JPH10244363A - High melting point metal brazed cylindrical member and manufacture thereof - Google Patents

High melting point metal brazed cylindrical member and manufacture thereof

Info

Publication number
JPH10244363A
JPH10244363A JP4771897A JP4771897A JPH10244363A JP H10244363 A JPH10244363 A JP H10244363A JP 4771897 A JP4771897 A JP 4771897A JP 4771897 A JP4771897 A JP 4771897A JP H10244363 A JPH10244363 A JP H10244363A
Authority
JP
Japan
Prior art keywords
brazing
cylindrical member
melting point
metal
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4771897A
Other languages
Japanese (ja)
Inventor
重彦 ▲高▼岡
Shigehiko Takaoka
Hidetoshi Maezato
英俊 前里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP4771897A priority Critical patent/JPH10244363A/en
Publication of JPH10244363A publication Critical patent/JPH10244363A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a high m.p. metal-made cylindrical member for electronic parts having excellent joining strength and high dimensional precision by joining the end parts of the cylindrical plate material composed of W (alloy) and/or Mo (alloy) through a brazing filler metal adding a prescribed quantity of boron to ruthenium.molybdenum eutectic alloy. SOLUTION: The boron is added at 1.4-3.5wt.% into the ruthenium.molybdenum eutectic alloy brazing filler metal to make the brazing filler metal. The ruthenium.molybdenum eutectic alloy is desirable to be 43wt.% Ru-57wt.% Mo. At the time of adding the boron into the ruthenium.molybdenum eutectic alloy brazing filler metal, the m.p. of the brazing filler metal becomes 1420-1900 deg.C, and the m.p. becomes the desired temp. by adjusting the adding quantity of the boron. Since the brazing temp. is lowered, at the time of brazing, expensive heating furnace operation is unnecessitated. Since it is little fear that the base material becomes brittle and the strength enabling pipe drawing is provided, the cylindrical member having high dimensional precision is obtd. by using a die having suitable size and a core metal.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は,電子部品用高融点
金属製パイプ及びリング等に用いられる高融点金属円筒
形状部材とその製造方法に関し,詳しくは,平板状の高
融点金属板材からろう接により円筒形状に形成された高
融点金属ろう接円筒形状部材とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high melting point metal cylindrical member used for a high melting point metal pipe and ring for electronic parts and a method of manufacturing the same. TECHNICAL FIELD The present invention relates to a high melting point metal brazing cylindrical member formed into a cylindrical shape by a method and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年電子部品の分野において,高融点金
属製パイプ及びリング等の円筒形状部材が要求されてい
る。例えば,含浸型カソード部品用モリブデン(Mo)
パイプ,電力用サイリスタ用タングステン(W)および
Mo電極リング等の円筒形状部材が使用されている。一
般に含浸型カソード部品用Moパイプは,棒材をガンド
リル等により貫通穴を開け素管とし,管引き,切断加工
等により必要サイズのパイプを製造している。
2. Description of the Related Art In recent years, in the field of electronic parts, cylindrical members such as pipes and rings made of high melting point metal have been required. For example, molybdenum (Mo) for impregnated cathode components
Cylindrical members such as pipes, tungsten (W) for power thyristors, and Mo electrode rings are used. Generally, a Mo pipe for an impregnated type cathode component is formed into a raw pipe by forming a through hole in a rod material by a gun drill or the like, and a pipe of a required size is manufactured by drawing, cutting, or the like.

【0003】さらに,電力用サイリスタ用W及びMo電
極リングでは,圧延あるいは鍛造等により加工した板材
からリング形状を切り出す,または粉末冶金法によりリ
ング状にプレスし焼結する等により製造される。
[0003] Further, the W and Mo electrode rings for power thyristors are manufactured by cutting a ring shape from a plate processed by rolling or forging, or pressing and sintering into a ring shape by powder metallurgy.

【0004】[0004]

【発明が解決しようとする課題】しかしながら,Wおよ
びMo等の高融点金属は,いずれも難加工性の金属であ
り,例えば,Wにおいては,棒材をガンドリル等により
貫通穴をあけ素管とすることが困難である。さらに,上
記棒材および板材からの加工では,製品の部分よりも加
工により取り除いた部分の方が多くなる場合も多い。す
なわち歩留が極度に悪く,資源やエネルギーの使用量も
大きくなり,コスト高の要因となっている。また,板材
から切り出す方法では,板材の厚みが長さの限界とな
り,長尺の製品の製造は困難である。
However, refractory metals such as W and Mo are both difficult-to-work metals. For example, in the case of W, a rod is formed with a through-hole by a gun drill or the like to form a pipe. Is difficult to do. Further, in the processing from the bar and the plate, the part removed by the processing is often larger than the part of the product. That is, the yield is extremely poor, the amount of resources and energy used is large, and this is a factor of high cost. Further, in the method of cutting from a plate material, the thickness of the plate material is limited to the length, and it is difficult to manufacture a long product.

【0005】一方,焼結品では,加工量が大幅に減少す
る利点をもつが,強度面で不安がある。したがって,曲
げ加工を施した板の両端部を接合することにより,円筒
形状部材を形成する方法が強く要求されている。そのた
めには,W,Moの接合方法が問題となる。用途,サイ
ズ,精度によっては,接合加工後の状態で使用可能な場
合もあるが,電子部品などの分野では要求精度が高いた
め管引き等の後加工を施す場合がほとんどである。例え
ば,外径1.5〜2.0mm,肉厚0.1mmのMoパ
イプの場合,長さについては,±0.02mm,肉厚に
ついては,±0.05mmの精度がそれぞれ要求されて
いる。その場合に管引き等の後加工に耐えられる接合強
度を持つ必要がある。
[0005] On the other hand, sintered products have the advantage of greatly reducing the amount of processing, but have concerns about strength. Therefore, there is a strong demand for a method of forming a cylindrical member by joining both ends of a bent plate. For that purpose, the method of joining W and Mo becomes a problem. Depending on the application, size, and accuracy, it may be usable after joining, but in the field of electronic components and the like, the required accuracy is high, and in most cases, post-processing such as pipe drawing is performed. For example, in the case of a Mo pipe having an outer diameter of 1.5 to 2.0 mm and a thickness of 0.1 mm, an accuracy of ± 0.02 mm for the length and an accuracy of ± 0.05 mm for the thickness are required. . In that case, it is necessary to have a bonding strength that can withstand post-processing such as pipe drawing.

【0006】また,W,Mo等の高融点金属に適用が考
えられる接合方法としては,アーク,ティグ溶接(TI
G),レーザー,電子ビーム等を用いた融接接合,ろう
接接合,拡散接合,リベット止めおよびボルト止め等の
機械接合などがある。
[0006] As a joining method that can be applied to high melting point metals such as W and Mo, arc, TIG welding (TI
G), fusion welding using a laser, an electron beam, or the like, brazing welding, diffusion bonding, mechanical joining such as riveting and bolting, and the like.

