JP2015096275A - Cemented-carbide-made composite roll and manufacturing method for the same - Google Patents

Cemented-carbide-made composite roll and manufacturing method for the same Download PDF

Info

Publication number
JP2015096275A
JP2015096275A JP2014201337A JP2014201337A JP2015096275A JP 2015096275 A JP2015096275 A JP 2015096275A JP 2014201337 A JP2014201337 A JP 2014201337A JP 2014201337 A JP2014201337 A JP 2014201337A JP 2015096275 A JP2015096275 A JP 2015096275A
Authority
JP
Japan
Prior art keywords
layer member
cemented carbide
intermediate layer
outer layer
composite roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014201337A
Other languages
Japanese (ja)
Other versions
JP6354504B2 (en
Inventor
大島 昌彦
Masahiko Oshima
昌彦 大島
拓己 大畑
Takumi Ohata
拓己 大畑
俊二 松本
Shunji Matsumoto
俊二 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014201337A priority Critical patent/JP6354504B2/en
Publication of JP2015096275A publication Critical patent/JP2015096275A/en
Application granted granted Critical
Publication of JP6354504B2 publication Critical patent/JP6354504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cemented-carbide-made composite roll composed of an outer layer made of a cemented carbide having excellent abrasion resistance, roughening resistance and the like and an inner layer made of iron alloy having excellent toughness and a manufacturing method for the same.SOLUTION: A cemented-carbide-made composite roll for rolling, made by diffusion-welding an outer layer made of cemented carbide to an inner layer made of iron alloy through an intermediate layer made of iron alloy containing 0.65-1.2 mass% C and 1.8-7.5 mass% Ni, can be manufactured by welding an inner surface of a cylindrical intermediate layer member to an outer surface of an inner layer member and then diffusion-welding the inner surface of the outer layer member to the outer surface of the intermediate layer member.

Description

本発明は、耐摩耗性、耐肌荒れ性等に優れた外層と靱性に優れた内層とからなり、板材、線材、棒材等の鋼材の圧延に好適な高耐久性の超硬合金複合ロール、及びその製造方法に関する。   The present invention comprises an outer layer excellent in wear resistance, rough skin resistance and the like and an inner layer excellent in toughness, and is a highly durable cemented carbide composite roll suitable for rolling steel materials such as plate materials, wire rods, bar materials, And a manufacturing method thereof.

寸法精度の向上等圧延材の高品質化、及びロール替え工数の低減による生産性向上の要求に応えるため、耐摩耗性、耐肌荒れ性等に優れた炭化タングステン(WC)系超硬合金からなる圧延用ロールが使用されており、種々の構造の超硬合金圧延ロールが提案されている。   Made of tungsten carbide (WC) cemented carbide with excellent wear resistance, rough skin resistance, etc., to meet the demands for higher quality of rolled materials, such as improved dimensional accuracy, and improved productivity by reducing the number of roll change man-hours. Rolls for rolling are used, and cemented carbide rolling rolls having various structures have been proposed.

例えば、特開平3-281007号(特許文献1)は、図8に示すように、両端に固定の締付フランジ部103と着脱自在な締付フランジ部104とを備えたロール本体105と、熱膨張係数が15×10-6/℃以上で熱伝導率が0.4 cal/cm・sec・℃以上の金属製リング状スペーサ111,111及び筒状スペーサ114を介してロール本体105に嵌合された超硬合金製円筒体110とを具備する超硬合金圧延ロールを提案している。リング状スペーサ111,111の熱膨張を利用して、締付フランジ部103,104の締付力を向上させている。しかし、リング状スペーサ111,111及び筒状スペーサ114があっても、締付フランジ部103,104による締付力では超硬合金製円筒体110とロール本体105との密着性は不十分であり、圧延中に超硬合金製円筒体110がロール本体105に対してスリップを起こしてしまうおそれがあった。 For example, as shown in FIG. 8, Japanese Patent Laid-Open No. 3-281007 (Patent Document 1) discloses a roll main body 105 provided with a fastening flange portion 103 fixed at both ends and a detachable fastening flange portion 104, as shown in FIG. Fitted to the roll body 105 via metal ring spacers 111 and 111 and a cylindrical spacer 114 having an expansion coefficient of 15 × 10 -6 / ° C or higher and a thermal conductivity of 0.4 cal / cm · sec · ° C or higher. A cemented carbide rolling roll comprising a cemented carbide cylinder 110 is proposed. The tightening force of the tightening flange portions 103 and 104 is improved by utilizing the thermal expansion of the ring spacers 111 and 111. However, even with the ring-shaped spacers 111 and 111 and the cylindrical spacer 114, the adhesion between the cemented carbide cylinder 110 and the roll body 105 is not sufficient with the tightening force by the tightening flange portions 103 and 104. In addition, the cemented carbide cylindrical body 110 may slip with respect to the roll body 105 during rolling.

このような組立式構造の超硬合金圧延ロールの問題点を解決するために、超硬合金製外層と金属製内層とを拡散接合した超硬合金複合ロールが提案されている。例えば、特開2001-47111号(特許文献2)は、靱性に優れた材料からなる内層部材の外周に、WC系超硬合金製外層部材を金属接合した超硬合金複合ロールにおいて、外層部材の内側にWC粒子の含有量が外層より少ないWC系超硬合金製中間層を設け、内層部材と中間層とを金属層を介して接合した超硬合金複合ロールを提案している。特許文献2は、中間層を外層部材から内層部材にかけて傾斜的なWCの組成とすることにより、熱膨張率、弾性係数等の物性値を外層部材から内層部材にかけて連続的に変化させ、もって境界接合部の強度を向上させると記載している。   In order to solve the problems of the cemented carbide roll of such an assembly type structure, a cemented carbide composite roll in which a cemented carbide outer layer and a metal inner layer are diffusion-bonded has been proposed. For example, Japanese Patent Laid-Open No. 2001-47111 (Patent Document 2) discloses a cemented carbide composite roll in which an outer layer member made of a WC-based cemented carbide is metal-bonded to the outer periphery of an inner layer member made of a material having excellent toughness. A cemented carbide composite roll has been proposed in which a WC cemented carbide intermediate layer having a smaller content of WC particles than the outer layer is provided on the inner side, and the inner layer member and the intermediate layer are joined via a metal layer. In Patent Document 2, the intermediate layer has an inclined WC composition from the outer layer member to the inner layer member, thereby changing the physical property values such as the coefficient of thermal expansion and the elastic coefficient continuously from the outer layer member to the inner layer member. It describes that the strength of the joint is improved.

特開2004-167501(特許文献3)号は、鋼系又は鉄系合金製内層部材の外周に超硬合金製外層部材を接合した超硬合金複合ロールであって、内層部材と外層部材との間にヤング率が190 GPa以下の中間層を設けたことを特徴とする超硬合金製圧延用複合ロールを提案している。特許文献3は、中間層のヤング率を190 GPa以下とすることにより、外層と内層間の歪を吸収し、外層と内層との熱膨張係数差が大きくても、ロール内部に過大な残留応力が発生せず、ロール製造時に境界接合部が剥離する問題を回避防止できると記載している。特許文献3号は、中間層の材質としてインバー系合金及びSUS304を例示している。   JP-A-2004-167501 (Patent Document 3) is a cemented carbide composite roll in which a cemented carbide outer layer member is joined to the outer periphery of a steel or iron alloy inner layer member, and includes an inner layer member and an outer layer member. A composite roll for rolling made of cemented carbide characterized by providing an intermediate layer having a Young's modulus of 190 GPa or less in between is proposed. In Patent Document 3, by setting the Young's modulus of the intermediate layer to 190 GPa or less, the strain between the outer layer and the inner layer is absorbed, and even if the difference in thermal expansion coefficient between the outer layer and the inner layer is large, excessive residual stress inside the roll Does not occur, and it is described that it is possible to avoid the problem of separation of the boundary joining portion during roll production. Patent Document 3 exemplifies Invar alloy and SUS304 as the material of the intermediate layer.

しかし、耐摩耗性に優れた超硬合金製外層と鉄系合金製内層を中間層を介して接合した特許文献2及び3に記載の超硬合金複合ロールを、外径が300 mm以上でロール長が500 mm以上の熱間薄板圧延用ロールのように大型化するには、外層と内層の接合信頼性が十分でないおそれがあることが分った。また、より厳しい圧延条件に使用する場合には、外層と内層のより高い接合強度が求められる。   However, the cemented carbide composite roll described in Patent Documents 2 and 3 in which a cemented carbide outer layer excellent in wear resistance and an iron-based alloy inner layer are joined via an intermediate layer has an outer diameter of 300 mm or more. It has been found that the bonding reliability of the outer layer and the inner layer may not be sufficient to increase the size of a roll for hot sheet rolling with a length of 500 mm or more. Further, when used in more severe rolling conditions, higher bonding strength between the outer layer and the inner layer is required.

特開平3-281007号公報JP-A-3-281007 特開2001-47111号公報JP 2001-47111 A 特開2004-167501号公報JP 2004-167501 A

従って、本発明の目的は、耐摩耗性、耐肌荒れ性等に優れた超硬合金製外層と靱性に優れた鉄系合金製内層とからなり、両者の接合強度が極めて高い超硬合金複合ロール、及びその効率的な製造方法を提供することである。   Accordingly, an object of the present invention is a cemented carbide composite roll comprising a cemented carbide outer layer excellent in wear resistance, rough skin resistance, and the like and an iron-based alloy inner layer excellent in toughness, both of which have extremely high joint strength. And an efficient manufacturing method thereof.

上記目的に鑑み鋭意研究の結果、0.65〜1.2質量%のC及び1.8〜7.5質量%のNiを含有する鉄系合金からなる中間層を介して超硬合金製外層と鉄系合金製内層とが圧接される状態で加熱すると、外層と内層とが強固に拡散接合されることを発見し、本発明に想到した。   As a result of earnest research in view of the above-mentioned purpose, an outer layer made of cemented carbide and an inner layer made of iron-based alloy are formed through an intermediate layer made of an iron-based alloy containing 0.65-1.2% by mass of C and 1.8-7.5% by mass of Ni. It was discovered that when heated in a pressure contact state, the outer layer and the inner layer were strongly diffusion bonded, and the present invention was conceived.

すなわち、本発明の超硬合金複合ロールは、超硬合金製外層と鉄系合金製内層とを中間層を介して拡散接合したもので、前記中間層が0.65〜1.2質量%のC及び1.8〜7.5質量%のNiを含有する鉄系合金からなることを特徴とする。   That is, the cemented carbide composite roll of the present invention is obtained by diffusion bonding a cemented carbide outer layer and an iron alloy inner layer through an intermediate layer, and the intermediate layer is 0.65 to 1.2 mass% C and 1.8 to It is characterized by comprising an iron-based alloy containing 7.5% by mass of Ni.

