JP2015093971A - Epoxy resin composition for sealing semiconductor and semiconductor device - Google Patents

Epoxy resin composition for sealing semiconductor and semiconductor device Download PDF

Info

Publication number
JP2015093971A
JP2015093971A JP2013235798A JP2013235798A JP2015093971A JP 2015093971 A JP2015093971 A JP 2015093971A JP 2013235798 A JP2013235798 A JP 2013235798A JP 2013235798 A JP2013235798 A JP 2013235798A JP 2015093971 A JP2015093971 A JP 2015093971A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
semiconductor
epoxy
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013235798A
Other languages
Japanese (ja)
Other versions
JP6115451B2 (en
Inventor
将一 長田
Masakazu Osada
将一 長田
竜平 横田
Ryuhei Yokota
竜平 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2013235798A priority Critical patent/JP6115451B2/en
Priority to KR1020140155798A priority patent/KR102184955B1/en
Priority to CN201410646153.3A priority patent/CN104629259B/en
Publication of JP2015093971A publication Critical patent/JP2015093971A/en
Application granted granted Critical
Publication of JP6115451B2 publication Critical patent/JP6115451B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3218Carbocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5399Phosphorus bound to nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an epoxy resin composition for sealing a semiconductor which can be used as a semiconductor device having excellent adhesiveness to CuLF or Ag plating and excellent reliability without breakage or corrosion of a Cu wire or a Cu wire/an Al pad junction when stored for a long period of time at a high temperature of 175 to 250°C, and to provide a semiconductor device.SOLUTION: There is provided an epoxy resin composition for sealing a semiconductor which comprises, as essential components, (A) an epoxy resin, (B) a curing agent, (C) an inorganic filler, (D) bismuth oxide or bismuth subcarbonate and (E) a phosphazene compound represented by the following average composition formula (1) [wherein, X is a single bond or a group selected from CH, C(CH), SO, S, O and O(CO)O; d,e,n are a number satisfying 0≤d≤0.25n, 0≤e<2n, 2d+e=2n and 3≤n≤1,000] and substantially contains no brominated product, red phosphorus, a phosphoric acid ester and an antimony compound.

Description

本発明は、長期高温放置時の信頼性に優れ、Cuリードフレーム(LF)やAgメッキ部との剥離が少なく、かつ、Cuワイヤーの腐食やマイグレーションが発生しない半導体封止用エポキシ樹脂組成物、及びこの硬化物で封止された半導体装置に関する。   The present invention is excellent in reliability when left at high temperature for a long period of time, has little peeling from a Cu lead frame (LF) or an Ag-plated portion, and does not cause corrosion or migration of Cu wire. And a semiconductor device sealed with the cured product.

近年、地球温暖化対策、化石燃料からのエネルギー転換などの地球レベルでの環境対策が進められており、自動車はハイブリット車や電気自動車の生産台数が増えてきている。また中国やインドなど新興国の家庭用電気機器も省エネルギー対策としてインバーターモータ搭載機種が増えてきている。   In recent years, environmental measures at the global level, such as measures against global warming and energy conversion from fossil fuels, have been promoted, and the number of automobiles produced is increasing. In addition, household electric appliances in emerging countries such as China and India are also increasing the number of models equipped with inverter motors as an energy saving measure.

上記ハイブリッド車や電気自動車、インバータには、交流を直流、直流を交流に変換したり、電圧を変圧する役割を担うパワー半導体が重要となる。しかしながら、長年半導体として使用されてきたシリコン(Si)は性能限界に近づいており、飛躍的な性能向上を期待することが困難になってきた。そこで、炭化ケイ素(SiC),チッ化ガリウム(GaN),ダイヤモンドなどの材料を使った次世代型パワー半導体に注目が集まるようになってきている。例えば、電力変換の際のロスを減らすためにパワーMOSFETの低抵抗化が求められているが、現在主流のSi−MOSFETでは大幅な低抵抗化が難しい。そこでバンドギャップが広い(ワイドギャップ)半導体であるSiCを使った低損失パワーMOSFETの開発が進んでいる。SiCやGaNは、バンドギャップがSiの約3倍、破壊電界強度が10倍以上という優れた特性を持っている。また高温動作(SiCでは650℃動作の報告がある)、高い熱伝導度(SiCはCu並み)、大きな飽和電子ドリフト速度などの特徴もある。この結果、SiCやGaNを使えばパワー半導体のオン抵抗を下げ、電力変換回路の電力損失を大幅に削減することが可能である。しかし、素子上の温度が175℃以上に発熱することが予想されることから、封止剤をはじめ周辺材料には耐熱特性が求められている。   For the hybrid vehicle, electric vehicle, and inverter, a power semiconductor that plays a role of converting alternating current into direct current, converting direct current into alternating current, and transforming voltage is important. However, silicon (Si), which has been used as a semiconductor for many years, is approaching its performance limit, and it has become difficult to expect dramatic performance improvements. Therefore, attention has been focused on next-generation power semiconductors using materials such as silicon carbide (SiC), gallium nitride (GaN), and diamond. For example, a reduction in resistance of a power MOSFET is required in order to reduce a loss during power conversion, but it is difficult to significantly reduce the resistance in the current mainstream Si-MOSFET. Therefore, development of a low-loss power MOSFET using SiC, which is a semiconductor with a wide band gap (wide gap), is in progress. SiC and GaN have excellent characteristics that the band gap is about 3 times that of Si and the breakdown electric field strength is 10 times or more. In addition, there are also features such as high-temperature operation (SiC reports 650 ° C operation), high thermal conductivity (SiC is equivalent to Cu), and large saturated electron drift velocity. As a result, if SiC or GaN is used, the on-resistance of the power semiconductor can be lowered and the power loss of the power conversion circuit can be greatly reduced. However, since the temperature on the element is expected to generate heat at 175 ° C. or higher, heat resistance characteristics are required for the sealing material and other peripheral materials.

一方、パワー半導体は、一般的にエポキシ樹脂によるトランスファー成形、シリコーンゲルによるポッティング封止により保護されている。最近は小型、軽量化の観点(特に自動車用途)からエポキシ樹脂によるトランスファー成形が主流になりつつある。エポキシ樹脂は成形性、基材との密着性、機械的強度に優れるバランスの取れた熱硬化樹脂であるが、175℃を超える温度領域での信頼性特性は疑問視されている。実際既存の封止材料で封止した半導体装置を200℃、500時間で高温放置したところ、封止材料にクラックが入った事例、封止材料とAgメッキダイパッド部界面にて剥離が発生した事例、Cuワイヤー/Alパッドの合金層にクラックが入った事例等、信頼性に影響がある事例が発生している。
なお、本発明に関連する従来技術として、下記文献が挙げられる。
On the other hand, power semiconductors are generally protected by transfer molding with epoxy resin and potting sealing with silicone gel. Recently, transfer molding using an epoxy resin is becoming mainstream from the viewpoint of miniaturization and weight reduction (particularly for automobiles). Epoxy resins are well-balanced thermosetting resins with excellent moldability, adhesion to substrates, and mechanical strength, but their reliability characteristics in the temperature range exceeding 175 ° C. are questioned. Actually, when a semiconductor device sealed with an existing sealing material was left at a high temperature for 200 hours at 200 ° C., a case where a crack occurred in the sealing material, a case where peeling occurred at the interface between the sealing material and the Ag plating die pad part There are cases in which reliability is affected, such as a case in which an alloy layer of a Cu wire / Al pad is cracked.
In addition, the following literature is mentioned as a prior art relevant to this invention.