【0007】ここで,融接は母材の溶接しようとする部
位を加熱し,母材のみか,又は母材と溶加材とを融合さ
せて溶融金属を作り,これを凝固させ接合する方法で,
鉄系金属を中心に広く構造体の製作に使用されている。
しかし,融接法では,母材を溶解する必要があるため,
母材の融点以上の温度に加熱することが必須である。ま
た,母材の溶解,凝固を伴うため組織変化,すなわち再
結晶およびその粗大化が避けえないため残留応力および
組織変化により融接部近傍の脆化,強度低下が生じる。
そのため,特に溶解,凝固にともなう結晶粒粗大化によ
る脆化が顕著なW,Moなどの難溶接性金属に対して適
用が困難である。
Here, fusion welding involves heating a portion of the base material to be welded, fusing the base material alone or the base material and the filler material to produce a molten metal, and solidifying and joining the molten metal. so,
Widely used in the manufacture of structures, mainly iron-based metals.
However, in the fusion welding method, it is necessary to dissolve the base material,
It is essential to heat to a temperature higher than the melting point of the base material. In addition, the dissolution and solidification of the base material are accompanied by a structural change, that is, recrystallization and coarsening thereof are inevitable, so that the residual stress and the structural change cause embrittlement near the welded portion and a decrease in strength.
Therefore, it is particularly difficult to apply to hardly weldable metals such as W and Mo which are remarkably embrittled by coarsening of crystal grains accompanying melting and solidification.

【0008】一方,W同士,Mo同士の拡散接合では,
再結晶温度以上において初めて接合可能となるため結晶
粒の粗大化による脆化が生じる。そこで接合温度をさげ
るため,Ni箔等のインサート材を使用することも検討
されている。その場合,使用温度によっては金属間化合
物を生成し脆化が生じる。たとえば,Ni/Wでは,約
1000℃でNi−W金属問化合物を,Ni/Moでは
約800℃でNi−Mo金属問化合物を生成する。
On the other hand, in diffusion bonding between W and Mo,
At a temperature higher than the recrystallization temperature, bonding becomes possible for the first time, so that embrittlement occurs due to coarsening of crystal grains. Therefore, use of an insert material such as Ni foil has been studied to reduce the joining temperature. In that case, an intermetallic compound is generated depending on the use temperature, and embrittlement occurs. For example, Ni / W generates a Ni-W metal intermetallic compound at about 1000 ° C, and Ni / Mo generates a Ni-Mo metal intermetallic compound at about 800 ° C.

【0009】また,リベット又はボルトによる機械的締
結は,古くから適用されており強度的にも安定している
が,小型部品には適用が難しく,また接合面の密着性に
問題がある。
[0009] Although mechanical fastening with rivets or bolts has been used for a long time and is stable in strength, it is difficult to apply it to small parts and there is a problem in the adhesion of the joining surfaces.

【0010】さらに,ろう接は母材を溶融することな
く,母材よりも低い融点をもつ金属の溶加材(ろう材)
を溶融させ,毛細管現象を利用し接合面の隙間に行き渡
らせて接合を行う方法である。そのため,溶解,凝固に
ともなう結晶粒粗大化や金属間化合物の生成による脆化
が生じないほか,施工温度が低いため熱応力を抑えるこ
とができるとともに,母材の組織変化がない等の利点が
ある。さらに,高融点金属のように,母材溶解に対して
高エネルギーが必要な場合,あるいは凝固時に割れが生
じやすい材料に適している。
[0010] Further, the brazing is a metal filler metal (brazing material) having a lower melting point than the base material without melting the base material.
Is melted, and the joint is spread by using the capillary phenomenon to spread over the gap between the joint surfaces. Therefore, there are advantages such as crystal grain coarsening due to melting and solidification and embrittlement due to formation of intermetallic compounds do not occur, and thermal stress can be suppressed due to low construction temperature, and there is no structural change in the base metal. is there. Further, it is suitable for a material such as a refractory metal that requires high energy for melting a base material or a material that is liable to crack during solidification.

【0011】例えば,WおよびMo用ろう材としては,
低温域(800℃以下)では銀ろう,高温域ではRu−
Mo共晶合金ろう材が用いられている。これらのろう材
の内で,銀ろうでは,ろう接温度が低いため当然高温で
の使用は不可能であり,熱間温度にて行われる管引き加
工が不可能である。また,融点以下の使用においても軟
化温度がさらに低いため,強度低下の不安も大きい。
For example, as a brazing material for W and Mo,
Silver brazing at low temperature (800 ° C or less), Ru- at high temperature.
Mo eutectic alloy brazing material is used. Of these brazing materials, silver brazing cannot be used at high temperatures because of its low brazing temperature, and it is impossible to perform pipe drawing at a hot temperature. In addition, the use of a material having a melting point or lower has a further lowering of the softening temperature, so that there is a great concern that the strength is reduced.

【0012】一方,Ru−Mo共晶合金ろう材において
は,高温での強度低下の不安が少ないが,ろう接温度が
2000℃と高いため,WおよびMo母材の脆化が問題
となり,ろう接後の管引き加工が不可能等という実用上
の大きな問題が有るため,できるだけろう接部材の使用
に問題のない範囲でろう接温度が低く,接合強度の高い
ろう材が望ましい。
On the other hand, in the case of the Ru—Mo eutectic alloy brazing material, there is little concern about a decrease in strength at high temperatures, but since the brazing temperature is as high as 2000 ° C., embrittlement of the W and Mo base materials becomes a problem. Since there is a serious problem in practical use, such as the inability to perform pipe drawing after welding, a brazing material having a low brazing temperature and a high joining strength is desirable as long as there is no problem in using brazing members.

【0013】そこで,本発明の技術的課題は,実用上非
常に施工が簡便となると共に,母材の脆化の恐れの少な
く,接合強度に優れ寸法精度の高い電子部品用の高融点
金属製ろう接円筒形状部材とその製造方法とを提供する
ことにある。
Therefore, the technical problem of the present invention is to make the construction extremely simple in practical use, to reduce the risk of embrittlement of the base material, to provide high bonding strength, and to achieve high dimensional accuracy. An object of the present invention is to provide a brazed cylindrical member and a method for manufacturing the same.

【0014】[0014]

【課題を解決するための手段】WおよびMo高温用ろう
材としては,例えば,W,Moに対し優れた濡れ性を示
すRu−Mo共晶合金ろう材が知られているが,このろ
う材は融点が1955℃と高温であり,W,Mo母材の
脆化による強度低下や施工上の問題も多い。
As a high-temperature brazing material for W and Mo, for example, a Ru-Mo eutectic alloy brazing material having excellent wettability to W and Mo is known. Has a high melting point of 1955 ° C., and there are many problems in strength reduction and construction due to embrittlement of the W and Mo base materials.

【0015】本発明者らは,このRu−Mo共晶合金ろ
う材に,硼素(B)を添加することにより,濡れ性を損
なうことなく融点を調整できることを実験的に見い出
し,本発明をなすに至ったものである。
The present inventors have experimentally found that by adding boron (B) to the Ru-Mo eutectic alloy brazing material, the melting point can be adjusted without impairing the wettability, and the present invention is made. It has been reached.

