JP6489405B2 - Cemented carbide composite sleeve roll - Google Patents

Cemented carbide composite sleeve roll Download PDF

Info

Publication number
JP6489405B2
JP6489405B2 JP2014199723A JP2014199723A JP6489405B2 JP 6489405 B2 JP6489405 B2 JP 6489405B2 JP 2014199723 A JP2014199723 A JP 2014199723A JP 2014199723 A JP2014199723 A JP 2014199723A JP 6489405 B2 JP6489405 B2 JP 6489405B2
Authority
JP
Japan
Prior art keywords
cemented carbide
inner layer
mass
composite sleeve
sleeve roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014199723A
Other languages
Japanese (ja)
Other versions
JP2016068115A (en
Inventor
拓己 大畑
拓己 大畑
林 清
清 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014199723A priority Critical patent/JP6489405B2/en
Publication of JP2016068115A publication Critical patent/JP2016068115A/en
Application granted granted Critical
Publication of JP6489405B2 publication Critical patent/JP6489405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Description

本発明は、線材、棒材などの金属材料の圧延に使用される超硬合金製複合スリーブロールに関する。 The present invention relates to a cemented carbide composite sleeve roll used for rolling metal materials such as wires and rods.

線材や棒材などの金属材料を圧延する場合、靱性に優れる金属材料からなる内層の外周に、耐摩耗性に優れた炭化タングステン(WC)系超硬合金からなる外層を備えた超硬合金製複合スリーブロールが用いられている。スリーブロールはロール軸材の外周に嵌合され、締付部材による締付けや焼嵌め等により着脱可能に組み付けられている。WC系超硬合金は公知のごとく、WCをCo、Ni、Crなどの金属元素で結合した焼結合金である。 When rolling metal materials such as wires and rods, it is made of cemented carbide with an outer layer made of tungsten carbide (WC) cemented carbide with excellent wear resistance on the outer periphery of the inner layer made of metal material with excellent toughness A composite sleeve roll is used. The sleeve roll is fitted to the outer periphery of the roll shaft member and is detachably assembled by tightening or shrink fitting with a tightening member. As is well known, the WC cemented carbide is a sintered alloy in which WC is bonded with a metal element such as Co, Ni, or Cr.

例えば、特許文献1には、所定の有効肉厚を有するリング状超硬合金の内周にその肉厚が0.3〜5mmの鋳鉄製リングを圧入し、該鋳鉄製リングの内周に円柱または円筒状の鋼材を冷し嵌めし、しかる後、還元性や中性の雰囲気または真空中で鋳鉄の融点を越えない温度によって処理し、鋳鉄を外周側の超硬合金と内周側の鋼材に相互拡散せしめて前記三つの金属を一体化した超硬合金製複合ロールが記載されている。特許文献1に記載の発明によれば、難加工性の超硬合金をロールの所要作用面のみとし、他を超硬合金に比べ安価で軽く剛性に富み機械加工が容易な鋼材を超硬合金に接合し割損が少なく軽量で加工コストと材料費の低減を可能とすることができる。   For example, in Patent Document 1, a cast iron ring having a thickness of 0.3 to 5 mm is press-fitted into the inner periphery of a ring-shaped cemented carbide having a predetermined effective thickness, and a cylinder or a cylinder is inserted into the inner periphery of the cast iron ring. The steel is cooled and fitted, and then treated in a reducing or neutral atmosphere or in a vacuum at a temperature that does not exceed the melting point of the cast iron, and the cast iron is bonded to the outer hard metal and the inner steel. A composite roll made of cemented carbide in which the three metals are integrated by diffusion is described. According to the invention described in Patent Document 1, a hard-working cemented carbide is used only for the required working surface of a roll, and the other is a steel material that is cheaper, lighter, more rigid, and easier to machine than cemented carbide. It is possible to reduce the processing cost and the material cost because it is light weight with few breakage.

特許文献2には、シャフトの外周に圧延加工に供するリングを嵌合固定してなる圧延ロールにおいて、前記リングを、超硬合金からなる外側リング部と、鋼等の超硬合金以外の材質からなり、前記外側リング部の内周に嵌合固定された内側リング部とから構成し、しかも前記内側リング部の内周と前記シャフトの外周とに互いに嵌まり合うキー部を形成した圧延ロールが記載されている。特許文献2に記載の発明によれば、リングが割損することなく、そのスリップ事故を確実に防止でき、しかも圧延ロールの製造費の低減およびリングの締付け作業の軽減を図ることができる。   In Patent Document 2, in a rolling roll formed by fitting and fixing a ring to be rolled on the outer periphery of a shaft, the ring is made of an outer ring portion made of cemented carbide and a material other than cemented carbide such as steel. And a rolling roll formed with an inner ring portion fitted and fixed to the inner periphery of the outer ring portion, and forming a key portion that fits into the inner periphery of the inner ring portion and the outer periphery of the shaft. Have been described. According to the invention described in Patent Document 2, a slip accident can be reliably prevented without breaking the ring, and the manufacturing cost of the rolling roll can be reduced and the tightening operation of the ring can be reduced.

特許文献3には、靭性の優れた鋼材で形成された円筒状のリング基体と、該基体の外周面に形成された環状の凹溝に充填された超鋼材若しくは高速度鋼等の耐摩耗性に優れた高合金鋼材の粉末が熱間静水圧加圧により焼結されると共に、凹溝内面に拡散接合された圧延用環体とからなる複合リングロールが記載されている。特許文献3に記載の発明によれば、圧延材と接する部分はWC系超硬材等で形成されているにも拘らず、リング基体は鋼材であるため加工性が良く、また強靭であり溶接性も良好という効果がある。   Patent Document 3 describes a cylindrical ring base made of steel material with excellent toughness, and wear resistance of super steel material or high-speed steel filled in an annular concave groove formed on the outer peripheral surface of the base material. A high-alloy steel material powder excellent in the above is sintered by hot isostatic pressing, and a composite ring roll comprising a rolling ring that is diffusion-bonded to the inner surface of a groove is described. According to the invention described in Patent Document 3, the ring base is a steel material, although the portion in contact with the rolled material is formed of a WC-based cemented carbide material, etc., and has good workability, and is tough and welded. The effect is also good.