IEEE Transactions on Components and packing Technology, Vol.26, No.2, 367-374IEEE Transactions on Components and packing Technology, Vol.26, No.2, 367-374 SEMICON Singapore 2005, 35-43SEMICON Singapore 2005, 35-43 Journal of Materials Science(2008)43, 6038-6048Journal of Materials Science (2008) 43, 6038-6048

本発明は、このような事情に鑑みてなされたもので、175〜250℃の高温に長期保管した場合でも、CuLFやAgメッキとの密着性に優れ、Cuワイヤー、Cuワイヤー/Alパッドの接合部の断線、腐食がない信頼性に優れた半導体装置となり得る半導体封止用エポキシ樹脂組成物及び半導体装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and has excellent adhesion to CuLF and Ag plating even when stored at a high temperature of 175 to 250 ° C. for a long time, and bonding of Cu wire and Cu wire / Al pad. It is an object of the present invention to provide an epoxy resin composition for semiconductor encapsulation and a semiconductor device which can be a highly reliable semiconductor device free from disconnection and corrosion of parts.

本発明者等は、上記目的を達成すべく鋭意検討を行った結果、(A)エポキシ樹脂、(B)硬化剤、(C)無機質充填剤、(D)水酸化ビスマス又は次炭酸ビスマス、及び(E)下記平均組成式(1)で示されるホスファゼン化合物を必須成分とし、臭素化物、赤リン、リン酸エステル及びアンチモン化合物を実質的に含まない半導体封止用エポキシ樹脂組成物が、高温に長期保管した際の信頼性に優れ、かつ難燃性、耐湿信頼性に優れる硬化物を得ることができるものであり、該組成物の硬化物で封止した半導体装置が、難燃性、高温放置信頼性に優れることを見出し、本発明をなすに至ったものである。   As a result of intensive studies to achieve the above object, the present inventors have (A) an epoxy resin, (B) a curing agent, (C) an inorganic filler, (D) bismuth hydroxide or bismuth carbonate, and (E) An epoxy resin composition for encapsulating a semiconductor containing a phosphazene compound represented by the following average composition formula (1) as an essential component and substantially free of bromide, red phosphorus, phosphate ester and antimony compound is A cured product having excellent reliability when stored for a long period of time and having excellent flame resistance and moisture resistance reliability can be obtained, and a semiconductor device encapsulated with the cured product of the composition is flame retardant, high temperature It has been found that it is excellent in unreliable reliability, and has led to the present invention.

従って、本発明は、下記に示す半導体封止用エポキシ樹脂組成物及び半導体装置を提供する。
〔1〕
(A)エポキシ樹脂、
(B)硬化剤、
(C)無機質充填剤、
(D)水酸化ビスマス又は次炭酸ビスマス、
(E)下記平均組成式(1)で示されるホスファゼン化合物

Figure 2015093971
[式中、Xは単結合、又はCH2、C(CH32、SO2、S、O、及びO(CO)Oから選ばれる基であり、d,e,nは0≦d≦0.25n、0≦e<2n、2d+e=2n、3≦n≦1,000を満たす数である。]
を必須成分とし、臭素化物、赤リン、リン酸エステル及びアンチモン化合物を実質的に含まないことを特徴とする半導体封止用エポキシ樹脂組成物。
〔2〕
(D)水酸化ビスマス又は次炭酸ビスマスの添加量が、(A),(B)成分の合計100質量部に対し、3〜10質量部であることを特徴とする〔1〕に記載のエポキシ樹脂組成物。
〔3〕
(A)エポキシ樹脂のエポキシ当量が210未満であることを特徴とする〔1〕又は〔2〕に記載のエポキシ樹脂組成物。
〔4〕
(A)エポキシ樹脂が、下記一般式(2)で示されるエポキシ樹脂であることを特徴とする〔1〕〜〔3〕のいずれかに記載のエポキシ樹脂組成物。
Figure 2015093971
(式中、aは1〜10の整数である。)
〔5〕
〔1〕〜〔4〕のいずれかに記載のエポキシ樹脂組成物の硬化物で封止した半導体装置。 Accordingly, the present invention provides the following epoxy resin composition for semiconductor encapsulation and semiconductor device.
[1]
(A) epoxy resin,
(B) a curing agent,
(C) inorganic filler,
(D) bismuth hydroxide or bismuth subcarbonate,
(E) A phosphazene compound represented by the following average composition formula (1)
Figure 2015093971
[Wherein, X is a single bond or a group selected from CH 2 , C (CH 3 ) 2 , SO 2 , S, O, and O (CO) O, and d, e, and n are 0 ≦ d ≦ 0.25n, 0 ≦ e <2n, 2d + e = 2n, 3 ≦ n ≦ 1,000. ]
Is an essential component, and is substantially free of bromide, red phosphorus, phosphate ester and antimony compound.
[2]
(D) The epoxy according to [1], wherein the addition amount of bismuth hydroxide or bismuth carbonate is 3 to 10 parts by mass with respect to 100 parts by mass in total of the components (A) and (B). Resin composition.
[3]
(A) The epoxy resin composition according to [1] or [2], wherein an epoxy equivalent of the epoxy resin is less than 210.
[4]
(A) The epoxy resin composition according to any one of [1] to [3], wherein the epoxy resin is an epoxy resin represented by the following general formula (2).
Figure 2015093971
(In the formula, a is an integer of 1 to 10.)
[5]
A semiconductor device sealed with a cured product of the epoxy resin composition according to any one of [1] to [4].

本発明の半導体封止用エポキシ樹脂組成物は、成形性に優れるとともに、難燃性及び高温放置信頼性に優れた硬化物を得ることができる。しかも、臭素化エポキシ樹脂等の臭素化物、三酸化アンチモン等のアンチモン化合物をエポキシ樹脂組成物中に含有しないので、人体、環境に対する悪影響もないものである。更に、本発明の半導体封止用エポキシ樹脂組成物は、赤リン、リン酸エステル等のリン系難燃剤を添加したエポキシ樹脂組成物と比較して、熱水抽出特性に優れ、耐湿信頼性に特に優れる硬化物を得ることができる。また、本発明の半導体封止用エポキシ樹脂組成物の硬化物で封止された半導体装置は、難燃性、高温放置信頼性に優れたものであり、産業上特に有用である。   The epoxy resin composition for semiconductor encapsulation of the present invention is excellent in moldability and can provide a cured product excellent in flame retardancy and high-temperature standing reliability. In addition, since brominated products such as brominated epoxy resins and antimony compounds such as antimony trioxide are not contained in the epoxy resin composition, there are no adverse effects on the human body and the environment. Furthermore, the epoxy resin composition for semiconductor encapsulation of the present invention has superior hot water extraction characteristics and moisture resistance reliability compared to an epoxy resin composition to which a phosphorus-based flame retardant such as red phosphorus or phosphate is added. A particularly excellent cured product can be obtained. Moreover, the semiconductor device sealed with the cured product of the epoxy resin composition for semiconductor sealing of the present invention is excellent in flame retardancy and high temperature storage reliability, and is particularly useful industrially.

