JP6587204B2 - Cemented carbide composite roll and manufacturing method thereof - Google Patents

Cemented carbide composite roll and manufacturing method thereof Download PDF

Info

Publication number
JP6587204B2
JP6587204B2 JP2015068058A JP2015068058A JP6587204B2 JP 6587204 B2 JP6587204 B2 JP 6587204B2 JP 2015068058 A JP2015068058 A JP 2015068058A JP 2015068058 A JP2015068058 A JP 2015068058A JP 6587204 B2 JP6587204 B2 JP 6587204B2
Authority
JP
Japan
Prior art keywords
outer layer
cemented carbide
mass
inner layer
composite roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015068058A
Other languages
Japanese (ja)
Other versions
JP2016188393A (en
Inventor
拓己 大畑
拓己 大畑
俊二 松本
俊二 松本
大島 昌彦
昌彦 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2015068058A priority Critical patent/JP6587204B2/en
Publication of JP2016188393A publication Critical patent/JP2016188393A/en
Application granted granted Critical
Publication of JP6587204B2 publication Critical patent/JP6587204B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

本発明は、耐摩耗性、耐肌荒れ性等に優れた外層と靱性に優れた内層とからなり、板材、線材、棒材等の鋼材の圧延に好適な高耐久性の超硬合金複合ロール、及びその製造方法に関する。   The present invention comprises an outer layer excellent in wear resistance, rough skin resistance and the like and an inner layer excellent in toughness, and is a highly durable cemented carbide composite roll suitable for rolling steel materials such as plate materials, wire rods, bar materials, And a manufacturing method thereof.

寸法精度の向上等圧延材の高品質化、及びロール替え工数の低減による生産性向上の要求に応えるため、耐摩耗性、耐肌荒れ性等に優れた炭化タングステン(WC)系超硬合金からなる圧延用ロールが使用されており、種々の構造の超硬合金圧延ロールが提案されている。   Made of tungsten carbide (WC) cemented carbide with excellent wear resistance, rough skin resistance, etc., to meet the demands for higher quality of rolled materials, such as improved dimensional accuracy, and improved productivity by reducing the number of roll change man-hours. Rolls for rolling are used, and cemented carbide rolling rolls having various structures have been proposed.

例えば、特開平3-281007号(特許文献1)は、図8に示すように、両端に固定の締付フランジ部103と着脱自在な締付フランジ部104とを備えたロール本体105と、熱膨張係数が15×10-6/℃以上で熱伝導率が0.4 cal/cm・sec・℃以上の金属製リング状スペーサ111,111及び筒状スペーサ114を介してロール本体105に嵌合された超硬合金製円筒体110とを具備する超硬合金圧延ロールを提案している。リング状スペーサ111,111の熱膨張を利用して、締付フランジ部103,104の締付力を向上させている。しかし、リング状スペーサ111,111及び筒状スペーサ114があっても、締付フランジ部103,104による締付力では超硬合金製円筒体110とロール本体105との密着性は不十分であり、圧延中に超硬合金製円筒体110がロール本体105に対してスリップを起こしてしまうおそれがあった。 For example, as shown in FIG. 8, Japanese Patent Laid-Open No. 3-281007 (Patent Document 1) discloses a roll main body 105 provided with a fastening flange portion 103 fixed at both ends and a detachable fastening flange portion 104, as shown in FIG. Fitted to the roll body 105 via metal ring spacers 111 and 111 and a cylindrical spacer 114 having an expansion coefficient of 15 × 10 -6 / ° C or higher and a thermal conductivity of 0.4 cal / cm · sec · ° C or higher. A cemented carbide rolling roll comprising a cemented carbide cylinder 110 is proposed. The tightening force of the tightening flange portions 103 and 104 is improved by utilizing the thermal expansion of the ring spacers 111 and 111. However, even with the ring-shaped spacers 111 and 111 and the cylindrical spacer 114, the adhesion between the cemented carbide cylinder 110 and the roll body 105 is not sufficient with the tightening force by the tightening flange portions 103 and 104. In addition, the cemented carbide cylindrical body 110 may slip with respect to the roll body 105 during rolling.

このような組立式構造の超硬合金圧延ロールの問題点を解決するために、超硬合金製外層と金属製内層とを拡散接合した超硬合金複合ロールが提案されている。例えば、特開2001-47111号(特許文献2)は、靱性に優れた材料からなる内層部材の外周に、WC系超硬合金製外層部材を金属接合した超硬合金複合ロールにおいて、外層部材の内側にWC粒子の含有量が外層より少ないWC系超硬合金製中間層を設け、内層部材と中間層とを金属層を介して接合した超硬合金複合ロールを提案している。特許文献2は、中間層を外層部材から内層部材にかけて傾斜的なWCの組成とすることにより、熱膨張率、弾性係数等の物性値を外層部材から内層部材にかけて連続的に変化させ、もって境界接合部の強度を向上させると記載している。   In order to solve the problems of the cemented carbide roll of such an assembly type structure, a cemented carbide composite roll in which a cemented carbide outer layer and a metal inner layer are diffusion-bonded has been proposed. For example, Japanese Patent Laid-Open No. 2001-47111 (Patent Document 2) discloses a cemented carbide composite roll in which an outer layer member made of a WC-based cemented carbide is metal-bonded to the outer periphery of an inner layer member made of a material having excellent toughness. A cemented carbide composite roll has been proposed in which a WC cemented carbide intermediate layer having a smaller content of WC particles than the outer layer is provided on the inner side, and the inner layer member and the intermediate layer are joined via a metal layer. In Patent Document 2, the intermediate layer has an inclined WC composition from the outer layer member to the inner layer member, thereby changing the physical property values such as the coefficient of thermal expansion and the elastic coefficient continuously from the outer layer member to the inner layer member. It describes that the strength of the joint is improved.

しかし、耐摩耗性に優れた超硬合金製外層と鉄系合金製内層を中間層を介して接合した特許文献2に記載の超硬合金複合ロールを、外径が300 mm以上でロール長が500 mm以上の熱間薄板圧延用ロールのように大型化するには、外層と内層の接合信頼性が十分でないおそれがあることが分った。また、より厳しい圧延条件に使用する場合には、外層と内層のより高い接合強度が求められる。さらに製造にあたっては中間層を形成させる工程が必要となり、その分手間がかかり製造コストも高くなる。   However, the cemented carbide composite roll described in Patent Document 2, in which a cemented carbide outer layer excellent in wear resistance and an iron-based alloy inner layer are joined via an intermediate layer, has an outer diameter of 300 mm or more and a roll length. It has been found that the bonding reliability of the outer layer and the inner layer may not be sufficient for increasing the size of a hot sheet rolling roll of 500 mm or more. Further, when used in more severe rolling conditions, higher bonding strength between the outer layer and the inner layer is required. Further, in the production, a process for forming an intermediate layer is required, which takes time and increases the production cost.

特開平3-281007号公報JP-A-3-281007 特開2001-47111号公報JP 2001-47111 A

従って、本発明の目的は、耐摩耗性、耐肌荒れ性等に優れた超硬合金製外層と靱性に優れた鉄系合金製内層とを施工の難しい中間層を介在させずに直接接合した超硬合金複合ロールであって、両者の接合強度が極めて高い超硬合金複合ロール、及びその効率的な製造方法を提供することである。   Accordingly, the object of the present invention is to provide a super-hard alloy outer layer excellent in wear resistance, rough skin resistance, etc. and an iron-based alloy inner layer excellent in toughness, which are directly joined without an intermediate layer difficult to construct. It is a hard alloy composite roll, which is to provide a cemented carbide composite roll having a very high bonding strength between them and an efficient manufacturing method thereof.