【0016】即ち,本発明によれば,W,Moおよびそ
れぞれの合金の内の少なくとも1種からなる円筒状の板
材であって,平板に曲げ加工を施した少なくとも一つの
素材の端部同士をろう材を介して接合してなることを特
徴とする高融点金属ろう接円筒形状部材が得られる。
That is, according to the present invention, the ends of at least one material obtained by bending a flat plate are formed of at least one of W, Mo, and respective alloys. A refractory metal brazing cylindrical member characterized by being joined via a brazing material is obtained.

【0017】また,本発明によれば,前記高融点金属ろ
う接円筒形状部材において,前記ろう材は,ルテニウム
・モリブデン(Ru−Mo)共晶合金に硼素(B)を
1.4重量%から3.5重量%添加したものから実質的
になることを特徴とする高融点金属ろう接円筒形状部材
が得られる。
According to the present invention, in the high melting point metal brazing cylindrical member, the brazing material may contain ruthenium-molybdenum (Ru-Mo) eutectic alloy containing boron (B) in an amount of 1.4% by weight. A refractory metal brazed cylindrical member substantially obtained by adding 3.5% by weight is obtained.

【0018】また,本発明によれば,W,Moおよびそ
れぞれの合金の内の少なくとも1種からなる板材に曲げ
加工を施し,少なくとも一つの前記板材の端部同士をろ
う材を介してろう接後,管引き加工を施すことを特徴と
する高融点金属ろう接円筒形状部材の製造方法が得られ
る。
Further, according to the present invention, a plate made of at least one of W, Mo and each of the alloys is subjected to a bending process, and the ends of at least one of the plates are brazed through a brazing material. Thereafter, a method for producing a refractory metal brazed cylindrical member characterized by performing pipe drawing is obtained.

【0019】さらに,本発明によれば,W,Moおよび
それぞれの合金の内の少なくとも1種からなる板材に,
曲げ加工を施し,少なくとも一つの前記板材の端部同士
をろう材を介してろう接後,機械加工を施すことを特徴
とする高融点金属ろう接円筒形状部材の製造方法が得ら
れる。
Further, according to the present invention, a plate made of at least one of W, Mo and respective alloys is provided.
A method for producing a refractory metal brazed cylindrical member is characterized by performing bending, brazing the ends of at least one of the plate members via a brazing material, and then performing machining.

【0020】[0020]

【発明の実施の形態】以下,本発明の実施の形態につい
て説明する。
Embodiments of the present invention will be described below.

【0021】図1乃至図3は,本発明の実施の形態によ
る高融点金属ろう接円筒形状部材の種々の例を示す図で
ある。
FIGS. 1 to 3 show various examples of a high melting point metal brazing cylindrical member according to an embodiment of the present invention.

【0022】図1の例による高融点金属ろう接円筒形状
部材10は,W,Mo,及びそれぞれの合金の内の少な
くとも1種の高融点金属からなる板材1を円状になるよ
うに曲げ加工を施し,直線部端面3a,3b同士をRu
−Moからなるろう材2を介して突き合わせて接合した
ものである。さらに,管引き等の後加工や研磨等の機械
加工を施しても良い。
The refractory metal brazing cylindrical member 10 according to the example of FIG. 1 is formed by bending a plate material 1 made of W, Mo, and at least one of the alloys thereof into a circular shape. And the end faces 3a, 3b of the straight portions are Ru.
-Butted and joined via the brazing material 2 made of -Mo. Further, post-processing such as pipe drawing or mechanical processing such as polishing may be performed.

【0023】図2の例による高融点金属ろう接円筒形状
部材11は,W,Mo,及びそれぞれの合金の内の少な
くとも1種の高融点金属からなる2枚の板材1,1´を
半円状に曲げ加工を施し,夫々の板材1,1´の直線部
端面3a,3b及び3b´,3a´を夫々Ru−Moか
らなるろう材2,2´を介して突き合わせて接合したも
のである。この例による高融点金属ろう接円筒形状部材
は,図1の例と同様に,管引き等の後加工や研磨等の機
械加工を施しても良い。
The refractory metal brazing cylindrical member 11 according to the example of FIG. 2 is a semicircle made of two plates 1, 1 'made of W, Mo and at least one of the respective alloys. The end portions 3a, 3b and 3b ', 3a' of the straight portions 3a, 3b of the respective plate members 1, 1 'are butted and joined via brazing materials 2, 2' made of Ru-Mo, respectively. . The refractory metal brazed cylindrical member according to this example may be subjected to post-processing such as pipe drawing or mechanical processing such as polishing, as in the example of FIG.

【0024】図3の例による高融点金属ろう接円筒形状
部材12は,W,Mo,及びそれぞれの合金の内の少な
くとも1種の高融点金属からなる板材1を円状になるよ
うに曲げ加工を施し,両端部を重ね合わせて,Ru−M
oからろう材2を介して接合したものである。さらに,
図1及び図2の例と同様に,管引き等の後加工や研磨等
の機械加工を施しても良い。
The refractory metal brazing cylindrical member 12 according to the example of FIG. 3 is formed by bending a plate material 1 made of at least one kind of refractory metal of W, Mo, and respective alloys into a circular shape. Is applied, and both ends are overlapped, and Ru-M
o, and joined via a brazing material 2. further,
Similar to the examples of FIGS. 1 and 2, post-processing such as pipe drawing or mechanical processing such as polishing may be performed.

【0025】図4は図1乃至図3の高融点金属ろう接円
筒形状部材の作製に用いるろう材の特性を示す図であ
る。図4に示すように,Ru,Moろう材は,硼素
(B)の添加量を増大させることによって,融点を低下
させることができる。
FIG. 4 is a view showing the characteristics of the brazing material used for producing the cylindrical member having a high melting point metal brazing shown in FIGS. As shown in FIG. 4, the melting point of the Ru and Mo brazing materials can be lowered by increasing the amount of boron (B) added.

【0026】ベースとなるRu,Moろう材の組成範囲
はRu量で33.5から49.5重量%が使用できる。
ここで,Ru−Moろう材は,この範囲においてRu,
Mo共晶組織を有し,さらには共晶点である43重量%
Ru−57重量%Moが望ましい。
The composition range of the base Ru and Mo brazing filler metal can be 33.5 to 49.5% by weight of Ru.
Here, the Ru-Mo brazing material is Ru, in this range.
It has a Mo eutectic structure and has a eutectic point of 43% by weight.
Ru-57% by weight Mo is desirable.

【0027】さらに,Ru,Mo共晶合金ろう材に硼素
(B)をろう材の融点が1420℃から1900℃の温
度範囲において,希望温度となる量添加することにより
ろう接温度を調整可能となる。
Further, it is possible to adjust the brazing temperature by adding boron (B) to the Ru, Mo eutectic alloy brazing material in a desired temperature within a temperature range of 1420 ° C. to 1900 ° C. Become.