特許文献4には、C:0.5重量%以上を含む鉄系合金からなる内層材の外周に、WC系超硬合金からなる外層材が実質的に直接に金属接合された圧延用複合ロールであって、JIS R1601に準拠した抗折試験において、外層材と内層材との境界接合部を含む抗折試験片の抗折強度が600MPa以上である圧延用複合ロールが記載されている。特許文献4に記載の発明によれば、境界接合部に脆弱なη相がなく、信頼性の高い境界接合部を得ることができる。   Patent Document 4 discloses a composite roll for rolling in which an outer layer material made of a WC-based cemented carbide is substantially directly metal-bonded to the outer periphery of an inner layer material made of an iron-based alloy containing C: 0.5% by weight or more. In the bending test based on JIS R1601, a composite roll for rolling is described in which the bending strength of the bending test piece including the boundary joint portion between the outer layer material and the inner layer material is 600 MPa or more. According to the invention described in Patent Document 4, there is no fragile η phase at the boundary joint, and a highly reliable boundary joint can be obtained.

特開昭58−68488号公報JP 58-68488 A 特開昭60−24208号公報Japanese Patent Laid-Open No. 60-24208 特公平5−55202号公報Japanese Patent Publication No. 5-55202 特開2003−275809号公報JP 2003-275809 A

従来の超硬合金製複合スリーブロールは、超硬合金からなる外層は耐摩耗性に優れ、鋼材からなる内層は靭性に優れ、機械加工しやすい等の利点を有する。しかしながら、特許文献1は、リング状超硬合金に鋳鉄製リングを圧入した後、鋳鉄製リングの内周へ円筒状の鋼材を冷し嵌めするため、圧入と冷し嵌めといった二段階で締め代が設けられることになり、接合一体化が煩雑であり、強固な接合を得難かった。 Conventional cemented carbide composite sleeve rolls have the advantages that the outer layer made of cemented carbide is excellent in wear resistance, the inner layer made of steel is excellent in toughness and easy to machine. However, in Patent Document 1, after a cast iron ring is press-fitted into a ring-shaped cemented carbide, a cylindrical steel material is cooled and fitted into the inner periphery of the cast iron ring. Therefore, it is difficult to obtain a strong joint because the joint integration is complicated.

特許文献2は、超硬合金からなる外側リング部と、鋼材からなる内側リング部を機械的に嵌合固定するため、外側リング部と内側リング部の接合が十分に強固であるとはいえず、外側および内側リング部が相対的に移動しずれてしまうおそれがあった。 In Patent Document 2, since the outer ring portion made of cemented carbide and the inner ring portion made of steel are mechanically fitted and fixed, it cannot be said that the bonding between the outer ring portion and the inner ring portion is sufficiently strong. There was a risk that the outer and inner ring portions would move and shift relatively.

特許文献3は、鋼材からなるリング基体(内層)の外周面に超硬合金を拡散接合するため接合が強固であるが、鋼材の内層の外周面に超硬合金を拡散接合すると、炭素活量の高い超硬合金の外層から内層に炭素が拡散移動するため、接合境界部にη相が出現し材質が脆化する。このため、外層と内層の接合信頼性が十分でない場合があり、接合後に外層が接合部分から剥離しやすい課題があった。特許文献4は、内層の残留応力が高くなりすぎて、内層が破壊しやすい課題があった。 In Patent Document 3, the cemented carbide is diffusion-bonded to the outer peripheral surface of the ring base (inner layer) made of steel material, so that the bonding is strong. However, when the cemented carbide is diffusion-bonded to the outer peripheral surface of the steel material, the carbon activity is increased. Since carbon diffuses and moves from the outer layer to the inner layer of a high-hardness cemented carbide, the η phase appears at the joint boundary and the material becomes brittle. For this reason, there are cases where the bonding reliability between the outer layer and the inner layer is not sufficient, and there is a problem that the outer layer tends to peel from the bonded portion after bonding. Patent Document 4 has a problem that the inner layer is likely to break because the residual stress of the inner layer becomes too high.

本発明は、上記課題について鑑み、靱性に優れる鉄系材料からなる内層と超硬合金からなる外層の接合信頼性が改善された超硬合金製複合スリーブロールを提供することを目的とする。   In view of the above problems, an object of the present invention is to provide a cemented carbide composite sleeve roll in which the bonding reliability between an inner layer made of an iron-based material having excellent toughness and an outer layer made of a cemented carbide is improved.

本発明の超硬合金製複合スリーブロールは、鉄系材料からなる中空形状の内層の外周に、外周面に圧延成形部を形成した超硬合金からなる外層が金属接合した超硬合金製複合スリーブロールにおいて、前記内層がCを0.65〜1.2質量%、Niを1.8〜7.5質量%含有する鉄系材料からなることを特徴とする。 The composite sleeve roll made of cemented carbide according to the present invention is a composite sleeve made of cemented carbide in which an outer layer made of cemented carbide having a rolled formed part formed on the outer peripheral surface is metal-bonded to the outer periphery of a hollow inner layer made of iron-based material. In the roll, the inner layer is made of an iron-based material containing 0.65 to 1.2% by mass of C and 1.8 to 7.5% by mass of Ni.

本発明の超硬合金製複合スリーブロールにおいて、前記内層がCrを3質量%以下、Moを1.5質量%以下含有することが好ましい。   In the cemented carbide composite sleeve roll of the present invention, the inner layer preferably contains 3% by mass or less of Cr and 1.5% by mass or less of Mo.

本発明の超硬合金製複合スリーブロールにおいて、前記内層がCr、Ni、Mo、V、W、Ti、Nbのいずれか一種以上を合計で1.0質量%以上含有することが好ましい。 In the cemented carbide composite sleeve roll of the present invention, the inner layer preferably contains 1.0% by mass or more in total of any one or more of Cr, Ni, Mo, V, W, Ti, and Nb.

本発明の超硬合金製複合スリーブロールにおいて、前記外層と内層の境界部の引張強度が600MPa以上であることが好ましい。また、前記外層と内層の境界部の疲労強度が200MPa以上であることが好ましい。 In the cemented carbide composite sleeve roll of the present invention, the tensile strength at the boundary between the outer layer and the inner layer is preferably 600 MPa or more. The fatigue strength at the boundary between the outer layer and the inner layer is preferably 200 MPa or more.

本発明の超硬合金製複合スリーブロールにおいて、前記超硬合金からなる外層が、WCを70〜88質量%含有することが好ましい。   In the cemented carbide composite sleeve roll of the present invention, it is preferable that the outer layer made of the cemented carbide contains 70 to 88% by mass of WC.

