JP2007284461A - Flame-retardant and epoxy resin composition for sealing semiconductor comprising the same - Google Patents

Flame-retardant and epoxy resin composition for sealing semiconductor comprising the same Download PDF

Info

Publication number
JP2007284461A
JP2007284461A JP2006099556A JP2006099556A JP2007284461A JP 2007284461 A JP2007284461 A JP 2007284461A JP 2006099556 A JP2006099556 A JP 2006099556A JP 2006099556 A JP2006099556 A JP 2006099556A JP 2007284461 A JP2007284461 A JP 2007284461A
Authority
JP
Japan
Prior art keywords
epoxy resin
flame retardant
mass
parts
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006099556A
Other languages
Japanese (ja)
Other versions
JP4748592B2 (en
Inventor
Masakazu Osada
将一 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006099556A priority Critical patent/JP4748592B2/en
Publication of JP2007284461A publication Critical patent/JP2007284461A/en
Application granted granted Critical
Publication of JP4748592B2 publication Critical patent/JP4748592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fireproofing Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flame-retardant that is non-toxic and does not reduce the reliability of a semiconductor apparatus and a composition for sealing a semiconductor device comprising the flame-retardant. <P>SOLUTION: The flame-retardant comprises inorganic porous fine particles, a phosphazene compound, represented by average compositional formula (1), supported on the porous inorganic fine particles, and a resin layer covering the porous inorganic fine particles supporting the phosphazene compound, where the resin has, by a thermobalance, a 10% weight-loss temperature of 300-500°C by thermal decomposition when its temperature is raised from room temperature at a rate of 10°C/min. In the formula, X is a single bond or a group selected from the group consisting of CH<SB>2</SB>, C(CH<SB>3</SB>)<SB>2</SB>, SO<SB>2</SB>, S, O and O(CO)O; n is an integer satisfying 3≤n≤1,000; and d and e are each a number satisfying 2d+e=2n. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体封止用樹脂のための難燃剤に関し、詳細には、ホスファゼン化合物を多孔性粒子に担持させ、該粒子を所定の熱分解性の樹脂層で被覆してなる難燃剤、及び、該難燃剤を含む半導体封止用樹脂組成物に関する。   The present invention relates to a flame retardant for a semiconductor sealing resin. Specifically, the phosphazene compound is supported on porous particles, and the particles are coated with a predetermined thermally decomposable resin layer, and The present invention also relates to a semiconductor sealing resin composition containing the flame retardant.

ダイオード、トランジスター、IC、LSI、超LSI等の半導体素子は、主として、エポキシ樹脂組成物で封止される。得られた半導体デバイスは、家電製品、コンピュータ等、生活環境のあらゆる所で使用されるため、万が一の火災に備えて、難燃性が要求される。   Semiconductor elements such as diodes, transistors, ICs, LSIs, and super LSIs are mainly sealed with an epoxy resin composition. The obtained semiconductor device is used everywhere in the living environment such as home appliances and computers, so that it is required to have flame resistance in preparation for an emergency fire.

難燃性を付与するために、一般に、ハロゲン化エポキシ樹脂と三酸化アンチモンとが配合されている。このハロゲン化エポキシ樹脂と三酸化アンチモンとの組み合わせは、気相においてラジカルトラップ、空気遮断効果が大きく、その結果、高い難燃効果が得られるものである。   In order to impart flame retardancy, a halogenated epoxy resin and antimony trioxide are generally blended. The combination of the halogenated epoxy resin and antimony trioxide has a large radical trap and air blocking effect in the gas phase, and as a result, a high flame retardant effect can be obtained.

しかし、ハロゲン化エポキシ樹脂は燃焼時に有毒ガスを発生するという問題があり、また三酸化アンチモンにも毒性があるため、人体、環境に対する影響を考慮すると、これらの難燃剤を樹脂組成物中に全く含まないことが好ましい。さらに、ハロゲン化エポキシ樹脂は、高温下で発生するBrラジカルが半導体装置のAu線とAl線の結合部のAu―Al合金と反応し、Al−Br化合物を形成するため、半導体装置が耐熱性に劣る。   However, halogenated epoxy resins have the problem of generating toxic gases during combustion, and antimony trioxide is also toxic. Therefore, considering the effects on the human body and the environment, these flame retardants are completely contained in the resin composition. It is preferably not included. Further, in the halogenated epoxy resin, the Br radical generated at a high temperature reacts with the Au—Al alloy at the bonding portion between the Au wire and the Al wire of the semiconductor device to form an Al—Br compound. Inferior to