【0028】例えば,Bの添加量が3.5重量%で融点
が約1420℃,2.5重量%で融点が約1650℃,
1.4重量%で融点が約1900℃と融点を選択でき
る。
For example, the addition amount of B is 3.5% by weight and the melting point is about 1420 ° C., 2.5% by weight and the melting point is about 1650 ° C.
A melting point of about 1900 ° C. at 1.4% by weight can be selected.

【0029】ろう接温度は融点より約30℃から50℃
高く設定すればよいが,ワークサイズや加熱方法により
変更してもよい。
The brazing temperature is about 30 to 50 ° C. from the melting point.
It may be set higher, but may be changed depending on the work size or the heating method.

【0030】ろう材は有機溶剤によりペースト状にして
塗布する方法が簡便であるが,プレスあるいは押出し法
により薄板あるいは棒状に成形してもよい。成形時必要
に応じて,パラフィン等のバインダーを混合してもよ
い。バインダーは通常のW,Moあるいは超硬合金の成
形に用いられるものでよく,脱バインダー条件なども同
様である。
The method of applying the brazing material in the form of a paste with an organic solvent is simple, but the brazing material may be formed into a thin plate or a rod by pressing or extrusion. If necessary, a binder such as paraffin may be mixed at the time of molding. The binder may be used for forming ordinary W, Mo or cemented carbide, and the same applies to the conditions for debinding.

【0031】上記のろう材を用いて,曲げ加工を施した
素材の突き合わせ部,あるいは重ね合わせ部を接合する
ことにより,接合強度の優れた円筒形状部材が製作でき
る。曲げ形状は,熱間曲げ,プレスあるいは成形ロール
などにより,樋状,C型形状などに成形すればよい。用
途,サイズ,精度によっては,接合加工後の状態で使用
可能であるが管引き等の後加工を施すしてもよい。上記
のろう材においては融点を選択できるため,ろう接温度
を低く抑えることができ,かつ,ろう接時の加熱時間が
短いため,母材の再結晶による脆化を軽減することがで
き,後加工に耐えられる接合強度を持つ。そのため,管
引き等の後加工が可能となる。
By joining the butted or overlapped portions of the bent material using the above brazing material, a cylindrical member having excellent joining strength can be manufactured. The bent shape may be formed into a gutter shape, a C-shaped shape, or the like by hot bending, pressing, or a forming roll. Depending on the application, size, and accuracy, it can be used after joining, but post-processing such as pipe drawing may be performed. In the above brazing materials, the melting point can be selected, so that the brazing temperature can be kept low, and because the heating time during brazing is short, embrittlement due to recrystallization of the base material can be reduced. Has bonding strength that can withstand processing. Therefore, post-processing such as pipe drawing becomes possible.

【0032】また,一般にはMo母材として,純モリブ
デンがその加工性,コストなどの点から選択されるが,
その再結晶温度は約1000℃と低い。さらに高温で使
用されるモリブデン材として,例えば,Ti,Zr,お
よびCを含むTZMが知られているが,TZMにおいて
もその再結晶温度は1300〜1500℃に過ぎない
が,本発明のろう材を用いることにより,ろう材の融点
を選択できるためろう接温度を低く抑えることができ,
かつ,ろう接時の加熱時間が短いため,モリブデンある
いはTZM母材の接合時の再結晶による脆化を軽減する
ことができる。
In general, pure molybdenum is selected as the Mo base material in view of its workability and cost.
Its recrystallization temperature is as low as about 1000 ° C. As a molybdenum material used at a higher temperature, for example, TZM containing Ti, Zr, and C is known. In TZM, the recrystallization temperature is only 1300 to 1500 ° C., but the brazing material of the present invention is used. By using, the melting point of the brazing material can be selected, so that the brazing temperature can be kept low.
In addition, since the heating time during brazing is short, embrittlement due to recrystallization at the time of joining the molybdenum or TZM base material can be reduced.

【0033】さらに,再結晶温度後においても加工性お
よび耐高温変形性に優れたモリブデン材として,ラン夕
ン含有モリブデン(特公平2−38659号公報,参
照)がある。このランタン含有モリブデンは,0.l〜
1.0重量%未満のランタンまたはランタン酸化物と,
残部がモリブデンとからなり,実質的に一定方向に伸長
して再結晶化しているインターロッキング構造を呈する
結晶粒子を有する加工性および耐高温変形性に優れたモ
リブデン合金である。このランタン含有モリブデンを素
材として使用することにより,融点がより高温のろう材
を用いても脆化を生じることがなく,かつ純モリブデン
を素材として用いた場合よりも高温使用時での変形量を
小さくできる。
Further, as a molybdenum material having excellent workability and high temperature deformation resistance even after the recrystallization temperature, there is molybdenum containing lanthanum (Japanese Patent Publication No. 2-38659). This molybdenum containing lanthanum is 0.1 ~
Less than 1.0% by weight of lanthanum or lanthanum oxide;
The molybdenum alloy is composed of molybdenum, and has crystal grains exhibiting an interlocking structure, which are substantially elongated in a certain direction and recrystallized, and are excellent in workability and high-temperature deformation resistance. By using this lanthanum-containing molybdenum as a material, there is no embrittlement even when a brazing material with a higher melting point is used, and the amount of deformation at a higher temperature than when pure molybdenum is used as a material is reduced. Can be smaller.

【0034】前記のろう材,すなわちろう接部材の使用
温度に適した融点のろう材,によりろう接処理を行うこ
とにより従来から実績のあるRu−Mo共晶合金ろう材
を使用した場合に比べろう接温度を下げることができる
ため,高融点金属のろう接に関し,2000℃以上加熱
可能な高価な加熟炉を使用する必要もなくなり,炉構
造,加熱方法の自由度が高くなり,実用上非常に施工が
簡便となると共に,母材の脆化の恐れの少ないろう接円
筒形状部材を提供することができる。さらに管引き加工
が可能な強度を持つため適正サイズのダイスおよび芯金
を用いることにより,寸法精度の高い円筒状部材を得る
ことができる。
By performing the brazing process using the above-mentioned brazing material, that is, a brazing material having a melting point suitable for the operating temperature of the brazing member, it is possible to reduce the number of cases compared with the case where a Ru-Mo eutectic alloy brazing material that has been used in the past is used. Since the brazing temperature can be lowered, it is not necessary to use an expensive ripening furnace capable of heating at 2000 ° C. or more for brazing of high melting point metal, and the degree of freedom of the furnace structure and the heating method is increased. It is possible to provide a brazed cylindrical member which is very easy to construct and has little risk of embrittlement of the base material. Furthermore, a cylindrical member with high dimensional accuracy can be obtained by using a die and a core metal of appropriate size because it has a strength capable of pipe drawing.

【0035】以下,本発明の高融点金属ろう接円筒形状
部材の製造の具体例を示す。
Hereinafter, a specific example of the production of the high melting point metal brazed cylindrical member of the present invention will be described.