前記中間層はさらに3質量%以下のCr及び1.5質量%以下のMoを含有するのが好ましい。   The intermediate layer preferably further contains 3% by mass or less of Cr and 1.5% by mass or less of Mo.

前記中間層の厚さは0.5〜50 mmであるのが好ましい。   The thickness of the intermediate layer is preferably 0.5 to 50 mm.

前記外層と前記中間層の境界部の引張強度は600 MPa以上であるのが好ましい。また、前記外層と中間層の境界部の疲労強度は200 MPa以上であるのが好ましい。   The tensile strength at the boundary between the outer layer and the intermediate layer is preferably 600 MPa or more. The fatigue strength at the boundary between the outer layer and the intermediate layer is preferably 200 MPa or more.

前記超硬合金製外層は70〜88質量%のWC粒子を含有するのが好ましい。また、前記鉄系合金製内層はCr、Ni、Mo、V、W、Ti及びNbからなる群から選ばれた少なくとも一種を合計で1.0質量%以上含有するのが好ましい。   The cemented carbide outer layer preferably contains 70 to 88% by mass of WC particles. The iron-based alloy inner layer preferably contains 1.0% by mass or more in total of at least one selected from the group consisting of Cr, Ni, Mo, V, W, Ti and Nb.

超硬合金からなる円筒状外層部材と鉄系合金からなる内層部材とが拡散接合した超硬合金複合ロールを製造する本発明の方法は、前記内層部材の外面に、0.65〜1.2質量%のC及び1.8〜7.5質量%のNiを含有する円筒状中間層部材の内面を接合した後、前記中間層部材の外面に前記外層部材の内面を拡散接合することを特徴とする。   The method of the present invention for producing a cemented carbide composite roll in which a cylindrical outer layer member made of a cemented carbide and an inner layer member made of an iron-based alloy are diffusion-bonded has an outer surface of the inner layer member of 0.65 to 1.2% by mass of C. And after joining the inner surface of the cylindrical intermediate | middle layer member containing 1.8 to 7.5 mass% Ni, the inner surface of the said outer layer member is diffusion-bonded to the outer surface of the said intermediate | middle layer member, It is characterized by the above-mentioned.

本発明の超硬合金複合ロールの第一の製造方法は、
前記円筒状中間層部材が嵌合した前記内層部材の外周に、それを包囲するように前記内層部材より熱膨張率が小さい円筒状の第一の拘束部材を配置し、加熱により前記内層部材と前記中間層部材を拡散接合して、前記内層部材の外周に中間層が拡散接合した中間部材を作製する第一の工程と、
前記中間部材を包囲するように前記円筒状外層部材を配置した後、前記外層部材を包囲するように前記外層部材より熱膨張率が小さい円筒状の第二の拘束部材を配置し、加熱により前記中間層と前記外層部材を拡散接合する第二の工程とを有し、
第一の工程では、熱膨張率が大きい前記内層部材の外面が前記中間層部材の内面を押圧するとともに、熱膨張率が小さい前記第一の拘束部材の内面が前記中間層部材の外面を押圧するように、前記内層部材、前記中間層部材及び前記第一の拘束部材のそれぞれの間隙を設定し、
第二の工程では、熱膨張率が最も大きい前記内層部材の外面に形成された前記中間層の外面が前記外層部材の内面を押圧するとともに、熱膨張率が最も小さい前記第二の拘束部材の内面が前記外層部材の外面を押圧するように、前記中間部材、前記外層部材及び前記第二の拘束部材のそれぞれの間隙を設定することを特徴とする。
The first manufacturing method of the cemented carbide composite roll of the present invention,
A cylindrical first restraining member having a thermal expansion coefficient smaller than that of the inner layer member is arranged on the outer periphery of the inner layer member fitted with the cylindrical intermediate layer member so as to surround the inner layer member. A first step of diffusion bonding the intermediate layer member to produce an intermediate member having an intermediate layer diffusion bonded to the outer periphery of the inner layer member;
After disposing the cylindrical outer layer member so as to surround the intermediate member, a cylindrical second restraining member having a smaller coefficient of thermal expansion than that of the outer layer member is disposed so as to surround the outer layer member. A second step of diffusion bonding the intermediate layer and the outer layer member,
In the first step, the outer surface of the inner layer member having a large coefficient of thermal expansion presses the inner surface of the intermediate layer member, and the inner surface of the first restraining member having a small coefficient of thermal expansion presses the outer surface of the intermediate layer member. To set the respective gaps of the inner layer member, the intermediate layer member and the first restraining member,
In the second step, the outer surface of the intermediate layer formed on the outer surface of the inner layer member having the largest coefficient of thermal expansion presses the inner surface of the outer layer member, and the second restraining member having the smallest coefficient of thermal expansion. The gaps of the intermediate member, the outer layer member, and the second restraining member are set so that the inner surface presses the outer surface of the outer layer member.

第一の製造方法において、前記第二の拘束部材は前記外層部材より厚いのが好ましい。   In the first manufacturing method, the second restraining member is preferably thicker than the outer layer member.

本発明の超硬合金複合ロールの第二の製造方法は、
前記円筒状中間層部材が嵌合した前記内層部材の外周に、それを包囲するように前記内層部材より熱膨張率が小さい円筒状の外層部材を配置する工程と、
前記外層部材の外周に、それを包囲するように前記外層部材より熱膨張率が小さい拘束部材を配置する工程と、
加熱により前記内層部材と前記外層部材を前記中間層部材を介して拡散接合する工程とを有し、
熱膨張率が最も大きい前記内層部材の外面が前記中間層部材の内面を押圧するとともに、熱膨張率が最も小さい前記拘束部材の内面が前記外層部材の外面を押圧するように、前記内層部材、前記中間層部材及び前記拘束部材のそれぞれの間隙を設定することを特徴とする。
The second manufacturing method of the cemented carbide composite roll of the present invention,
Disposing a cylindrical outer layer member having a smaller coefficient of thermal expansion than the inner layer member so as to surround the outer periphery of the inner layer member fitted with the cylindrical intermediate layer member;
Arranging a restraining member having a smaller coefficient of thermal expansion than the outer layer member so as to surround the outer layer member;
A step of diffusion bonding the inner layer member and the outer layer member through the intermediate layer member by heating,
The inner layer member such that the outer surface of the inner layer member having the largest thermal expansion coefficient presses the inner surface of the intermediate layer member, and the inner surface of the restraining member having the smallest coefficient of thermal expansion presses the outer surface of the outer layer member; A gap between each of the intermediate layer member and the restraining member is set.

前記拘束部材の軸方向両端部は前記中間層部材及び前記外層部材の軸方向両端面より突出しているのが好ましい。   It is preferable that both axial end portions of the restraining member protrude from both axial end surfaces of the intermediate layer member and the outer layer member.

第二の製造方法において、前記拘束部材は前記外層部材より厚いのが好ましい。   In the second manufacturing method, it is preferable that the restraining member is thicker than the outer layer member.

第一及び第二の製造方法において、いずれの拘束部材も黒鉛又はセラミックスからなるのが好ましい。   In the first and second manufacturing methods, it is preferable that both of the restraining members are made of graphite or ceramics.

第一及び第二の製造方法において、いずれの拘束部材も複数のリング部材を同軸的に積み重ねることにより形成するのが好ましい。   In the first and second manufacturing methods, each of the restraining members is preferably formed by coaxially stacking a plurality of ring members.

第一及び第二の製造方法において、前記拘束部材と前記外層部材との間に反応防止材を介在させるのが好ましい。   In the first and second manufacturing methods, it is preferable that a reaction preventing material is interposed between the restraining member and the outer layer member.

本発明の超硬合金製複合ロールでは、超硬合金製外層と鉄系合金製内層とが、0.65〜1.2質量%のC及び1.8〜7.5質量%のNiを含有する鉄系合金からなる中間層を介して拡散接合しているので、接合境界の超硬合金内に脆弱なη相が生成することがなく、外層と内層の接合強度が大きい。そのため、300 mm以上の外径及び500 mm以上のロール長を有する大型の圧延ロールにしても、長期間の圧延に使用できる。   In the cemented carbide composite roll of the present invention, the cemented carbide outer layer and the iron alloy inner layer are intermediate layers made of an iron alloy containing 0.65 to 1.2% by mass of C and 1.8 to 7.5% by mass of Ni. Therefore, a fragile η phase is not generated in the cemented carbide at the joining boundary, and the joining strength between the outer layer and the inner layer is high. Therefore, even a large rolling roll having an outer diameter of 300 mm or more and a roll length of 500 mm or more can be used for long-term rolling.

本発明の超硬合金複合ロールを示す部分断面正面図である。It is a fragmentary sectional front view which shows the cemented carbide composite roll of this invention. 内層部材に中間層を拡散接合法で接合する方法を示す断面図である。It is sectional drawing which shows the method of joining an intermediate | middle layer to an inner layer member by the diffusion bonding method. 本発明の超硬合金複合ロールを拡散接合法により製造する例を示す断面図である。It is sectional drawing which shows the example which manufactures the cemented carbide composite roll of this invention by the diffusion bonding method. 図3(a) における部分Aの拡大図である。FIG. 4 is an enlarged view of a portion A in FIG. 3 (a). 同軸的に積み重ねた複数のリング部材により構成した拘束部材を用いる拡散接合法を示す断面図である。It is sectional drawing which shows the diffusion bonding method using the constraining member comprised by the some ring member piled up coaxially. 本発明の超硬合金複合ロールをHIP法により製造する例を示す断面図である。It is sectional drawing which shows the example which manufactures the cemented carbide composite roll of this invention by HIP method. 実施例1及び2における接合実験を示す断面図である。3 is a cross-sectional view showing a joining experiment in Examples 1 and 2. FIG. 実施例2の引張試験片を示す正面図である。3 is a front view showing a tensile test piece of Example 2. FIG. 特開平3-281007号に開示された超硬合金圧延ロールを示す部分断面図である。FIG. 3 is a partial cross-sectional view showing a cemented carbide rolling roll disclosed in Japanese Patent Laid-Open No. 3-281007.

本発明を添付図面を参照して以下詳細に説明するが、本発明はそれらに限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で適宜変更又は改良することができる。本発明の一実施形態に関する説明は、特に断りがなければ他の実施形態にも適用される。   The present invention will be described below in detail with reference to the accompanying drawings. However, the present invention is not limited to these, and can be appropriately changed or improved without departing from the technical idea of the present invention. The description relating to one embodiment of the present invention also applies to other embodiments unless otherwise specified.