上記目的に鑑み鋭意研究の結果、超硬合金製外層と直接拡散接合する鉄系合金製内層の組成について鋭意検討した結果、接合強度が極めて高い超硬合金複合ロールが得られることを見いだし、本発明に想到した。   As a result of diligent research in view of the above-mentioned purpose, as a result of diligent research on the composition of the iron-based alloy inner layer that is directly diffusion-bonded to the cemented carbide outer layer, it was found that a cemented carbide composite roll with extremely high bonding strength was obtained I came up with the invention.

すなわち、本発明の超硬合金複合ロールは、超硬合金製外層と鉄系合金製内層とを拡散接合したもので、前記内層が0.65〜1.2質量%のC、1.8〜7.5質量%のNi、0.01〜3質量%のCr及び0.01〜1.5質量%のMoを含有する鉄系合金からなることを特徴とする。   That is, the cemented carbide composite roll of the present invention is obtained by diffusion bonding a cemented carbide outer layer and an iron-based alloy inner layer, the inner layer is 0.65-1.2 mass% C, 1.8-7.5 mass% Ni, It is made of an iron-based alloy containing 0.01 to 3% by mass of Cr and 0.01 to 1.5% by mass of Mo.

前記内層はさらに0.1〜2.0質量%のSi及び0.1〜0.9質量%のMnを含有するのが好ましい。   The inner layer preferably further contains 0.1 to 2.0% by mass of Si and 0.1 to 0.9% by mass of Mn.

前記外層と前記内層の境界部の引張強度は600 MPa以上であるのが好ましい。また、前記外層と内層の境界部の疲労強度は200 MPa以上であるのが好ましい。   The tensile strength at the boundary between the outer layer and the inner layer is preferably 600 MPa or more. The fatigue strength at the boundary between the outer layer and the inner layer is preferably 200 MPa or more.

前記超硬合金製外層は70〜88質量%のWC粒子を含有するのが好ましい。   The cemented carbide outer layer preferably contains 70 to 88% by mass of WC particles.

超硬合金からなる円筒状外層部材と鉄系合金からなる内層部材とが拡散接合した超硬合金複合ロールを製造する本発明の方法は、0.65〜1.2質量%のC、1.8〜7.5質量%のNi、0.01〜3質量%のCr及び0.01〜1.5質量%のMoを含有する内層部材の外面に前記外層部材の内面を拡散接合することを特徴とする。   The method of the present invention for producing a cemented carbide composite roll in which a cylindrical outer layer member made of cemented carbide and an inner layer member made of an iron-based alloy are diffusion-bonded comprises 0.65 to 1.2% by mass of C and 1.8 to 7.5% by mass. The inner surface of the outer layer member is diffusion-bonded to the outer surface of the inner layer member containing Ni, 0.01 to 3% by mass of Cr, and 0.01 to 1.5% by mass of Mo.

本発明の超硬合金複合ロールの製造方法は、
前記内層部材を包囲するように前記円筒状外層部材を配置した後、前記外層部材を包囲するように前記外層部材より熱膨張率が小さい円筒状の拘束部材を配置し、加熱により前記内層部材と前記外層部材を拡散接合する工程を有し、
前記工程では、熱膨張率が最も大きい前記内層部材の外面が前記外層部材の内面を押圧するとともに、熱膨張率が最も小さい前記拘束部材の内面が前記外層部材の外面を押圧するように、前記内層部材、前記外層部材及び前記拘束部材のそれぞれの間隙を設定することを特徴とする。
The method for producing the cemented carbide composite roll of the present invention comprises:
After the cylindrical outer layer member is disposed so as to surround the inner layer member, a cylindrical restraining member having a thermal expansion coefficient smaller than that of the outer layer member is disposed so as to surround the outer layer member. A step of diffusion bonding the outer layer member;
In the step, the outer surface of the inner layer member having the largest coefficient of thermal expansion presses the inner surface of the outer layer member, and the inner surface of the restraining member having the smallest coefficient of thermal expansion presses the outer surface of the outer layer member. A gap between each of the inner layer member, the outer layer member, and the restraining member is set.

前記拘束部材の軸方向両端部は前記外層部材の軸方向両端面より突出しているのが好ましい。   It is preferable that both axial ends of the restraining member protrude from both axial end surfaces of the outer layer member.

前記拘束部材は前記外層部材より厚いのが好ましい。   The constraining member is preferably thicker than the outer layer member.

拘束部材は黒鉛又はセラミックスからなるのが好ましい。   The restraining member is preferably made of graphite or ceramics.

拘束部材は複数のリング部材を同軸的に積み重ねることにより形成するのが好ましい。   The restraining member is preferably formed by coaxially stacking a plurality of ring members.

前記拘束部材と前記外層部材との間に反応防止材を介在させるのが好ましい。   It is preferable to interpose a reaction preventing material between the restraining member and the outer layer member.

本発明の超硬合金製複合ロールでは、超硬合金製外層が、0.65〜1.2質量%のC、1.8〜7.5質量%のNi、0.01〜3質量%のCr及び0.01〜1.5質量%のMoを含有する鉄系合金からなる鉄系合金製内層と中間層を介さずに直接拡散接合しているので、接合境界の超硬合金内に後述する脆弱なη相が生成することがなく、外層と内層の接合強度が大きい。そのため、300 mm以上の外径及び500 mm以上のロール長を有する大型の圧延ロールにしても、長期間の圧延に使用できる。また、中間層を形成させる工程が不要となり、その分製造コストを低減できる。   In the cemented carbide composite roll of the present invention, the cemented carbide outer layer comprises 0.65 to 1.2 mass% C, 1.8 to 7.5 mass% Ni, 0.01 to 3 mass% Cr, and 0.01 to 1.5 mass% Mo. Since it is directly diffusion-bonded without an intermediate layer and an iron-based alloy inner layer made of an iron-based alloy contained, the fragile η phase described later is not generated in the cemented carbide of the bonding boundary, and the outer layer and The inner layer has high bonding strength. Therefore, even a large rolling roll having an outer diameter of 300 mm or more and a roll length of 500 mm or more can be used for long-term rolling. Further, the process of forming the intermediate layer is unnecessary, and the manufacturing cost can be reduced accordingly.

本発明の超硬合金複合ロールを示す部分断面正面図である。It is a fragmentary sectional front view which shows the cemented carbide composite roll of this invention. 本発明の超硬合金複合ロールを拡散接合法により製造する例を示す断面図である。It is sectional drawing which shows the example which manufactures the cemented carbide composite roll of this invention by the diffusion bonding method. 図2における部分Aの拡大図である。FIG. 3 is an enlarged view of a portion A in FIG. 同軸的に積み重ねた複数のリング部材により構成した拘束部材を用いる拡散接合法を示す断面図である。It is sectional drawing which shows the diffusion bonding method using the constraining member comprised by the some ring member piled up coaxially. 本発明の超硬合金複合ロールをHIP法により製造する例を示す断面図である。It is sectional drawing which shows the example which manufactures the cemented carbide composite roll of this invention by HIP method. 実施例1及び2における接合実験を示す断面図である。3 is a cross-sectional view showing a joining experiment in Examples 1 and 2. FIG. 実施例2の引張試験片を示す正面図である。3 is a front view showing a tensile test piece of Example 2. FIG. 特開平3-281007号に開示された超硬合金圧延ロールを示す部分断面図である。FIG. 3 is a partial cross-sectional view showing a cemented carbide rolling roll disclosed in Japanese Patent Laid-Open No. 3-281007.

