該熔化的凸塊材料係由於 該助熔溶劑的可濕性而維持局限在實質由凸塊墊所界定的 區域内。該凸塊材料並不溢出到較不濕潤的區域。一薄的 氧化層或疋其它絕緣層可形成在其中不打算有凸塊材料的 39 201225209 區域之上,以使該區域較不濕潤。因此,晶粒凸塊塾2 3 2 或基板凸塊墊344周圍並不需要有遮罩層340。 圖18c係展示平行的導電線路352為直的導體之另一實 施例’其中一體型矩形凸塊墊或互連位置354形成在基板 350上。在此例中,基板凸塊墊354係比導電線路352寬, 但是小於配接的凸塊寬度。基板凸塊墊354的側邊可以是 平行於導電線路352。遮罩層356可形成在基板350的一部 份之上;然而’該遮罩層並未形成在導電線路352的基板 凸塊墊354的周圍。換言之,導電線路352中被設計以和 凸塊材料配接的部份並沒有原本用於在回焊期間凸塊限制 的遮罩層356的任何SRO。 圖19係展示堆疊封裝(PoP)4〇5,其中半導體晶粒4〇6 係利用晶粒附接黏著劑410而堆疊在半導體晶粒4〇8上。 半導體bb粒406及408分別具有一包含類比或數位電路的 主動表面,該類比或數位電路被實施為形成在該晶粒内且 根據該晶粒的電設計及功能來電互連的主動裝置、被動裝 置、導電層以及介電層。例如,該電路可包含一或多個電 晶體、二極體以及其它形成在該主動表面内之電路元件以 實施類比電路或數位電路,例如:Dsp、ASIC、記憶體或 其它信號處理電路。半導體晶粒406及408亦可包含例如 是電感器、電容器及電阻器的IPD,以供RF信號處理使用。 半導體晶粒406係利用圖1〇a_1〇g、Ua Ud、12a l2d、The force required to deform the conductive line or pad is 3〇_5〇%. This lower pressure F is useful for fine pitch interconnects and for the coplanarity of small grains to maintain within a specified tolerance and to achieve uniform Z-direction deformation and high reliability interconnect bonding. In addition, deforming the interconnect structure around the conductive trace mechanically locks the bump to the trace to avoid grain movement or die floating during reflow. Figures 15a-15c illustrate a mold underfill (Muf) process for depositing a package material around a bump between a semiconductor die and a substrate. Figure 15a shows the semiconductor die 224 mounted to the substrate 254 using the bump material m of _ 1 () b and disposed over the upper mold support 316 and the lower mold support 318 of the chase mold 32 〇 between. The other semiconductor die and substrate combination of the drawings i〇ai〇g, (1)(1), 12a-12d, 13a-13c and 14a-14b may also be disposed on the upper mold support 316 and the lower mold branch of the groove mold 32〇. Between pieces 318. The upper mold support 316 comprises a release film 322 that is compressible by 35 201225209. In Figure 15b, the upper mold support 316 and the lower mold support 318 are placed together to enclose the semiconductor die 224 and the substrate 254 having an open space over the substrate and between the semiconductor die and the substrate. . A compressible release film 322 conforms to the back surface 228 and side surfaces of the semiconductor die 224 to block the formation of the encapsulating material on these surfaces. A liquid encapsulating material 324 is injected into one side of the groove mold 320 using the nozzle 326, and an optional vacuum assist 328 is sucked from the opposite side to uniformly fill the encapsulating material into the substrate 254. The open space above and the open space between the semiconductor die 224 and the substrate 254. The encapsulating material 324 may be a polymer composite (e.g., an epoxy resin having a filler, an epoxy acrylate having a filler), or a polymer having a suitable filler. The encapsulation material 324 is non-conductive and environmentally protects the semiconductor device from external elements and contaminants. The compressible material 322 prevents the encapsulation material 324 from flowing over the back surface 228 of the semiconductor die 224 and around the side surfaces. The encapsulating material 324 is cured. The back surface 228 and side surfaces of the semiconductor wafer 224 remain exposed from the encapsulation material 324. Figure 15c shows an embodiment of MUF and mold overfill (MOF), i.e., without compressible material 322. The semiconductor die 224 and the substrate 254 are disposed between the upper mold support 316 and the lower mold support 318 of the groove mold 32A. The upper mold support 316 and the square mold support 318 are placed together to enclose the semiconductor die 224 and the substrate 254 having an open space over the substrate, around the semiconductor die, and at the semiconductor Between the die and the substrate. The liquid-filled package 36 201225209 material 324 is injected into one side of the groove mold 32 by nozzle 326, and an optional vacuum assist 328 is sucked from the opposite side to evenly fill the package material. An open space is formed around the semiconductor die 224 and over the substrate 254 and an open space between the semiconductor die 224 and the substrate 254. The encapsulating material 324 is cured. Figure 16 illustrates another embodiment of depositing an encapsulation material around the semiconductor die 224 and in the gap between the semiconductor die 224 and the substrate 254. Semiconductor die 224 and substrate 254 are enclosed by a dam 33 (). The encapsulation material 332 is dispensed from the nozzle 334 into the barrier 33A in a liquid state to fill the open space above the substrate 254 and the open space between the semiconductor die 224 and the substrate 254. The tether of the encapsulating material 332 dispensed from the nozzle 334 is controlled to fill the barrier 330 under the back surface 228 or side surface that does not cover the semiconductor die 224. The encapsulating material 332 is cured. 