ハロゲン化エポキシ樹脂あるいは三酸化アンチモンの代替として、Al(OH)、Mg(OH)等の水酸化物、赤リン、リン酸エステル等のリン系難燃剤等の検討がなされてきている。しかし、これらの水酸化物は難燃効果が低いため、難燃組成とするためには、エポキシ樹脂組成物中に水酸化物を多量に添加しなければならず、その結果、組成物の粘度が上昇し、成形時にボイド、ワイヤー流れ等の成形不良が発生するという問題がある。また、赤リン、リン酸エステル等のリン系難燃剤は、半導体装置が高湿下に置かれると加水分解されてリン酸が生成し、このリン酸がアルミ配線を腐食させ、信頼性を低下させるという大きな問題があった。 As alternatives to halogenated epoxy resins or antimony trioxide, studies have been made on hydroxides such as Al (OH) 3 and Mg (OH) 2 , phosphorus flame retardants such as red phosphorus and phosphate esters, and the like. However, since these hydroxides have a low flame retardant effect, in order to obtain a flame retardant composition, a large amount of hydroxide must be added to the epoxy resin composition, resulting in a viscosity of the composition. As a result, there is a problem in that molding defects such as voids and wire flow occur during molding. Phosphorus flame retardants such as red phosphorus and phosphate esters are hydrolyzed when semiconductor devices are placed under high humidity to produce phosphoric acid, which corrodes aluminum wiring and lowers reliability. There was a big problem.

この問題を解決するため、赤リンの表面にSi組成からなる被覆層で被覆した化合物を難燃剤として使用したエポキシ樹脂組成物が提案されているが(特許文献1)、上記の耐湿信頼性は改善されていないのが現状である。 In order to solve this problem, there has been proposed an epoxy resin composition using a compound in which the surface of red phosphorus is coated with a coating layer composed of a Si X O Y composition as a flame retardant (Patent Document 1). The current situation is that reliability has not been improved.

リン系難燃剤として、環状ホスファゼン化合物を、使用したエポキシ樹脂組成物も提案されているが(特許文献2)、上述のように、リン酸化合物が発生して、半導体素子の高温動作に影響を及ぼすことがある。   An epoxy resin composition using a cyclic phosphazene compound as a phosphorus-based flame retardant has also been proposed (Patent Document 2). As described above, a phosphoric acid compound is generated, which affects the high-temperature operation of a semiconductor element. May have an effect.

一方、芯物質と膜材物質からなるカプセル型難燃剤が知られている(特許文献3)。該芯物質は難燃作用を有し、膜材物質は30℃における曲げ弾性率が2000kg/mm2以下の有機材料、例えばエポキシ樹脂またはアクリル樹脂である。芯物質は、金属水酸化物、ホウ酸亜鉛であるが、上述のとおり、これらの難燃効果は低い。また、該カプセル型難燃剤は、メカノフュージョン法により調製されるが、該方法が適用できる芯物質と膜材物質の組合せが限定される。
特許第2843244号公報 特開平10−259292号公報 特開平11−255955号公報
On the other hand, a capsule-type flame retardant composed of a core material and a film material is known (Patent Document 3). The core material has a flame retardant action, and the film material is an organic material having a flexural modulus at 30 ° C. of 2000 kg / mm 2 or less, such as an epoxy resin or an acrylic resin. The core material is a metal hydroxide or zinc borate, but as described above, these flame retardant effects are low. The capsule flame retardant is prepared by a mechanofusion method, but the combination of a core material and a film material that can be applied to the method is limited.
Japanese Patent No. 2843244 JP-A-10-259292 JP 11-255955 A

そこで、本発明は、毒性がなく、半導体装置の信頼性を低下することのない、難燃剤及び該難燃剤を含む、半導体素子封止用組成物を提供することを目的とする。   Then, an object of this invention is to provide the composition for semiconductor element sealing containing a flame retardant and this flame retardant which does not reduce the reliability of a semiconductor device without toxicity.

即ち、本発明は、下記のものである。
多孔性無機微粒子、
前記多孔性無機微粒子に担持された下記平均組成式(1)で示されるホスファゼン化合物、及び、
前記ホスファゼン化合物を担持する多孔性無機微粒子を被覆する樹脂層からなり、
前記樹脂は、熱天秤にて、空気下で、室温から10℃/分で昇温したときに熱分解による重量減が10重量%になる温度が300〜500℃である、
難燃剤。
That is, the present invention is as follows.
Porous inorganic fine particles,
The phosphazene compound represented by the following average composition formula (1) supported on the porous inorganic fine particles, and
A resin layer covering porous inorganic fine particles carrying the phosphazene compound;
The resin has a temperature of 300 to 500 ° C. at which the weight loss due to thermal decomposition becomes 10% by weight when heated from room temperature to 10 ° C./min under air on a thermobalance.
Flame retardants.