本発明を添付図面を参照して以下詳細に説明するが、本発明はそれらに限定されるものではなく、本発明の技術的思想を逸脱しない範囲内で適宜変更又は改良することができる。本発明の一実施形態に関する説明は、特に断りがなければ他の実施形態にも適用される。   The present invention will be described in detail below with reference to the accompanying drawings. However, the present invention is not limited to these, and can be appropriately changed or improved without departing from the technical idea of the present invention. The description relating to one embodiment of the present invention also applies to other embodiments unless otherwise specified.

[1] 超硬合金複合ロール
鋼等の被圧延材を圧延するのに用いることができる本発明の超硬合金複合ロール10は、図1に示すように、超硬合金製外層1と鉄系合金製内層2とを接合したものである。表面に被圧延材が接触する外層1は優れた耐摩耗性、耐肌荒れ性及び機械的強度が要求され、両端が軸受(図示せず)で支持されるロール軸を構成する内層2は高い機械的強度及び強靭性が要求される。
[1] Cemented carbide composite roll A cemented carbide composite roll 10 of the present invention that can be used for rolling a rolled material such as steel is composed of a cemented carbide outer layer 1 and a ferrous alloy as shown in FIG. The alloy inner layer 2 is joined. The outer layer 1 whose surface is in contact with the material to be rolled is required to have excellent wear resistance, rough skin resistance and mechanical strength, and the inner layer 2 constituting the roll shaft whose both ends are supported by bearings (not shown) is a high machine. Strength and toughness are required.

(1) 外層
本発明の超硬合金複合ロールの超硬合金製外層1は、硬質WC粒子をCo、Ni、Cr、Fe等の金属で結合した焼結合金であり、WCの他にTi、Ta、Nb等の炭化物を含有しても良い。外層1が高い耐摩耗性、耐肌荒れ性及び機械的強度を有するために、WC粒子の平均粒径は3〜10μmが好ましく、WC粒子の含有量は70〜88質量%が好ましく、72〜85質量%がより好ましい。外層1の厚さは、圧延により徐々に摩耗することを考慮して、5〜50 mmの範囲に設定するのが好ましい。
(1) Outer layerThe cemented carbide outer layer 1 of the cemented carbide composite roll of the present invention is a sintered alloy in which hard WC particles are bonded with a metal such as Co, Ni, Cr, Fe, etc. Carbides such as Ta and Nb may be contained. In order for the outer layer 1 to have high wear resistance, rough skin resistance and mechanical strength, the average particle size of WC particles is preferably 3 to 10 μm, and the content of WC particles is preferably 70 to 88% by mass, and 72 to 85%. The mass% is more preferable. The thickness of the outer layer 1 is preferably set in the range of 5 to 50 mm in consideration of gradual wear due to rolling.

(2) 内層
超硬合金製外層1と接合する内層2は、0.65〜1.2質量%のC、1.8〜7.5質量%のNi、0.01〜3質量%のCr及び0.01〜1.5質量%のMoを含有する鉄系合金により形成する。超硬合金製外層1と鉄系合金製内層2を接合する際、両者の炭素活量の差により接合界面で炭素が超硬合金製外層1から内層2に拡散するので、超硬合金製外層1内の炭素が低下することが知られている。その結果、低炭素組成の炭化物であるη相が超硬合金内に生成され、超硬合金の機械的強度が劣化する。
(2) Inner layer The inner layer 2 to be joined with the cemented carbide outer layer 1 contains 0.65 to 1.2% by mass of C, 1.8 to 7.5% by mass of Ni, 0.01 to 3% by mass of Cr, and 0.01 to 1.5% by mass of Mo. Formed of an iron-based alloy. When joining the outer layer 1 made of cemented carbide and the inner layer 2 made of iron alloy, carbon diffuses from the outer layer 1 made of cemented carbide to the inner layer 2 at the joining interface due to the difference in carbon activity between the two layers. It is known that the carbon in 1 falls. As a result, a η phase, which is a carbide having a low carbon composition, is generated in the cemented carbide and the mechanical strength of the cemented carbide is deteriorated.

超硬合金製外層1と鉄系合金製内層2との接合実験の結果、内層2の炭素含有量が0.65質量%以上であれば超硬合金製外層1から内層2へのCの拡散をほぼ抑制でき、もってη相の発生を防止できることを発見した。一方、内層2の炭素含有量が1.2質量%を超えると、外層1と内層2の境界部に黒鉛が生成されて、接合強度が低下する。内層2の炭素含有量の下限は0.7質量%が好ましく、0.75質量%がより好ましい。また、内層2の炭素含有量の上限は1.0質量%がより好ましい。   As a result of the joining experiment between the outer layer 1 made of cemented carbide and the inner layer 2 made of iron alloy, if the carbon content of the inner layer 2 is 0.65% by mass or more, the diffusion of C from the outer layer 1 made of cemented carbide to the inner layer 2 is substantially reduced. It has been found that it is possible to suppress the occurrence of the η phase. On the other hand, if the carbon content of the inner layer 2 exceeds 1.2% by mass, graphite is generated at the boundary between the outer layer 1 and the inner layer 2 and the bonding strength is reduced. The lower limit of the carbon content of the inner layer 2 is preferably 0.7% by mass, and more preferably 0.75% by mass. Further, the upper limit of the carbon content of the inner layer 2 is more preferably 1.0% by mass.

内層2が1.8〜7.5質量%のNiを含有すると、接合後に内層2に残留する内部応力を制御でき、内層2自体の強度を確保できることが分った。Ni含有量が1.8質量%未満の場合、内層2の残留応力が高くなりすぎるおそれがある。一方、Ni含有量が7.5質量%を超えると、内層2の強度が低くなりすぎ、外層1と内層2の接合境界の引張強度を600 MPa以上にできなくなる。内層2のNi含有量の下限は好ましくは1.9質量%であり、より好ましくは2質量%である。また、内層2のNi含有量の上限は好ましくは6質量%であり、より好ましくは5質量%である。   It was found that when the inner layer 2 contains 1.8 to 7.5% by mass of Ni, the internal stress remaining in the inner layer 2 after bonding can be controlled, and the strength of the inner layer 2 itself can be secured. If the Ni content is less than 1.8% by mass, the residual stress of the inner layer 2 may be too high. On the other hand, if the Ni content exceeds 7.5% by mass, the strength of the inner layer 2 becomes too low, and the tensile strength at the joint boundary between the outer layer 1 and the inner layer 2 cannot be made 600 MPa or more. The lower limit of the Ni content of the inner layer 2 is preferably 1.9% by mass, more preferably 2% by mass. Further, the upper limit of the Ni content of the inner layer 2 is preferably 6% by mass, and more preferably 5% by mass.