本発明の超硬合金製複合スリーブロールをロール軸材の外周に着脱可能に組み付けることにより構成したロールであることが好ましい。   It is preferable that the roll is constituted by assembling the cemented carbide composite sleeve roll of the present invention detachably on the outer periphery of the roll shaft material.

本発明の靱性に優れる鉄系材料からなる内層と超硬合金からなる外層が接合された超硬合金製複合スリーブロールによれば、長期間の圧延にも適用できる、接合信頼性の向上した超硬合金製複合スリーブロールを得ることができる。   According to the cemented carbide composite sleeve roll in which the inner layer made of an iron-based material having excellent toughness and the outer layer made of a cemented carbide according to the present invention are joined, the super-improved joining reliability can be applied to long-term rolling. A hard alloy composite sleeve roll can be obtained.

本発明の超硬合金製複合スリーブロールの概略断面図である。It is a schematic sectional drawing of the composite sleeve roll made from the cemented carbide of this invention. 本発明の超硬合金製複合スリーブロールを軸材に組み付けた例を示す概略断面図である。It is a schematic sectional drawing which shows the example which assembled | attached the cemented carbide alloy composite sleeve roll of this invention to the shaft material. 本発明の超硬合金製複合スリーブロールを拡散接合法により製造する方法を説明するための図面である。It is drawing for demonstrating the method to manufacture the cemented carbide composite sleeve roll of this invention by a diffusion bonding method. 本発明の超硬合金製複合スリーブロールをHIP法で接合する製造方法を説明する概略断面図である。It is a schematic sectional drawing explaining the manufacturing method which joins the cemented carbide composite sleeve roll of this invention by HIP method. 本発明の実施例1及び実施例2における接合方法を説明する図面である。It is drawing explaining the joining method in Example 1 and Example 2 of this invention. 本発明の実施例2の引張試験片を説明する図面である。It is drawing explaining the tensile test piece of Example 2 of this invention.

本発明の実施するための形態を具体的に説明する。本発明は以下の実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲で、当業者の通常の知識にも基づいて、以下の実施形態に適宜変更、改良が加えられたものも本発明の範囲内に含まれる。 An embodiment for carrying out the present invention will be specifically described. The present invention is not limited to the following embodiments, and modifications and improvements are appropriately added to the following embodiments based on ordinary knowledge of those skilled in the art without departing from the technical idea of the present invention. Are also included within the scope of the present invention.

図1は本発明の超硬合金製複合スリーブロールの概略断面図である。本発明の超硬合金製複合スリーブロール1は、超硬合金製の外層2と鉄系材料からなる中空形状の内層3とを直接、金属接合したものである。外層2の外周面の一部に、被圧延材が接触する凹溝状の圧延成形部2aを形成する。内層3は中空部5を有する。3aは内層3の内周面である。4は外層2と内層3が接合された境界部である。1対の超硬合金製複合スリーブロールの間に金属材料からなる棒線などの被圧延材を通過させ圧延が行われる。 FIG. 1 is a schematic sectional view of a cemented carbide composite sleeve roll of the present invention. The cemented carbide composite sleeve roll 1 of the present invention is obtained by directly metal-bonding a cemented carbide outer layer 2 and a hollow inner layer 3 made of an iron-based material. On a part of the outer peripheral surface of the outer layer 2, a groove-shaped rolled forming portion 2a with which the material to be rolled comes into contact is formed. The inner layer 3 has a hollow portion 5. 3 a is the inner peripheral surface of the inner layer 3. Reference numeral 4 denotes a boundary portion where the outer layer 2 and the inner layer 3 are joined. Rolling is performed by passing a material to be rolled such as a bar wire made of a metal material between a pair of cemented carbide composite sleeve rolls.

(1)外層
本発明の超硬合金製複合スリーブロールの超硬合金からなる外層2は、公知の材料であり、硬質粒子であるWCをCo、Ni、Cr、Feなどの金属元素を結合相として結合した焼結合金であり、WCの他にTi、Ta、Nbなどの炭化物を含有することもある。外層の耐摩耗性および機械的強度を両立させる観点から、WCの平均粒径は3〜10μm、WCの含有量は70〜88質量%が好ましい。WC含有量の下限は72質量%がより好ましい。WC含有量の上限は85質量%がより好ましい。外層1の最大厚さは、圧延使用により、徐々に摩耗することを考慮して、5〜50mmの範囲に設定される。
(1) Outer layer The outer layer 2 made of cemented carbide of the cemented carbide composite sleeve roll of the present invention is a known material, and WC, which is a hard particle, is bonded to a metallic element such as Co, Ni, Cr, Fe, etc. As well as WC, it may contain carbides such as Ti, Ta, and Nb. From the viewpoint of achieving both wear resistance and mechanical strength of the outer layer, the average particle size of WC is preferably 3 to 10 μm, and the content of WC is preferably 70 to 88% by mass. The lower limit of the WC content is more preferably 72% by mass. The upper limit of the WC content is more preferably 85% by mass. The maximum thickness of the outer layer 1 is set in a range of 5 to 50 mm in consideration of gradual wear due to rolling.

(2)内層
本発明の超硬合金製複合スリーブロールの内層3は、C(炭素)を0.65〜1.2質量%、Niを1.8〜7.5質量%含有する鉄系材料とする。
(2) Inner layer The inner layer 3 of the cemented carbide composite sleeve roll of the present invention is an iron-based material containing 0.65 to 1.2% by mass of C (carbon) and 1.8 to 7.5% by mass of Ni.

超硬合金からなる外層と鉄系材料からなる内層を接合する際には、両者の炭素活量の差により、焼結接合時に接合界面において炭素が拡散移動し、超硬合金の炭素活量の方が高い場合には、接合界面付近の超硬合金から炭素が内層側に拡散するので、超硬合金内の炭素が低下することが知られている。その結果、低炭素組成の炭化物であるη相がこの部分に出現し、超硬合金の機械的強度が劣化することがある。 When joining the outer layer made of cemented carbide and the inner layer made of iron-based material, due to the difference in carbon activity between the two, carbon diffuses and moves at the joining interface during sintering joining, and the carbon activity of the cemented carbide is reduced. It is known that when the ratio is higher, carbon diffuses from the cemented carbide near the bonding interface to the inner layer side, so that the carbon in the cemented carbide decreases. As a result, the η phase, which is a carbide having a low carbon composition, appears in this portion, and the mechanical strength of the cemented carbide may deteriorate.