以下、本発明について更に詳しく説明する。
本発明の半導体封止用エポキシ樹脂組成物は、
(A)エポキシ樹脂、
(B)硬化剤、
(C)無機質充填剤、
(D)水酸化ビスマス又は次炭酸ビスマス、
(E)下記平均組成式(1)で示されるホスファゼン化合物

Figure 2015093971
[式中、Xは単結合、又はCH2、C(CH32、SO2、S、O、及びO(CO)Oから選ばれる基であり、d,e,nは0≦d≦0.25n、0≦e<2n、2d+e=2n、3≦n≦1,000を満たす数である。]
を必須成分とし、臭素化物、赤リン、リン酸エステル及びアンチモン化合物を実質的に含まないものである。
ここで、実質的に含まないとは、組成物中に意図的に添加していないという意味で、工業的にはコンタミで混入する可能性を許容するものである。 Hereinafter, the present invention will be described in more detail.
The epoxy resin composition for semiconductor encapsulation of the present invention is
(A) epoxy resin,
(B) a curing agent,
(C) inorganic filler,
(D) bismuth hydroxide or bismuth subcarbonate,
(E) A phosphazene compound represented by the following average composition formula (1)
Figure 2015093971
[Wherein, X is a single bond or a group selected from CH 2 , C (CH 3 ) 2 , SO 2 , S, O, and O (CO) O, and d, e, and n are 0 ≦ d ≦ 0.25n, 0 ≦ e <2n, 2d + e = 2n, 3 ≦ n ≦ 1,000. ]
Is an essential component and does not substantially contain bromide, red phosphorus, phosphate ester and antimony compound.
Here, “substantially free” means that it is not intentionally added to the composition, and industrially allows the possibility of contamination by contamination.

本発明のエポキシ樹脂組成物を構成する(A)エポキシ樹脂は、特に限定されない。一般的なエポキシ樹脂としては、ノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールアルカン型エポキシ樹脂、アラルキル型エポキシ樹脂、ビフェニル骨格含有アラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、複素環型エポキシ樹脂、ナフタレン環含有エポキシ樹脂、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、スチルベン型エポキシ樹脂等が挙げられ、これらのうち1種を単独で又は2種以上を併用することができる。本発明においては、臭素化エポキシ樹脂は配合されない。   The (A) epoxy resin which comprises the epoxy resin composition of this invention is not specifically limited. Common epoxy resins include novolak-type epoxy resins, cresol novolak-type epoxy resins, triphenolalkane-type epoxy resins, aralkyl-type epoxy resins, biphenyl-skeleton-containing aralkyl-type epoxy resins, biphenyl-type epoxy resins, dicyclopentadiene-type epoxy resins. , Heterocyclic epoxy resin, naphthalene ring-containing epoxy resin, bisphenol A-type epoxy compound, bisphenol F-type epoxy compound, stilbene-type epoxy resin, etc., one of which is used alone or in combination of two or more Can do. In the present invention, a brominated epoxy resin is not blended.

これらのうち、高温での絶縁性、機械的強度が要求される半導体装置に関しては、一般的にガラス転移温度が高い硬化物が好まれており、このような硬化物としては、架橋密度が高く、エポキシ基濃度が高い、すなわちエポキシ当量が低いエポキシ樹脂が好適に使用される。エポキシ当量として、好ましくは210未満、更に好ましくは170未満である。下記一般式(2)で示されるトリフェノールアルカン型はエポキシ当量168である。   Among these, for semiconductor devices that require insulation at high temperatures and mechanical strength, a cured product having a high glass transition temperature is generally preferred, and such a cured product has a high crosslinking density. An epoxy resin having a high epoxy group concentration, that is, a low epoxy equivalent is preferably used. The epoxy equivalent is preferably less than 210, more preferably less than 170. The triphenolalkane type represented by the following general formula (2) has an epoxy equivalent of 168.

Figure 2015093971
(式中、aは1〜10の整数である。)
Figure 2015093971
(In the formula, a is an integer of 1 to 10.)

上記エポキシ樹脂は、加水分解性塩素が1,000ppm以下、特に500ppm以下であり、ナトリウム及びカリウムはそれぞれ10ppm以下の含有量とすることが好ましい。加水分解性塩素が1,000ppmを超えたり、ナトリウム又はカリウムが10ppmを超えたりする場合は、長時間高温高湿下に半導体装置を放置すると、耐湿性が劣化する場合がある。   The epoxy resin has a hydrolyzable chlorine content of 1,000 ppm or less, particularly 500 ppm or less, and preferably contains sodium and potassium in a content of 10 ppm or less. When the hydrolyzable chlorine exceeds 1,000 ppm or the sodium or potassium exceeds 10 ppm, the moisture resistance may deteriorate if the semiconductor device is left under high temperature and high humidity for a long time.

本発明に用いる(B)硬化剤も特に限定されるものではない。一般的な硬化剤としては、フェノール樹脂が好ましく、具体的には、フェノールノボラック樹脂、ナフタレン環含有フェノール樹脂、アラルキル型フェノール樹脂、トリフェノールアルカン型フェノール樹脂、ビフェニル骨格含有アラルキル型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、複素環型フェノール樹脂、ナフタレン環含有フェノール樹脂、ビスフェノールA型樹脂、ビスフェノールF型樹脂等のビスフェノール型フェノール樹脂などが挙げられ、これらのうち1種を単独で又は2種以上を併用することができる。   The (B) curing agent used in the present invention is not particularly limited. As a general curing agent, a phenol resin is preferable. Specifically, a phenol novolak resin, a naphthalene ring-containing phenol resin, an aralkyl type phenol resin, a triphenol alkane type phenol resin, a biphenyl skeleton-containing aralkyl type phenol resin, a biphenyl type. Examples include phenolic resins, alicyclic phenolic resins, heterocyclic phenolic resins, naphthalene ring-containing phenolic resins, bisphenol A type resins, bisphenol F type resins, and other bisphenol type phenol resins. Two or more kinds can be used in combination.

上記硬化剤は、エポキシ樹脂と同様に、ナトリウム及びカリウムの含有量をそれぞれ10ppm以下とすることが好ましい。ナトリウム又はカリウムが10ppmを超える場合は、長時間高温高湿下に半導体装置を放置すると、耐湿性が劣化する場合がある。   As for the said hardening | curing agent, it is preferable to make content of sodium and potassium into 10 ppm or less similarly to an epoxy resin, respectively. When sodium or potassium exceeds 10 ppm, moisture resistance may deteriorate if the semiconductor device is left under high temperature and high humidity for a long time.