内層2は0.01〜3質量%のCr、0.01〜1.5質量%のMoを含有する。Crは靭性を損なうことなく強度を増大させる効果がある。Crが0.01質量%未満ではその効果が小さい。3質量%超のCrを含有すると、内層2の硬度が高くなりすぎて脆くなるおそれがある。Cr含有量の下限は好ましくは0.03質量%である。Cr含有量の上限はより好ましくは2質量%であり、最も好ましくは1.2質量%である。また、Moも靭性を損なうことなく強度を増大させる効果がある。Moが0.01質量%未満ではその効果が小さい。1.5質量%超のMoを含有すると、Cr同様、内層2の硬度が高くなりすぎて脆くなるおそれがある。Mo含有量の下限は好ましくは0.03質量%である。Mo含有量の上限はより好ましくは1質量%である。   The inner layer 2 contains 0.01 to 3% by mass of Cr and 0.01 to 1.5% by mass of Mo. Cr has the effect of increasing strength without impairing toughness. If Cr is less than 0.01% by mass, the effect is small. If the Cr content exceeds 3% by mass, the hardness of the inner layer 2 may become too high and become brittle. The lower limit of the Cr content is preferably 0.03% by mass. The upper limit of the Cr content is more preferably 2% by mass, and most preferably 1.2% by mass. Mo also has the effect of increasing strength without impairing toughness. If Mo is less than 0.01% by mass, the effect is small. If it contains more than 1.5% by mass of Mo, the hardness of the inner layer 2 may become too high and become brittle like Cr. The lower limit of the Mo content is preferably 0.03% by mass. The upper limit of the Mo content is more preferably 1% by mass.

上記の通り、0.65〜1.2質量%のC、1.8〜7.5質量%のNi、0.01〜3質量%のCr及び0.01〜1.5質量%のMoを含有する鉄系合金からなる内層2を用いることにより、超硬合金製外層と内層とを中間層を介在させずに直接接合でき、外径が300 mm以上で全長が500 mm以上と大きな外層1であっても内層2に対して十分な接合強度を有することができる。   As described above, by using the inner layer 2 made of an iron-based alloy containing 0.65 to 1.2 mass% C, 1.8 to 7.5 mass% Ni, 0.01 to 3 mass% Cr and 0.01 to 1.5 mass% Mo, The cemented carbide outer layer and inner layer can be directly joined without an intermediate layer, and the outer diameter is 300 mm or more and the overall length is 500 mm or more. Can have.

内層2はさらに、0.1〜2質量%のSi及び0.1〜0.9質量%のMnを含有するのが好ましい。Siは脱酸効果を有し、焼き入れ硬化性を高めるので、0.1質量%以上が好ましいが、2質量%を超えると靱性を劣化させるおそれがある。同様に、Mnも脱酸効果を有し、焼き入れ硬化性を高めるので、0.1質量%以上が好ましいが、0.9質量%を超えると靱性を劣化させるおそれがある。内層2は不可避的不純物としてV、Nb、Co、W、Cu等を含有しても良い。   The inner layer 2 preferably further contains 0.1 to 2% by mass of Si and 0.1 to 0.9% by mass of Mn. Since Si has a deoxidizing effect and enhances quenching curability, it is preferably 0.1% by mass or more, but if it exceeds 2% by mass, the toughness may be deteriorated. Similarly, Mn also has a deoxidizing effect and increases quenching curability, so 0.1% by mass or more is preferable, but if it exceeds 0.9% by mass, the toughness may be deteriorated. The inner layer 2 may contain V, Nb, Co, W, Cu, etc. as inevitable impurities.

圧延に長期間使用しても外層1と内層2が剥離しないように、外層1と内層2の境界部の引張強度は600 MPa以上であるのが好ましく、700 MPa以上がより好ましい。なお、外層1と内層2の境界部の引張強度は、外層1と内層2の境界部を含む試験片の引張試験により測定することができる。また、接合後に外層1と内層2が剥離するのを防ぐために、外層1と内層2の境界部の疲労強度(引圧疲労強度)は200 MPa以上であるのが好ましく、250 MPa以上がより好ましい。   The tensile strength at the boundary between the outer layer 1 and the inner layer 2 is preferably 600 MPa or more, and more preferably 700 MPa or more so that the outer layer 1 and the inner layer 2 do not peel even when used for a long time for rolling. The tensile strength at the boundary between the outer layer 1 and the inner layer 2 can be measured by a tensile test of a test piece including the boundary between the outer layer 1 and the inner layer 2. Further, in order to prevent the outer layer 1 and the inner layer 2 from peeling after bonding, the fatigue strength (attraction fatigue strength) at the boundary between the outer layer 1 and the inner layer 2 is preferably 200 MPa or more, more preferably 250 MPa or more. .

[2] 超硬合金複合ロールの製造方法
本発明の超硬合金製ロールは外層1と内層2とが接合した構造を有するので、外層1と内層2との界面が隙間なく接合していれば良い。このような接合に拡散接合法又は熱間静水圧(HIP)法を用いることができる。
[2] Manufacturing method of cemented carbide composite roll The cemented carbide roll of the present invention has a structure in which the outer layer 1 and the inner layer 2 are joined, so that the interface between the outer layer 1 and the inner layer 2 is joined without a gap. good. A diffusion bonding method or a hot isostatic pressure (HIP) method can be used for such bonding.

(1) 拡散接合法
図2に示すように、内層部材12を基台8上に載置する。内層部材12を囲むように基台8上に円筒状受台9を載置した後、円筒状外層部材11を円筒状受台9の上に載置する。次いで、外層部材11より熱膨張率が小さい円筒状拘束部材16を外層部材11を囲むように基台8上に載置する。
(1) Diffusion Bonding Method As shown in FIG. 2, the inner layer member 12 is placed on the base 8. After the cylindrical cradle 9 is placed on the base 8 so as to surround the inner layer member 12, the cylindrical outer layer member 11 is placed on the cylindrical cradle 9. Next, the cylindrical restraining member 16 having a smaller coefficient of thermal expansion than the outer layer member 11 is placed on the base 8 so as to surround the outer layer member 11.

このように配置した外層部材11、内層部材12及び拘束部材16を不活性雰囲気中で加熱し、外層部材11と内層部材12の拡散接合を行う。拡散接合温度は1000〜1320℃が好ましい。拡散接合温度が1000℃未満であると、外層部材11と内層部材12の間の面圧が不足して十分な接合強度が得られないことがあり、また拡散接合温度が1320℃を超えると、超硬合金製外層部材11が溶融するおそれがある。拡散接合温度はより好ましくは1100〜1300℃であり、最も好ましくは1200〜1260℃である。拡散接合温度に保持する時間は1〜120分間程度で良い。不活性雰囲気として、N2、Ar等の不活性ガス、H2等の還元性ガス、又は真空を用いることができる。 The outer layer member 11, the inner layer member 12, and the restraining member 16 arranged in this way are heated in an inert atmosphere, and diffusion bonding of the outer layer member 11 and the inner layer member 12 is performed. The diffusion bonding temperature is preferably 1000 to 1320 ° C. If the diffusion bonding temperature is less than 1000 ° C, the surface pressure between the outer layer member 11 and the inner layer member 12 may be insufficient and sufficient bonding strength may not be obtained, and if the diffusion bonding temperature exceeds 1320 ° C, The cemented carbide outer layer member 11 may melt. The diffusion bonding temperature is more preferably 1100 to 1300 ° C, and most preferably 1200 to 1260 ° C. The time for maintaining the diffusion bonding temperature may be about 1 to 120 minutes. As the inert atmosphere, an inert gas such as N 2 or Ar, a reducing gas such as H 2 , or a vacuum can be used.