超硬合金と鉄系合金との接合実験を各種鉄系材料からなる内層を用いて鋭意行った結果、内層の炭素含有量が0.65重量%以上であれば超硬合金からの炭素の拡散は殆どなく、η相の発生を確実に防止できることを確認した。内層の炭素含有量が1.2%を超えると、外層2と内層3の境界部4に有害な黒鉛が発生して接合強度が低下する。内層の炭素含有量の下限は、0.7質量%がより好ましく、0.75質量%がさらに好ましい。内層の炭素含有量の上限は、1.0質量%が好ましい。 As a result of earnestly conducting joint experiments between cemented carbide and iron-based alloys using an inner layer made of various iron-based materials, if the carbon content of the inner layer is 0.65% by weight or more, carbon diffusion from the cemented carbide is almost impossible. Thus, it was confirmed that the generation of η phase can be surely prevented. When the carbon content of the inner layer exceeds 1.2%, harmful graphite is generated at the boundary portion 4 between the outer layer 2 and the inner layer 3 to reduce the bonding strength. The lower limit of the carbon content of the inner layer is more preferably 0.7% by mass and even more preferably 0.75% by mass. The upper limit of the carbon content of the inner layer is preferably 1.0% by mass.

また、内層がNiを1.8〜7.5質量%含有する鉄系材料とすることにより、接合後の内層の内部残留応力の制御が可能であり、内層自体の強度確保が可能であることを確認した。Niが1.8質量%未満の場合は、内層の残留応力が高くなりすぎて、内層が破壊することもあるからである。また、Niが7.5質量%を超えると内層の強度が低くなるためであり、後述する外層と内層の境界部の引張強度600MPaが確保できなくなるためである。Ni含有量の下限は、1.9質量%がより好ましく、2質量%が更に好ましい。Ni含有量の上限は、6質量%が好ましく、5質量%がより好ましい。 In addition, it was confirmed that the internal residual stress of the inner layer after joining can be controlled and the strength of the inner layer itself can be ensured by using an iron-based material in which the inner layer contains 1.8 to 7.5% by mass of Ni. This is because if the Ni content is less than 1.8% by mass, the residual stress of the inner layer becomes too high and the inner layer may be destroyed. Further, when Ni exceeds 7.5% by mass, the strength of the inner layer becomes low, and it becomes impossible to secure a tensile strength of 600 MPa at the boundary between the outer layer and the inner layer, which will be described later. The lower limit of the Ni content is more preferably 1.9% by mass, and further preferably 2% by mass. The upper limit of the Ni content is preferably 6% by mass, and more preferably 5% by mass.

以上説明したように、内層3のC(炭素)を0.65〜1.2質量%、Niを1.8〜7.5質量%含有する鉄系材料とすることにより、十分な接合強度を持つ超硬合金製複合スリーブロールを得ることができる。 As explained above, a cemented carbide composite sleeve roll having sufficient bonding strength by using an iron-based material containing 0.65 to 1.2 mass% of C (carbon) in the inner layer 3 and 1.8 to 7.5 mass% of Ni. Can be obtained.

内層3は、Crを3質量%以下、Moを1.5質量%以下含有することが好ましい。Crが3質量%を超えると、内層の硬度が高くなりすぎて、脆くなり、内層が破壊することもあるからである。Cr含有量の下限は、0.01質量%が好ましく、0.03質量%がより好ましい。Cr含有量の上限は、1.5質量%がより好ましい。Moが1.5質量%を超えると、内層の硬度が高くなりすぎて、脆くなり、内層が破壊することもあるからである。Mo含有量の下限は、0.01質量%が好ましく、0.05質量%がより好ましい。Mo含有量の上限は、1質量%がより好ましい。 The inner layer 3 preferably contains 3% by mass or less of Cr and 1.5% by mass or less of Mo. This is because if the Cr content exceeds 3% by mass, the hardness of the inner layer becomes too high and becomes brittle and the inner layer may be destroyed. The lower limit of the Cr content is preferably 0.01% by mass, and more preferably 0.03% by mass. The upper limit of the Cr content is more preferably 1.5% by mass. This is because if the Mo content exceeds 1.5% by mass, the hardness of the inner layer becomes too high and becomes brittle and the inner layer may be destroyed. The lower limit of the Mo content is preferably 0.01% by mass, and more preferably 0.05% by mass. The upper limit of the Mo content is more preferably 1% by mass.

更に、内層3は、Siを0.5〜2質量%、Mnを0.1〜0.9質量%含有することが好ましい。内層3のSiは、脱酸効果があり、焼き入れ硬化性を高める作用があるため、0.5質量%以上が好ましいが、2質量%を超えると靱性が劣化することもあるため、2質量%以下が好ましい。また、同様に、内層3のMnは、脱酸効果があり、焼き入れ硬化性を高める作用があるため、0.1質量%以上が好ましいが、0.9質量%を超えると靱性が劣化することもあるため、0.9質量%以下が好ましい。更に、内層3は不可避不純物として、V、Nb、Co、W、Cu等を含んでもよい。 Furthermore, the inner layer 3 preferably contains 0.5 to 2% by mass of Si and 0.1 to 0.9% by mass of Mn. Si in the inner layer 3 has a deoxidizing effect and has an effect of increasing quenching curability, so 0.5% by mass or more is preferable, but if it exceeds 2% by mass, the toughness may be deteriorated, so 2% by mass or less Is preferred. Similarly, Mn of the inner layer 3 has a deoxidizing effect and has an effect of increasing quenching curability, so 0.1% by mass or more is preferable, but if it exceeds 0.9% by mass, the toughness may be deteriorated. 0.9 mass% or less is preferable. Furthermore, the inner layer 3 may contain V, Nb, Co, W, Cu, etc. as inevitable impurities.

本発明の超硬合金製複合スリーブロールにおいて、前記外層と内層の境界部の引張強度が600MPa以上であることが好ましい。外層と内層の境界部の引張強度が600MPa 以上であれば、長期間の圧延に使用した場合であっても、外層と内層が剥離することを防ぐことが可能になるからである。外層と内層の境界部の引張強度は700MPa 以上がより好ましい。 In the cemented carbide composite sleeve roll of the present invention, the tensile strength at the boundary between the outer layer and the inner layer is preferably 600 MPa or more. This is because if the tensile strength at the boundary between the outer layer and the inner layer is 600 MPa or more, it is possible to prevent the outer layer and the inner layer from peeling even when used for a long-term rolling. The tensile strength at the boundary between the outer layer and the inner layer is more preferably 700 MPa or more.