ここで、エポキシ樹脂、硬化剤の配合量は特に制限されないが、エポキシ樹脂中に含まれるエポキシ基1モルに対して、硬化剤に含まれるフェノール性水酸基のモル比が0.5〜1.5、特に0.7〜1.2の範囲であることが好ましい。   Here, although the compounding quantity of an epoxy resin and a hardening | curing agent is not restrict | limited in particular, The molar ratio of the phenolic hydroxyl group contained in a hardening | curing agent is 0.5-1.5 with respect to 1 mol of epoxy groups contained in an epoxy resin. In particular, a range of 0.7 to 1.2 is preferable.

また、本発明において、エポキシ樹脂と硬化剤との硬化反応を促進させるため、硬化促進剤を用いることが好ましい。この硬化促進剤は、硬化反応を促進させるものであれば特に制限はなく、例えば、トリフェニルホスフィン、トリブチルホスフィン、トリ(p−メチルフェニル)ホスフィン、トリ(ノニルフェニル)ホスフィン、トリフェニルホスフィン・トリフェニルボラン、テトラフェニルホスフィン・テトラフェニルボレート、トリフェニルホスフィンとベンゾキノンの付加物などのリン系化合物、トリエチルアミン、ベンジルジメチルアミン、α−メチルベンジルジメチルアミン、1,8−ジアザビシクロ(5.4.0)ウンデセン−7などの第3級アミン化合物、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾールなどのイミダゾール化合物等を使用することができる。   In the present invention, it is preferable to use a curing accelerator in order to accelerate the curing reaction between the epoxy resin and the curing agent. The curing accelerator is not particularly limited as long as it accelerates the curing reaction. For example, triphenylphosphine, tributylphosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) phosphine, triphenylphosphine-trimethyl. Phosphorus compounds such as phenylborane, tetraphenylphosphine / tetraphenylborate, adducts of triphenylphosphine and benzoquinone, triethylamine, benzyldimethylamine, α-methylbenzyldimethylamine, 1,8-diazabicyclo (5.4.0) Tertiary amine compounds such as undecene-7, imidazole compounds such as 2-methylimidazole, 2-phenylimidazole, and 2-phenyl-4-methylimidazole can be used.

硬化促進剤の配合量は有効量であるが、上記リン系化合物、第3級アミン化合物、イミダゾール化合物等のエポキシ樹脂と硬化剤(フェノール樹脂)との硬化反応促進用の硬化促進剤は、(A),(B)成分の総量100質量部に対し、0.1〜5質量部、特に0.5〜2質量部とすることが好ましい。   The blending amount of the curing accelerator is an effective amount, but the curing accelerator for promoting the curing reaction between the epoxy compound such as the phosphorus compound, the tertiary amine compound, and the imidazole compound and the curing agent (phenol resin) is ( It is preferable to set it as 0.1-5 mass parts with respect to 100 mass parts of total amounts of A) and (B) component, especially 0.5-2 mass parts.

本発明のエポキシ樹脂組成物中に配合される(C)無機質充填剤としては、通常エポキシ樹脂組成物に配合されるものを使用することができる。例えば、溶融シリカ、結晶性シリカ等のシリカ類、アルミナ、窒化珪素、窒化アルミニウム、ボロンナイトライド、酸化チタン、ガラス繊維等が挙げられる。   As the inorganic filler (C) blended in the epoxy resin composition of the present invention, those usually blended in the epoxy resin composition can be used. Examples thereof include silicas such as fused silica and crystalline silica, alumina, silicon nitride, aluminum nitride, boron nitride, titanium oxide, glass fiber and the like.

これら無機質充填剤の平均粒径や形状及び無機質充填剤の充填量は、特に限定されないが、難燃性を高めるためには、エポキシ樹脂組成物中に成形性を損なわない範囲で可能な限り多量に充填させることが好ましい。この場合、無機質充填剤の平均粒径、形状として、平均粒径5〜30μmの球状の溶融シリカが特に好ましく、また、(C)成分の無機質充填剤の充填量は、(A),(B)成分の総量100質量部に対し、400〜1,200質量部、特に500〜1,000質量部とすることが好ましい。   The average particle diameter and shape of these inorganic fillers and the filling amount of the inorganic filler are not particularly limited, but in order to increase the flame retardancy, the amount is as large as possible within the range that does not impair the moldability in the epoxy resin composition. Is preferably filled. In this case, spherical fused silica having an average particle diameter of 5 to 30 μm is particularly preferable as the average particle diameter and shape of the inorganic filler, and the filling amount of the inorganic filler of the component (C) is (A), (B ) 400 to 1,200 parts by weight, particularly 500 to 1,000 parts by weight, based on 100 parts by weight of the total component.

なお、無機質充填剤は、樹脂と無機質充填剤との結合強度を強くするため、シランカップリング剤、チタネートカップリング剤などのカップリング剤で表面処理したものを使用することが好ましい。このようなカップリング剤としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノシラン、γ−メルカプトプロピルトリメトキシシラン等のメルカプトシランなどのシランカップリング剤の1種又は2種以上を用いることが好ましい。ここで表面処理に用いるカップリング剤の配合量及び表面処理方法については、特に制限されるものではない。   In addition, in order to strengthen the bond strength of resin and an inorganic filler, it is preferable to use what was surface-treated with coupling agents, such as a silane coupling agent and a titanate coupling agent, as an inorganic filler. As such a coupling agent, epoxy silane such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N -Β (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, aminosilane such as N-phenyl-γ-aminopropyltrimethoxysilane, mercaptosilane such as γ-mercaptopropyltrimethoxysilane, etc. It is preferable to use one kind or two or more kinds of silane coupling agents. Here, the blending amount of the coupling agent used for the surface treatment and the surface treatment method are not particularly limited.

本発明の半導体封止用エポキシ樹脂組成物は、(D)水酸化ビスマス又は次炭酸ビスマスを使用するものである。
これまでにビスマス化合物の効果としては、リン酸エステル難燃材と併用することにより、リン酸エステル由来の陰イオンを交換する無機イオン交換体としての効果(特開2003−147169号公報)、レーザーマーキング性改良効果(特開平6−84601号公報)、臭素化エポキシ樹脂との組み合わせ、高温雰囲気下でのハロゲン化ガストラップ効果(特開平11−240937号公報)などが知られている。
The epoxy resin composition for semiconductor encapsulation of the present invention uses (D) bismuth hydroxide or bismuth subcarbonate.
The effects of bismuth compounds so far include an effect as an inorganic ion exchanger for exchanging anions derived from phosphate esters when used in combination with a phosphate ester flame retardant (JP 2003-147169 A), laser A marking property improving effect (JP-A-6-84601), a combination with a brominated epoxy resin, a halogenated gas trap effect in a high-temperature atmosphere (JP-A-11-240937), and the like are known.