【0036】(第1の実施の形態)板厚1mm,幅1
2.5mm,長さ200mmのMo板を熱間プレス加工
により外周半径4mmの樋状に加工したものを2本準備
し母材1,及び2とした。母材1の長手直線部端面に融
点が約1420℃である41.重量%Ru−55.0重
量%Mo−3.5重量%Bからなるろう材粉末をバイン
ダーによりペースト状にしたろう材を塗布した後,母材
2をセットし,端面同士をろう材を介して突き合わせ,
治具にて位置ずれをふせぎAr雰囲気炉中で毎分15℃
の昇温速度で1450℃まで昇温し,この温度で5分保
持後徐冷を行い外径約8mm,長さ200mmのパイプ
の接合を完了した。
(First Embodiment) Plate thickness 1 mm, width 1
Two Mo plates having a diameter of 2.5 mm and a length of 200 mm and processed into a gutter shape with an outer radius of 4 mm by hot pressing were prepared, and used as base materials 1 and 2. 41. Melting point is about 1420 ° C. at the end face of the longitudinal straight portion of the base material 1 After applying a brazing material powder made of a brazing material powder consisting of 5% by weight of Ru-55.0% by weight and Mo-3.5% by weight of B with a binder, the base material 2 is set, and the end faces are interposed with the brazing material therebetween. Match
15 ° C / min in Ar atmosphere furnace
The temperature was raised to 1450 ° C. at a temperature rising rate of 5 ° C., and the temperature was maintained for 5 minutes, followed by slow cooling to complete joining of a pipe having an outer diameter of about 8 mm and a length of 200 mm.

【0037】この接合処理後,目視外観検査にて母材隙
間部にろう材が充分流れ,空隙が存在せず,非常に良好
な接合状態が得られていることを確認し,熱間管引き用
素管とした。熱間管引きは芯金およびダイスを順次小さ
くし最終サイズ外径1.6mm,肉厚0.10mmに管
引きした後,長さ3.4mmに切断し,パイプ状とし切
断バリ除去のためバレル研磨を施し,さらに管引き加工
の歪み取りのため950℃にて10分間保持し,図2示
すような形状を備えたパイプ状部材を製作した。20倍
の光学顕微鏡にて外観検査を行い,割れなどの加工不良
がないことを確認した後,寸法測定を測定数10本にて
行った。その結果,要求精度長さ3.4±0.02mm
に対し+0.015mm,0.010mm,肉厚0.1
0±0.005mmに対し+0.003,−0.004
mmの範囲内にあり,要求精度を満たしていた。
After this joining process, it was confirmed by visual inspection that the brazing material had sufficiently flowed into the gaps in the base material, that no voids existed, and that a very good joining condition was obtained. Pipe. In hot pipe drawing, the core metal and the die are sequentially reduced, the pipe is drawn to a final size of 1.6 mm in outer diameter and 0.10 mm in wall thickness, and then cut into 3.4 mm in length to form a pipe and a barrel to remove cutting burrs. The pipe was polished, and held at 950 ° C. for 10 minutes to remove distortion in a pipe drawing process, thereby producing a pipe-shaped member having a shape as shown in FIG. The appearance was inspected with a 20 × optical microscope, and it was confirmed that there was no processing defect such as a crack. As a result, the required accuracy length is 3.4 ± 0.02 mm
+ 0.015mm, 0.010mm, wall thickness 0.1
+0.003, -0.004 for 0 ± 0.005mm
mm, satisfying the required accuracy.

【0038】さらに,本パイプ状部材の圧環強度試験を
JIS Z2507に基ずいて調べた。接合位置を荷重
方向に対し0度および90度の位置に合わせ,試験本数
各5本計10本の平均圧環強度は971.9MPa,最
大強度1049.0MPa,最小強度949.4MPa
であった。また接合位置の方向による差はなかった。
Further, a radial crushing strength test of the present pipe-shaped member was conducted based on JIS Z2507. The joining position was adjusted to 0 ° and 90 ° with respect to the load direction, and the average radial crushing strength of a total of 10 test pieces of 5 pieces each was 971.9 MPa, the maximum strength was 1049.0 MPa, and the minimum strength was 949.4 MPa.
Met. There was no difference depending on the direction of the joining position.

【0039】次に,本パイプ状部材を電子部品用Moパ
イプとして実用に供されている通常の管引き工程にて製
作した同サイズのパイプと比較した。すなわち,外径8
mm,長さ200mmのMo捧にガンドリルにて内径6
mmの穴を空け素管とし,上記1と同様に熱問管引きを
施し外径1.6mm,肉厚0.1mm,長さ3.4mm
のパイプ状部材を製作した。本部材の圧環強度を上記試
験法にて試験した結果は平均圧環強度983.7MP
a,最大強度1003.8MPa,最小強度961.8
MPaであった。
Next, this pipe-shaped member was compared with a pipe of the same size manufactured by a usual drawing process which is practically used as a Mo pipe for electronic parts. That is, the outer diameter 8
6mm inside diameter with gun drill for Mo, 200mm length Mo
mm hole was used as a blank pipe, and heat pipe drawing was performed in the same manner as in 1 above to obtain an outer diameter of 1.6 mm, a wall thickness of 0.1 mm, and a length of 3.4 mm.
Was manufactured. The result of testing the radial crushing strength of this member by the above-mentioned test method was an average radial crushing strength of 983.7MP.
a, maximum strength 1003.8 MPa, minimum strength 961.8
MPa.

【0040】すなわち,ろう接後熱間管引き加工を施し
たパイプ状部材は電子部品用Moパイプとして実用に耐
える寸法精度および強度を持つ。
That is, the pipe-shaped member subjected to hot drawing after brazing has dimensional accuracy and strength enough to be practically used as a Mo pipe for electronic parts.

【0041】(第2の実施の形態)第1の実施の形態と
同様に板厚1mm,幅12.5,長さ200mmのラン
タン含有モリブデン(特公平2−38659号公報参
照)板を熱間プレス加工により外周半径4mmの樋状に
加工したものを2本準備し母材1,および2とした。母
材1の長手直線部端面に融点が約1900℃である4
2.4重量%Ru−56.2重量%Mo−1.4重量%
Bのろう材粉末をバインダーによりペースト状にしたろ
う材を塗布した後,母材2をセットし,端面同士をろう
材を介して突き合わせ治具にて位置ずれをふせぎ,真空
炉中で毎分15℃の速度で1950℃まで昇温し,この
温度で5分保持後徐冷を行い外径約8mm,長さ200
mmのパイプの接合を完了した。
(Second Embodiment) Similar to the first embodiment, a lanthanum-containing molybdenum (see Japanese Patent Publication No. 2-38659) having a thickness of 1 mm, a width of 12.5 and a length of 200 mm is hot-pressed. Two pieces processed into a gutter shape having an outer radius of 4 mm by press working were prepared and used as base materials 1 and 2. The melting point is about 1900 ° C on the end face of the long straight part of the base material 4
2.4% by weight Ru-56.2% by weight Mo-1.4% by weight
After applying the brazing material obtained by converting the brazing material powder of B into a paste with a binder, the base material 2 is set, the end faces are butt-bonded to each other via the brazing material, and the positional displacement is reduced by a jig. The temperature was raised to 1950 ° C. at a rate of 15 ° C., kept at this temperature for 5 minutes, and then gradually cooled to obtain an outer diameter of about 8 mm and a length of 200 mm.
The joining of the mm pipe was completed.