また、前記外層と内層の境界部の疲労強度が200MPa 以上であることが好ましい。この疲労強度とは引圧疲労強度のことをいう。外層と内層の境界部の疲労強度が200MPa 以上であれば、接合後に、外層と内層が剥離することを防ぐことが可能になるからである。外層と内層の境界部の疲労強度は250MPa 以上がより好ましい。 The fatigue strength at the boundary between the outer layer and the inner layer is preferably 200 MPa or more. This fatigue strength refers to tensile fatigue strength. This is because, if the fatigue strength at the boundary between the outer layer and the inner layer is 200 MPa or more, it is possible to prevent the outer layer and the inner layer from being separated after bonding. The fatigue strength at the boundary between the outer layer and the inner layer is more preferably 250 MPa or more.

(3)接合
本発明の超硬合金製複合スリーブロールは、超硬合金からなる外層と、Cを0.65〜1.2質量%、Niを1.8〜7.5質量%含有する鉄系材料からなる内層を金属接合した構造である。従って、外層及び内層の界面が隙間なく接合していれば良く、拡散接合法、HIP法などの方法を用いて接合することができる。
(3) Bonding The composite sleeve roll made of cemented carbide according to the present invention has an outer layer made of cemented carbide and an inner layer made of an iron-based material containing 0.65 to 1.2% by mass of C and 1.8 to 7.5% by mass of Ni. This is the structure. Accordingly, it is sufficient that the interface between the outer layer and the inner layer is bonded without any gap, and bonding can be performed using a method such as a diffusion bonding method or an HIP method.

[拡散接合法]
図3は本発明の超硬合金製複合スリーブロールを拡散接合法により製造する方法を説明するための図面である。
[Diffusion bonding method]
FIG. 3 is a drawing for explaining a method of manufacturing the cemented carbide composite sleeve roll of the present invention by a diffusion bonding method.

図3に示すように、中空円筒状の内層3を基台11の上に載置する。別に準備した超硬合金製の外層2を受台12に載置し、内層3の外周側に配置、嵌合する。超硬合金製の外層2は、鉄系材料である内層3に比べて熱膨張係数が小さいため、接合温度に加熱された際に外層2と内層3の界面に適切な面圧が作用するよう、室温での配置時には隙間を形成しておく。その後、外層2及び内層3を、図3のように配置した状態で、不活性ガス、還元ガス、減圧および真空のうちのいずれかの雰囲気で加熱して拡散接合を行い、外層2と内層3が拡散接合された超硬合金製複合スリーブロールを得る。拡散接合の接合温度は1000〜1320℃である。前述のように、超硬合金製の外層2は、鉄系材料である内層3に比べて熱膨張係数が小さいため、接合温度が1000℃未満であると、外層2と内層3の間の面圧が不足して、十分な接合強度が得られないこともあるからであり、接合温度が1320℃を超えると、超硬合金製の外層2が接合中に溶融することもあるからである。より好ましい接合温度は1100〜1300℃であり、更に好ましい接合温度は1200〜1260℃である As shown in FIG. 3, a hollow cylindrical inner layer 3 is placed on a base 11. Separately prepared outer layer 2 made of cemented carbide is placed on cradle 12 and arranged and fitted on the outer peripheral side of inner layer 3. The outer layer 2 made of cemented carbide has a smaller thermal expansion coefficient than the inner layer 3 that is an iron-based material, so that an appropriate surface pressure acts on the interface between the outer layer 2 and the inner layer 3 when heated to the bonding temperature. A gap is formed at the time of placement at room temperature. After that, with the outer layer 2 and the inner layer 3 arranged as shown in FIG. 3, diffusion bonding is performed by heating in an atmosphere of any of inert gas, reducing gas, reduced pressure, and vacuum. A composite sleeve roll made of cemented carbide with diffusion bonded to is obtained. The bonding temperature of diffusion bonding is 1000 to 1320 ° C. As described above, the outer layer 2 made of cemented carbide has a smaller coefficient of thermal expansion than the inner layer 3 that is an iron-based material, so if the bonding temperature is less than 1000 ° C., the surface between the outer layer 2 and the inner layer 3 This is because sufficient pressure may not be obtained due to insufficient pressure, and when the bonding temperature exceeds 1320 ° C., the outer layer 2 made of cemented carbide may melt during bonding. A more preferable joining temperature is 1100 to 1300 ° C, and a further preferred joining temperature is 1200 to 1260 ° C.

外層2と内層3の嵌合は、これらの部材の熱膨張係数や変形能を考慮して、接合温度に加熱された際に部材間に空隙がなく、部材同志が密接するように設定する。必要に応じて、外層2の外側に、内層3の熱膨張係数より小さな熱膨張係数を有することにより、内層の熱膨張を拘束する拘束部材14を配置する。このような拘束部材14を配置することにより、外層2と内層3の拡散接合を確実に行うことができる。拘束部材14としては、外層2及び内層3より熱膨張係数が小さく、接合温度において一定の強度を有し、塑性変形しにくい材料であれば良く、例えば黒鉛、アルミナなどが使用できるが、加工の容易さから黒鉛が好ましい。 The fitting between the outer layer 2 and the inner layer 3 is set in consideration of the thermal expansion coefficient and deformability of these members so that there is no gap between the members and the members are in close contact when heated to the joining temperature. If necessary, a restraining member 14 that restrains the thermal expansion of the inner layer by having a thermal expansion coefficient smaller than that of the inner layer 3 is disposed outside the outer layer 2. By disposing such a restraining member 14, diffusion bonding between the outer layer 2 and the inner layer 3 can be performed reliably. The restraining member 14 may be any material that has a smaller coefficient of thermal expansion than the outer layer 2 and the inner layer 3, has a certain strength at the joining temperature, and is difficult to plastically deform.For example, graphite, alumina, etc. can be used. Graphite is preferred because of its ease.