室温から1000〜1320℃の拡散接合温度までの温度範囲において、熱膨張率は内層部材12>外層部材11>拘束部材16の関係を満たさなければならない。室温から1000〜1320℃の温度までの範囲における鉄系合金製内層部材12の熱膨張率は11〜15×10-6/℃程度であり、超硬合金製外層部材11の熱膨張率は6〜10×10-6/℃程度であり、拘束部材16の熱膨張率はこれらより十分に小さくする。このような熱膨張率条件を満たす材質は、熱膨張率が4〜9×10-6/℃程度の黒鉛又はセラミックスが好ましい。黒鉛又はセラミックスは、1000〜1320℃の拡散接合温度で高強度かつ高剛性であり、さらに超硬合金と接合しない。中でも、熱膨張率が6×10-6/℃以下で、1000℃における曲げ強さが30 MPa以上の等方性黒鉛が特に好ましい。 In the temperature range from room temperature to the diffusion bonding temperature of 1000 to 1320 ° C., the coefficient of thermal expansion must satisfy the relationship of inner layer member 12> outer layer member 11> restraining member 16. The thermal expansion coefficient of the iron-based alloy inner layer member 12 in the range from room temperature to a temperature of 1000 to 1320 ° C. is about 11 to 15 × 10 −6 / ° C., and the thermal expansion coefficient of the cemented carbide outer layer member 11 is 6 ˜10 × 10 −6 / ° C., and the coefficient of thermal expansion of the restraining member 16 is sufficiently smaller than these. The material satisfying such a thermal expansion coefficient is preferably graphite or ceramic having a thermal expansion coefficient of about 4 to 9 × 10 −6 / ° C. Graphite or ceramics has high strength and rigidity at a diffusion bonding temperature of 1000 to 1320 ° C., and does not bond with cemented carbide. Among them, isotropic graphite having a thermal expansion coefficient of 6 × 10 −6 / ° C. or less and a bending strength at 1000 ° C. of 30 MPa or more is particularly preferable.

このような熱膨張率の差を考慮して、加熱により最も熱膨張した内層部材12の外面が外層部材11の内面を十分に押圧するとともに、最も熱膨張しない拘束部材16の内面が外層部材11の外面を十分に押圧するように、外層部材11と拘束部材16との間隙G2を設定する必要がある[図3参照]。例えば、鋼製内層部材12(熱膨張率:13×10-6/℃)、超硬合金製外層部材11(熱膨張率:7.5×10-6/℃)、黒鉛製の拘束部材16(熱膨張率:5×10-6/℃)を用いて、超硬合金製外層部材11の内径が300mm、外径が350mm程度の大きさのロールを製造する場合、外層部材11と内層部材12との間隙G1は1.0〜2.0 mmであるのが好ましく、外層部材11と拘束部材16との間隙G2は1.3〜2.0 mmであるのが好ましい。 In consideration of such a difference in coefficient of thermal expansion, the outer surface of the inner layer member 12 that is most thermally expanded by heating sufficiently presses the inner surface of the outer layer member 11, and the inner surface of the restraining member 16 that is least thermally expanded is the outer layer member 11. the outer surface so as to sufficiently push the, it is necessary to set the gap G 2 between the outer member 11 and the restraining member 16 [see FIG. 3]. For example, a steel inner layer member 12 (thermal expansion coefficient: 13 × 10 −6 / ° C.), a cemented carbide outer layer member 11 (thermal expansion coefficient: 7.5 × 10 −6 / ° C.), a graphite constraining member 16 (heat In the case of manufacturing a roll having an inner diameter of the cemented carbide outer layer member 11 of 300 mm and an outer diameter of about 350 mm using an expansion coefficient of 5 × 10 −6 / ° C., the outer layer member 11 and the inner layer member 12 is preferably a gap G 1 is 1.0 to 2.0 mm, the gap G 2 between the outer member 11 and the restraining member 16 is preferably 1.3 to 2.0 mm.

上記の通り、外層部材11の外側に外層部材11より熱膨張率が小さい拘束部材16を配置し、外層部材11及び内層部材12の熱膨張を拘束部材16により拘束するので、最も熱膨張する内層部材12の外面は外層部材11の内面と拡散接合に必要な面圧(接合面圧)で密接する。これにより外径が300 mm以上でロール長が500 mm以上と大型でも、良好な接合信頼性の超硬合金複合ロールが得られる。   As described above, the restraint member 16 having a smaller coefficient of thermal expansion than the outer layer member 11 is disposed outside the outer layer member 11, and the thermal expansion of the outer layer member 11 and the inner layer member 12 is restrained by the restraint member 16, so that the inner layer that is most thermally expanded. The outer surface of the member 12 is in close contact with the inner surface of the outer layer member 11 with a surface pressure (bonding surface pressure) necessary for diffusion bonding. As a result, a cemented carbide composite roll having good bonding reliability can be obtained even when the outer diameter is 300 mm or more and the roll length is 500 mm or more.

図2に示すように、拘束部材16の全長L3は外層部材11の全長L1より長いのが好ましく、また拘束部材16の軸線方向両端面6a、6bは外層部材11の軸線方向両端面1a、1bより長さDだけ突出しているのが好ましい。これにより、外層部材11を軸線方向両端間で均一に拘束できるので、外層部材11の全長L1にわたって内層部材12に均一に拡散接合する。例えば、内層部材12の全長L2が600 mmで、外層部材11の全長L1が500 mmの場合、Dは10〜100 mmが好ましい。 As shown in FIG. 2, the total length L 3 is preferably longer than the total length L 1 of the outer member 11, also the axial end surfaces 1a of the axial end surfaces 6a, 6b is the outer layer member 11 of the restraining member 16 of the restraining member 16 , It preferably projects by a length D from 1b. As a result, the outer layer member 11 can be uniformly restrained between both ends in the axial direction, so that the outer layer member 11 is uniformly diffusion bonded to the inner layer member 12 over the entire length L 1 of the outer layer member 11. For example, the full length L 2 of the inner layer member 12 is 600 mm, if the overall length L 1 of the outer member 11 is 500 mm, D is preferably 10 to 100 mm.

拘束部材16は拡散接合温度で、外層部材11を十分に拘束しなければならないので、拘束部材16を外層部材11より厚くするのが好ましい。例えば、内層部材12の直径T2が320 mmで、外層部材11の厚さT1が27 mmの場合、拘束部材16の厚さT3は100〜150 mmが好ましい。 Since the restraining member 16 must sufficiently restrain the outer layer member 11 at the diffusion bonding temperature, the restraining member 16 is preferably thicker than the outer layer member 11. For example, a diameter T 2 of the inner layer member 12 is 320 mm, when the thickness T 1 of the outer member 11 is 27 mm, the thickness T 3 of the restraining member 16 is preferably 100 to 150 mm.