Figure 2007284461

[但し、Xは単結合、又はCH、C(CH、SO、S、O及びO(CO)Oからなる郡より選ばれる基であり、nは3≦n≦1000の整数であり、d及びeは2d+e=2nを満たす数である。]
Figure 2007284461

[However, X is a single bond or a group selected from the group consisting of CH 2 , C (CH 3 ) 2 , SO 2 , S, O and O (CO) O, and n is an integer of 3 ≦ n ≦ 1000. And d and e are numbers satisfying 2d + e = 2n. ]

また、本発明は、
(A)難燃剤
(B)エポキシ樹脂
(C)硬化剤
(D)無機充填材
を含む半導体封止用エポキシ樹脂組成物であって、
(A)難燃剤が、上記本発明の難燃剤であり、
(A)難燃剤は、(B)エポキシ樹脂と(C)の合計100質量部に対して5〜50質量部で含まれ、及び
該半導体封止用エポキシ樹脂組成物は、臭素化物及びアンチモン化合物を含まない、
ことを特徴とする半導体封止用エポキシ樹脂組成物である。
さらに、本発明は該樹脂組成物で封止された半導体装置を提供する。
The present invention also provides:
(A) Flame retardant (B) Epoxy resin (C) Curing agent (D) An epoxy resin composition for semiconductor encapsulation containing an inorganic filler,
(A) The flame retardant is the flame retardant of the present invention,
(A) Flame retardant is contained in 5 to 50 parts by mass with respect to a total of 100 parts by mass of (B) epoxy resin and (C), and the epoxy resin composition for semiconductor encapsulation is brominated and antimony compound Not including,
An epoxy resin composition for semiconductor encapsulation characterized by the above.
Furthermore, the present invention provides a semiconductor device sealed with the resin composition.

上記本発明の難燃剤は、アンチモン、ハロゲンと異なり、毒性が無い。また、樹脂層で被覆されているので、高湿下におかれたときにも、加水分解することが無く、半導体装置の信頼性を損なうことが無い。該樹脂層は、ホスファゼン化合物の難燃性が発揮されるのに適切な熱分解性を備え、本発明の樹脂組成物で封止された半導体装置は、難燃規格UL-94で、V-0を達成することができる。   Unlike the antimony and halogen, the flame retardant of the present invention has no toxicity. Further, since it is covered with a resin layer, it does not hydrolyze even when placed under high humidity, and the reliability of the semiconductor device is not impaired. The resin layer has an appropriate thermal decomposability for exhibiting the flame retardancy of the phosphazene compound, and the semiconductor device encapsulated with the resin composition of the present invention is flame retardant standard UL-94, V- 0 can be achieved.

以下、本発明について更に詳しく説明する。
本発明の難燃剤は、下記平均組成式(1)で示されるホスファゼン化合物を活性成分とするものである。
Hereinafter, the present invention will be described in more detail.
The flame retardant of the present invention comprises a phosphazene compound represented by the following average composition formula (1) as an active ingredient.

Figure 2007284461

[但し、Xは単結合、又はCH、C(CH、SO、S、O及びO(CO)Oからなる群より選ばれる基であり、nは3≦n≦1000の整数であり、d及びeは2d+e=2nを満たす数である。]
Figure 2007284461

[Wherein X is a single bond or a group selected from the group consisting of CH 2 , C (CH 3 ) 2 , SO 2 , S, O and O (CO) O, and n is an integer of 3 ≦ n ≦ 1000. And d and e are numbers satisfying 2d + e = 2n. ]

式(1)において、好ましくはnは3〜10であり、合成上特に好ましくはn=3である。   In the formula (1), n is preferably 3 to 10, and particularly preferably n = 3 in terms of synthesis.

好ましくは、d及びeは、0≦d≦0.25n、及び1.5n≦e≦2nである。また、Xが単結合である場合、下記構造、   Preferably, d and e are 0 ≦ d ≦ 0.25n and 1.5n ≦ e ≦ 2n. When X is a single bond, the following structure:

Figure 2007284461
は下記構造、
Figure 2007284461
Is the following structure,

Figure 2007284461
を表す。
Figure 2007284461
Represents.