[1] 超硬合金複合ロール
鋼等の被圧延材を圧延するのに用いることができる本発明の超硬合金複合ロール10は、図1に示すように、超硬合金製外層1と鉄系合金製内層2とを中間層3を介して接合したものである。表面に被圧延材が接触する外層1は優れた耐摩耗性、耐肌荒れ性及び機械的強度が要求され、両端が軸受(図示せず)で支持されるロール軸を構成する内層2は高い機械的強度及び強靭性が要求される。
[1] Cemented carbide composite roll A cemented carbide composite roll 10 of the present invention that can be used for rolling a rolled material such as steel is composed of a cemented carbide outer layer 1 and a ferrous alloy as shown in FIG. The alloy inner layer 2 is joined via the intermediate layer 3. The outer layer 1 whose surface is in contact with the material to be rolled is required to have excellent wear resistance, rough skin resistance and mechanical strength, and the inner layer 2 constituting the roll shaft whose both ends are supported by bearings (not shown) is a high machine. Strength and toughness are required.

(1) 外層
本発明の超硬合金複合ロールの超硬合金製外層1は、硬質WC粒子をCo、Ni、Cr、Fe等の金属で結合した焼結合金であり、WCの他にTi、Ta、Nb等の炭化物を含有しても良い。外層1が高い耐摩耗性、耐肌荒れ性及び機械的強度を有するために、WC粒子の平均粒径は3〜10μmが好ましく、WC粒子の含有量は70〜88質量%が好ましく、72〜85質量%がより好ましい。外層1の厚さは、圧延により徐々に摩耗することを考慮して、5〜50 mmの範囲に設定するのが好ましい。
(1) Outer layerThe cemented carbide outer layer 1 of the cemented carbide composite roll of the present invention is a sintered alloy in which hard WC particles are bonded with a metal such as Co, Ni, Cr, Fe, etc. Carbides such as Ta and Nb may be contained. In order for the outer layer 1 to have high wear resistance, rough skin resistance and mechanical strength, the average particle size of WC particles is preferably 3 to 10 μm, and the content of WC particles is preferably 70 to 88% by mass, and 72 to 85%. The mass% is more preferable. The thickness of the outer layer 1 is preferably set in the range of 5 to 50 mm in consideration of gradual wear due to rolling.

(2) 内層
内層2の鉄系合金は鋼又は鋳鉄であるのが好ましい。内層2が十分な靱性を有するために、Cr、Ni、Mo、V、W、Ti及びNbからなる群から選ばれた少なくとも一種を合計で1.0質量%以上含有する鋼が好ましい。特に、Cr含有量は0.5〜1.5質量%が好ましく、Mo含有量は0.1〜0.5質量%が好ましく、Ni含有量は1.5〜2.5質量%が好ましい。
(2) Inner layer The iron-based alloy of the inner layer 2 is preferably steel or cast iron. In order for the inner layer 2 to have sufficient toughness, a steel containing 1.0% by mass or more in total of at least one selected from the group consisting of Cr, Ni, Mo, V, W, Ti and Nb is preferable. In particular, the Cr content is preferably 0.5 to 1.5 mass%, the Mo content is preferably 0.1 to 0.5 mass%, and the Ni content is preferably 1.5 to 2.5 mass%.

(3) 中間層
物性の異なる超硬合金製外層1と鉄系合金製内層2を接合するために必須な中間層3は、0.65〜1.2質量%のC及び1.8〜7.5質量%のNiを含有する鉄系合金により形成する。超硬合金製外層1と鉄系合金製内層2を接合する際、両者の炭素活量の差により接合界面で炭素が超硬合金製外層1から内層2に拡散するので、超硬合金製外層1内の炭素が低下することが知られている。その結果、低炭素組成の炭化物であるη相が超硬合金内に生成され、超硬合金の機械的強度が劣化する。
(3) Intermediate layer Intermediate layer 3 essential for joining cemented carbide outer layer 1 and iron-based alloy inner layer 2 having different physical properties contains 0.65 to 1.2% by mass of C and 1.8 to 7.5% by mass of Ni. Formed of an iron-based alloy. When joining the outer layer 1 made of cemented carbide and the inner layer 2 made of iron alloy, carbon diffuses from the outer layer 1 made of cemented carbide to the inner layer 2 at the joining interface due to the difference in carbon activity between the two layers. It is known that the carbon in 1 falls. As a result, a η phase, which is a carbide having a low carbon composition, is generated in the cemented carbide and the mechanical strength of the cemented carbide is deteriorated.

超硬合金製外層1と鉄系合金製内層2との接合実験の結果、中間層3の炭素含有量が0.65質量%以上であれば超硬合金製外層1から内層2へのCの拡散をほぼ抑制でき、もってη相の発生を防止できることを発見した。一方、中間層3の炭素含有量が1.2質量%を超えると、外層1と中間層3の境界部に黒鉛が生成されて、接合強度が低下する。中間層3の炭素含有量の下限は0.7質量%が好ましく、0.75質量%がより好ましい。また、中間層3の炭素含有量の上限は1.0質量%がより好ましい。   As a result of the joining experiment between the outer layer 1 made of cemented carbide and the inner layer 2 made of iron alloy, the diffusion of C from the outer layer 1 made of cemented carbide to the inner layer 2 is prevented if the carbon content of the intermediate layer 3 is 0.65 mass% or more. It has been found that it is possible to substantially suppress the occurrence of the η phase. On the other hand, if the carbon content of the intermediate layer 3 exceeds 1.2% by mass, graphite is generated at the boundary between the outer layer 1 and the intermediate layer 3, and the bonding strength is reduced. The lower limit of the carbon content of the intermediate layer 3 is preferably 0.7% by mass, and more preferably 0.75% by mass. Further, the upper limit of the carbon content of the intermediate layer 3 is more preferably 1.0% by mass.

中間層3が1.8〜7.5質量%のNiを含有すると、接合後に中間層3に残留する内部応力を制御でき、中間層3自体の強度を確保できることが分った。Ni含有量が1.8質量%未満の場合、中間層3の残留応力が高くなりすぎ、中間層3が破壊するおそれがある。一方、Ni含有量が7.5質量%を超えると、中間層3の強度が低くなりすぎ、外層1と中間層3の接合境界の引張強度を600 MPa以上にできなくなる。中間層3のNi含有量の下限は好ましくは1.9質量%であり、より好ましくは2質量%である。また、中間層3のNi含有量の上限は好ましくは6質量%であり、より好ましくは5質量%である。   It was found that when the intermediate layer 3 contains 1.8 to 7.5% by mass of Ni, the internal stress remaining in the intermediate layer 3 after bonding can be controlled, and the strength of the intermediate layer 3 itself can be secured. If the Ni content is less than 1.8% by mass, the residual stress of the intermediate layer 3 becomes too high and the intermediate layer 3 may be destroyed. On the other hand, if the Ni content exceeds 7.5% by mass, the strength of the intermediate layer 3 becomes too low, and the tensile strength at the joint boundary between the outer layer 1 and the intermediate layer 3 cannot be made 600 MPa or more. The lower limit of the Ni content of the intermediate layer 3 is preferably 1.9% by mass, more preferably 2% by mass. Further, the upper limit of the Ni content of the intermediate layer 3 is preferably 6% by mass, and more preferably 5% by mass.

中間層3のC含有量を0.65質量%以上とすることにより、焼入れ性が低下するため、複合ロールの残留応力制御のため内層2と同等以上の焼入れ性が必要である。そのため、中間層3のNi含有量は内層2のNi含有量より大きいのが好ましい。   When the C content of the intermediate layer 3 is 0.65% by mass or more, the hardenability is lowered. Therefore, a hardenability equivalent to or higher than that of the inner layer 2 is required for controlling the residual stress of the composite roll. Therefore, the Ni content of the intermediate layer 3 is preferably larger than the Ni content of the inner layer 2.

上記の通り、0.65〜1.2質量%のC及び1.8〜7.5質量%のNiを含有する鉄系合金からなる中間層3により、外径が300 mm以上で全長が500 mm以上と大きな外層1であっても内層1に対して十分な接合強度を有することができる。   As described above, the intermediate layer 3 made of an iron-based alloy containing 0.65 to 1.2% by mass of C and 1.8 to 7.5% by mass of Ni is a large outer layer 1 having an outer diameter of 300 mm or more and a total length of 500 mm or more. However, it can have sufficient bonding strength to the inner layer 1.

中間層3は3質量%以下のCr及び1.5質量%以下のMoを含有するのが好ましい。3質量%超のCr及び/又は1.5質量%超のMoを含有すると、中間層3の硬度が高くなりすぎて脆くなり、破壊するおそれがある。Cr含有量の下限は好ましくは0.01質量%であり、より好ましくは0.03質量%である。Cr含有量の上限はより好ましくは2質量%であり、最も好ましくは1.2質量%である。また、Mo含有量の下限は好ましくは0.01質量%であり、より好ましくは0.03質量%である。Mo含有量の上限はより好ましくは1質量%である。   The intermediate layer 3 preferably contains 3% by mass or less of Cr and 1.5% by mass or less of Mo. If it contains more than 3% by mass of Cr and / or more than 1.5% by mass of Mo, the hardness of the intermediate layer 3 becomes so high that it becomes brittle and may be destroyed. The lower limit of the Cr content is preferably 0.01% by mass, more preferably 0.03% by mass. The upper limit of the Cr content is more preferably 2% by mass, and most preferably 1.2% by mass. Further, the lower limit of the Mo content is preferably 0.01% by mass, more preferably 0.03% by mass. The upper limit of the Mo content is more preferably 1% by mass.

中間層3はさらに、0.5〜2質量%のSi及び0.1〜0.9質量%のMnを含有するのが好ましい。Siは脱酸効果を有し、焼き入れ硬化性を高めるので、0.5質量%以上が好ましいが、2質量%を超えると靱性を劣化させるおそれがある。同様に、Mnも脱酸効果を有し、焼き入れ硬化性を高めるので、0.1質量%以上が好ましいが、0.9質量%を超えると靱性を劣化させるおそれがある。中間層3は不可避的不純物としてV、Nb、Co、W、Cu等を含有しても良い。   The intermediate layer 3 preferably further contains 0.5 to 2% by mass of Si and 0.1 to 0.9% by mass of Mn. Since Si has a deoxidizing effect and enhances quenching curability, it is preferably 0.5% by mass or more, but if it exceeds 2% by mass, the toughness may be deteriorated. Similarly, Mn also has a deoxidizing effect and increases quenching curability, so 0.1% by mass or more is preferable, but if it exceeds 0.9% by mass, the toughness may be deteriorated. The intermediate layer 3 may contain V, Nb, Co, W, Cu, etc. as inevitable impurities.