図4に示すように、拘束部材16は、複数(図示の例では6個)の比較的短尺なリング部材61〜66を軸線方向に同軸的に積み重ねることにより構成することができる。拘束部材16の熱膨張拘束力は径方向に作用するので、軸線方向に分離したリング部材61〜66を用いても、熱膨張拘束効果は同じである。勿論、各リング部材61〜66は黒鉛又はセラミックスからなるのが好ましい。500 mm以上と長尺な超硬合金複合ロールを製造する場合、製造の容易さの観点からリング部材61〜66を用いるのが好ましい。   As shown in FIG. 4, the restraining member 16 can be configured by stacking a plurality (six in the illustrated example) of relatively short ring members 61 to 66 coaxially in the axial direction. Since the thermal expansion restraining force of the restraining member 16 acts in the radial direction, even if the ring members 61 to 66 separated in the axial direction are used, the thermal expansion restraining effect is the same. Of course, each of the ring members 61 to 66 is preferably made of graphite or ceramics. When manufacturing a cemented carbide composite roll having a length of 500 mm or more, it is preferable to use the ring members 61 to 66 from the viewpoint of ease of manufacturing.

拡散接合温度で外層部材11と接しても反応が起こらないように、拘束部材16と外層部材11との間に反応防止材を介在させるのが好ましい。反応防止材としては外層部材11との反応性の低いアルミナ等のセラミックスが好ましい。反応防止材は粉末状でも織布状でも良い。粉末の場合、スラリーにして外層部材11の外面又は拘束部材16の内面に塗布しても良い。また織布状の場合、外層部材11の外周に巻き付けても良い。   It is preferable to interpose a reaction preventing material between the restraining member 16 and the outer layer member 11 so that the reaction does not occur even when contacting the outer layer member 11 at the diffusion bonding temperature. As the reaction preventing material, ceramics such as alumina having low reactivity with the outer layer member 11 is preferable. The reaction inhibitor may be in the form of powder or woven fabric. In the case of powder, the slurry may be applied to the outer surface of the outer layer member 11 or the inner surface of the restraining member 16. In the case of a woven fabric shape, the outer layer member 11 may be wound around the outer periphery.

外層部材11と内層部材12が拡散接合すると、外層部材11は外層1となり、内層部材12は内層2となる。その後拘束部材16を取り外し、外層1と内層2が一体化した超硬合金複合ロール10を得る。必要に応じて超硬合金複合ロール10の所望箇所を機械加工し、熱間薄板圧延に好適な寸法形状とする。   When the outer layer member 11 and the inner layer member 12 are diffusion bonded, the outer layer member 11 becomes the outer layer 1 and the inner layer member 12 becomes the inner layer 2. Thereafter, the restraining member 16 is removed to obtain a cemented carbide composite roll 10 in which the outer layer 1 and the inner layer 2 are integrated. If necessary, a desired portion of the cemented carbide composite roll 10 is machined to obtain a dimension and shape suitable for hot sheet rolling.

(2) 熱間静水圧(HIP)法
図5に示すように、円筒状HIP缶部20aに円筒状外層部材11を入れた後、円筒状外層部材11の内側に鉄系合金製内層部材12を配置し、外層部材11の端面を覆うドーナツ状HIP缶部20b,20bを円筒状HIP缶部20aに溶接し、さらにドーナツ状HIP缶部20b,20bに内層部材12をおおうカップ状HIP缶部20c,20cを溶接し、得られたHIP缶内を減圧する。その後、HIP缶をHIP装置に入れ、HIP処理を行う。HIP温度は1100〜1300℃が好ましく、HIP圧力は100〜140 MPaが好ましい。
(2) Hot isostatic pressure (HIP) method As shown in FIG. 5, after the cylindrical outer layer member 11 is placed in the cylindrical HIP can portion 20a, the inner layer member 12 made of an iron-based alloy is placed inside the cylindrical outer layer member 11. A cup-shaped HIP can portion that covers the end surface of the outer layer member 11 and welds the doughnut-shaped HIP can portions 20b, 20b to the cylindrical HIP can portion 20a, and further covers the inner layer member 12 on the donut-shaped HIP can portions 20b, 20b. Weld 20c and 20c and depressurize the resulting HIP can. Then, the HIP can is put into the HIP device and the HIP process is performed. The HIP temperature is preferably 1100 to 1300 ° C, and the HIP pressure is preferably 100 to 140 MPa.

HIPにより外層部材11と内層部材12は強固に接合し、外層部材11は外層1となり、内層部材12は内層2となる。冷却後、HIP缶20を機械加工により除去し、外層1と内層2が一体化した超硬合金複合ロール10を得る。この場合も、必要に応じて超硬合金複合ロール10の所望箇所を機械加工しても良い。   The outer layer member 11 and the inner layer member 12 are firmly joined by HIP, the outer layer member 11 becomes the outer layer 1, and the inner layer member 12 becomes the inner layer 2. After cooling, the HIP can 20 is removed by machining to obtain a cemented carbide composite roll 10 in which the outer layer 1 and the inner layer 2 are integrated. Also in this case, a desired portion of the cemented carbide composite roll 10 may be machined as necessary.

本発明の以下の実施例によりさらに詳細に説明するが、本発明はそれらに限定されるものではない。   The following examples of the present invention will be described in more detail, but the present invention is not limited thereto.

実施例1
表1に示す組成を有する超硬合金を用いて、外径20 mm及び厚さ20 mmの円柱状外層試験片31を作製した。また、表2に組成を有する鉄系合金を用いて、外径20 mm及び長さ20 mmの5種類の円柱状内層試験片32(内層1〜5)を作製した。外層試験片31及び内層試験片32を図6に示すように積み重ね、黒鉛製治具34に収めた後、真空中で治具34を上から加圧して、表3に示す条件で拡散接合を行い、接合試験片1〜5を作製した。
Example 1
Using a cemented carbide having the composition shown in Table 1, a cylindrical outer layer test piece 31 having an outer diameter of 20 mm and a thickness of 20 mm was produced. Also, five types of cylindrical inner layer test pieces 32 (inner layers 1 to 5) having an outer diameter of 20 mm and a length of 20 mm were prepared using an iron-based alloy having the composition shown in Table 2. After stacking the outer layer test piece 31 and the inner layer test piece 32 as shown in FIG. 6 and placing them in a graphite jig 34, the jig 34 is pressed from above in vacuum, and diffusion bonding is performed under the conditions shown in Table 3. It performed and produced the joining test pieces 1-5.

各接合試験片1〜5の接合境界を観察した結果、接合試験片1及び4では、内層試験片32と外層材試験片31の接合境界にη相や黒鉛の発生が抑えられていたため、接合強度が十分高く接合信頼性が高いものである。接合試験片3では、内層試験片32と外層試験片31の接合境界に黒鉛が発生していた。また接合試験片2及び接合試験片5では、内層試験片32と外層試験片31の接合境界にη相が認められた。従って、接合試験片2、3及び5の接合強度は低いことが想定される。   As a result of observing the bonding boundary between each of the bonding test pieces 1 to 5, in the bonding test pieces 1 and 4, since the generation of η phase and graphite was suppressed at the bonding boundary between the inner layer test piece 32 and the outer layer material test piece 31, The strength is sufficiently high and the bonding reliability is high. In the joint test piece 3, graphite was generated at the joint boundary between the inner layer test piece 32 and the outer layer test piece 31. Further, in the bonding test piece 2 and the bonding test piece 5, the η phase was observed at the bonding boundary between the inner layer test piece 32 and the outer layer test piece 31. Accordingly, it is assumed that the bonding strength of the bonding test pieces 2, 3 and 5 is low.