平均組成式(1)で示されるホスファゼン化合物を、担持した粒子を封止又は被覆する樹脂は、熱天秤にて、空気下で、室温から10℃/分で昇温したときに熱分解による重量減が10重量%になる温度が300〜500℃、好ましくは340℃〜500℃である。   The resin which seals or coats the particles carrying the phosphazene compound represented by the average composition formula (1) is a weight due to thermal decomposition when the temperature is raised from room temperature to 10 ° C./min under air on a thermobalance. The temperature at which the reduction is 10% by weight is 300 to 500 ° C, preferably 340 to 500 ° C.

重量減が10重量%になる温度が前記下限値より下であると、燃焼下に晒される前に、粒子が露出され得、それに担持されたホスファゼン化合物が半導体部品と接して、該部品を損傷する可能性があるので、好ましくない。一方、上記上限値より上である場合、燃焼時においても、ホスファゼン化合物が樹脂層に被覆されたままとなり、難燃効果を発揮できない。   If the temperature at which the weight loss is 10% by weight is below the lower limit value, the particles can be exposed before being exposed to combustion, and the phosphazene compound supported on the particles contacts the semiconductor component and damages the component. This is not preferable. On the other hand, when it is above the upper limit, the phosphazene compound remains covered with the resin layer even during combustion, and the flame retardancy effect cannot be exhibited.

被覆樹脂層を構成する樹脂または樹脂組成物としてはエポキシ樹脂、ビスマレイミド樹脂、シリコーン樹脂、シアネートエステル樹脂、メチルメタクリレート・ブタジエン・スチレン樹脂、又はポリスチレン樹脂と、必要に応じてこれらの硬化剤を含む樹脂組成物が使用され、好ましくはエポキシ樹脂と、フェノール樹脂硬化剤を含む組成物、及びビスマレイミド樹脂である。被覆樹脂または組成物は、多孔性微粒子の比表面積にも依存するが、ホスファゼン化合物1質量部に対して、典型的には0.05〜1.5質量部、より典型的には0.1〜0.5質量部使用される。   The resin or resin composition constituting the coating resin layer includes an epoxy resin, a bismaleimide resin, a silicone resin, a cyanate ester resin, a methyl methacrylate / butadiene / styrene resin, or a polystyrene resin and, if necessary, these curing agents. A resin composition is used, preferably an epoxy resin, a composition containing a phenol resin curing agent, and a bismaleimide resin. The coating resin or composition depends on the specific surface area of the porous fine particles, but is typically 0.05 to 1.5 parts by weight, more typically 0.1 parts by weight with respect to 1 part by weight of the phosphazene compound. ~ 0.5 parts by weight are used.

前述のホスファゼン化合物を担持する多孔性無機微粒子としては、二酸化珪素、珪酸カルシウム、アパタイト、アルミナ、ゼオライトなどが挙げられ、好ましくは二酸化珪素である。平均粒径は0.5〜20μm、好ましくは1〜10μmで、比表面積は100〜600m/g、好ましくは150〜400m/gである。 Examples of the porous inorganic fine particles supporting the phosphazene compound include silicon dioxide, calcium silicate, apatite, alumina, zeolite, and the like, and preferably silicon dioxide. The average particle diameter is 0.5 to 20 μm, preferably 1 to 10 μm, and the specific surface area is 100 to 600 m 2 / g, preferably 150 to 400 m 2 / g.

本発明の難燃剤の製造は、下記工程により作ることができる。
(1)ホスファゼン化合物を溶媒に溶解して溶液を調製する。
(2)前記ホスファゼン溶液を、減圧下で、多孔性無機微粒子に添加して、所定時間攪拌した後、有機溶媒を留去する。
(3)別途、被覆層樹脂または組成物を溶媒に溶解して溶液を調製する
(4)工程(2)で得られたホスファゼン化合物を担持した多孔性微粒子に被覆樹脂溶液を添加して、所定時間加熱下で攪拌した後、溶媒を留去する。
(5)工程(4)で得られた、樹脂組成物層で被覆された微粒子を、必要に応じて加熱して該被覆樹脂層を硬化する。
工程(3)は、(1)と並行して行ってもよい。
Production of the flame retardant of the present invention can be made by the following steps.
(1) A solution is prepared by dissolving a phosphazene compound in a solvent.
(2) The phosphazene solution is added to the porous inorganic fine particles under reduced pressure and stirred for a predetermined time, and then the organic solvent is distilled off.
(3) Separately, a coating layer resin or composition is dissolved in a solvent to prepare a solution. (4) The coating resin solution is added to the porous fine particles carrying the phosphazene compound obtained in step (2), After stirring under heating for hours, the solvent is distilled off.
(5) The fine particles coated with the resin composition layer obtained in step (4) are heated as necessary to cure the coated resin layer.
Step (3) may be performed in parallel with (1).