【0042】この接合処理後,目視外観検査にて母材隙
間部にろう材が充分流れ,空隙が存在せず,非常に良好
な接合状態が得られていることを確認し,熱間管引き用
素管とした。熱間管引きは芯金およびダイスを順次小さ
くし最終サイズ外径1.6mm,肉厚0.1mmに管引
きした後,長さ3.4mmに切断し,バレル研磨を施
し,さらに管引き加工の歪み取りのため950℃にて1
0分間保持し,図2に示す形状を備えたパイプ状部材を
製作した。20倍の光学顕微鏡にて外観検査を行い,割
れなどの加工不良がないことを確認した後,寸法測定を
測定数10本にて行った。その結果,要求精度長さ3.
4±0.02mmに対し+0.013mm,−0.01
1mm,肉厚0.10±0.005mmに対し±0.0
03mmの範囲内にあり,要求精度を満たしていた。さ
らに本パイプ状部材の圧環強度試験をJIS Z250
7に基ずいて調べた。試験本数10本の平均圧環強度は
1109.9MPa,最大強度1130.0MPa,最
小強度1091.4MPaであり,第1の実施の形態と
同様,電子部品用Moパイプとして実用に耐える寸法精
度および強度を持つことが判明した。
After this joining process, it was confirmed by visual inspection that the brazing material had sufficiently flowed into the gaps in the base material, that no voids existed, and that a very good joining condition was obtained. Pipe. In hot pipe drawing, the core metal and the die are successively reduced, the pipe is drawn to a final size of 1.6 mm in outer diameter and 0.1 mm in thickness, then cut to 3.4 mm in length, barrel-polished, and further drawn. 1 at 950 ° C to remove strain
After holding for 0 minutes, a pipe-shaped member having the shape shown in FIG. 2 was manufactured. The appearance was inspected with a 20 × optical microscope, and it was confirmed that there was no processing defect such as a crack. As a result, the required accuracy length is 3.
+ 0.013mm, -0.01 for 4 ± 0.02mm
± 0.0 for 1mm, wall thickness 0.10 ± 0.005mm
It was within the range of 03 mm, which satisfied the required accuracy. Further, the radial crushing strength test of this pipe-shaped member is performed according to JIS Z250.
7 was examined. The average radial crushing strength of the ten test pieces was 1109.9 MPa, the maximum strength was 1130.0 MPa, and the minimum strength was 1091.4 MPa. It turned out to have.

【0043】(第3の実施の形態)第1の実施の形態と
同様に板厚1mm,幅12.5mm,長さ200mmの
W板を熱間プレス加工により外周半径4mmの樋上に加
工したものを2本準備し母材1,および2とした。母材
1の長手直線部端面に融点が約1600℃である41.
8重量%Ru−55.4重量%Mo−2.8重量%Bか
らなるろう材粉末をバインダーによりペースト状にした
ろう材を塗布した後,母材2をセットしろう材を介して
端面同士を夫々突き合わせ,治具にて位置ずれをふせ
ぎ,真空炉中で毎分15℃の速度で1650℃まで昇温
し,この温度で5分保持後徐冷を行い外径約8mm,長
さ200mmのパイプの接合を完了した。
(Third Embodiment) Similar to the first embodiment, a W plate having a thickness of 1 mm, a width of 12.5 mm and a length of 200 mm is formed on a gutter having an outer radius of 4 mm by hot pressing. Were prepared as base materials 1 and 2. 41. Melting point is about 1600 ° C. on the end face of the longitudinal straight portion of the base material 1
8% by weight of Ru-55.4% by weight of Mo-2.8% by weight of B, and then applying a brazing material in the form of a paste with a binder, and then setting the base material 2 and joining the end faces via the brazing material. And the jig is used to prevent misalignment. The temperature is raised to 1650 ° C. in a vacuum furnace at a rate of 15 ° C. per minute, and the temperature is maintained for 5 minutes, followed by slow cooling to an outer diameter of about 8 mm and a length of 200 mm. Completed the joining of the pipes.

【0044】この接合処理後,目視外観検査にて母材隙
問部にろう材が充分流れ,空隙が存在せず,非常に良好
な接合状態が得られていることを確認し,熱間管引き用
素管とした。熱間管引きは芯金およびダイスを順次小さ
くし最終サイズ外径2.0mm,肉厚0.2mmに管引
きした後,長さ5mmに切断し,バレル研磨を施し,さ
らに管引き加工の歪み取りのため1200℃にて10分
問保持し,図2に示す形状を備えたパイプ状部材を製作
した。20倍の光学顕微鏡にて外観検査を行い,割れな
どの加工不良がないことを確認した。
After this joining process, it was confirmed by visual inspection that the brazing material had sufficiently flowed into the gaps between the base metals, that no voids existed, and that a very good joining condition was obtained. The pipe was used for drawing. In hot pipe drawing, the core metal and the die are successively reduced, drawn to a final size of an outer diameter of 2.0 mm and a wall thickness of 0.2 mm, cut to a length of 5 mm, barrel-polished, and further strained in the pipe drawing process. The sample was held at 1200 ° C. for 10 minutes for removal to produce a pipe-shaped member having the shape shown in FIG. The appearance was inspected with a 20 × optical microscope, and it was confirmed that there were no processing defects such as cracks.

【0045】比較のため,W丸棒から管引き加工により
同サイズのパイプ状部材の製作を試みた。外径8mm,
長さ200mmのW棒にガンドリルにて内径6mmの穴
加工を切削条件を変え実施したが,加工不能であった。
Wは難加工材料であり,深穴加工の困難さが確認され
た。よって,管引き加工用W素管の製作,すなわち管引
き法によるWパイプの製作は不可能であった。
For comparison, an attempt was made to produce a pipe-shaped member of the same size by pipe drawing from a W round bar. 8mm outside diameter,
A 200 mm long W rod was bored with a gun drill with an inner diameter of 6 mm under different cutting conditions, but was not possible.
W is a difficult-to-machine material, and the difficulty of deep hole machining was confirmed. Therefore, it was impossible to manufacture a W pipe for pipe drawing, that is, to manufacture a W pipe by the pipe drawing method.