17 shows the semiconductor die 224 and the substrate 25 package material 324 after the MUF process of FIGS. 16a, 16c, and 17 are uniformly spread over the substrate 254 and between the semiconductor die 224 and the substrate 254. Around material 234. Figures 18a-18c are top plan views showing various conductive line layouts on a substrate or PCB 34. In Figure 18a, conductive trace 342 is a straight conductor formed on substrate 340 having an integral bump pad or interconnect location 344. The sides of the substrate bump pads 344 may be collinear with the conductive traces 342. In the prior art, an SRO is typically formed over the interconnect location to limit the bump material during reflow. This SR〇 increases the interconnect spacing and reduces the number of "〇. In contrast, the mask layer 346 can be formed on a portion of the substrate 34 37 37 201225209; however, the mask layer is not formed around the substrate bump pads 344 of the conductive traces 342. In other words, the portion of conductive trace 342 that is designed to mate with the bump material does not have any SRO that would otherwise be used for bump-limited masking layer 346 during reflow. Semiconductor die 224 is disposed over substrate 34A and the bump material is aligned with substrate bump 344. The bump material is electrically and metallurgically bonded to the substrate bump pad 344 by physically contacting the bump material with the bump pad and then reflowing the bump material at a reflow temperature. In another embodiment, a conductive bump material is deposited over the substrate bumps 344 by an evaporation, electrolytic plating, electroless plating, ball dropping or screen printing process. The & block material can be M, I, PA, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional fluxing agent. For example, the bump material can be a eutectic Sn/pb, a high lead solder, or a lead free solder. The bump material is bonded to the substrate bump pad 344 by a suitable attachment or bonding process. In one embodiment, the bump material is soldered back and forth by heating the material beyond its melting point to form bumps or interconnects 34, i.e., as shown in Figure m. In some applications, the bumps > 1 are subjected to a second reflow to improve electrical contact to the substrate bump pads 344. The bump material around the narrow substrate bumps 344 is the most desirable in the application of the wire-wound density during reflow, the most important, and the most desirable. The escape spacing between the conductive traces 342 can be used by layers: the mask layer for reflow soldering purposes, i.e., by reflow solder bump material without masking. Since no SR is formed around the bump pad 232 or the substrate bump pad 344, the conductive traces 342 can be formed with a fine pitch 'that is, the conductive traces 342 can be placed closer together or Closer to the nearby structure. Under the absence of SRO around the substrate bump pad 344, the spacing between the conductive lines 342 is given as P = D + PLT + W / 2, where D is the base diameter of the bump 348 and pLT is the die set tolerance. And W is the width of the conductive line 342. In one embodiment, given the bump base diameter of ΙΟΟμιη, the PLT of 1 μm, and the line width of 30 μm, the minimum escape pitch of the conductive trace 342 is 125 pm. The shovel-free bump formation eliminates the need to consider the hole spacing, the solder mask alignment tolerance (SRT), and the minimum resolvable of the mask material between adjacent openings as seen in the prior art. Sr〇. When the bump material is reflowed without the mask layer to metallurgically and electrically connect the die bump pads 232 to the substrate bump pads 344, wetting and surface tension are such that the bump material maintains self-limiting (self And being held in the space between the die bump pad 232 and the substrate bump pad 344 and the substrate 340 adjacent to the conductive trace 342 and passing through the portion of the bump pad. To achieve the desired self-limiting nature, the bump material can be immersed in a fluxing agent prior to placement on the die bump pad 232 or the substrate bump pad 344 to selectively cause the bump material to be The area of contact is more humid than the area around the conductive line 342. The molten bump material is maintained confined within the area substantially defined by the bump pads due to the wettability of the fluxing solvent. The bump material does not spill into the less humid areas. A thin oxide layer or other insulating layer may be formed over the area of 201225209 where no bump material is intended to make the area less humid. Therefore, the mask layer 340 is not required around the die bump 塾2 3 2 or the substrate bump pad 344. Figure 18c shows another embodiment of a parallel conductive track 352 being a straight conductor' wherein an integral rectangular bump pad or interconnect location 354 is formed on substrate 350. In this example, the substrate bump pads 354 are wider than the conductive traces 352, but less than the mated bump widths. The sides of the substrate bump pads 354 may be parallel to the conductive traces 352. A mask layer 356 can be formed over a portion of the substrate 350; however, the mask layer is not formed around the substrate bump pads 354 of the conductive traces 352. In other words, the portion of the conductive trace 352 that is designed to mate with the bump material does not have any SRO that would otherwise be used for the bump layer 356 that was bump-limited during reflow. 19 shows a stacked package (PoP) 4〇5 in which semiconductor dies 4〇6 are stacked on a semiconductor die 4〇8 using a die attach adhesive 410. The semiconductor bb particles 406 and 408 each have an active surface including an analog or digital circuit, and the analog or digital circuit is implemented as an active device and passively formed within the die and electrically interconnected according to electrical design and function of the die. Device, conductive layer and dielectric layer. For example, the circuit can include one or more transistors, diodes, and other circuit components formed within the active surface to implement analog or digital circuitry, such as Dsp, ASIC, memory, or other signal processing circuitry. Semiconductor dies 406 and 408 may also include IPDs such as inductors, capacitors, and resistors for use in RF signal processing. The semiconductor die 406 is made by using FIG. 1〇a_1〇g, Ua Ud, 12a l2d,