得られた超硬合金製複合スリーブロール体9の外層2の外周面の一部に凹溝状に圧延成形部2a等を機械加工して超硬合金製複合スリーブロール1を製作する。ここで、図2は本発明の超硬合金製複合スリーブロールを軸材に組み付けた例を示す概略断面図である。図2において、一方側にフランジ部6aを設けた軸材6の外周に、フランジ部6aに接するように固定用リング7を嵌めて固定する。次に軸材6の外周に超硬合金製複合スリーブロール1を嵌合する。次に軸材6の外周に固定用締結リング8を挿入してねじ締結することにより超硬合金製複合スリーブロール1を固定して超硬合金製組立ロール10を着脱可能に組み立てる。軸材6の外周に超硬合金製複合スリーブロール1を嵌合するには焼嵌めや、内層3の内周面および軸材6の外周面にキー溝を設けてキーで嵌合固定してもよい。 The cemented carbide composite sleeve roll 1 is manufactured by machining the rolled forming portion 2a and the like into a groove shape in a part of the outer peripheral surface of the outer layer 2 of the obtained composite sleeve roll body 9 made of cemented carbide. Here, FIG. 2 is a schematic sectional view showing an example in which the cemented carbide composite sleeve roll of the present invention is assembled to a shaft member. In FIG. 2, a fixing ring 7 is fitted and fixed to the outer periphery of the shaft member 6 provided with the flange portion 6a on one side so as to be in contact with the flange portion 6a. Next, a cemented carbide composite sleeve roll 1 is fitted to the outer periphery of the shaft member 6. Next, the cemented carbide composite sleeve roll 1 is fixed by inserting a fastening ring 8 for fixing on the outer periphery of the shaft member 6 and screw fastening, and the cemented carbide assembly roll 10 is assembled in a detachable manner. To fit the composite sleeve roll 1 made of cemented carbide on the outer periphery of the shaft 6, a key groove is provided on the inner peripheral surface of the inner layer 3 and the outer peripheral surface of the shaft 6 and fixed with a key. Also good.

[HIP法]
図4は、本発明の超硬合金製複合スリーブロールをHIP法により製造する場合の方法を説明する概略断面図である。図4において、円筒状のHIP缶15の中央に、中空円筒状の内層3を配置する。内層3の外面と、HIP缶15の内面との間に形成された空隙に、外層2として、超硬合金の焼結体または仮焼結体からなるスリーブを配置する。HIP缶を鋼の蓋で溶接密封し、真空ポンプで脱気処理を実施後、HIP装置により、HIP処理を行う。HIP処理の温度は1100〜1300℃、圧力は100〜140MPaが好ましい。冷却後、HIP缶を機械加工で除去し、内層3の外周に超硬合金からなる外層2が接合された超硬合金製複合スリーブロール体9を得ることができる。なお外層は、内層3とHIP缶15の内面との間の空隙に超硬合金粉末を充填することにより形成することも可能である。
[HIP method]
FIG. 4 is a schematic cross-sectional view for explaining a method when the cemented carbide composite sleeve roll of the present invention is manufactured by the HIP method. In FIG. 4, a hollow cylindrical inner layer 3 is arranged in the center of a cylindrical HIP can 15. In the gap formed between the outer surface of the inner layer 3 and the inner surface of the HIP can 15, a sleeve made of a cemented carbide sintered body or a temporary sintered body is disposed as the outer layer 2. The HIP can is hermetically sealed with a steel lid, deaerated with a vacuum pump, and then HIPed with a HIP device. The HIP treatment temperature is preferably 1100 to 1300 ° C. and the pressure is preferably 100 to 140 MPa. After cooling, the HIP can is removed by machining to obtain a cemented carbide composite sleeve roll body 9 in which the outer layer 2 made of cemented carbide is joined to the outer periphery of the inner layer 3. The outer layer can also be formed by filling the gap between the inner layer 3 and the inner surface of the HIP can 15 with cemented carbide powder.

前述同様に、得られた超硬合金製複合スリーブロール体9の外層2の外周面の一部に凹溝状に圧延成形部2a等を機械加工して超硬合金製複合スリーブロール1を製作する。 In the same manner as described above, the composite sleeve roll 1 made of cemented carbide is manufactured by machining the rolled forming part 2a and the like into a groove shape on a part of the outer peripheral surface of the outer layer 2 of the obtained composite sleeve roll body 9 made of cemented carbide To do.

以下、本発明の実施例に基づいて詳細に説明するが本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although it demonstrates in detail based on the Example of this invention, this invention is not limited to these Examples.

(実施例1)
表1に示す特性を有する超硬合金からなり、外径20mm、厚さ20mmの円柱状の外層材試験片31を準備した。一方、表2に示す組成を有する鉄系材料からなり、外径30mm、長さ25mmの円柱状の内層材試験片32を5種類(内層1〜5)準備した。これらの外層材試験片31、内層材試験片32を図5に示すように積み重ね、黒鉛製治具34に収めた後、積み重ねた面に圧力Pを加えた状態で、真空中、表2に示す条件で接合して、試験No.1〜5の接合試験片35を作製した。その後、得られた接合試験片35の接合境界の観察を行った。
Example 1
A cylindrical outer layer material test piece 31 made of a cemented carbide having the characteristics shown in Table 1 and having an outer diameter of 20 mm and a thickness of 20 mm was prepared. On the other hand, five types (inner layers 1 to 5) of cylindrical inner layer material test pieces 32 made of an iron-based material having the composition shown in Table 2 and having an outer diameter of 30 mm and a length of 25 mm were prepared. The outer layer material test piece 31 and the inner layer material test piece 32 are stacked as shown in FIG. 5 and stored in a graphite jig 34, and then the pressure is applied to the stacked surface in a vacuum in Table 2. Bonding was performed under the conditions shown, and bonding test pieces 35 of Test Nos. 1 to 5 were produced. Thereafter, the bonding boundary of the obtained bonding test piece 35 was observed.

試験No.1および試験No.4の接合試験片では、内層材試験片32と外層材試験片31の接合境界にη相や黒鉛の発生が抑えられていたため、接合強度が十分高く接合信頼性が高いものである。試験No.3の接合試験片では、内層材試験片32と外層材試験片31の接合境界に黒鉛が発生していたため、接合強度の低いことが想定される。また試験No.2および試験No.5の接合試験片では、内層材試験片32と外層材試験片31の接合境界にη相が確認されたため、接合強度の低いことが想定される。 In the test specimens of Test No. 1 and Test No. 4, since the generation of η phase and graphite was suppressed at the joint boundary between the inner layer material test piece 32 and the outer layer material test piece 31, the joint strength was sufficiently high and the joint reliability Is expensive. In the joining test piece of Test No. 3, since the graphite was generated at the joining boundary between the inner layer material test piece 32 and the outer layer material test piece 31, it is assumed that the joining strength is low. Further, in the joining test pieces of Test No. 2 and Test No. 5, since the η phase was confirmed at the joining boundary between the inner layer material test piece 32 and the outer layer material test piece 31, it is assumed that the joining strength is low.