中間層3の厚さは0.5〜50 mmであるのが好ましい。中間層3の厚さが0.5 mm未満であるとη相の抑制効果が不十分であり、また中間層3の厚さが50 mmを超えると中間層3又は内層2の引張残留応力が過大になって接合界面で破壊するおそれがある。中間層3の厚さはより好ましくは10〜30 mmであり、最も好ましくは15〜25 mmである。   The thickness of the intermediate layer 3 is preferably 0.5 to 50 mm. If the thickness of the intermediate layer 3 is less than 0.5 mm, the effect of suppressing the η phase is insufficient, and if the thickness of the intermediate layer 3 exceeds 50 mm, the tensile residual stress of the intermediate layer 3 or the inner layer 2 becomes excessive. There is a risk of breaking at the bonding interface. The thickness of the intermediate layer 3 is more preferably 10 to 30 mm, and most preferably 15 to 25 mm.

中間層3の引張残留応力は100 MPa未満が好ましく、50 MPa未満がより好ましい。   The tensile residual stress of the mid layer 3 is preferably less than 100 MPa, and more preferably less than 50 MPa.

圧延に長期間使用しても外層1と中間層3が剥離しないように、外層1と中間層3の境界部の引張強度は600 MPa以上であるのが好ましく、700 MPa以上がより好ましい。なお、外層1と中間層3の境界部の引張強度は、外層1と中間層3の境界部を含む試験片の引張試験により測定することができる。また、接合後に外層1と内層2が剥離するのを防ぐために、外層1と中間層3の境界部の疲労強度(引圧疲労強度)は200 MPa以上であるのが好ましく、250 MPa以上がより好ましい。   The tensile strength at the boundary between the outer layer 1 and the intermediate layer 3 is preferably 600 MPa or more, and more preferably 700 MPa or more so that the outer layer 1 and the intermediate layer 3 do not peel even when used for a long time for rolling. The tensile strength at the boundary between the outer layer 1 and the intermediate layer 3 can be measured by a tensile test of a test piece including the boundary between the outer layer 1 and the intermediate layer 3. In addition, in order to prevent the outer layer 1 and the inner layer 2 from peeling after joining, the fatigue strength (attraction fatigue strength) at the boundary between the outer layer 1 and the intermediate layer 3 is preferably 200 MPa or more, more preferably 250 MPa or more. preferable.

[2] 超硬合金複合ロールの製造方法
本発明の超硬合金製ロールは外層1と内層2とが中間層3を介して接合した構造を有するので、外層1と中間層3との界面、及び中間層3及び内層2との界面が隙間なく接合していれば良い。このような接合に拡散接合法又は熱間静水圧(HIP)法を用いることができる。
[2] Cemented carbide composite roll manufacturing method Since the cemented carbide roll of the present invention has a structure in which the outer layer 1 and the inner layer 2 are joined via the intermediate layer 3, the interface between the outer layer 1 and the intermediate layer 3, In addition, the interface between the intermediate layer 3 and the inner layer 2 may be joined without a gap. A diffusion bonding method or a hot isostatic pressure (HIP) method can be used for such bonding.

(A) 拡散接合法
(1) 第一の拡散接合法
第一の拡散接合法は、内層部材12に中空円筒状中間層部材13を拡散接合して、内層部材12に中間層3が接合した中間部材14を作製する第一の拡散接合工程を行い、次いで中間部材14の中間層3に超硬合金製外層部材11を拡散接合して、超硬合金複合ロールとする第二の拡散接合工程を行う。
(A) Diffusion bonding method
(1) First diffusion bonding method In the first diffusion bonding method, the hollow cylindrical intermediate layer member 13 is diffusion bonded to the inner layer member 12, and the intermediate member 14 in which the intermediate layer 3 is bonded to the inner layer member 12 is produced. A first diffusion bonding step is performed, and then a cemented carbide outer layer member 11 is diffusion bonded to the intermediate layer 3 of the intermediate member 14 to form a cemented carbide composite roll.

(a) 第一の拡散接合工程
図2に示すように、ロール軸に相当する内層部材12を基台8の上に配置した後、内層部材12を囲むように基台8上に第一の円筒状受台9aを載置する。次いで、内層部材12を囲むように中空円筒状中間層部材13を第一の円筒状受台9aの上に載置する。最後に、第一の円筒状拘束部材16aを内層部材12を囲むように基台8上に載置する。
(a) First diffusion bonding step As shown in FIG. 2, after the inner layer member 12 corresponding to the roll shaft is disposed on the base 8, the first diffusion bonding step is performed on the base 8 so as to surround the inner layer member 12. A cylindrical cradle 9a is placed. Next, the hollow cylindrical intermediate layer member 13 is placed on the first cylindrical receiving base 9a so as to surround the inner layer member 12. Finally, the first cylindrical restraining member 16a is placed on the base 8 so as to surround the inner layer member 12.

上記のように配置した内層部材12及び中間層部材13を不活性雰囲気中で加熱し、内層部材12と中間層部材13の拡散接合を行う。拡散接合温度は1000〜1300℃が好ましく、1100〜1250℃がより好ましい。拡散接合温度が1000℃未満であると、十分な接合強度が得られず、また拡散接合温度が1300℃を超えると、0.65〜1.2質量%のCを含有する鉄系合金製中間層部材13が溶融するおそれがある。拡散接合温度に保持する時間は1〜120分間程度で良い。不活性雰囲気として、N2、Ar等の不活性ガス、H2等の還元性ガス、又は真空を用いることができる。 The inner layer member 12 and the intermediate layer member 13 arranged as described above are heated in an inert atmosphere, and diffusion bonding of the inner layer member 12 and the intermediate layer member 13 is performed. The diffusion bonding temperature is preferably 1000 to 1300 ° C, more preferably 1100 to 1250 ° C. If the diffusion bonding temperature is less than 1000 ° C., sufficient bonding strength cannot be obtained. If the diffusion bonding temperature exceeds 1300 ° C., the iron-based alloy intermediate layer member 13 containing 0.65 to 1.2% by mass of C is obtained. There is a risk of melting. The time for maintaining the diffusion bonding temperature may be about 1 to 120 minutes. As the inert atmosphere, an inert gas such as N 2 or Ar, a reducing gas such as H 2 , or a vacuum can be used.

室温から1000〜1300℃の拡散接合温度までの温度範囲において、熱膨張率は内層部材12>第一の拘束部材16aの関係を満たさなければならない。室温から1000〜1300℃の温度までの範囲における鉄系合金製内層部材12の熱膨張率は11〜15×10-6/℃程度であり、第一の拘束部材16aの熱膨張率はこれより十分に小さくなければならない。このような熱膨張率の条件を満たす材質は、熱膨張率が4〜9×10-6/℃程度の黒鉛又はセラミックスである。第一の拘束部材16aはさらに拡散接合温度及び拡散接合応力に十分に耐えなければならないので、拡散接合温度で高強度かつ高剛性でなければならない。従って、熱膨張率が6×10-6/℃以下で、1000℃における曲げ強さが30 MPa以上の等方性黒鉛が特に好ましい。 In the temperature range from room temperature to the diffusion bonding temperature of 1000 to 1300 ° C., the coefficient of thermal expansion must satisfy the relationship of inner layer member 12> first constraining member 16a. The thermal expansion coefficient of the iron-based alloy inner layer member 12 in the range from room temperature to a temperature of 1000 to 1300 ° C. is about 11 to 15 × 10 −6 / ° C., and the thermal expansion coefficient of the first restraining member 16a is Must be small enough. The material satisfying such a thermal expansion coefficient is graphite or ceramics having a thermal expansion coefficient of about 4 to 9 × 10 −6 / ° C. Since the first restraining member 16a must sufficiently withstand the diffusion bonding temperature and the diffusion bonding stress, it must have high strength and high rigidity at the diffusion bonding temperature. Accordingly, isotropic graphite having a coefficient of thermal expansion of 6 × 10 −6 / ° C. or less and a bending strength at 1000 ° C. of 30 MPa or more is particularly preferable.

加熱により大きく熱膨張する内層部材12と僅かしか熱膨張しない第一の拘束部材16aとの間で中間層部材13が内層部材12に十分に密着して接合するように、内層部材12の外面と第一の拘束部材16aの内面との間隙G1は、G1−T3(ただし、T3は中間層部材13の厚さ)が室温から1000〜1300℃の温度までの範囲における内層部材12と第一の拘束部材16aとの熱膨張差より十分に小さくなるように、設定しなければならない。例えば、鋼製内層部材12(熱膨張率:14×10-6/℃)の直径T2が300 mmであり、中間層部材13の厚さT3が10 mmである場合、第一の黒鉛製拘束部材16(熱膨張率:8×10-6/℃)の内径をT2+T3+2.5 mmとするのが好ましい。 The outer layer surface of the inner layer member 12 is connected between the inner layer member 12 that is largely thermally expanded by heating and the first restraining member 16a that is slightly thermally expanded so that the intermediate layer member 13 is sufficiently closely bonded to the inner layer member 12. The gap G 1 with the inner surface of the first restraining member 16a is such that G 1 −T 3 (where T 3 is the thickness of the intermediate layer member 13) is in the range from room temperature to a temperature of 1000 to 1300 ° C. And the first constraining member 16a must be set to be sufficiently smaller than the difference in thermal expansion. For example, when the diameter T 2 of the steel inner layer member 12 (thermal expansion coefficient: 14 × 10 −6 / ° C.) is 300 mm and the thickness T 3 of the intermediate layer member 13 is 10 mm, the first graphite The inner diameter of the restraining member 16 (thermal expansion coefficient: 8 × 10 −6 / ° C.) is preferably T 2 + T 3 +2.5 mm.

第1の拡散接合において、中間層部材3の外面に内層部材2に比べて熱膨張率の小さい中空状の拘束部材6を嵌合し、加熱によって膨張しようとする中間層部材および内層部材を拘束部材により拘束し、内層部材の熱膨張によって内層部材の外径側が中間層部材の内径側と密接し、中間層部材3と内層部材2の接合面に拡散接合に必要な面圧(接合面圧)を確保することができる。   In the first diffusion bonding, a hollow constraining member 6 having a smaller coefficient of thermal expansion than the inner layer member 2 is fitted to the outer surface of the intermediate layer member 3, and the intermediate layer member and the inner layer member that are to be expanded by heating are constrained. Constrained by the member, the outer diameter side of the inner layer member is in close contact with the inner diameter side of the intermediate layer member due to the thermal expansion of the inner layer member, and the surface pressure (bonding surface pressure) required for diffusion bonding to the bonding surface of the intermediate layer member 3 and the inner layer member 2 ) Can be secured.