本発明は、ビスマス化合物のうち、水酸化ビスマス、次炭酸ビスマスだけがハロゲン以外の有機酸を補足し、かつ腐食性の陰イオンを放出しないことから長期高温保管下でもCuLFやAgメッキとの密着性を維持し、Cuワイヤー、Cuワイヤー/Alパッドの接合部の断線、腐食等を引き起こさないことを見出した。エポキシ樹脂の中でもエポキシ当量が低い樹脂、例えば上記一般式(2)で示されるトリフェノールアルカン型エポキシ樹脂は、熱分解による有機酸の発生の濃度が高いので水酸化ビスマス、次炭酸ビスマスの併用が有効である。   In the present invention, among bismuth compounds, only bismuth hydroxide and bismuth carbonate are supplemented with organic acids other than halogens and do not release corrosive anions. It was found that the properties were maintained, and disconnection, corrosion, etc. of the joint portion of Cu wire and Cu wire / Al pad were not caused. Among epoxy resins, resins having a low epoxy equivalent, for example, a triphenolalkane type epoxy resin represented by the above general formula (2), have a high concentration of organic acid generated by thermal decomposition, so that bismuth hydroxide and bismuth carbonate can be used in combination. It is valid.

(D)水酸化ビスマス又は次炭酸ビスマスの添加量としては、(A),(B)成分の総量100質量部に対して3〜10質量部が望ましく、3〜8質量部がより望ましい。3質量部未満だと、特性が十分発揮されない場合がある。10質量部を超えると流動性低下や硬化不良を引き起こす可能性がある。   (D) The amount of bismuth hydroxide or bismuth carbonate added is preferably 3 to 10 parts by weight, more preferably 3 to 8 parts by weight, based on 100 parts by weight of the total amount of components (A) and (B). If it is less than 3 parts by mass, the characteristics may not be sufficiently exhibited. If it exceeds 10 parts by mass, it may cause a decrease in fluidity and poor curing.

なお、水酸化ビスマス、次炭酸ビスマス中の不純物として、硝酸イオンは10質量%以下が好ましい。   In addition, as an impurity in bismuth hydroxide and bismuth carbonate, nitrate ion is preferably 10% by mass or less.

本発明の半導体封止用エポキシ樹脂組成物は、(E)下記平均組成式(1)で示されるホスファゼン化合物を使用するものである。

Figure 2015093971
[式中、Xは単結合、又はCH2、C(CH32、SO2、S、O、及びO(CO)Oから選ばれる基であり、d,e,nは0≦d≦0.25n、0≦e<2n、2d+e=2n、3≦n≦1,000を満たす数である。] The epoxy resin composition for semiconductor encapsulation of the present invention uses (E) a phosphazene compound represented by the following average composition formula (1).
Figure 2015093971
[Wherein, X is a single bond or a group selected from CH 2 , C (CH 3 ) 2 , SO 2 , S, O, and O (CO) O, and d, e, and n are 0 ≦ d ≦ 0.25n, 0 ≦ e <2n, 2d + e = 2n, 3 ≦ n ≦ 1,000. ]

上記式(1)で示されるホスファゼン化合物を添加した本発明の半導体封止用エポキシ樹脂組成物は、赤リン、リン酸エステル等のリン系難燃剤を添加したエポキシ樹脂組成物と比較して、熱水抽出特性に優れ、耐湿信頼性に特に優れる硬化物を得ることができる。   The epoxy resin composition for semiconductor encapsulation of the present invention to which the phosphazene compound represented by the above formula (1) is added is compared with the epoxy resin composition to which a phosphorus-based flame retardant such as red phosphorus or phosphate is added, A cured product having excellent hot water extraction characteristics and particularly excellent moisture resistance reliability can be obtained.

ここで、式(1)において、nは3〜1,000であるが、より好ましい範囲は3〜10である。合成上特に好ましくはn=3である。   Here, in Formula (1), n is 3-1,000, However, A more preferable range is 3-10. Particularly preferably n = 3 in terms of synthesis.

d,eの比率は0≦d≦0.25n、0≦e<2n、2d+e=2nである。0.25n<dでは、ホスファゼン化合物の分子間架橋が多いため、軟化点が高くなり、エポキシ樹脂中に相溶しにくく、期待される難燃効果が得られない。eの比率は、0≦e<2nであるが、難燃性を高いレベルで両立するためには、1.5n≦e≦1.97nであることが望ましい。   The ratios of d and e are 0 ≦ d ≦ 0.25n, 0 ≦ e <2n, and 2d + e = 2n. When 0.25n <d, since there are many intermolecular crosslinks of the phosphazene compound, the softening point becomes high, it is difficult to be compatible with the epoxy resin, and the expected flame retardant effect cannot be obtained. The ratio of e is 0 ≦ e <2n, but it is desirable that 1.5n ≦ e ≦ 1.97n in order to achieve both high flame retardance.

なお、Xが単結合である場合、

Figure 2015093971
で表される。 In addition, when X is a single bond,
Figure 2015093971
It is represented by

上記ホスファゼン化合物の添加量は、(A),(B)成分の総量100質量部に対し、1〜10質量部、特に3〜7質量部が好ましい。添加量が1質量部未満では十分な難燃効果が得られない場合があり、また10質量部を超えると、流動性、ガラス転移温度の低下を引き起こす場合がある。   The addition amount of the phosphazene compound is preferably 1 to 10 parts by mass, particularly 3 to 7 parts by mass with respect to 100 parts by mass of the total amount of the components (A) and (B). When the addition amount is less than 1 part by mass, a sufficient flame retardant effect may not be obtained, and when it exceeds 10 parts by mass, the fluidity and the glass transition temperature may be lowered.

本発明の半導体封止用エポキシ樹脂組成物には、更に必要に応じて各種の添加剤を配合することができる。例えば、熱可塑性樹脂、熱可塑性エラストマー、有機合成ゴム、シリコーン系等の低応力剤、カルナバワックス、高級脂肪酸、合成ワックス等のワックス類、カーボンブラック等の着色剤、ハイドロタルサイト等の添加剤を本発明の目的を損なわない範囲で添加配合することができる。   Various additives can be further blended in the epoxy resin composition for semiconductor encapsulation of the present invention as necessary. For example, low stress agents such as thermoplastic resins, thermoplastic elastomers, organic synthetic rubbers, silicones, waxes such as carnauba wax, higher fatty acids, synthetic waxes, colorants such as carbon black, additives such as hydrotalcite It can be added and blended within a range that does not impair the object of the present invention.

本発明の半導体封止用エポキシ樹脂組成物は、例えば、エポキシ樹脂、硬化剤、無機質充填剤、水酸化ビスマス又は次炭酸ビスマス、ホスファゼン化合物及びその他の添加物を所定の組成比で配合し、これをミキサー等によって十分均一に混合した後、熱ロール、ニーダー、エクストルーダー等による溶融混合処理を行い、次いで冷却固化させ、適当な大きさに粉砕して成形材料とすることができる。   The epoxy resin composition for semiconductor encapsulation of the present invention comprises, for example, an epoxy resin, a curing agent, an inorganic filler, bismuth hydroxide or bismuth hydroxide, a phosphazene compound, and other additives in a predetermined composition ratio. Can be sufficiently uniformly mixed with a mixer or the like, then subjected to a melt mixing process using a hot roll, a kneader, an extruder or the like, then cooled and solidified, and pulverized to an appropriate size to obtain a molding material.