Ba-Ud 14a.14b的實施例中之任_實施例,㈣形成在 接觸墊4丨8上之ώ塊材料416而被安裝到形成在基板414 40 201225209 上的導電線路412 »導電線路412係可應用到如圖5-8中所 述之利用焊料遮罩補片形成的互連結構。半導體晶粒408 係利用焊線422電連接至形成在基板414上之接觸墊420。 焊線422之相反端係連結到半導體晶粒406上之接觸墊 424 ° 遮罩層426係被形成在基板414之上且開口超過半導 體晶粒406的覆蓋區。儘管遮罩層426在回焊期間並不限 制凸塊材料416到導電線路412,該開放的遮罩可運作為一 屏障以避免在MUF期間封裝材料428遷移到接觸墊42〇或 焊線422。封裝材料428係類似於圖15a_15c地沉積在半導 體晶粒4〇8及基板414之間。遮罩層426係阻擋muf封褒 材料428到達接觸& 42()及焊線422,否則可能會造成缺 陷。遮罩I 426係容許較大的半導體晶粒被設置在一特定 的基板上,而無封裝材料428流出到接觸墊420之上的風 險。 儘管本發明的一或多個實施例已詳細地解說,熟習此 項技術者將會體認到可在不脫離如以下的中請專利範圍中 所闡述之本發明的範訂’對於該些實施例進行修改及調 【圖式簡單說明】 基板上的線路導 圖1係描繪形成在-半導體晶粒及-線之間的習知的互連之橫截面圖; 係綠透過焊料遮罩開口形成在線路導線之上的 圖 41 201225209 習知的互連之俯視圖; 圖3係描續* ,一安梦5丨丨甘主二> -T- I—» 女裒到其表面之不同類型的封裝Any of the embodiments of Ba-Ud 14a.14b, (iv) the germanium block material 416 formed on the contact pads 4A8, is mounted to the conductive traces 412 formed on the substrate 414 40 201225209 » conductive traces 412 It can be applied to an interconnect structure formed using a solder mask patch as described in Figures 5-8. The semiconductor die 408 is electrically connected to the contact pads 420 formed on the substrate 414 by bond wires 422. The opposite end of the bond wire 422 is bonded to the contact pad 424 of the semiconductor die 406. The mask layer 426 is formed over the substrate 414 and extends beyond the footprint of the semiconductor die 406. Although the mask layer 426 does not limit the bump material 416 to the conductive traces 412 during reflow, the open mask can function as a barrier to avoid migration of the encapsulation material 428 to the contact pads 42 or bond wires 422 during the MUF. The encapsulation material 428 is deposited between the semiconductor die 4'8 and the substrate 414 similar to Figures 15a-15c. Mask layer 426 blocks muf seal material 428 from contact & 42() and bond wire 422, which may otherwise cause defects. Mask I 426 allows larger semiconductor dies to be placed on a particular substrate without the risk of encapsulation material 428 flowing over contact pads 420. Although one or more embodiments of the present invention have been described in detail, those skilled in the art will recognize that the invention may be practiced without departing from the scope of the invention as set forth below. EXAMPLES Modifications and Adjustments [Simple Description of the Drawings] The wiring diagram 1 on the substrate depicts a cross-sectional view of a conventional interconnection formed between the semiconductor die and the - line; the green is formed through the solder mask opening Figure 41 above the line conductor 201225209 The top view of the conventional interconnection; Figure 3 is a description of the continued *, an An Meng 5 丨丨 甘 主 主 主 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Package