【0046】(第4の実施の形態)板厚6.5mm,幅
12mm,長さ270mmのMo板を金型に素材を巻き
付ける熱間曲げ加工によりC型形状に成形し,さらに直
線部端面が平行になるように研磨補正加工した。母材の
直線部端面に融点が約1600℃である41.8重量%
Ru−55.4重量%Mo−2.8重量%Bからなるろ
う材粉末をバインダーによりペースト状にしたろう材を
塗布した後,端面同士をろう材を介して突き合わせ,治
具にて位置ずれおよび変形をふせぎ,真空炉中で毎分1
5℃の速度で1650℃まで昇温し,この温度で5分保
持後徐冷を行い接合を完了した。その後,旋盤加工によ
り,図1に示す形状を備えた外径90mm,内径80m
m,高さ10mmのリングを完成させた。旋盤加工にお
いても破損などの加工性に問題もなく,また目視外観検
査にて母材隙間部にろう材が充分流れ,ほとんど空隙が
存在せず,非常に良好な接合状態が得られ,さらに,断
面観察から,母材に損傷がないことも確認した。
(Fourth Embodiment) A Mo plate having a thickness of 6.5 mm, a width of 12 mm and a length of 270 mm is formed into a C-shape by hot bending in which a material is wound around a metal mold. Polishing correction processing was performed so as to be parallel. 41.8% by weight having a melting point of about 1600 ° C. on the end face of the straight portion of the base material
After applying a brazing filler metal made of Ru-55.4 wt% Mo-2.8 wt% B into a paste with a binder, the end surfaces are butted together via a brazing filler metal, and misaligned with a jig. And deformation, 1 minute per minute in a vacuum furnace
The temperature was raised to 1650 ° C. at a rate of 5 ° C., held at this temperature for 5 minutes, and then gradually cooled to complete the joining. Thereafter, the outer diameter 90 mm and the inner diameter 80 m having the shape shown in FIG.
m, a ring having a height of 10 mm was completed. In lathe processing, there was no problem in workability such as breakage, and in the visual appearance inspection, the brazing material flowed sufficiently in the gaps in the base material, there were almost no voids, and a very good joining condition was obtained. From the cross-section observation, it was confirmed that the base metal was not damaged.

【0047】(第5の実施の形態)板厚1.0mm,幅
8mm,長さ265mmW板を金型に素材を巻き付ける
熱間曲げ加工によりC型形状に成形し,さらに直線部端
面が平行になるように研磨補正加工した。母材の直線部
端面に融点が約1600℃である41.8重量%Ru−
55.4重量%Mo−2.8重量%Bからなるろう材粉
末をバインダーによりペースト状にしたろう材を塗布し
た後,端面同士を突き合わせて治具にて位置ずれおよび
変形をふせぎ,真空炉中で毎分15℃の速度で1650
℃まで昇温し,この温度で5分保持後徐冷を行い接合を
完了し,図1に示すような形状を備えた内径84mm,
板厚1.0mm,高さ8mmのリングを完成させた。目
視外観検査にて母材隙間部にろう材が充分流れ,ほとん
ど空隙が存在せず,非常に良好な接合状態が得られてい
ることを確認した。さらに,断面観察から,母材に損傷
がないことも確認した。
(Fifth Embodiment) A sheet having a thickness of 1.0 mm, a width of 8 mm, and a length of 265 mm is formed into a C-shape by hot bending processing in which a material is wound around a mold. Polishing correction processing was performed so that On the end face of the straight portion of the base material, 41.8 wt% Ru- having a melting point of about 1600 ° C.
After applying a brazing material powder made of 55.4% by weight Mo-2.8% by weight B into a paste with a binder, the end faces are butted against each other to prevent displacement and deformation with a jig, and the vacuum furnace is used. 1650 at a rate of 15 ° C per minute in
C., held at this temperature for 5 minutes, and then gradually cooled to complete the joining. The inner diameter was 84 mm having a shape as shown in FIG.
A ring having a thickness of 1.0 mm and a height of 8 mm was completed. A visual appearance inspection confirmed that the brazing filler metal had sufficiently flowed into the gap between the base metals, that there were almost no voids, and that a very good joint was obtained. Furthermore, it was confirmed from the cross-section observation that the base material was not damaged.

【0048】さらに,ヒートサイクル試験を行った。常
温から1500℃まで毎分15℃の速度で昇温し20分
保持後炉冷するサイクルを10回繰り返しリングの変形
を測定した。サンプル数5個の測定の結果,厚さ方向の
ソリおよび径方向の同軸度とも最大18μmであり,セ
ラミック焼成等の熱処理用スペーサの要求精度である±
20μm以下となり,本用途に使用することが可能であ
ることを確認した。
Further, a heat cycle test was performed. A cycle in which the temperature was raised from room temperature to 1500 ° C. at a rate of 15 ° C. per minute, held for 20 minutes and then cooled in a furnace was repeated 10 times, and the deformation of the ring was measured. As a result of the measurement of five samples, the warp in the thickness direction and the coaxiality in the radial direction were 18 μm at the maximum, which is the required accuracy of the spacer for heat treatment such as ceramic firing.
It was 20 μm or less, confirming that it can be used for this application.

【0049】[0049]

【発明の効果】以上,説明したように,本発明によれ
ば,接合強度に優れ寸法精度の高い電子部品用高融点金
属製ろう接円筒形状部材が製作可能となる。即ち,高融
点金属のろう接に関し,2000℃以上加熱可能な高価
な加熱炉を使用する必要もなくなり,炉構造,加熱方法
の自由度が高くなり,実用上非常に施工が簡便となると
共に,母材の脆化の恐れの少ない高融点金属ろう接円筒
形状部材とその製造方法とを提供することができる。
As described above, according to the present invention, it is possible to manufacture a high melting point metal brazing cylindrical member for electronic parts having high joining strength and high dimensional accuracy. In other words, it is no longer necessary to use an expensive heating furnace capable of heating at 2000 ° C. or higher for brazing of a high melting point metal, so that the degree of freedom of the furnace structure and the heating method is increased, and practically very simple construction is achieved. It is possible to provide a high melting point metal brazing cylindrical member having a low possibility of embrittlement of a base material and a method of manufacturing the same.

【0050】さらに,本発明では,管引き加工が可能な
強度を持つため適正サイズのダイスおよび芯金を用いる
ことにより,寸法精度の高い高融点金属ろう接円筒状部
材とその製造方法を得ることができる。
Further, according to the present invention, a high melting point metal brazing cylindrical member having high dimensional accuracy and a method of manufacturing the same can be obtained by using a die and a core metal of appropriate size because of having a strength capable of forming a pipe. Can be.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態による高融点金属ろう接円
筒形状部材の一例を示す断面図である。
FIG. 1 is a cross-sectional view illustrating an example of a cylindrical member having a refractory metal brazing shape according to an embodiment of the present invention.

【図2】本発明の実施の形態による高融点金属ろう接円
筒形状部材の他の一例を示す断面図である。
FIG. 2 is a cross-sectional view showing another example of the high melting point metal brazing cylindrical member according to the embodiment of the present invention.

【図3】本発明の実施の形態による高融点金属ろう接円
筒形状部材の別の一例を示す断面図である。
FIG. 3 is a cross-sectional view showing another example of the high melting point metal brazing cylindrical member according to the embodiment of the present invention.

【図4】Ru−Moろう材の硼素添加量に対する融点変
化を示す図である。
FIG. 4 is a graph showing a change in melting point of a Ru—Mo brazing material with respect to an amount of boron added.