このようにして得られる本発明の半導体封止用エポキシ樹脂組成物は、各種の半導体装置の封止用として有効に利用でき、この場合、封止の最も一般的な方法としては、低圧トランスファー成形法が挙げられる。なお、本発明の半導体封止用エポキシ樹脂組成物の成形温度は150〜180℃で30〜180秒、後硬化は150〜180℃で2〜16時間行うことが望ましい。   The thus obtained epoxy resin composition for semiconductor encapsulation of the present invention can be effectively used for encapsulation of various semiconductor devices. In this case, the most common method of encapsulation is low-pressure transfer molding Law. In addition, as for the shaping | molding temperature of the epoxy resin composition for semiconductor sealing of this invention, it is desirable to carry out for 30 to 180 second at 150-180 degreeC, and for 2 to 16 hours at 150-180 degreeC.

以下、エポキシ樹脂組成物の実施例と比較例を示し、本発明を具体的に示すが、本発明は下記の実施例に制限されるものではない。   Hereinafter, although the Example and comparative example of an epoxy resin composition are shown and this invention is shown concretely, this invention is not restrict | limited to the following Example.

[合成例A]
窒素雰囲気下、0℃で水素化ナトリウム(NaOH)4.8g(119mmol)をテトラヒドロフラン(THF)50mlに懸濁させ、そこにフェノール10.2g(108mmol)、4,4’−スルホニルジフェノール0.45g(1.8mmol)のTHF50ml溶液を滴下した。30分攪拌後、ヘキサクロロトリホスファゼン12.5g(36.0mmol)のTHF50ml溶液を滴下し、5時間加熱還流を行った。そこに、別途0℃で水素化ナトリウム5.2g(130mmol)をTHF50mlに懸濁させ、そこにフェノール11.2g(119mmol)のTHF50ml溶液を滴下し、更に19時間加熱還流した。溶媒を減圧留去後、クロロベンゼンを加えて溶解し、5質量%NaOH水溶液200ml×2、5質量%硫酸水溶液200ml×2、5質量%炭酸水素ナトリウム水溶液200ml×2、水200ml×2で抽出を行った。溶媒を減圧留去し、下記式で示される黄褐色結晶のホスファゼン化合物A(リン原子量:13.36質量%)を20.4g得た。

Figure 2015093971
[Synthesis Example A]
Under a nitrogen atmosphere, 4.8 g (119 mmol) of sodium hydride (NaOH) was suspended in 50 ml of tetrahydrofuran (THF) at 0 ° C., and then 10.2 g (108 mmol) of phenol, 0.44 of 4,4′-sulfonyldiphenol. A solution of 45 g (1.8 mmol) in 50 ml of THF was added dropwise. After stirring for 30 minutes, a solution of 12.5 g (36.0 mmol) of hexachlorotriphosphazene in 50 ml of THF was added dropwise, and the mixture was heated to reflux for 5 hours. Separately, 5.2 g (130 mmol) of sodium hydride was suspended in 50 ml of THF at 0 ° C., and a solution of phenol 11.2 g (119 mmol) in 50 ml of THF was added dropwise thereto, and the mixture was further heated and refluxed for 19 hours. After distilling off the solvent under reduced pressure, chlorobenzene was added and dissolved, followed by extraction with 5% by weight NaOH aqueous solution 200 ml × 2, 5% by weight sulfuric acid aqueous solution 200 ml × 2, 5% by weight sodium hydrogen carbonate aqueous solution 200 ml × 2, and water 200 ml × 2. went. The solvent was distilled off under reduced pressure to obtain 20.4 g of yellow-brown crystalline phosphazene compound A (phosphorus atomic weight: 13.36% by mass) represented by the following formula.
Figure 2015093971

[実施例1〜5、比較例1〜7]
表1,2に示す成分を熱2本ロールにて均一に溶融混合し、冷却、粉砕して半導体封止用エポキシ樹脂組成物を得た。これらの組成物を用いて、次の(i)〜(iv)の諸特性を測定し、結果を表1,2に併記した。
[Examples 1 to 5, Comparative Examples 1 to 7]
The components shown in Tables 1 and 2 were uniformly melt-mixed with two hot rolls, cooled and pulverized to obtain an epoxy resin composition for semiconductor encapsulation. Using these compositions, the following properties (i) to (iv) were measured, and the results are shown in Tables 1 and 2.

(i)難燃性
UL−94規格に基づき、1/16インチ厚の板の難燃性を調べた。なお、1/16インチ厚の板は、温度175℃、成形圧力6.9N/mm2、成形時間120秒の条件で成形、180℃で4時間ポストキュアーすることによって調製した。
(I) Flame retardancy Based on the UL-94 standard, the flame retardancy of a 1/16 inch thick plate was examined. A 1/16 inch thick plate was prepared by molding at a temperature of 175 ° C., a molding pressure of 6.9 N / mm 2 and a molding time of 120 seconds, and post-curing at 180 ° C. for 4 hours.

(ii)高温保管Cu/Agメッキリードフレームとの密着性
100pin−QFPフレーム(Cu合金 C7025,ダイパッド部Agメッキ)にエポキシ樹脂組成物を温度175℃、成形圧力6.9N/mm2、成形時間120秒の条件で成形、180℃で4時間ポストキュアーした。パッケージサイズ14×20×2.7mm。このパッケージ20個を、250℃雰囲気中96時間保管後に超音波探傷装置を用いて剥離の有無を調べた。20%以上の面積で剥離が見られるものを不良とし、不良個数を調べた。
(Ii) Adhesiveness with Cu / Ag plating lead frame stored at high temperature 100pin-QFP frame (Cu alloy C7025, die pad part Ag plating) with epoxy resin composition at temperature 175 ° C., molding pressure 6.9 N / mm 2 , molding time Molding was performed under conditions of 120 seconds and post-curing was performed at 180 ° C. for 4 hours. Package size 14 x 20 x 2.7 mm. Twenty of these packages were stored in a 250 ° C. atmosphere for 96 hours, and then examined for the presence or absence of peeling using an ultrasonic flaw detector. Those in which peeling was observed in an area of 20% or more were regarded as defective, and the number of defects was examined.

(iii)Cuワイヤー高温信頼性
アルミニウム配線を形成した7×7mmの大きさのシリコンチップを100pin−QFPフレーム(Cu合金 C7025,ダイパッド部Agメッキ)に接着し、更にチップ表面のアルミニウム電極とリードフレームとを25μmφのCu線でワイヤボンディングした後、これにエポキシ樹脂組成物を温度175℃、成形圧力6.9N/mm2、成形時間120秒の条件で成形、180℃で4時間ポストキュアーした。パッケージサイズ14×20×2.7mm。このパッケージ20個を200℃雰囲気中1,000時間放置した後、抵抗値を測定し、初期値の10倍以上になったものを不良とし、不良数を調べた。
(Iii) High temperature reliability of Cu wire A 7 × 7 mm silicon chip formed with aluminum wiring is bonded to a 100 pin-QFP frame (Cu alloy C7025, die pad Ag plating), and the aluminum electrode on the chip surface and lead frame And an epoxy resin composition were molded under the conditions of a temperature of 175 ° C., a molding pressure of 6.9 N / mm 2 and a molding time of 120 seconds, and post-cured at 180 ° C. for 4 hours. Package size 14 x 20 x 2.7 mm. After 20 packages were left in an atmosphere of 200 ° C. for 1,000 hours, the resistance value was measured, and those having a value 10 times or more of the initial value were regarded as defective, and the number of defects was examined.