圖4a-4c係描緣安裝 教的PCB 之進一步細節;《“亥PCB之代表性的半導體封装 圖5係描繪形成在一半導體晶粒及一基板上的線路導 線之間的互連; 圖6a 6c係描繪沿著線路導線的一體型凸塊墊; 圖7係描繪形成在基板上的一體型凸塊墊陣列的空隙 中之焊料遮罩補片; 、 圖8係^會形成在—體型凸塊墊上的凸塊其中凸塊 材料係藉由焊料遮罩補片在回焊期間加以局限; 圖9a-9h係描繪形成在一半導體晶粒之上用於連結至 基板上的導電線路之各種的互連結構; 圖10a-1 〇g係描繪該半導體晶粒以及連結到該些導電 線路的互連結構; 圖11 a-11 d係描繪具有一連結到該些導電線路之楔形 的互連結構的半導體晶粒; 圖12a-12d係描繪該半導體晶粒以及連結到該些導電 線路的互連結構的另一實施例; 圖1 3 a -13 c係抬繪連結到該些導電線路的階梯形凸塊 以及柱形凸塊互連結構; 圖14a-14b係描繪具有導電貫孔的導電線路; 圖15 a -15 c係描繪在該半導體晶粒及基板之間的模具 底膠填充; 42 201225209 圖: 膠填充; 16係描繪在該半導體晶粒及基板 之間的另一模具底 圖1, 各種配置 圖 圖17係描繪在模具底膠填充後 18c係描繪具有間放的焊料對準 之半導體晶粒及基板; 的導電線路之 制封裝材料Figures 4a-4c are further details of the PCB for the teaching of the trace; "The representative semiconductor package of Figure 5 is a diagram depicting the interconnection between the line conductors formed on a semiconductor die and a substrate; Figure 6a 6c is an integrated bump pad along the line conductor; FIG. 7 is a solder mask patch in the gap of the integrated bump pad array formed on the substrate; FIG. 8 is formed in the body convex Bumps on the block pad wherein the bump material is limited during solder reflow by solder mask patches; Figures 9a-9h depict various types of conductive traces formed over a semiconductor die for bonding to a substrate Figure 10a-1 shows the semiconductor die and the interconnect structure connected to the conductive traces; Figure 11 a-11 d depicts a wedge-shaped interconnect structure bonded to the conductive traces The semiconductor die; FIGS. 12a-12d depict another embodiment of the semiconductor die and the interconnect structure bonded to the conductive traces; FIG. 1 3 a - 13 c is used to lift the ladder connected to the conductive traces Bump and column bump interconnect structure; Figures 14a-14b depict conductive traces with conductive vias; Figure 15 a-15 c depicts the mold underfill between the semiconductor die and the substrate; 42 201225209 Figure: Glue fill; 16 is depicted in the semiconductor Another mold base between the die and the substrate. FIG. 17 is a view showing a package of a conductive line having a solder-aligned semiconductor die and a substrate after the mold underfill is filled. material