(b) 第二の拡散接合工程
中間部材14の中間層3の外周面を機械加工により所定の寸法に加工した後、図3(a) に示すように、中間部材14を基台8上に載置する。中間部材14を囲むように基台8上に第二の円筒状受台9bを載置した後、円筒状外層部材11を第二の円筒状受台9bの上に載置する。次いで、外層部材11より熱膨張率が小さい第二の円筒状拘束部材16bを外層部材11を囲むように基台8上に載置する。
(b) Second diffusion bonding step After the outer peripheral surface of the intermediate layer 3 of the intermediate member 14 is machined to a predetermined dimension, the intermediate member 14 is placed on the base 8 as shown in FIG. Place. After the second cylindrical cradle 9b is placed on the base 8 so as to surround the intermediate member 14, the cylindrical outer layer member 11 is placed on the second cylindrical cradle 9b. Next, the second cylindrical restraining member 16b having a smaller coefficient of thermal expansion than the outer layer member 11 is placed on the base 8 so as to surround the outer layer member 11.

このように配置した外層部材11、中間部材14及び拘束部材16を不活性雰囲気中で加熱し、外層部材11と中間層3の拡散接合を行う。拡散接合温度は1000〜1320℃が好ましい。拡散接合温度が1000℃未満であると、外層部材11と中間層3の間の面圧が不足して十分な接合強度が得られないことがあり、また拡散接合温度が1320℃を超えると、超硬合金製外層部材11が溶融するおそれがある。拡散接合温度はより好ましくは1100〜1300℃であり、最も好ましくは1200〜1260℃である。拡散接合温度に保持する時間は1〜120分間程度で良い。不活性雰囲気として、N2、Ar等の不活性ガス、H2等の還元性ガス、又は真空を用いることができる。 The outer layer member 11, the intermediate member 14, and the restraining member 16 arranged in this manner are heated in an inert atmosphere, and diffusion bonding of the outer layer member 11 and the intermediate layer 3 is performed. The diffusion bonding temperature is preferably 1000 to 1320 ° C. If the diffusion bonding temperature is less than 1000 ° C, the surface pressure between the outer layer member 11 and the intermediate layer 3 may be insufficient and sufficient bonding strength may not be obtained, and if the diffusion bonding temperature exceeds 1320 ° C, The cemented carbide outer layer member 11 may melt. The diffusion bonding temperature is more preferably 1100 to 1300 ° C, and most preferably 1200 to 1260 ° C. The time for maintaining the diffusion bonding temperature may be about 1 to 120 minutes. As the inert atmosphere, an inert gas such as N 2 or Ar, a reducing gas such as H 2 , or a vacuum can be used.

室温から1000〜1320℃の拡散接合温度までの温度範囲において、熱膨張率は内層部材12>外層部材11>第二の拘束部材16bの関係を満たさなければならない。室温から1000〜1320℃の温度までの範囲における鉄系合金製内層部材12の熱膨張率は11〜15×10-6/℃程度であり、超硬合金製外層部材11の熱膨張率は6〜10×10-6/℃程度であり、第二の拘束部材16bの熱膨張率はこれらより十分に小さくなければならない。このような熱膨張率条件を満たす材質は、第一の拘束部材16aと同様に、熱膨張率が4〜9×10-6/℃程度の黒鉛又はセラミックスが好ましい。黒鉛又はセラミックスは、1000〜1320℃の拡散接合温度で高強度かつ高剛性であり、さらに超硬合金と接合しない。中でも、熱膨張率が6×10-6/℃以下で、1000℃における曲げ強さが30 MPa以上の等方性黒鉛が特に好ましい。 In the temperature range from room temperature to the diffusion bonding temperature of 1000 to 1320 ° C., the coefficient of thermal expansion must satisfy the relationship of inner layer member 12> outer layer member 11> second constraining member 16b. The thermal expansion coefficient of the iron-based alloy inner layer member 12 in the range from room temperature to a temperature of 1000 to 1320 ° C. is about 11 to 15 × 10 −6 / ° C., and the thermal expansion coefficient of the cemented carbide outer layer member 11 is 6 It is about ˜10 × 10 −6 / ° C., and the thermal expansion coefficient of the second restraining member 16b must be sufficiently smaller than these. The material satisfying such a thermal expansion coefficient is preferably graphite or ceramics having a thermal expansion coefficient of about 4 to 9 × 10 −6 / ° C., like the first restraining member 16a. Graphite or ceramics has high strength and rigidity at a diffusion bonding temperature of 1000 to 1320 ° C., and does not bond with cemented carbide. Among them, isotropic graphite having a thermal expansion coefficient of 6 × 10 −6 / ° C. or less and a bending strength at 1000 ° C. of 30 MPa or more is particularly preferable.

このような熱膨張率の差を考慮して、加熱により最も熱膨張した内層部材12の外面が外層部材11の内面を十分に押圧するとともに、最も熱膨張しない第二の拘束部材16bの内面が外層部材11の外面を十分に押圧するように、外層部材11と中間層3との間隙G1、及び外層部材11と第二の拘束部材16bとの間隙G2を設定する必要がある[図3(b) 参照]。例えば、鋼製内層部材12(熱膨張率:14×10-6/℃)の直径T2が300 mmであり、中間層3の厚さT3が10 mmであり、超硬合金製外層部材11(熱膨張率:7.5×10-6/℃)の内径が304.5 mmで、外径が358 mmであり、かつ黒鉛製の第二の拘束部材16b(熱膨張率:5×10-6/℃)の内径が359.7 mmである場合、外層部材11と内層部材12との間隙G1は1.0〜2.0 mmであるのが好ましく、外層部材11と第二の拘束部材16bとの間隙G2は1.3〜2.0 mmであるのが好ましい。 In consideration of such a difference in coefficient of thermal expansion, the outer surface of the inner layer member 12 that is most thermally expanded by heating sufficiently presses the inner surface of the outer layer member 11, and the inner surface of the second restraining member 16b that is least thermally expanded is as fully press the outer surface of the outer layer member 11, it is necessary to set the gap G 2 of the gap G 1 between the outer member 11 and the intermediate layer 3, and an outer layer member 11 and the second constraining member 16b [FIG See 3 (b)]. For example, the diameter T 2 of the steel inner layer member 12 (thermal expansion coefficient: 14 × 10 −6 / ° C.) is 300 mm, the thickness T 3 of the intermediate layer 3 is 10 mm, and the outer layer member made of cemented carbide. 11 (thermal expansion coefficient: 7.5 × 10 −6 / ° C.) having an inner diameter of 304.5 mm, an outer diameter of 358 mm, and a second restraining member 16b made of graphite (thermal expansion coefficient: 5 × 10 −6 / )) Is 359.7 mm, the gap G 1 between the outer layer member 11 and the inner layer member 12 is preferably 1.0 to 2.0 mm, and the gap G 2 between the outer layer member 11 and the second restraining member 16b is It is preferably 1.3 to 2.0 mm.

上記の通り、外層部材11の外側に外層部材11より熱膨張率が小さい第二の拘束部材16bを配置し、外層部材11及び内層部材12の熱膨張を第二の拘束部材16bにより拘束するので、最も熱膨張する内層部材12の外周に形成された中間層3の外面は外層部材11の内面と拡散接合に必要な面圧(接合面圧)で密接する。これにより外径が300 mm以上でロール長が500 mm以上と大型でも、良好な接合信頼性の超硬合金複合ロールが得られる。   As described above, the second restraining member 16b having a smaller coefficient of thermal expansion than the outer layer member 11 is disposed outside the outer layer member 11, and the thermal expansion of the outer layer member 11 and the inner layer member 12 is restrained by the second restraining member 16b. The outer surface of the intermediate layer 3 formed on the outer periphery of the inner layer member 12 that thermally expands most closely contacts the inner surface of the outer layer member 11 with a surface pressure (bonding surface pressure) necessary for diffusion bonding. As a result, a cemented carbide composite roll having good bonding reliability can be obtained even when the outer diameter is 300 mm or more and the roll length is 500 mm or more.

図3(a) に示すように、第二の拘束部材16bの全長L3は外層部材11の全長L1より長いのが好ましく、また第二の拘束部材16bの軸線方向両端面6a、6bは外層部材11の軸線方向両端面1a、1bより長さDだけ突出しているのが好ましい。これにより、外層部材11を軸線方向両端間で均一に拘束できるので、外層部材11の全長L1にわたって内層部材12に均一に拡散接合する。例えば、内層部材12の全長L2が600 mmで、外層部材11の全長L1が500 mmの場合、Dは10〜100 mmが好ましい。 As shown in FIG. 3 (a), the second constraining the total length L 3 is long of preferably than the total length L 1 of the outer member 11 of the member 16b, also a second axial end surfaces 6a of the restraining member 16b, 6b is It is preferable that the outer layer member 11 protrudes by a length D from both axial end surfaces 1a and 1b. As a result, the outer layer member 11 can be uniformly restrained between both ends in the axial direction, so that the outer layer member 11 is uniformly diffusion bonded to the inner layer member 12 over the entire length L 1 of the outer layer member 11. For example, the full length L 2 of the inner layer member 12 is 600 mm, if the overall length L 1 of the outer member 11 is 500 mm, D is preferably 10 to 100 mm.

第二の拘束部材16bは拡散接合温度で変形又は破損したりせずに、外層部材11を十分に拘束しなければならないので、第二の拘束部材16bを外層部材11より厚くするのが好ましい。例えば、内層部材12の直径T2が320 mmで、外層部材11の厚さT1が27 mmの場合、第二の拘束部材16bの厚さT3は100〜150 mmが好ましい。 Since the second restraining member 16b must sufficiently restrain the outer layer member 11 without being deformed or damaged at the diffusion bonding temperature, the second restraining member 16b is preferably thicker than the outer layer member 11. For example, a diameter T 2 of the inner layer member 12 is 320 mm, when the thickness T 1 of the outer member 11 is 27 mm, the thickness T 3 of the second constraining member 16b is preferably 100 to 150 mm.

図4に示すように、第二の拘束部材16bは、複数(図示の例では6個)の比較的短尺なリング部材61〜66を軸線方向に同軸的に積み重ねることにより構成することができる。第二の拘束部材16bの熱膨張拘束力は径方向に作用するので、軸線方向に分離したリング部材61〜66を用いても、熱膨張拘束効果は同じである。勿論、各リング部材61〜66は黒鉛又はセラミックスからなるのが好ましい。500 mm以上と長尺な超硬合金複合ロールを製造する場合、製造の容易さの観点からリング部材61〜66を用いるのが好ましい。勿論、第一の拘束部材16aも複数の比較的短尺なリング部材を軸線方向に同軸的に積み重ねることにより構成することができる。   As shown in FIG. 4, the second restraining member 16b can be configured by stacking a plurality (six in the illustrated example) of relatively short ring members 61 to 66 coaxially in the axial direction. Since the thermal expansion restraining force of the second restraining member 16b acts in the radial direction, even if the ring members 61 to 66 separated in the axial direction are used, the thermal expansion restraining effect is the same. Of course, each of the ring members 61 to 66 is preferably made of graphite or ceramics. When manufacturing a cemented carbide composite roll having a length of 500 mm or more, it is preferable to use the ring members 61 to 66 from the viewpoint of ease of manufacturing. Of course, the first restraining member 16a can also be configured by stacking a plurality of relatively short ring members coaxially in the axial direction.