(iv)Cuワイヤーパッケージ、耐湿信頼性
アルミニウム配線を形成した7×7mmの大きさのシリコンチップを100pin−QFPフレーム(Cu合金 C7025,ダイパッド部Agメッキ)に接着し、更にチップ表面のアルミニウム電極とリードフレームとを25μmφのCu線でワイヤボンディングした後、これにエポキシ樹脂組成物を温度175℃、成形圧力6.9N/mm2、成形時間120秒の条件で成形、180℃で4時間ポストキュアーした。パッケージサイズ14×20×2.7mm。このパッケージ20個を130℃,85%RH雰囲気中1,000時間放置した後、抵抗値を測定し、初期値の10倍以上になったものを不良とし、不良数を調べた。
(Iv) Cu wire package, moisture resistance reliability A 7 × 7 mm silicon chip formed with aluminum wiring is bonded to a 100 pin-QFP frame (Cu alloy C7025, die pad portion Ag plating), and an aluminum electrode on the chip surface After wire bonding to the lead frame with a 25 μmφ Cu wire, the epoxy resin composition was molded to this at a temperature of 175 ° C., a molding pressure of 6.9 N / mm 2 , a molding time of 120 seconds, and post-cured at 180 ° C. for 4 hours. did. Package size 14 x 20 x 2.7 mm. Twenty of these packages were allowed to stand in an atmosphere of 130 ° C. and 85% RH for 1,000 hours, and the resistance value was measured.

Figure 2015093971
Figure 2015093971

Figure 2015093971
Figure 2015093971

エポキシ樹脂1:o−クレゾールノボラック型エポキシ樹脂、エピクロンN−665−EXP−S(DIC製、エポキシ当量200)
エポキシ樹脂2:下記式(2)で示されるエポキシ樹脂、EPPN−502H(日本化薬製、エポキシ当量168、加水分解性塩素量500ppm、ナトリウム量1ppm、カリウム量1ppm)

Figure 2015093971
(式中、aは1〜10の整数である。)
硬化剤:フェノールノボラック樹脂、DL−92(明和化成製、フェノール性水酸基当量110、ナトリウム量1ppm、カリウム量1ppm)
無機質充填剤:球状溶融シリカ(龍森製、平均粒径20μm)
水酸化ビスマス(日本化学産業製、硝酸イオン量6.0質量%)
次炭酸ビスマス(日本化学産業製、硝酸イオン量0.5質量%)
ホスファゼン化合物:合成例Aで得られたホスファゼン化合物A
酸化ビスマス(和光純薬製)
ビスマス系無機イオン交換体:IXE−500(東亞合成製)
三酸化アンチモン:PATOX CZ(日本精鉱製)
水酸化アルミニウム:ハイジライト320I(昭和電工製)
酸化アルミニウム:AO−41R(アドマテックス製)
ハイドロタルサイト:DHT−4A−2(協和化学製)
硬化促進剤:トリフェニルホスフィン(北興化学製)
離型剤:カルナバワックス(日興ファインプロダクツ製)
カーボンブラック:デンカブラック(電気化学工業製)
シランカップリング剤1:KBM−403、γ−グリシドキシプロピルトリメトキシシラン(信越化学工業製)
シランカップリング剤2:KBM−803P、γ−メルカプトプロピルトリメトキシシラン(信越化学工業製) Epoxy resin 1: o-cresol novolac type epoxy resin, Epicron N-665-EXP-S (DIC, epoxy equivalent 200)
Epoxy resin 2: Epoxy resin represented by the following formula (2), EPPN-502H (manufactured by Nippon Kayaku, epoxy equivalent 168, hydrolyzable chlorine content 500 ppm, sodium content 1 ppm, potassium content 1 ppm)
Figure 2015093971
(In the formula, a is an integer of 1 to 10.)
Curing agent: phenol novolak resin, DL-92 (Maywa Kasei, phenolic hydroxyl group equivalent 110, sodium 1 ppm, potassium 1 ppm)
Inorganic filler: Spherical fused silica (manufactured by Tatsumori, average particle size 20 μm)
Bismuth hydroxide (manufactured by Nippon Chemical Industry Co., Ltd., nitrate ion content 6.0% by mass)
Bismuth carbonate (manufactured by Nippon Chemical Industry Co., Ltd., nitrate content 0.5% by mass)
Phosphazene compound: Phosphazene compound A obtained in Synthesis Example A
Bismuth oxide (made by Wako Pure Chemical Industries)
Bismuth-based inorganic ion exchanger: IXE-500 (manufactured by Toagosei)
Antimony trioxide: PATOX CZ (manufactured by Nippon concentrate)
Aluminum hydroxide: Heidilite 320I (made by Showa Denko)
Aluminum oxide: AO-41R (manufactured by Admatechs)
Hydrotalcite: DHT-4A-2 (manufactured by Kyowa Chemical)
Curing accelerator: Triphenylphosphine (manufactured by Hokuko Chemical)
Mold release agent: Carnauba wax (Nikko Fine Products)
Carbon black: Denka Black (manufactured by Denki Kagaku Kogyo)
Silane coupling agent 1: KBM-403, γ-glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)
Silane coupling agent 2: KBM-803P, γ-mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.)

表1,2の結果から明らかなように、本発明の半導体封止用エポキシ樹脂組成物の硬化物で成形された半導体装置は、高温に長期保管した場合でも、CuLFやAgメッキとの密着性に優れ、Cuワイヤー、Cuワイヤー/Alパッドの接合部の断線がなく、信頼性に優れている。
しかも、Br化エポキシ樹脂等の臭素化物、三酸化アンチモン等のアンチモン化合物を樹脂組成物中に含有しないので、人体・環境に対する悪影響がないものである。
As is clear from the results in Tables 1 and 2, the semiconductor device molded with the cured product of the epoxy resin composition for semiconductor encapsulation of the present invention has adhesion with CuLF and Ag plating even when stored for a long time at a high temperature. Excellent reliability with no disconnection at the joint of Cu wire or Cu wire / Al pad.
In addition, brominated products such as Br-epoxy epoxy resins and antimony compounds such as antimony trioxide are not contained in the resin composition, so that there is no adverse effect on the human body and the environment.