之 POP 〇 Μ在模具底膠填充期間抑 【主要元件符號說明】 10覆晶類型半導體晶粒 12 互連或凸塊 14凸塊 18凸塊墊 20 線路導線 22 線路導線 26 焊料遮罩 28焊料遮罩或對準開口 30基板 . 、、 50電子裝置 52 印刷電路板 54線路 5 6 打線接合封裝^ 58覆晶 球狀拇格陣歹ij 43 201225209 62 凸塊晶片載體 64 雙排型封裝 66 平台柵格陣列 68 多晶片模組 70 四邊扁平無引腳封裝 72 四邊扁平封裝 74 半導體晶粒 76 接觸墊 78 中間載體 80 導線 82 焊線 84 封裝材料 88 半導體晶粒 90 載體 92 底膠填充或環氧樹脂黏著材料 94 焊線 96 接觸墊 98 接觸墊 100模製化合物或封裝材料 102接觸墊 104凸塊 106中間載體 108主動區域 110凸塊 44 201225209POP 〇Μ during mold base filling [Main component symbol description] 10 flip chip type semiconductor die 12 interconnect or bump 14 bump 18 bump pad 20 line wire 22 line wire 26 solder mask 28 solder mask Shield or alignment opening 30 substrate., 50 electronic device 52 printed circuit board 54 line 5 6 wire bonding package ^ 58 flip-chip spherical thumb matrix 歹 ij 43 201225209 62 bump wafer carrier 64 double row package 66 platform grid Array 68 Multi-Chip Module 70 Quad Flat No-Lead Package 72 Quad Flat Package 74 Semiconductor Die 76 Contact Pad 78 Intermediate Carrier 80 Conductor 84 Bond Wire 84 Packaging Material 88 Semiconductor Die 90 Carrier 92 Primer Fill or Epoxy Adhesive material 94 Bonding wire 96 Contact pad 98 Contact pad 100 Molding compound or encapsulating material 102 Contact pad 104 Bump 106 Intermediate carrier 108 Active area 110 Bump 44 201225209