拡散接合温度で外層部材11と接しても反応が起こらないように、第二の拘束部材16bと外層部材11との間に反応防止材を介在させるのが好ましい。反応防止材としては外層部材11との反応性の低いアルミナ等のセラミックスが好ましい。反応防止材は粉末状でも織布状でも良い。粉末の場合、スラリーにして外層部材11の外面又は拘束部材16の内面に塗布しても良い。また織布状の場合、外層部材11の外周に巻き付けても良い。   It is preferable to interpose a reaction preventing material between the second restraining member 16b and the outer layer member 11 so that the reaction does not occur even when contacting the outer layer member 11 at the diffusion bonding temperature. As the reaction preventing material, ceramics such as alumina having low reactivity with the outer layer member 11 is preferable. The reaction inhibitor may be in the form of powder or woven fabric. In the case of powder, the slurry may be applied to the outer surface of the outer layer member 11 or the inner surface of the restraining member 16. In the case of a woven fabric shape, the outer layer member 11 may be wound around the outer periphery.

外層部材11と内層部材12が中間層3を介して拡散接合すると、外層部材11は外層1となり、内層部材12は内層2となる。その後第二の拘束部材16bを取り外し、外層1と内層2が中間層3を介して一体化した超硬合金複合ロール10を得る。必要に応じて超硬合金複合ロール10の所望箇所を機械加工し、熱間薄板圧延に好適な寸法形状とする。   When the outer layer member 11 and the inner layer member 12 are diffusion bonded through the intermediate layer 3, the outer layer member 11 becomes the outer layer 1, and the inner layer member 12 becomes the inner layer 2. Thereafter, the second restraining member 16b is removed, and the cemented carbide composite roll 10 in which the outer layer 1 and the inner layer 2 are integrated via the intermediate layer 3 is obtained. If necessary, a desired portion of the cemented carbide composite roll 10 is machined to obtain a dimension and shape suitable for hot sheet rolling.

(2) 第二の拡散接合法
内層部材12に対して、円筒状中間層部材13及び円筒状外層部材11を1回の拡散接合で一体化することもできる。この場合、内層部材12に中間層部材13を焼嵌め叉は冷やし嵌め等の方法で接合しておく。その後、第一の拡散接合法の第二の拡散接合工程と同じ条件で拡散接合を行う。そのため、1000〜1320℃の拡散接合温度で、内層部材12と中間層部材13との拡散接合、及び中間層部材13と外層部材11との拡散接合を同時に行う。
(2) Second Diffusion Bonding Method The cylindrical intermediate layer member 13 and the cylindrical outer layer member 11 can be integrated with the inner layer member 12 by one diffusion bonding. In this case, the intermediate layer member 13 is joined to the inner layer member 12 by a method such as shrink fitting or cold fitting. Thereafter, diffusion bonding is performed under the same conditions as in the second diffusion bonding step of the first diffusion bonding method. Therefore, diffusion bonding between the inner layer member 12 and the intermediate layer member 13 and diffusion bonding between the intermediate layer member 13 and the outer layer member 11 are simultaneously performed at a diffusion bonding temperature of 1000 to 1320 ° C.

(2) 熱間静水圧(HIP)法
図5に示すように、円筒状HIP缶部20aに円筒状外層部材11を入れた後、円筒状外層部材11の内側に中間層3を形成した鉄系合金製内層部材12又は中間層部材13を接合した鉄系合金製内層部材12を配置し、外層部材11の端面を覆うドーナツ状HIP缶部20b,20bを円筒状HIP缶部20aに溶接し、さらにドーナツ状HIP缶部20b,20bに内層部材12をおおうカップ状HIP缶部20c,20cを溶接し、得られたHIP缶内を減圧する。その後、HIP缶をHIP装置に入れ、HIP処理を行う。HIP温度は1100〜1300℃が好ましく、HIP圧力は100〜140 MPaが好ましい。
(2) Hot Isostatic Pressure (HIP) Method As shown in FIG. 5, after inserting the cylindrical outer layer member 11 into the cylindrical HIP can portion 20a, the iron in which the intermediate layer 3 is formed inside the cylindrical outer layer member 11 An iron alloy inner layer member 12 joined with a base alloy inner layer member 12 or an intermediate layer member 13 is disposed, and the donut-shaped HIP can portions 20b, 20b covering the end surface of the outer layer member 11 are welded to the cylindrical HIP can portion 20a. Further, the cup-shaped HIP can portions 20c, 20c covering the inner layer member 12 are welded to the donut-shaped HIP can portions 20b, 20b, and the pressure inside the obtained HIP can is reduced. Then, the HIP can is put into the HIP device and the HIP process is performed. The HIP temperature is preferably 1100 to 1300 ° C, and the HIP pressure is preferably 100 to 140 MPa.

HIPにより外層部材11と内層部材12は中間層3(中間層部材13)を介して強固に接合し、外層部材11は外層1となり、内層部材12は内層2となる。また、中間層部材13は中間層3になる。冷却後、HIP缶20を機械加工により除去し、外層1と内層2が中間層3を介して一体化した超硬合金複合ロール10を得る。この場合も、必要に応じて超硬合金複合ロール10の所望箇所を機械加工しても良い。   By HIP, the outer layer member 11 and the inner layer member 12 are firmly joined via the intermediate layer 3 (intermediate layer member 13), the outer layer member 11 becomes the outer layer 1, and the inner layer member 12 becomes the inner layer 2. Further, the intermediate layer member 13 becomes the intermediate layer 3. After cooling, the HIP can 20 is removed by machining to obtain a cemented carbide composite roll 10 in which the outer layer 1 and the inner layer 2 are integrated via the intermediate layer 3. Also in this case, a desired portion of the cemented carbide composite roll 10 may be machined as necessary.

本発明の以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The following examples of the present invention will be described in more detail, but the present invention is not limited thereto.

実施例1
表1に示す組成を有する超硬合金を用いて、図6に示す外径20 mm及び厚さ20 mmの円柱状外層試験片31を作製した。また、表2に組成を有する鉄系合金を用いて、図6に示す外径20 mm及び長さ20 mmの円柱状内層試験片32を作製した。さらに、表3に示す組成を有する鉄系合金を用いて、外径30 mm及び厚さ5 mmの5種類の円板状中間層試験片33(中間層1〜5)を作製した。外層試験片31、中間層試験片33及び内層試験片32を図6に示すように積み重ね、黒鉛製治具34に収めた後、真空中で治具34を上から加圧して、表3に示す条件で拡散接合を行い、接合試験片1〜5を作製した。
Example 1
Using a cemented carbide having the composition shown in Table 1, a cylindrical outer layer test piece 31 having an outer diameter of 20 mm and a thickness of 20 mm shown in FIG. 6 was produced. Further, using an iron-based alloy having the composition shown in Table 2, a cylindrical inner layer test piece 32 having an outer diameter of 20 mm and a length of 20 mm shown in FIG. 6 was produced. Further, five types of disk-shaped intermediate layer test pieces 33 (intermediate layers 1 to 5) having an outer diameter of 30 mm and a thickness of 5 mm were prepared using an iron-based alloy having the composition shown in Table 3. After stacking the outer layer test piece 31, the intermediate layer test piece 33 and the inner layer test piece 32 as shown in FIG. 6 and placing them in a graphite jig 34, the jig 34 was pressed from above in vacuum, and the results are shown in Table 3. Diffusion bonding was performed under the conditions shown, and bonding test pieces 1 to 5 were produced.

各接合試験片1〜5の接合境界を観察した結果、接合試験片1及び4では、中間層試験片33と外層材試験片31の接合境界にη相や黒鉛の発生が抑えられていたため、接合強度が十分高く、接合信頼性が高かった。しかし、接合試験片3では、中間層試験片33と外層試験片31の接合境界に黒鉛が発生していた。また接合試験片2及び5では、中間層試験片33と外層試験片31の接合境界にη相が認められた。従って、接合試験片2、3及び5の接合強度は低いことが想定される。   As a result of observing the bonding boundary of each of the bonding test pieces 1 to 5, in the bonding test pieces 1 and 4, since the generation of η phase and graphite was suppressed at the bonding boundary of the intermediate layer test piece 33 and the outer layer material test piece 31, The bonding strength was sufficiently high and the bonding reliability was high. However, in the joining test piece 3, graphite was generated at the joining boundary between the intermediate layer test piece 33 and the outer layer test piece 31. In the joining test pieces 2 and 5, an η phase was observed at the joining boundary between the intermediate layer test piece 33 and the outer layer test piece 31. Accordingly, it is assumed that the bonding strength of the bonding test pieces 2, 3 and 5 is low.

Figure 2015096275
注:(1) WC粒子の平均粒径は5μmであった。
Figure 2015096275
Notes: (1) The average particle size of the WC particles was 5 μm.

Figure 2015096275
Figure 2015096275

Figure 2015096275
Figure 2015096275

Figure 2015096275
Figure 2015096275

実施例2
表1に示す組成を有する直径25 mm×長さ75 mmの外層試験片31、及び表2に示す組成を有する直径25 mm×長さ75 mmの鉄系合金製内層試験片32を作製した。また、表3に示す接合試験片1及び2の組成を有する2種類の直径25 mm×厚さ10 mmの鉄系合金製中間層試験片33を作製した。外層試験片31、中間層試験片32及び内層試験片33を図6に示すように黒鉛製治具34に収めた後、真空中で治具34を上から加圧して、表4に示す条件で拡散接合を行い、接合試験片6及び7を作製した。
Example 2
An outer layer test piece 31 having a composition shown in Table 1 having a diameter of 25 mm × 75 mm in length and an iron-based alloy inner test piece 32 having a composition shown in Table 2 having a diameter of 25 mm × length of 75 mm were prepared. Further, two types of iron alloy intermediate layer test pieces 33 having a diameter of 25 mm and a thickness of 10 mm having the compositions of the joining test pieces 1 and 2 shown in Table 3 were prepared. After placing the outer layer test piece 31, the intermediate layer test piece 32 and the inner layer test piece 33 in the graphite jig 34 as shown in FIG. Then, diffusion bonding was performed to prepare bonding test pieces 6 and 7.