(実施例2)
外層材として表1に示す特性を有するφ25mm×75mmの試験片、内層材として表2に示す内層1を使用しφ25mm×75mmの試験片を2種類準備した。これらの外層材試験片41、内層材試験片42を、図5に示す方法と同様に、黒鉛製治具に収めた後、積み重ねた面に圧力を加えた状態で、真空中、表3に示す条件で接合して試験No.6及び7の接合試験片45を作製した。得られた接合試験片45から、図6に示すような引張試験片46を作製した。引張試験片46の直径6.3mm、標点距離19mmとし、標点間の中央に境界接合部が存在するようにした。得られた引張試験片46を用いて、引張強度試験、疲労強度(引圧)試験を行った。
(Example 2)
Two types of test pieces of φ25 mm × 75 mm were prepared using the test piece of φ25 mm × 75 mm having the characteristics shown in Table 1 as the outer layer material and the inner layer 1 shown in Table 2 as the inner layer material. The outer layer material test piece 41 and the inner layer material test piece 42 were stored in a graphite jig, and the pressure was applied to the stacked surfaces in the same manner as shown in FIG. Joining was performed under the conditions shown to produce test specimens 45 of Test Nos. 6 and 7. A tensile test piece 46 as shown in FIG. 6 was produced from the obtained joint test piece 45. The tensile test piece 46 had a diameter of 6.3 mm and a gauge distance of 19 mm, and a boundary junction was present in the center between the gauge marks. Using the obtained tensile test piece 46, a tensile strength test and a fatigue strength (pulling pressure) test were performed.

試験結果を表3に示す。試験No.6の引張試験片46では、引張強度、疲労強度共に、試験No.7の引張試験片46より、高い値が得られ、且つ引張強度は600MPa 以上、疲労強度は200MPa が得られた。 The test results are shown in Table 3. In the tensile test piece 46 of test No. 6, both the tensile strength and the fatigue strength were higher than the tensile test piece 46 of test No. 7, the tensile strength was 600 MPa or more, and the fatigue strength was 200 MPa. .

(実施例3)
表1に示す特性を有し、外径360mm、内径313mm、全長280mmの中空円筒状の外層2を準備した。また、表4に示す組成を有する鉄系合金(内層6)からなり、外径312mm、内径245mm、全長320mmの内層3を準備した。更に外径600mm、内径361.7mm、全長350mmの中空円筒状で、黒鉛からなる拘束部材14を準備した。各部材を図3に示すように、黒鉛からなる基台11の上に配置された円筒形状の内層3の外周側に外層2を配置し、外層2の外周側に中空円筒状の黒鉛からなる拘束部材14を配置した。これらの部材を、図3のように配置した状態で、真空炉の中に配置し、1250℃の温度で接合を行い、試験No.8の超硬合金製複合スリーブロール体9を作製した。得られた超硬合金製複合スリーブロール体9の外層2の外周面の一部に図1に示すような凹溝状の圧延成形部2a等を機械加工して超硬合金製複合スリーブロール1を作製した。
(Example 3)
A hollow cylindrical outer layer 2 having the characteristics shown in Table 1 and having an outer diameter of 360 mm, an inner diameter of 313 mm, and a total length of 280 mm was prepared. Further, an inner layer 3 made of an iron-based alloy (inner layer 6) having the composition shown in Table 4 and having an outer diameter of 312 mm, an inner diameter of 245 mm, and an overall length of 320 mm was prepared. Further, a constraining member 14 made of graphite having a hollow cylindrical shape having an outer diameter of 600 mm, an inner diameter of 361.7 mm, and an overall length of 350 mm was prepared. As shown in FIG. 3, the outer layer 2 is disposed on the outer peripheral side of the cylindrical inner layer 3 disposed on the base 11 made of graphite, and each member is formed of hollow cylindrical graphite on the outer peripheral side of the outer layer 2. A restraining member 14 was arranged. With these members arranged as shown in FIG. 3, they were placed in a vacuum furnace and joined at a temperature of 1250 ° C. to produce a hard sleeve composite sleeve roll body 9 of Test No. 8. A cemented carbide composite sleeve roll 1 is obtained by machining a groove-shaped rolled forming portion 2a as shown in FIG. 1 on a part of the outer peripheral surface of the outer layer 2 of the obtained cemented carbide composite sleeve roll body 9. Was made.

接合処理後、外層、内層の端部の目視検査、接合面全域の浸透探傷検査を行った。その結果、接合面全域にわたって境界の欠陥は観察されなかった。また、外層、内層の剥離も認められなかった。 After the bonding treatment, visual inspection of the outer layer and inner layer ends and penetration inspection of the entire bonded surface were performed. As a result, no boundary defect was observed over the entire bonding surface. Further, no peeling of the outer layer and the inner layer was observed.

1 超硬合金製複合スリーブロール、2 外層、 2a 圧延成形部、 3 内層、
3a 内層の内周面、 4 境界部、 5 中空部、 6 軸材、 6a フランジ部、
7 固定用リング、 8 固定用締結リング、 9 超硬合金製複合スリーブロール体、
10 超硬合金製組立ロール、
11 基台、 12 受台、 14 拘束部材、 15 HIP缶、
31、41 外層材試験片、 32、42 内層材試験片、
34 黒鉛製治具、 35、45 接合試験片、 46 引張試験片
1 Cemented carbide composite sleeve roll, 2 Outer layer, 2a Roll forming part, 3 Inner layer,
3a Inner surface of inner layer, 4 boundary part, 5 hollow part, 6 shaft material, 6a flange part,
7 fixing ring, 8 fastening ring, 9 cemented carbide composite sleeve roll body,
10 Cemented carbide assembly roll,
11 base, 12 cradle, 14 restraint member, 15 HIP can,
31, 41 Outer layer specimen, 32, 42 Inner layer specimen,
34 Graphite jig, 35, 45 Joined specimen, 46 Tensile specimen

Claims (5)