実施例2
表1に示す組成を有する直径25 mm×長さ75 mmの外層試験片31、及び表2に示す接合試験片1の組成を有する直径25 mm×長さ75 mmの鉄系合金製内層試験片32を作製した。外層試験片31及び内層試験片32を図6に示すように黒鉛製治具34に収めた後、真空中で治具34を上から加圧して、表4に示す条件で拡散接合を行い、接合試験片6を作製した。
Example 2
25 mm diameter x 75 mm long outer layer test piece 31 having the composition shown in Table 1, and 25 mm diameter x 75 mm long iron-based alloy inner layer test piece having the composition of joining test piece 1 shown in Table 2. 32 was produced. After placing the outer layer test piece 31 and the inner layer test piece 32 in a graphite jig 34 as shown in FIG. 6, pressurizing the jig 34 from above in vacuum, and performing diffusion bonding under the conditions shown in Table 4, A joining test piece 6 was prepared.

接合試験片6から図7に示す形状の引張試験片45を作製した。引張試験片45は外層試験片部41及び内層試験片部42からなり、直径は6.3 mmで、標点距離は19 mmであった。両試験片部の境界部43は標点間の中央に位置した。引張試験片45に対して、引張強度試験及び疲労強度(引圧)試験を行った。結果を表4に示す。本発明の組成範囲内の内層を有する引張試験片45(接合試験片6)の引張強度は600 MPa以上で、疲労強度は200 MPa以上であった。   A tensile test piece 45 having the shape shown in FIG. The tensile test piece 45 was composed of an outer layer test piece part 41 and an inner layer test piece part 42, and had a diameter of 6.3 mm and a gauge distance of 19 mm. The boundary part 43 of both test piece parts was located in the center between the gauge points. The tensile test piece 45 was subjected to a tensile strength test and a fatigue strength (pulling pressure) test. The results are shown in Table 4. The tensile test piece 45 (joint test piece 6) having an inner layer within the composition range of the present invention had a tensile strength of 600 MPa or more and a fatigue strength of 200 MPa or more.

実施例3
表5に示す組成を有する鉄系合金(熱膨張率:13×10-6/℃)を用いて、外径316 mm及び全長1000 mmのロール軸状の内層部材12を作製した。また、外径600 mm、内径359.7 mm及び全長1200 mmの黒鉛製中空円筒状拘束部材16(熱膨張率:5×10-6/℃)を作製した。
Example 3
Using an iron-based alloy (thermal expansion coefficient: 13 × 10 −6 / ° C.) having the composition shown in Table 5, a roll shaft-shaped inner layer member 12 having an outer diameter of 316 mm and a total length of 1000 mm was produced. Further, a graphite hollow cylindrical restraining member 16 (thermal expansion coefficient: 5 × 10 −6 / ° C.) having an outer diameter of 600 mm, an inner diameter of 359.7 mm, and a total length of 1200 mm was produced.

また、表1に示す組成を有する超硬合金(熱膨張率:7.5×10-6/℃)を用いて、外径359 mm、内径317.5 mm及び全長520 mmの中空円筒状外層部材11を作製した。図2に示すように基台8上に載置された内層部材12の外周に、外層部材11を配置し、また外層部材11の外周に拘束部材16を配置した。この状態で真空炉に入れ、1290℃の温度に60分間保持して拡散接合を行い、超硬合金複合ロール10を作製した。 Also, a hollow cylindrical outer layer member 11 having an outer diameter of 359 mm, an inner diameter of 317.5 mm, and a total length of 520 mm is manufactured using a cemented carbide (thermal expansion coefficient: 7.5 × 10 −6 / ° C.) having the composition shown in Table 1. did. As shown in FIG. 2, the outer layer member 11 is disposed on the outer periphery of the inner layer member 12 placed on the base 8, and the restraining member 16 is disposed on the outer periphery of the outer layer member 11. In this state, it was placed in a vacuum furnace and held at 1290 ° C. for 60 minutes for diffusion bonding to produce a cemented carbide composite roll 10.

超硬合金複合ロール10の外層1及び内層2の端部を目視検査し、接合面全域を浸透探傷検査した。その結果、接合面全域にわたって境界の欠陥は観察されなかった。また、外層1と内層2の剥離も認められなかった。   The ends of the outer layer 1 and the inner layer 2 of the cemented carbide composite roll 10 were visually inspected, and the entire bonding surface was inspected by penetrant flaw detection. As a result, no boundary defect was observed over the entire bonding surface. Further, no peeling between the outer layer 1 and the inner layer 2 was observed.

1:外層、 2:内層、 8:基台、 9:受台、 10:超硬合金複合ロール、
11:外層部材、 12:内層部材、 16:拘束部材、 20:HIP缶、 31:外層試験片、
32:内層試験片、 34:黒鉛製治具、 45:接合試験片、 46:引張試験片、
61〜66:拘束部材用リング部材、 L1:外層部材の長さ、 L2:内層部材の長さ、
L3:拘束部材の長さ、 D:外層部材の各端部から延びる拘束部材の長さ、 T1:外層部材の厚さ、
T2:内層部材の直径、 T3:拘束部材の厚さ、 G2:外層部材と拘束部材との間隙
1: outer layer, 2: inner layer, 8: base, 9: cradle, 10: cemented carbide composite roll,
11: Outer layer member, 12: Inner layer member, 16: Restraint member, 20: HIP can, 31: Outer layer test piece,
32: Inner layer specimen, 34: Graphite jig, 45: Bond specimen, 46: Tensile specimen,
61-66: Ring member for restraining member, L 1 : Length of outer layer member, L 2 : Length of inner layer member,
L 3 : Length of restraining member, D: Length of restraining member extending from each end of outer layer member, T 1 : Thickness of outer layer member,
T 2 : Diameter of inner layer member, T 3 : Thickness of restraint member, G 2 : Gap between outer layer member and restraint member

Claims (9)