各接合試験片6,7から図7に示す形状の引張試験片45,46を作製した。各引張試験片45,46は外層試験片部41、中間層試験片部43及び内層試験片部42からなり、直径は6.3 mmで、標点距離は19 mmであった。中間層試験片部43は標点間の中央に位置した。各引張試験片45,46に対して、引張強度試験及び疲労強度(引圧)試験を行った。結果を表4に示す。本発明の組成範囲内の中間層を有する引張試験片45(接合試験片6)の引張強度は600 MPa以上で、疲労強度は200 MPa以上であった。これに対して、本発明の組成範囲外の中間層を有する引張試験片46(接合試験片7)の引張強度は600 MPa未満で、疲労強度も200 MPa未満であった。   Tensile test pieces 45 and 46 having the shape shown in FIG. Each of the tensile test pieces 45 and 46 was composed of an outer layer test piece part 41, an intermediate layer test piece part 43 and an inner layer test piece part 42, and had a diameter of 6.3 mm and a gauge distance of 19 mm. The intermediate layer test piece 43 was located at the center between the gauge points. Each tensile test piece 45, 46 was subjected to a tensile strength test and a fatigue strength (pulling pressure) test. The results are shown in Table 4. The tensile test piece 45 (joint test piece 6) having an intermediate layer within the composition range of the present invention had a tensile strength of 600 MPa or more and a fatigue strength of 200 MPa or more. In contrast, the tensile test piece 46 (joint test piece 7) having an intermediate layer outside the composition range of the present invention had a tensile strength of less than 600 MPa and a fatigue strength of less than 200 MPa.

Figure 2015096275
Figure 2015096275

実施例3
表2に示す組成を有する鉄系合金を用いて、外径270 mm及び全長1000 mmのロール軸状の内層部材12を作製した。また表5に示す組成を有する鉄系合金を用いて、外径335 mm、内径270 mm及び全長600 mmの中間層部材13を作製した。さらに、外径600 mm、内径336.5 mm及び全長1100 mmの第一の黒鉛製中空円筒状拘束部材16aを作製した。図2に示すように各部材を黒鉛製基台8上に配置した状態で、真空炉に入れ、1290℃の温度に60分間保持して拡散接合を行い、中間部材14を作製した。
Example 3
Using a ferrous alloy having the composition shown in Table 2, a roll shaft-shaped inner layer member 12 having an outer diameter of 270 mm and a total length of 1000 mm was produced. Further, an intermediate layer member 13 having an outer diameter of 335 mm, an inner diameter of 270 mm, and a total length of 600 mm was produced using an iron-based alloy having the composition shown in Table 5. Further, a first graphite hollow cylindrical restraining member 16a having an outer diameter of 600 mm, an inner diameter of 336.5 mm, and a total length of 1100 mm was produced. As shown in FIG. 2, with each member placed on the graphite base 8, it was put in a vacuum furnace and held at a temperature of 1290 ° C. for 60 minutes to perform diffusion bonding, thereby producing an intermediate member 14.

Figure 2015096275
Figure 2015096275

中間部材14の中間層3の外周面を外径316 mmまで機械加工した後、黒鉛製基台8上に配置した。また、表1に示す組成を有する超硬合金を用いて、外径358 mm、内径317.5 mm及び全長520 mmの中空円筒状外層部材11を作製した。さらに、外径600 mm、内径359.7 mm及び全長1200 mmの第二の黒鉛製拘束部材16bを作製した。基台8上に載置された中間部材14の外周に、図3(a) に示すように外層部材11を配置し、また外層部材11の外周に第二の拘束部材16bを配置した。この状態で真空炉に入れ、1290℃の温度に60分間保持して拡散接合を行い、超硬合金複合ロール10を作製した。   The outer peripheral surface of the intermediate layer 3 of the intermediate member 14 was machined to an outer diameter of 316 mm, and then placed on the graphite base 8. In addition, a hollow cylindrical outer layer member 11 having an outer diameter of 358 mm, an inner diameter of 317.5 mm, and a total length of 520 mm was produced using a cemented carbide having the composition shown in Table 1. Further, a second graphite restraining member 16b having an outer diameter of 600 mm, an inner diameter of 359.7 mm, and a total length of 1200 mm was produced. As shown in FIG. 3A, the outer layer member 11 is disposed on the outer periphery of the intermediate member 14 placed on the base 8, and the second restraining member 16b is disposed on the outer periphery of the outer layer member 11. In this state, it was placed in a vacuum furnace and held at 1290 ° C. for 60 minutes for diffusion bonding to produce a cemented carbide composite roll 10.

超硬合金複合ロール10の外層1、中間層3及び内層2の端部を目視検査し、接合面全域を浸透探傷検査した。その結果、接合面全域にわたって境界の欠陥は観察されなかった。また、外層1と中間層3の剥離、及び中間層3と内層2の剥離も認められなかった。   The ends of the outer layer 1, the intermediate layer 3 and the inner layer 2 of the cemented carbide composite roll 10 were visually inspected, and the entire joint surface was inspected by penetrant flaw detection. As a result, no boundary defect was observed over the entire bonding surface. Further, peeling of the outer layer 1 and the intermediate layer 3 and peeling of the intermediate layer 3 and the inner layer 2 were not observed.

実施例2と同じ引張試験の結果、引張強度は780 MPa以上で、疲労強度は258 MPa以上であった。さらに中間層3の引張残留応力は100 MPa未満であった。   As a result of the same tensile test as in Example 2, the tensile strength was 780 MPa or more and the fatigue strength was 258 MPa or more. Further, the tensile residual stress of the intermediate layer 3 was less than 100 MPa.

1:外層
2:内層
3:中間層
8:基台
9a,9b:第一及び第二の受台
10:超硬合金複合ロール
11:外層部材
12:内層部材
13:中間層部材
14:中間部材
16a,16b:第一及び第二の拘束部材
20:HIP缶
31:外層試験片
32:内層試験片
34:黒鉛製治具
45:接合試験片
46:引張試験片
61〜66:拘束部材用リング部材
L1:外層部材の長さ
L2:内層部材の長さ
L3:第二の拘束部材の長さ
D:外層部材の各端部から延びる第二の拘束部材の長さ
T1:外層部材の厚さ
T2:内層部材の直径
T3:第二の拘束部材の厚さ
G1:外層部材と中間層との間隙
G2:外層部材と第二の拘束部材との間隙
1: Outer layer
2: Inner layer
3: Middle layer
8: Base
9a, 9b: First and second cradle
10: Cemented carbide composite roll
11: Outer layer member
12: Inner layer member
13: Middle layer member
14: Intermediate member
16a, 16b: first and second restraining members
20: HIP can
31: Outer layer specimen
32: Inner layer specimen
34: Graphite jig
45: Joining specimen
46: Tensile test piece
61-66: Ring member for restraint member
L 1 : Length of outer layer member
L 2 : Length of inner layer member
L 3 : Length of the second restraining member
D: Length of the second restraining member extending from each end of the outer layer member
T 1 : Thickness of outer layer member
T 2 : Diameter of inner layer member
T 3 : thickness of the second restraining member
G 1 : Gap between the outer layer member and the intermediate layer
G 2 : The gap between the outer layer member and the second restraining member

Claims (17)