111凸塊墊 11 2凸塊 114信號線 115 PCB 116模製化合物或封裝材料 11 7球或凸塊 118導通線路 120覆晶類型半導體晶粒 122凸塊墊 130線路導線 132線路導線 136基板 1 3 8凸塊墊 139凸塊墊 140凸塊墊 142焊料遮罩 144非濕性焊料遮罩補片 150球或凸塊 152球或凸塊 220半導體晶圓 222主體基板材料 324半導體晶粒或構件 226切割道 228背表面 45 201225209 230主動表面 232導電層 234凸塊材料 236球或凸塊 238複合的凸塊 240不可熔的部份 242可熔的部份 244凸塊 246導電柱 248凸塊材料 2 5 0突點 252鋸條或雷射切割工具 254基板 256導電線路111 bump pad 11 2 bump 114 signal line 115 PCB 116 molding compound or encapsulation material 11 7 ball or bump 118 conduction line 120 flip chip type semiconductor die 122 bump pad 130 line wire 132 line wire 136 substrate 1 3 8 bump pad 139 bump pad 140 bump pad 142 solder mask 144 non-wetting solder mask patch 150 ball or bump 152 ball or bump 220 semiconductor wafer 222 body substrate material 324 semiconductor die or member 226 Cutting surface 228 back surface 45 201225209 230 active surface 232 conductive layer 234 bump material 236 ball or bump 238 composite bump 240 non-fusible portion 242 fusible portion 244 bump 246 conductive column 248 bump material 2 50 0-bump 252 saw blade or laser cutting tool 254 substrate 256 conductive line

258基板或PCB 260導電線路 261凸塊材料 262複合的凸塊 264不可熔或不可分解的部份 266可熔或可分解的部份 268導電線路 270基板 274凸塊材料 276導電線路 46 201225209 278基板 2 8 0突點 284凸塊材料 286尖端 288導電線路 290基板 294凸塊材料 296尖端 298導電線路 300基板 304凸塊材料 306導電線路 308基板 3 10導電貫孔 312 開口 314導電的側壁 3 16上方模具支撐件 318下方模具支撐件 320凹槽模具 322可壓縮的離型膜 324封裝材料 326喷嘴 328輔助 330屏障 47 201225209 332封裝材料 334喷嘴 340基板 342導電線路 344基板凸塊墊 346遮罩層 348凸塊或互連 350基板 352導電線路 354基板凸塊墊 3 5 6遮罩層 405堆疊封裝 406半導體晶粒 408半導體晶粒 4 1 0晶粒附接黏著劑 4 1 2導電線路 414基板 416凸塊材料 4 1 8接觸墊 420接觸墊 422焊線 424接觸墊 426遮罩層 428封裝材料 48258 substrate or PCB 260 conductive line 261 bump material 262 composite bump 264 non-meltable or indecomposable portion 266 fusible or decomposable portion 268 conductive line 270 substrate 274 bump material 276 conductive line 46 201225209 278 substrate 2 8 0 bump 284 bump material 286 tip 288 conductive line 290 substrate 294 bump material 296 tip 298 conductive line 300 substrate 304 bump material 306 conductive line 308 substrate 3 10 conductive through hole 312 opening 314 conductive side wall 3 16 above Mold support 318 lower mold support 320 groove mold 322 compressible release film 324 encapsulation material 326 nozzle 328 auxiliary 330 barrier 47 201225209 332 encapsulation material 334 nozzle 340 substrate 342 conductive line 344 substrate bump pad 346 mask layer 348 Bump or interconnect 350 substrate 352 conductive line 354 substrate bump pad 3 5 6 mask layer 405 stacked package 406 semiconductor die 408 semiconductor die 4 1 0 die attach adhesive 4 1 2 conductive trace 414 substrate 416 convex Block material 4 1 8 contact pad 420 contact pad 422 bond wire 424 contact pad 426 mask layer 428 encapsulation material 48