【符号の説明】[Explanation of symbols]

1,1´ 板材 2,2´ ろう材 3a,3b,3a´,3b´ 直線部端面 10,11,12 高融点金属ろう接円筒形状部材 1, 1 'plate material 2, 2' brazing material 3a, 3b, 3a ', 3b' straight end face 10, 11, 12 high melting point metal brazing cylindrical member

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 W,Moおよびそれぞれの合金の内の少
なくとも1種からなる円筒状の板材であって,平板に曲
げ加工を施した少なくとも一つの素材の端部同士をろう
材を介して接合してなることを特徴とする高融点金属ろ
う接円筒形状部材。
1. A cylindrical plate made of at least one of W, Mo and respective alloys, wherein ends of at least one material obtained by bending a flat plate are joined to each other via a brazing material. A high melting point metal brazing cylindrical member characterized by being formed.
【請求項2】 請求項1記載の高融点金属ろう接円筒形
状部材において,前記ろう材は,ルテニウム・モリブデ
ン(Ru−Mo)共晶合金に硼素(B)を1.4重量%
から3.5重量%添加したものから実質的になることを
特徴とする高融点金属ろう接円筒形状部材。
2. The refractory metal brazed cylindrical member according to claim 1, wherein the brazing material is a ruthenium-molybdenum (Ru-Mo) eutectic alloy containing 1.4% by weight of boron (B).
A refractory metal brazed cylindrical member characterized in that the member is substantially composed of a metal having a melting point of 3.5 to 3.5% by weight.
【請求項3】 W,Moおよびそれぞれの合金の内の少
なくとも1種からなる板材に曲げ加工を施し,少なくと
も一つの前記板材の端部同士をろう材を介してろう接
後,管引き加工を施すことを特徴とする高融点金属ろう
接円筒形状部材の製造方法。
3. A plate made of at least one of W, Mo and an alloy thereof is subjected to a bending process, and ends of at least one of the plates are brazed through a brazing material, and then subjected to a pipe drawing process. A method for producing a refractory metal brazed cylindrical member, characterized by performing the following.
【請求項4】 W,Moおよびそれぞれの合金の内の少
なくとも1種からなる板材に,曲げ加工を施し,少なく
とも一つの前記板材の端部同士をろう材を介してろう接
後,機械加工を施すことを特徴とする高融点金属ろう接
円筒形状部材の製造方法。
4. A plate made of at least one of W, Mo and each of the alloys is subjected to a bending process, and at least one end of said plate is brazed through a brazing material, followed by machining. A method for producing a refractory metal brazed cylindrical member, characterized by performing the following.
JP4771897A 1997-03-03 1997-03-03 High melting point metal brazed cylindrical member and manufacture thereof Pending JPH10244363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4771897A JPH10244363A (en) 1997-03-03 1997-03-03 High melting point metal brazed cylindrical member and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4771897A JPH10244363A (en) 1997-03-03 1997-03-03 High melting point metal brazed cylindrical member and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH10244363A true JPH10244363A (en) 1998-09-14

Family

ID=12783103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4771897A Pending JPH10244363A (en) 1997-03-03 1997-03-03 High melting point metal brazed cylindrical member and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH10244363A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1019089A5 (en) * 2007-10-19 2012-03-06 Heraeus Gmbh W C HIGH-TEMPERATURE-RESISTANT COATING BRAZING METAL MODIFIED TO REDUCE THE MELT POINT.
CN103170764A (en) * 2011-12-26 2013-06-26 北京有色金属研究总院 Brazing filler alloy powder and preparation method thereof
CN103862190A (en) * 2012-12-17 2014-06-18 北京有色金属研究总院 Novel cathode high-temperature brazing material and preparation method thereof
CN104014803A (en) * 2014-05-26 2014-09-03 贵研铂业股份有限公司 Fine Mo-Ru-B brazing filler metal powder and preparing method thereof
KR20200008770A (en) * 2018-07-17 2020-01-29 현대자동차주식회사 Manufacturing method for a door impact beam and the door impact beam
EP3176807B1 (en) 2014-07-29 2020-10-21 Kabushiki Kaisha Toshiba X-ray tube rotating anode target, x-ray tube, and x-ray examination device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1019089A5 (en) * 2007-10-19 2012-03-06 Heraeus Gmbh W C HIGH-TEMPERATURE-RESISTANT COATING BRAZING METAL MODIFIED TO REDUCE THE MELT POINT.
CN103170764A (en) * 2011-12-26 2013-06-26 北京有色金属研究总院 Brazing filler alloy powder and preparation method thereof
CN103862190A (en) * 2012-12-17 2014-06-18 北京有色金属研究总院 Novel cathode high-temperature brazing material and preparation method thereof
CN104014803A (en) * 2014-05-26 2014-09-03 贵研铂业股份有限公司 Fine Mo-Ru-B brazing filler metal powder and preparing method thereof
EP3176807B1 (en) 2014-07-29 2020-10-21 Kabushiki Kaisha Toshiba X-ray tube rotating anode target, x-ray tube, and x-ray examination device
KR20200008770A (en) * 2018-07-17 2020-01-29 현대자동차주식회사 Manufacturing method for a door impact beam and the door impact beam

Similar Documents

Publication Publication Date Title
JP4721659B2 (en) Apparatus and method for friction stir welding high strength materials and articles produced therefrom
EP2332684A1 (en) Method of manufacturing high-heat-load equipment by metallurgically joining carbon material with copper-alloy material
JP6860484B2 (en) Brazing alloy
US5788142A (en) Process for joining, coating or repairing parts made of intermetallic material
CN110732767A (en) kinds of hardware tools made up of tungsten steel and high-speed steel and their production
CN106271202A (en) A kind of composite brazing material and preparation method thereof
CN103341700B (en) A kind of Co-Ti-Nb system high-temp solder
EP4011540A1 (en) Dissimilar material solid phase bonding method, and dissimilar material solid phase bonded structure
US5580670A (en) Heavily thermally stressable component
JPWO2017018514A1 (en) Titanium composite and titanium material for hot rolling
JPH10244363A (en) High melting point metal brazed cylindrical member and manufacture thereof
CN101758364B (en) Method for manufacturing powder metallurgy supporting seat
JP6128289B1 (en) Titanium composite and titanium material for hot rolling
CN107398654A (en) The electron beam welding special filling material of titanium alloy and nickel base superalloy
US4448618A (en) Nickel based brazing filler metals
CN115335187B (en) Composite material
EP1254875A2 (en) Method of joining a refractory material composite
JP3309309B2 (en) Brazing electrode parts and brazing electrodes for discharge lamps
JP6333268B2 (en) Layer composite
JPH073306A (en) High-strength sintered hard alloy composite material and production thereof
JP2997697B2 (en) High melting point metal joined body, ion gun component for ion implantation apparatus, and method of manufacturing these
JP6137423B1 (en) Titanium composite and titanium material for hot rolling
JPH05277742A (en) Contact tip and its manufacture
CN115415623B (en) Method for assembling and welding molybdenum alloy heat pipe sleeve joint
WO2022215551A1 (en) Tungsten material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060313

A131 Notification of reasons for refusal

Effective date: 20060816

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20061016

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061213