超硬合金製外層と鉄系合金製内層とを中間層を介して拡散接合した超硬合金製圧延用複合ロールにおいて、前記中間層が0.65〜1.2質量%のC及び1.8〜7.5質量%のNiを含有する鉄系合金からなることを特徴とする超硬合金複合ロール。 In a composite roll for rolling made of cemented carbide, in which a cemented carbide outer layer and an iron-based alloy inner layer are diffusion-bonded via an intermediate layer, the intermediate layer is 0.65 to 1.2% by mass of C and 1.8 to 7.5% by mass of Ni. A cemented carbide composite roll comprising an iron-based alloy containing 請求項1に記載の超硬合金複合ロールにおいて、前記中間層がさらに3質量%以下のCr及び1.5質量%以下のMoを含有することを特徴とする超硬合金複合ロール。 2. The cemented carbide composite roll according to claim 1, wherein the intermediate layer further contains 3% by mass or less of Cr and 1.5% by mass or less of Mo. 請求項1又は2に記載の超硬合金複合ロールにおいて、前記中間層の厚さが0.5〜50 mmであることを特徴とする超硬合金複合ロール。 3. The cemented carbide composite roll according to claim 1, wherein the intermediate layer has a thickness of 0.5 to 50 mm. 請求項1〜3のいずれか記載の超硬合金複合ロールにおいて、前記外層と前記中間層の境界部の引張強度が600 MPa以上であることを特徴とする超硬合金複合ロール。 The cemented carbide composite roll according to any one of claims 1 to 3, wherein a tensile strength at a boundary portion between the outer layer and the intermediate layer is 600 MPa or more. 請求項1〜4のいずれか記載の超硬合金複合ロールにおいて、前記外層と前記中間層の境界部の疲労強度が200 MPa以上であることを特徴とする超硬合金複合ロール。 The cemented carbide composite roll according to any one of claims 1 to 4, wherein a fatigue strength at a boundary portion between the outer layer and the intermediate layer is 200 MPa or more. 請求項1〜5のいずれか記載の超硬合金複合ロールにおいて、前記超硬合金製外層が70〜88質量%のWC粒子を含有することを特徴とする超硬合金複合ロール。 The cemented carbide composite roll according to any one of claims 1 to 5, wherein the cemented carbide outer layer contains 70 to 88% by mass of WC particles. 請求項1〜6のいずれか記載の超硬合金複合ロールにおいて、前記鉄系合金製内層がCr、Ni、Mo、V、W、Ti及びNbからなる群から選ばれた少なくとも一種を合計で1.0質量%以上含有することを特徴とする超硬合金複合ロール。 The cemented carbide composite roll according to any one of claims 1 to 6, wherein the iron-based alloy inner layer includes at least one selected from the group consisting of Cr, Ni, Mo, V, W, Ti and Nb in a total of 1.0. A cemented carbide composite roll containing at least mass%. 超硬合金からなる円筒状外層部材と鉄系合金からなる内層部材とが拡散接合した超硬合金複合ロールを製造する方法において、前記内層部材の外面に、0.65〜1.2質量%のC及び1.8〜7.5質量%のNiを含有する円筒状中間層部材の内面を接合した後、前記中間層部材の外面に前記外層部材の内面を拡散接合することを特徴とする方法。 In the method of manufacturing a cemented carbide composite roll in which a cylindrical outer layer member made of cemented carbide and an inner layer member made of an iron-based alloy are diffusion-bonded, 0.65 to 1.2% by mass of C and 1.8 to 1.2% on the outer surface of the inner layer member A method comprising joining the inner surface of a cylindrical intermediate layer member containing 7.5% by mass of Ni and then diffusion-bonding the inner surface of the outer layer member to the outer surface of the intermediate layer member. 請求項8に記載の超硬合金複合ロールの製造方法において、
前記円筒状中間層部材が嵌合した前記内層部材の外周に、それを包囲するように前記内層部材より熱膨張率が小さい円筒状の第一の拘束部材を配置し、加熱により前記内層部材と前記中間層部材を拡散接合して、前記内層部材の外周に中間層が拡散接合した中間部材を作製する第一の工程と、
前記中間部材を包囲するように前記円筒状外層部材を配置した後、前記外層部材を包囲するように前記外層部材より熱膨張率が小さい円筒状の第二の拘束部材を配置し、加熱により前記中間層と前記外層部材を拡散接合する第二の工程とを有し、
第一の工程では、熱膨張率が大きい前記内層部材の外面が前記中間層部材の内面を押圧するとともに、熱膨張率が小さい前記第一の拘束部材の内面が前記中間層部材の外面を押圧するように、前記内層部材、前記中間層部材及び前記第一の拘束部材のそれぞれの間隙を設定し、
第二の工程では、熱膨張率が最も大きい前記内層部材の外面に形成された前記中間層の外面が前記外層部材の内面を押圧するとともに、熱膨張率が最も小さい前記第二の拘束部材の内面が前記外層部材の外面を押圧するように、前記中間部材、前記外層部材及び前記第二の拘束部材のそれぞれの間隙を設定することを特徴とする方法。
In the method for producing a cemented carbide composite roll according to claim 8,
A cylindrical first restraining member having a thermal expansion coefficient smaller than that of the inner layer member is arranged on the outer periphery of the inner layer member fitted with the cylindrical intermediate layer member so as to surround the inner layer member. A first step of diffusion bonding the intermediate layer member to produce an intermediate member having an intermediate layer diffusion bonded to the outer periphery of the inner layer member;
After disposing the cylindrical outer layer member so as to surround the intermediate member, a cylindrical second restraining member having a smaller coefficient of thermal expansion than that of the outer layer member is disposed so as to surround the outer layer member. A second step of diffusion bonding the intermediate layer and the outer layer member,
In the first step, the outer surface of the inner layer member having a large coefficient of thermal expansion presses the inner surface of the intermediate layer member, and the inner surface of the first restraining member having a small coefficient of thermal expansion presses the outer surface of the intermediate layer member. To set the respective gaps of the inner layer member, the intermediate layer member and the first restraining member,
In the second step, the outer surface of the intermediate layer formed on the outer surface of the inner layer member having the largest coefficient of thermal expansion presses the inner surface of the outer layer member, and the second restraining member having the smallest coefficient of thermal expansion. A method of setting a gap between each of the intermediate member, the outer layer member, and the second restraining member so that an inner surface presses the outer surface of the outer layer member.
請求項9に記載の超硬合金複合ロールの製造方法において、前記第一及び第二の拘束部材の軸方向両端部が前記中間層部材及び前記外層部材の軸方向両端面より突出していることを特徴とする方法。 10. The method of manufacturing a cemented carbide composite roll according to claim 9, wherein both axial end portions of the first and second restraining members protrude from both axial end surfaces of the intermediate layer member and the outer layer member. Feature method. 請求項9又は10に記載の超硬合金複合ロールの製造方法において、前記第二の拘束部材が前記外層部材より厚いことを特徴とする方法。 11. The method for producing a cemented carbide composite roll according to claim 9, wherein the second restraining member is thicker than the outer layer member. 請求項8に記載の超硬合金複合ロールの製造方法において、
前記円筒状中間層部材が嵌合した前記内層部材の外周に、それを包囲するように前記内層部材より熱膨張率が小さい円筒状の外層部材を配置する工程と、
前記外層部材の外周に、それを包囲するように前記外層部材より熱膨張率が小さい拘束部材を配置する工程と、
加熱により前記内層部材と前記外層部材を前記中間層部材を介して拡散接合する工程とを有し、
熱膨張率が最も大きい前記内層部材の外面が前記中間層部材の内面を押圧するとともに、熱膨張率が最も小さい前記拘束部材の内面が前記外層部材の外面を押圧するように、前記内層部材、前記中間層部材及び前記拘束部材のそれぞれの間隙を設定することを特徴とする方法。
In the method for producing a cemented carbide composite roll according to claim 8,
Disposing a cylindrical outer layer member having a smaller coefficient of thermal expansion than the inner layer member so as to surround the outer periphery of the inner layer member fitted with the cylindrical intermediate layer member;
Arranging a restraining member having a smaller coefficient of thermal expansion than the outer layer member so as to surround the outer layer member;
A step of diffusion bonding the inner layer member and the outer layer member through the intermediate layer member by heating,
The inner layer member such that the outer surface of the inner layer member having the largest thermal expansion coefficient presses the inner surface of the intermediate layer member, and the inner surface of the restraining member having the smallest coefficient of thermal expansion presses the outer surface of the outer layer member; A method of setting a gap between each of the intermediate layer member and the restraining member.
請求項12に記載の超硬合金複合ロールの製造方法において、前記拘束部材の軸方向両端部が前記中間層部材及び前記外層部材の軸方向両端面より突出していることを特徴とする方法。 13. The method for producing a cemented carbide composite roll according to claim 12, wherein both axial end portions of the restraining member protrude from both axial end surfaces of the intermediate layer member and the outer layer member. 請求項12又は13に記載の超硬合金複合ロールの製造方法において、前記拘束部材が前記外層部材より厚いことを特徴とする方法。 14. The method for producing a cemented carbide composite roll according to claim 12 or 13, wherein the restraining member is thicker than the outer layer member. 請求項8〜14のいずれかに記載の超硬合金複合ロールの製造方法において、前記拘束部材が黒鉛又はセラミックスからなることを特徴とする方法。 15. The method for producing a cemented carbide composite roll according to claim 8, wherein the restraining member is made of graphite or ceramics. 請求項8〜15のいずれかに記載の超硬合金複合ロールの製造方法において、前記拘束部材を複数のリング部材を同軸的に積み重ねることにより形成することを特徴とする方法。 16. The method for manufacturing a cemented carbide composite roll according to claim 8, wherein the constraining member is formed by coaxially stacking a plurality of ring members. 請求項8〜16のいずれかに記載の超硬合金複合ロールの製造方法において、前記拘束部材と前記外層部材との間に反応防止材を介在させることを特徴とする方法。 17. The method for producing a cemented carbide composite roll according to claim 8, wherein a reaction preventing material is interposed between the restraining member and the outer layer member.
JP2014201337A 2013-10-09 2014-09-30 Cemented carbide composite roll and manufacturing method thereof Active JP6354504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014201337A JP6354504B2 (en) 2013-10-09 2014-09-30 Cemented carbide composite roll and manufacturing method thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013211593 2013-10-09
JP2013211594 2013-10-09
JP2013211593 2013-10-09
JP2013211594 2013-10-09
JP2014201337A JP6354504B2 (en) 2013-10-09 2014-09-30 Cemented carbide composite roll and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015096275A true JP2015096275A (en) 2015-05-21
JP6354504B2 JP6354504B2 (en) 2018-07-11

Family

ID=53373850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014201337A Active JP6354504B2 (en) 2013-10-09 2014-09-30 Cemented carbide composite roll and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6354504B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200111669A (en) * 2018-01-31 2020-09-29 히타치 긴조쿠 가부시키가이샤 Cemented carbide composite roll

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181521A (en) * 2002-12-06 2004-07-02 Hitachi Metals Ltd Composite roll made of sintered hard alloy
JP2004237290A (en) * 2003-02-03 2004-08-26 Hitachi Metals Ltd Method for manufacturing composite rolling roll made of cemented carbide
JP2005169419A (en) * 2003-12-09 2005-06-30 Hitachi Metals Ltd Composite rolling roll made of cemented carbide
JP2006175456A (en) * 2004-12-21 2006-07-06 Hitachi Metals Ltd Composite rolling roll made of cemented carbide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181521A (en) * 2002-12-06 2004-07-02 Hitachi Metals Ltd Composite roll made of sintered hard alloy
JP2004237290A (en) * 2003-02-03 2004-08-26 Hitachi Metals Ltd Method for manufacturing composite rolling roll made of cemented carbide
JP2005169419A (en) * 2003-12-09 2005-06-30 Hitachi Metals Ltd Composite rolling roll made of cemented carbide
JP2006175456A (en) * 2004-12-21 2006-07-06 Hitachi Metals Ltd Composite rolling roll made of cemented carbide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200111669A (en) * 2018-01-31 2020-09-29 히타치 긴조쿠 가부시키가이샤 Cemented carbide composite roll
KR102553279B1 (en) * 2018-01-31 2023-07-06 가부시키가이샤 프로테리아루 Cemented carbide composite roll

Also Published As

Publication number Publication date
JP6354504B2 (en) 2018-07-11

Similar Documents

Publication Publication Date Title
TWI787450B (en) Composite roll made of cemented carbide and method for manufacturing composite roll made of cemented carbide
JPWO2012132822A1 (en) Tungsten carbide-based cemented carbide joined body and manufacturing method thereof
JP6354504B2 (en) Cemented carbide composite roll and manufacturing method thereof
JP2004243380A (en) Composite roll for rolling made of cemented carbide
JP6587204B2 (en) Cemented carbide composite roll and manufacturing method thereof
JP6489405B2 (en) Cemented carbide composite sleeve roll
JP6421758B2 (en) Cemented carbide composite roll and manufacturing method thereof
JP4392652B2 (en) Composite roll for rolling made of cemented carbide and method for producing the same
JP4735950B2 (en) Cemented carbide roll for rolling
JP2005262321A (en) Composite roll made of cemented carbide
JP2006181628A (en) Method for rolling thick steel plate and method for producing thick steel plate
JP2001087805A (en) Composite sleeve made of sintered hard alloy
JP2004167503A (en) Composite rolling roll made of cemented carbide
JP6391042B2 (en) Manufacturing method of composite roll
JP4221703B2 (en) Cemented carbide roll composite roll manufacturing method and roll
CN111356542B (en) Composite hard alloy roller
JP4392653B2 (en) Cemented carbide roll for rolling
JP2004243341A (en) Composite roll for rolling made of cemented carbide
JP4320699B2 (en) Composite roll for rolling
JP2005074450A (en) Titanium-clad steel plate, and its production method
JP4221696B2 (en) Cemented carbide composite roll
JP2004167501A (en) Composite roll made of cemented carbide
KR101391028B1 (en) Composite roll for rolling
KR20060015048A (en) Cemented carbide composite rolls for strip rolling
JP2004181521A (en) Composite roll made of sintered hard alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180528

R150 Certificate of patent or registration of utility model

Ref document number: 6354504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350