70〜88質量%のWC粒子を含有する超硬合金製外層とロール軸を構成する鉄系合金製内層とを拡散接合した超硬合金製圧延用複合ロールにおいて、前記内層が0.65〜1.2質量%のC、1.8〜7.5質量%のNi、0.01〜3質量%のCr、0.01〜1.5質量%のMo、0.1〜2.0質量%のSi及び0.1〜0.9質量%のMnからなる鉄系合金からなり、前記外層と前記内層の境界部の引張強度が600 MPa以上であることを特徴とする超硬合金複合ロール。 In a composite roll for rolling made of cemented carbide in which a cemented carbide outer layer containing 70 to 88% by mass of WC particles and an iron-based alloy inner layer constituting a roll axis are diffusion-bonded, the inner layer is 0.65 to 1.2% by mass From an iron-based alloy consisting of C, 1.8-7.5 mass% Ni, 0.01-3 mass% Cr , 0.01-1.5 mass% Mo , 0.1-2.0 mass% Si, and 0.1-0.9 mass% Mn Do Ri, cemented carbide composite roll of tensile strength of the boundary portion of the inner layer and the outer layer, characterized in der Rukoto least 600 MPa. 請求項1に記載の超硬合金複合ロールにおいて、前記外層と前記内層の境界部の疲労強度が200 MPa以上であることを特徴とする超硬合金複合ロール。 2. The cemented carbide composite roll according to claim 1 , wherein fatigue strength at a boundary portion between the outer layer and the inner layer is 200 MPa or more. 70〜88質量%のWC粒子を含有する超硬合金からなる円筒状外層部材と鉄系合金からなる内層部材とが拡散接合した超硬合金複合ロールを製造する方法において、0.65〜1.2質量%のC、1.8〜7.5質量%のNi、0.01〜3質量%のCr、0.01〜1.5質量%のMo、0.1〜2.0質量%のSi及び0.1〜0.9質量%のMnからなる内層部材の外面に前記外層部材の内面を、不活性雰囲気中、1000〜1320℃の拡散接合温度で拡散接合することを特徴とする方法。 In a method of manufacturing a cemented carbide composite roll in which a cylindrical outer layer member made of a cemented carbide containing 70 to 88% by mass of WC particles and an inner layer member made of an iron-based alloy are diffusion bonded, 0.65 to 1.2% by mass of C, 1.8-7.5 mass% of Ni, 0.01 to 3 wt% of Cr, 0 .01~1.5 mass% of Mo, the outer surface of the inner layer consisting of 0.1-2.0 wt% of Si and 0.1-0.9 mass% of Mn A method comprising diffusion bonding the inner surface of the outer layer member at a diffusion bonding temperature of 1000 to 1320 ° C. in an inert atmosphere . 請求項3に記載の超硬合金複合ロールの製造方法において、前記内層部材を包囲するように前記円筒状外層部材を配置した後、前記外層部材を包囲するように前記外層部材より熱膨張率が小さい円筒状の拘束部材を配置し、加熱により前記内層部材と前記外層部材を拡散接合する工程を有し、
前記工程では、熱膨張率が最も大きい前記内層部材の外面が前記外層部材の内面を押圧するとともに、熱膨張率が最も小さい前記拘束部材の内面が前記外層部材の外面を押圧するように、前記内層部材、前記外層部材及び前記拘束部材のそれぞれの間隙を設定することを特徴とする方法。
4. The method for manufacturing a cemented carbide composite roll according to claim 3 , wherein after the cylindrical outer layer member is disposed so as to surround the inner layer member, the outer layer member has a coefficient of thermal expansion so as to surround the outer layer member. A step of disposing a small cylindrical restraint member and diffusion bonding the inner layer member and the outer layer member by heating;
In the step, the outer surface of the inner layer member having the largest coefficient of thermal expansion presses the inner surface of the outer layer member, and the inner surface of the restraining member having the smallest coefficient of thermal expansion presses the outer surface of the outer layer member. A method of setting a gap between each of an inner layer member, the outer layer member, and the restraining member.
請求項4に記載の超硬合金複合ロールの製造方法において、前記拘束部材の軸方向両端部が前記外層部材の軸方向両端面より突出していることを特徴とする方法。 5. The method for producing a cemented carbide composite roll according to claim 4 , wherein both end portions in the axial direction of the restraining member protrude from both end surfaces in the axial direction of the outer layer member. 請求項4又は5に記載の超硬合金複合ロールの製造方法において、前記拘束部材が前記外層部材より厚いことを特徴とする方法。 The method of manufacturing a cemented carbide composite roll according to claim 4 or 5, wherein said restraining member is equal to or thicker than the outer layer member. 請求項46のいずれかに記載の超硬合金複合ロールの製造方法において、前記拘束部材が黒鉛又はセラミックスからなることを特徴とする方法。 The method of manufacturing a cemented carbide composite roll according to any one of claims 4-6, wherein said restraining member is made of graphite or ceramics. 請求項47のいずれかに記載の超硬合金複合ロールの製造方法において、前記拘束部材を複数のリング部材を同軸的に積み重ねることにより形成することを特徴とする方法。 The method of manufacturing a cemented carbide composite roll according to any one of claims 4-7, wherein the forming by stacking said restraining member a plurality of ring members coaxially. 請求項48のいずれかに記載の超硬合金複合ロールの製造方法において、前記拘束部材と前記外層部材との間に反応防止材を介在させることを特徴とする方法。 The method of manufacturing a cemented carbide composite roll according to any one of claims 4-8, wherein the interposing a reaction preventing material between said outer member and said restraining member.
JP2015068058A 2015-03-30 2015-03-30 Cemented carbide composite roll and manufacturing method thereof Active JP6587204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015068058A JP6587204B2 (en) 2015-03-30 2015-03-30 Cemented carbide composite roll and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015068058A JP6587204B2 (en) 2015-03-30 2015-03-30 Cemented carbide composite roll and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016188393A JP2016188393A (en) 2016-11-04
JP6587204B2 true JP6587204B2 (en) 2019-10-09

Family

ID=57239527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015068058A Active JP6587204B2 (en) 2015-03-30 2015-03-30 Cemented carbide composite roll and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6587204B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0976346A (en) * 1995-09-13 1997-03-25 Idemitsu Petrochem Co Ltd Circular cross section tightly connected stratified object and production thereof
JP3690617B2 (en) * 1996-06-19 2005-08-31 日立金属株式会社 Cemented carbide composite roll
JP3755758B2 (en) * 2002-03-18 2006-03-15 日立金属株式会社 Composite roll for rolling
JP4392652B2 (en) * 2003-12-09 2010-01-06 日立金属株式会社 Composite roll for rolling made of cemented carbide and method for producing the same
KR101231178B1 (en) * 2011-07-29 2013-02-07 (주)하이엠시 Method of Manufacturing A Composite Roll with Hardmetal Cemented Carbides for Rolling
JP6489405B2 (en) * 2014-09-30 2019-03-27 日立金属株式会社 Cemented carbide composite sleeve roll

Also Published As

Publication number Publication date
JP2016188393A (en) 2016-11-04

Similar Documents

Publication Publication Date Title
CN111386158B (en) Composite cemented carbide roll and method for manufacturing composite cemented carbide roll
CN101878086A (en) Method for manufacturing a coiler drum and a coiler drum
JPWO2012132822A1 (en) Tungsten carbide-based cemented carbide joined body and manufacturing method thereof
JP6354504B2 (en) Cemented carbide composite roll and manufacturing method thereof
JP6587204B2 (en) Cemented carbide composite roll and manufacturing method thereof
JP2004243380A (en) Composite roll for rolling made of cemented carbide
JP6421758B2 (en) Cemented carbide composite roll and manufacturing method thereof
JPH073306A (en) High-strength sintered hard alloy composite material and production thereof
JP6489405B2 (en) Cemented carbide composite sleeve roll
US20150258627A1 (en) Layer composite
JP2005169419A (en) Composite rolling roll made of cemented carbide
JP2006289430A (en) Sintered hard alloy-made combined roll for rolling
JPH10244363A (en) High melting point metal brazed cylindrical member and manufacture thereof
JP2004167503A (en) Composite rolling roll made of cemented carbide
JP6281385B2 (en) Method for manufacturing outer layer made of cemented carbide for rolling roll
JP2003311304A (en) Composite rolling roll made of sintered hard alloy
JP6391042B2 (en) Manufacturing method of composite roll
JP2005074450A (en) Titanium-clad steel plate, and its production method
CN111356542B (en) Composite hard alloy roller
JP2003275809A (en) Composite roll for rolling
JP2007000892A (en) Build-up welding material for hot-forging die and hot-forging die using the welding material
JP2004167501A (en) Composite roll made of cemented carbide
JP2004244684A (en) Method for manufacturing composite rolling mill roll made of cemented carbide, and the roll
KR20060015048A (en) Cemented carbide composite rolls for strip rolling
JP2015120170A (en) Stainless steel joining method at low cost and with high joining strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20190208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190901

R150 Certificate of patent or registration of utility model

Ref document number: 6587204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350