鉄系材料からなる中空形状の内層の外周に、外周面に圧延成形部を形成した超硬合金からなる外層が金属接合した超硬合金製複合スリーブロールにおいて、前記内層がCを0.75〜1.2質量%、Niを1.9〜7.5質量%、Crを0.01〜3質量%、Moを0.01〜1.5質量%、Siを0.5〜2質量%、Mnを0.1〜0.9質量%、残部鉄及び不可避不純物からなることを特徴とする超硬合金製複合スリーブロール。 In a cemented carbide composite sleeve roll in which an outer layer made of cemented carbide having a rolled formed part formed on the outer circumferential surface is metal-bonded to the outer circumference of a hollow inner layer made of an iron-based material, the inner layer has a C content of 0.75 to 1.2 mass. Ni, 1.9 to 7.5% by mass, Cr 0.01 to 3% by mass, Mo 0.01 to 1.5% by mass, Si 0.5 to 2% by mass, Mn 0.1 to 0.9% by mass , balance iron and inevitable impurities Cemented carbide composite sleeve roll characterized by 前記外層と内層の境界部の引張強度が600MPa以上であることを特徴とする請求項に記載の超硬合金製複合スリーブロール。 The composite sleeve roll made of cemented carbide according to claim 1 , wherein the tensile strength at the boundary between the outer layer and the inner layer is 600 MPa or more. 前記外層と内層の境界部の疲労強度が200MPa以上であることを特徴とする請求項1〜のいずれかに記載の超硬合金製複合スリーブロール。 3. The cemented carbide composite sleeve roll according to claim 1, wherein a fatigue strength of a boundary portion between the outer layer and the inner layer is 200 MPa or more. 前記超硬合金からなる外層が、WCを70〜88質量%含有することを特徴とする請求項1〜のいずれかに記載の超硬合金製複合スリーブロール。 The composite sleeve roll made of cemented carbide according to any one of claims 1 to 3 , wherein the outer layer made of the cemented carbide contains 70 to 88% by mass of WC. 請求項1〜のいずれかに記載の超硬合金製複合スリーブロールをロール軸材の外周に着脱可能に組み付けたことを特徴とする超硬合金製複合スリーブロール。
A cemented carbide composite sleeve roll according to any one of claims 1 to 4 , wherein the cemented carbide composite sleeve roll according to any one of claims 1 to 4 is detachably assembled to an outer periphery of a roll shaft member.
JP2014199723A 2014-09-30 2014-09-30 Cemented carbide composite sleeve roll Active JP6489405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014199723A JP6489405B2 (en) 2014-09-30 2014-09-30 Cemented carbide composite sleeve roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014199723A JP6489405B2 (en) 2014-09-30 2014-09-30 Cemented carbide composite sleeve roll

Publications (2)

Publication Number Publication Date
JP2016068115A JP2016068115A (en) 2016-05-09
JP6489405B2 true JP6489405B2 (en) 2019-03-27

Family

ID=55865466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014199723A Active JP6489405B2 (en) 2014-09-30 2014-09-30 Cemented carbide composite sleeve roll

Country Status (1)

Country Link
JP (1) JP6489405B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6587204B2 (en) * 2015-03-30 2019-10-09 日立金属株式会社 Cemented carbide composite roll and manufacturing method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04406U (en) * 1990-04-06 1992-01-06
JP2617029B2 (en) * 1990-11-29 1997-06-04 株式会社日立製作所 Corrosion resistant alloy, hot rolling roll, method for producing the same, and hot rolling mill
JP3690617B2 (en) * 1996-06-19 2005-08-31 日立金属株式会社 Cemented carbide composite roll
JP3919082B2 (en) * 2002-03-08 2007-05-23 日立金属株式会社 Cemented carbide roll for rolling
JP3755758B2 (en) * 2002-03-18 2006-03-15 日立金属株式会社 Composite roll for rolling
JP4392652B2 (en) * 2003-12-09 2010-01-06 日立金属株式会社 Composite roll for rolling made of cemented carbide and method for producing the same
JP4525444B2 (en) * 2004-12-27 2010-08-18 Jfeスチール株式会社 Cast roll material for hot rolling and roll for hot rolling
JP4569358B2 (en) * 2005-04-04 2010-10-27 Jfeスチール株式会社 Cast roll material for hot rolling and roll for hot rolling
JP2007175736A (en) * 2005-12-28 2007-07-12 Hitachi Metals Ltd Composite roll for rolling and its production method

Also Published As

Publication number Publication date
JP2016068115A (en) 2016-05-09

Similar Documents

Publication Publication Date Title
JP6281672B2 (en) Die-casting sleeve and manufacturing method thereof
CN105339587A (en) ring tool
US8261767B1 (en) Powdered metal inlay
JP6489405B2 (en) Cemented carbide composite sleeve roll
JP2004243380A (en) Composite roll for rolling made of cemented carbide
US9174309B2 (en) Turbine component and a process of fabricating a turbine component
EP2562281A1 (en) Ni-base alloy large member, Ni-base alloy welded structure made of same, and method for manufacturing structure thereof
JP2006297474A (en) JOINED BODY OF Ti-Al ALLOY AND STEEL, AND JOINING METHOD
JP6354504B2 (en) Cemented carbide composite roll and manufacturing method thereof
JP2005262321A (en) Composite roll made of cemented carbide
JP6587204B2 (en) Cemented carbide composite roll and manufacturing method thereof
US20180237883A1 (en) METHOD FOR PRODUCING JOURNAL PART OF 9 TO 12% Cr STEEL TURBINE ROTOR, AND JOURNAL PART PRODUCED BY THE METHOD
JP6391042B2 (en) Manufacturing method of composite roll
JP2004167503A (en) Composite rolling roll made of cemented carbide
JP2005074450A (en) Titanium-clad steel plate, and its production method
JP6421758B2 (en) Cemented carbide composite roll and manufacturing method thereof
WO2017002937A1 (en) Laminated tube and manufacturing method therefor
KR102551616B1 (en) Outer layer material for hot rolling rolls and composite rolls for hot rolling
JPH11342407A (en) Hot plate rolling roll
JP4320699B2 (en) Composite roll for rolling
JP2004244684A (en) Method for manufacturing composite rolling mill roll made of cemented carbide, and the roll
JP4221696B2 (en) Cemented carbide composite roll
JP2005297068A (en) Composite roll made of cemented carbide
JPH11244914A (en) Roll for rolling hot strip and manufacture thereof
JP2003342668A (en) Composite roll made of cemented carbide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190214

R150 Certificate of patent or registration of utility model

Ref document number: 6489405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350