Claims (1)

201225209 七、申請專利範圍: 1.一種製造半導體裝置之方法,其係包括: 提供具有複數個晶粒凸塊墊的半導體晶粒; 提供具有帶有互連位置的複數個導電線路的基板; 在該些晶粒凸塊墊或互連位置間的空隙中形成焊料遮 罩補片; 在該些互連位置或晶粒凸塊墊上沉積導電凸塊材料; 將該半導體晶粒安裝至該基板以使得該導電凸塊材料 被設置在該些晶粒凸塊塾及互連位置之間; 在該晶粒凸塊墊或互連位置周圍沒有焊料遮罩下回焊 該導電凸塊材料以在該半導體晶粒及基板之間形成互連結 構,其中該焊料遮罩補片係將該導電凸塊材料局限在該晶 粒凸塊塾或互連位置内;以及 在該半導體晶粒及基板之間沉積封裝材料。 2. 如申請專利範圍第丨項之方法,其中該焊料遮罩補片 係包含非濕性材料。 3. 如申請專利範圍帛!項之方;去’其進一纟包含將該導 電凸塊材料浸沒在助溶溶劑中以增加可濕性。 4. 如申請專利範圍第1項之方法,其進一步包含選擇沉 積在該晶粒凸塊墊及互連位置之間的導電凸塊材料的一個 量,以使得表面張力維持該導電凸塊材料實質局限在該些 晶粒凸塊墊及互連位置的覆蓋區内。 ^ 5.如申請專利範圍第1項之方法,其中該互連結構係覆 蓋該晶粒凸塊墊或互連位置的頂表面及側表面。 49 201225209 6.如申請專利範圍第丨 含可炫的部份以及不可炫的部其中該互連結構係包 造一半導體裝置之方法,其係包括: _ 互連位置的第一半導體結構; k供具有複數個第:互連位置的第二半導體結構; 在忒些第一互連位置咬第_ 罩補片; 一第一互連位置之間形成焊料遮 在該些第-及第二互連 從該導電凸塊材料形成凸塊材科, 半導體結構,其中該禪料避罩= 冓以連結該第-及第二 限在該些第一互連位置或第二互連位置内;以及鬼材科局 在该第-及第二半導體結構之間沉積封裝材料。 8.如申請專利範圍第7項之方法, 係包含非濕性材料。 ,、中該焊枓遮罩補片 9·如申請專利範圍第7項之方法,其進一步 電凸塊材料浸沒在助熔溶劑中以增加可渴性。 以導 沉積=Γ利範圍第7項之方法,其進-步包含選擇 &quot;匕積在§亥些第一及第二互查 ^ 個量,以4… 間的導電凸塊材料的- * ©張力維持該導電凸塊材料實 第—互連位置或第二互連位置的覆蓋區内。 亥 覆蓋US申I:利範圍第7項之方法’其中該互連結構係 :4第一互連位置或第二互連位置的頂表面以及側表 12·如申請專利範圍第7項之方法,其中該互連結構係 50 201225209 包含可熔的部份以及不可熔的部份。 1 3 ·如申請專利範圍第7 包含導電柱以及形成在該導 項之方法,其中該互連結構係 電柱之上的凸塊。 14·一種製造半導體裝置之方法,其係包括: 提供具有複數個第一互連位置的第一半導體結構; 提供具有複數個第二互連位置的第二半導體結構; 在該些第一互連位置或第二互連位置之間形成焊料遮 罩補片;以及 形成互連結構以連結該第一及第二半導體結構,其中 該焊料遮罩補片係將該互連結構局限在該些第一互連位置 或第二互連位置内。 一 15·如申請專利範圍第14項之方法,其進一步包含在該 及第一半導體結構之間沉積一封裝材料。 ^如申6青專利範圍第14項之方法,其中該焊料遮罩補 片係包含非濕性材料。 17.如申請專利範圍第14項之方法,其進一步包含將該 凸塊材料浸沒在助熔溶劑中以增加可濕性。 覆㈣8 :申請專利範圍第14項之方法,其中該互連結構係 &quot;—互連位置或第二互連位置的頂表面及側表面。 19·如申請專利範圍第14項之方法,其中該互連結構係 包3可熔的部份以及不可熔的部份。 包含=申請專利範圍第14項之方法,其中該互連結構係 W導電“及形成在該導電柱之上的凸塊。 21· —種半導體裝置,其係包括: 51 201225209 ”有複数個第一互連位置的第一半$體結構; 具有複數個第二互連位置的第二半導體結構. 遮罩=在該些第-互連位置或第二互連位置之間的焊料 連、、’“亥第-及第二半導體結構的互連結構, ==將該互連結構局限在該些第_互連:置:第 一互連位置内;以及 p積在β第_及第二半導體結構之間的封裝材料。 2.如申請專利範圍第21項之半導體裝 遮罩補片係包含非㈣材^ 23_如申請專利範圍g 21㉟之半 結構係覆蓋㈣—互連位置或第二 亥互連 表面。 印丘逑位置的頂表面及側 24.如申請專利範圍第21之 結構係句人τ卜 卞爷媸裝置,其中該互連 '、包3可熔的部份以及不可熔的部份。 2夂如申請專利範圍第21項之半 結構係包含练 子菔衮置,其中該互連 …電柱以及形成在該導電柱之上的凸塊。 八、 圖式: (如次頁) 52201225209 VII. Patent Application Range: 1. A method of fabricating a semiconductor device, comprising: providing a semiconductor die having a plurality of die bump pads; providing a substrate having a plurality of conductive traces with interconnect locations; Forming a solder mask patch in the gap between the die bump pads or interconnect locations; depositing a conductive bump material on the interconnect locations or the die bump pads; mounting the semiconductor die to the substrate Having the conductive bump material disposed between the die bumps and the interconnect locations; soldering the conductive bump material under the die bump pad or interconnect locations without solder masking Forming an interconnect structure between the semiconductor die and the substrate, wherein the solder mask patch confines the conductive bump material to the die bump or interconnect location; and between the semiconductor die and the substrate Deposit packaging material. 2. The method of claim 2, wherein the solder mask patch comprises a non-wetting material. 3. If you apply for a patent range! The side of the item; going further includes immersing the conductive bump material in a solubilizing solvent to increase wettability. 4. The method of claim 1, further comprising selecting an amount of conductive bump material deposited between the die bump pads and the interconnect locations such that surface tension maintains the conductive bump material substantially It is limited to the coverage areas of the die bump pads and interconnection locations. The method of claim 1, wherein the interconnect structure covers a top surface and a side surface of the die pad pad or interconnection location. 49 201225209 6. The method of claim </ RTI> </ RTI> </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Providing a second semiconductor structure having a plurality of: interconnection locations; biting the shield patch at the first interconnect locations; forming a solder between the first interconnect locations to cover the first and second inter Forming a bump material from the conductive bump material, the semiconductor structure, wherein the smear mask = 连结 to connect the first and second limits to the first interconnect locations or the second interconnect locations; The Ghost Materials Bureau deposits an encapsulation material between the first and second semiconductor structures. 8. The method of claim 7, comprising a non-wetting material. The solder bump mask patch 9 is as claimed in claim 7, wherein the further bump material is immersed in the flux solvent to increase the thirst. In the method of derivative deposition = profit range item 7, the further step includes selecting &quot;hoarding the first and second mutual inspections in § hai, to 4 - between the conductive bump materials - * The tension maintains the coverage area of the conductive bump material in the first-interconnecting position or the second interconnecting position. The method of claim 7 wherein the interconnecting structure is: 4 the first interconnecting location or the top surface of the second interconnecting location and the side table 12. The method of claim 7 Where the interconnect structure 50 201225209 comprises a fusible portion and a non-fusible portion. 1 3 • The method of claim 7 includes a conductive post and a method of forming the same, wherein the interconnect structure is a bump above the post. 14. A method of fabricating a semiconductor device, comprising: providing a first semiconductor structure having a plurality of first interconnect locations; providing a second semiconductor structure having a plurality of second interconnect locations; and wherein the first interconnects Forming a solder mask patch between the locations or the second interconnect locations; and forming an interconnect structure to bond the first and second semiconductor structures, wherein the solder mask patch limits the interconnect structure to the An interconnected location or a second interconnected location. The method of claim 14, further comprising depositing a package material between the first semiconductor structure. The method of claim 14, wherein the solder mask patch comprises a non-wetting material. 17. The method of claim 14, further comprising immersing the bump material in a fluxing solvent to increase wettability. (4) The method of claim 14, wherein the interconnection structure is a top surface and a side surface of the interconnection location or the second interconnection location. 19. The method of claim 14, wherein the interconnect structure is a fusible portion and a non-fusible portion. The method of claim 14, wherein the interconnect structure is electrically conductive and "bumps formed over the conductive pillars. 21" is a semiconductor device comprising: 51 201225209 "there are a plurality of a first half of the interconnect structure; a second semiconductor structure having a plurality of second interconnect locations. a mask = solder joint between the first or second interconnect locations, ''Heil-and second semiconductor structure interconnect structure, == confining the interconnect structure to the first _interconnect: set: first interconnect position; and p-product at β _ and second The encapsulating material between the semiconductor structures. 2. The semiconductor-mounted mask patch according to claim 21 of the patent application includes non-four materials. 23_ As disclosed in the patent application scope g 2135, the structural structure covers (4) - the interconnection position or the Erhai interconnect surface. The top surface and side of the Incheon position. 24. The structure of the 21st structure of the patent application is the sentence 人 卞 卞 卞 , device, where the interconnection ', package 3 fusible part and not The part of the fusion. 2 For example, the half-structure of the 21st patent application area The utility model comprises a training device, wherein the interconnection ... the electric column and the bump formed on the conductive column. 8. Drawing: (such as the next page) 52
TW100102450A 2010-12-09 2011-01-24 Semiconductor device and method of confining conductive bump material with solder mask patch TWI553775B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/963,919 US8659172B2 (en) 2008-12-31 2010-12-09 Semiconductor device and method of confining conductive bump material with solder mask patch