Claims (5)

(A)エポキシ樹脂、
(B)硬化剤、
(C)無機質充填剤、
(D)水酸化ビスマス又は次炭酸ビスマス、
(E)下記平均組成式(1)で示されるホスファゼン化合物
Figure 2015093971
[式中、Xは単結合、又はCH2、C(CH32、SO2、S、O、及びO(CO)Oから選ばれる基であり、d,e,nは0≦d≦0.25n、0≦e<2n、2d+e=2n、3≦n≦1,000を満たす数である。]
を必須成分とし、臭素化物、赤リン、リン酸エステル及びアンチモン化合物を実質的に含まないことを特徴とする半導体封止用エポキシ樹脂組成物。
(A) epoxy resin,
(B) a curing agent,
(C) inorganic filler,
(D) bismuth hydroxide or bismuth subcarbonate,
(E) A phosphazene compound represented by the following average composition formula (1)
Figure 2015093971
[Wherein, X is a single bond or a group selected from CH 2 , C (CH 3 ) 2 , SO 2 , S, O, and O (CO) O, and d, e, and n are 0 ≦ d ≦ 0.25n, 0 ≦ e <2n, 2d + e = 2n, 3 ≦ n ≦ 1,000. ]
Is an essential component, and is substantially free of bromide, red phosphorus, phosphate ester and antimony compound.
(D)水酸化ビスマス又は次炭酸ビスマスの添加量が、(A),(B)成分の合計100質量部に対し、3〜10質量部であることを特徴とする請求項1に記載のエポキシ樹脂組成物。   (D) The epoxy according to claim 1, wherein the addition amount of bismuth hydroxide or bismuth carbonate is 3 to 10 parts by mass with respect to 100 parts by mass in total of the components (A) and (B). Resin composition. (A)エポキシ樹脂のエポキシ当量が210未満であることを特徴とする請求項1又は2に記載のエポキシ樹脂組成物。   (A) The epoxy equivalent of an epoxy resin is less than 210, The epoxy resin composition of Claim 1 or 2 characterized by the above-mentioned. (A)エポキシ樹脂が、下記一般式(2)で示されるエポキシ樹脂であることを特徴とする請求項1〜3のいずれか1項に記載のエポキシ樹脂組成物。
Figure 2015093971
(式中、aは1〜10の整数である。)
The epoxy resin composition according to any one of claims 1 to 3, wherein the epoxy resin (A) is an epoxy resin represented by the following general formula (2).
Figure 2015093971
(In the formula, a is an integer of 1 to 10.)
請求項1〜4のいずれか1項に記載のエポキシ樹脂組成物の硬化物で封止した半導体装置。   The semiconductor device sealed with the hardened | cured material of the epoxy resin composition of any one of Claims 1-4.
JP2013235798A 2013-11-14 2013-11-14 Epoxy resin composition for semiconductor encapsulation and semiconductor device Active JP6115451B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013235798A JP6115451B2 (en) 2013-11-14 2013-11-14 Epoxy resin composition for semiconductor encapsulation and semiconductor device
KR1020140155798A KR102184955B1 (en) 2013-11-14 2014-11-11 Epoxy resin composition for sealing semiconductor and semiconductor device
CN201410646153.3A CN104629259B (en) 2013-11-14 2014-11-14 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013235798A JP6115451B2 (en) 2013-11-14 2013-11-14 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Publications (2)

Publication Number Publication Date
JP2015093971A true JP2015093971A (en) 2015-05-18
JP6115451B2 JP6115451B2 (en) 2017-04-19

Family

ID=53196598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013235798A Active JP6115451B2 (en) 2013-11-14 2013-11-14 Epoxy resin composition for semiconductor encapsulation and semiconductor device

Country Status (3)

Country Link
JP (1) JP6115451B2 (en)
KR (1) KR102184955B1 (en)
CN (1) CN104629259B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018109766A1 (en) 2016-12-14 2018-06-21 Bromine Compounds Ltd. Antimony free flame-retarded epoxy compositions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003192876A (en) * 2001-12-27 2003-07-09 Nitto Denko Corp Resin composition for sealing semiconductor, and semiconductor device using the same
JP2007284461A (en) * 2005-04-04 2007-11-01 Shin Etsu Chem Co Ltd Flame-retardant and epoxy resin composition for sealing semiconductor comprising the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1038226C (en) * 1992-12-23 1998-05-06 大同市药物研究所 Jellied pectin bismuth medicine
EP1287071A1 (en) * 2001-04-23 2003-03-05 Sumitomo Bakelite Co., Ltd. Epoxy resin composition and semiconductor device
JP4692744B2 (en) 2004-08-02 2011-06-01 信越化学工業株式会社 Epoxy resin composition for semiconductor encapsulation and semiconductor device
US7511383B2 (en) * 2005-04-04 2009-03-31 Shin-Etsu Chemical Co., Ltd. Flame retardant and an epoxy resin composition comprising the same for encapsulating semiconductor devices

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003192876A (en) * 2001-12-27 2003-07-09 Nitto Denko Corp Resin composition for sealing semiconductor, and semiconductor device using the same
JP2007284461A (en) * 2005-04-04 2007-11-01 Shin Etsu Chem Co Ltd Flame-retardant and epoxy resin composition for sealing semiconductor comprising the same

Also Published As

Publication number Publication date
KR102184955B1 (en) 2020-12-01
JP6115451B2 (en) 2017-04-19
CN104629259A (en) 2015-05-20
CN104629259B (en) 2021-07-20
KR20150056048A (en) 2015-05-22

Similar Documents

Publication Publication Date Title
JP5130912B2 (en) Epoxy resin composition and semiconductor device
JP6300744B2 (en) Semiconductor sealing resin composition and semiconductor device
JPWO2012070529A1 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2015174874A (en) Resin composition for encapsulating semiconductor and semiconductor device
JP5507477B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP6094958B2 (en) Epoxy resin composition for sealing power semiconductor element of power module and power module using the same
JP2013209450A (en) Epoxy resin composition for sealing semiconductor
JP6115451B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2012241178A (en) Epoxy resin composition for semiconductor sealing and semiconductor device
JP2008231242A (en) Epoxy resin composition and semiconductor device
JP5673237B2 (en) Resin composition for sealing and electronic component device
JP2011094106A (en) Resin composition for sealing semiconductor, and semiconductor device
JP2021187868A (en) Thermosetting resin composition and electronic device
JP5944356B2 (en) Semiconductor sealing resin composition and semiconductor device provided with cured product thereof
JP5943486B2 (en) Semiconductor sealing resin composition and semiconductor device provided with cured product thereof
JP3824064B2 (en) Flame-retardant epoxy resin composition for semiconductor encapsulation and semiconductor device
JP7296578B2 (en) Semiconductor sealing composition and electronic component device
JP2011094105A (en) Resin composition for sealing semiconductor, and semiconductor device
JP2000026707A (en) Epoxy resin composition and electronic part device
JP2003138097A (en) Epoxy resin composition for semiconductor encapsulation, and semiconductor device using it
JP5943488B2 (en) Semiconductor sealing resin composition and semiconductor device provided with cured product thereof
JP2015000888A (en) Epoxy resin composition for sealing semiconductor, and semiconductor device
JP2023093108A (en) Resin composition, electronic component device, method for manufacturing electronic component device, and method for producing resin composition
JP2023149827A (en) Semiconductor sealing resin composition and semiconductor device
JP4348522B2 (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170306

R150 Certificate of patent or registration of utility model

Ref document number: 6115451

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150