Publications (2)

Publication Number Publication Date
TW201225209A true TW201225209A (en) 2012-06-16
TWI553775B TWI553775B (en) 2016-10-11

Family

ID=46684668

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100102450A TWI553775B (en) 2010-12-09 2011-01-24 Semiconductor device and method of confining conductive bump material with solder mask patch

Country Status (2)

Country Link
KR (1) KR20120064601A (en)
TW (1) TWI553775B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI450658B (en) * 2012-10-22 2014-08-21 Au Optronics Suzhou Corp Ltd Welding positioning structure
US20210376211A1 (en) * 2018-11-09 2021-12-02 Lg Electronics Inc. Display apparatus using semiconductor light-emitting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10074630B2 (en) 2015-04-14 2018-09-11 Amkor Technology, Inc. Semiconductor package with high routing density patch
TWI655891B (en) * 2018-03-08 2019-04-01 綠點高新科技股份有限公司 Electronic module, manufacturing method thereof, housing of electronic device and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW459360B (en) * 2000-06-12 2001-10-11 Siliconware Precision Industries Co Ltd Flip-chip underfill method for flip-chip semiconductor packaging structure with wire-bonded chip-on-chip ball-grid array
US8026128B2 (en) * 2004-11-10 2011-09-27 Stats Chippac, Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
TWI377629B (en) * 2008-04-30 2012-11-21 Advanced Semiconductor Eng Package method for flip chip
US8198186B2 (en) * 2008-12-31 2012-06-12 Stats Chippac, Ltd. Semiconductor device and method of confining conductive bump material during reflow with solder mask patch
TWI529141B (en) * 2014-07-28 2016-04-11 zhi-feng Wu Recovery and treatment of hydrofluoric acid and fluorosilicic acid waste

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI450658B (en) * 2012-10-22 2014-08-21 Au Optronics Suzhou Corp Ltd Welding positioning structure
US20210376211A1 (en) * 2018-11-09 2021-12-02 Lg Electronics Inc. Display apparatus using semiconductor light-emitting device

Also Published As

Publication number Publication date
KR20120064601A (en) 2012-06-19
TWI553775B (en) 2016-10-11

Similar Documents

Publication Publication Date Title
US9899286B2 (en) Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
JP6013705B2 (en) Semiconductor device and method for forming a flip-chip interconnect structure having bumps on partial pads
US9679811B2 (en) Semiconductor device and method of confining conductive bump material with solder mask patch
US9418913B2 (en) Semiconductor device and method of forming insulating layer on conductive traces for electrical isolation in fine pitch bonding
JP5952523B2 (en) Semiconductor device and method for forming flip chip interconnect structure
TWI567864B (en) Semiconductor device and method of forming high routing density interconnect sites on substrate
US8884430B2 (en) Semiconductor device and method of confining conductive bump material during reflow with solder mask patch
US20130277826A9 (en) Semiconductor device and method of forming bump-on-lead interconnection
TW201250958A (en) Semiconductor device and method of forming pad layout for flipchip semiconductor die
US9258904B2 (en) Semiconductor device and method of forming narrow interconnect sites on substrate with elongated mask openings
TWI527178B (en) Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
TW201225209A (en) Semiconductor device and method of confining conductive bump material with solder mask patch
TWI538129B (en) Semiconductor device and method of forming narrow interconnect sites on substrate with elongated mask openings