ここで減圧の程度は、ホスファゼン化合物が蒸発揮散しない圧力の範囲内であり、使用する溶媒の性質、および多孔性微粒子の細孔径に応じて、調整することが望ましい。   Here, the degree of decompression is within the range of the pressure at which the phosphazene compound does not evaporate, and it is desirable to adjust it according to the nature of the solvent used and the pore diameter of the porous fine particles.

(1)で示されるホスファゼン化合物は、難燃剤中に10〜60質量%、更に好ましくは30〜60質量%の割合で存在することが好ましい。10質量%以下では、単位質量当たりの難燃効果が低い為、後述する半導体封止用組成物中への添加量が多量になり、コスト的に不利となる。一方、多孔性微粒子の比表面積にも拠るが、通常、前記上限値を超える量のホスファゼン化合物を、担持することは難しい。 The phosphazene compound represented by (1) is preferably present in the flame retardant in a proportion of 10 to 60% by mass, more preferably 30 to 60% by mass. When the amount is 10% by mass or less, since the flame retardant effect per unit mass is low, the amount added to the composition for sealing a semiconductor described later becomes large, which is disadvantageous in cost. On the other hand, although it depends on the specific surface area of the porous fine particles, it is usually difficult to carry an amount of the phosphazene compound exceeding the upper limit.

得られた本発明の難燃剤は、熱安定性の樹脂もしくは樹脂組成物で被覆されている為、耐熱性が高く、300℃以下の温度では、ホスファゼン化合物が分解してリン酸化合物が発生することもない。また、耐水性が高く、水抽出試験においてもリン酸イオン等が漏出することがない。そして、燃焼時高温に晒されると、被覆樹脂層が熱分解され、ホスファゼン化合物が露出されて難燃効果を発揮する。   Since the obtained flame retardant of the present invention is coated with a heat-stable resin or resin composition, it has high heat resistance, and at a temperature of 300 ° C. or lower, the phosphazene compound is decomposed to generate a phosphate compound. There is nothing. Moreover, the water resistance is high, and phosphate ions and the like do not leak out even in a water extraction test. And when exposed to high temperature at the time of combustion, a coating resin layer will be thermally decomposed and a phosphazene compound will be exposed and the flame-retardant effect will be exhibited.

本発明は、上記難燃剤(以下、(A)難燃剤とする)を含む、エポキシ樹脂半導体封止用組成物にも関する。(A)難燃剤は、後述する(B)エポキシ樹脂と(C)硬化剤合計100質量部に対して5〜50質量部、好ましくは5〜30質量部で配合される。(A)難燃剤の多孔性粒子の粒径を調整することにより、組成物の流動性及び成形性を調整することができる。   This invention relates also to the composition for epoxy resin semiconductor sealing containing the said flame retardant (henceforth (A) flame retardant). (A) A flame retardant is mix | blended in 5-50 mass parts with respect to 100 mass parts of (B) epoxy resin and (C) hardening | curing agent mentioned later, Preferably it is 5-30 mass parts. (A) The fluidity and moldability of the composition can be adjusted by adjusting the particle size of the porous particles of the flame retardant.

[(B)エポキシ樹脂]
本発明の組成物において(B)エポキシ樹脂としては、ノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールアルカン型エポキシ樹脂、アラルキル型エポキシ樹脂、ビフェニル骨格含有アラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、複素環型エポキシ樹脂、ナフタレン環含有エポキシ樹脂、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、スチルベン型エポキシ樹脂等が挙げられ、これらのうち1種又は2種以上を併用することができる。これらのうちでは、芳香環を含むエポキシ樹脂、例えばクレゾールノボラック型、トリフェノールアルカン型、が好ましい。なお、本発明において、臭素化エポキシ樹脂は配合されない。
[(B) Epoxy resin]
In the composition of the present invention, as the epoxy resin (B), a novolak type epoxy resin, a cresol novolak type epoxy resin, a triphenolalkane type epoxy resin, an aralkyl type epoxy resin, a biphenyl skeleton-containing aralkyl type epoxy resin, a biphenyl type epoxy resin, Examples include dicyclopentadiene type epoxy resins, heterocyclic type epoxy resins, naphthalene ring-containing epoxy resins, bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, stilbene type epoxy resins, and the like. Can be used together. Among these, an epoxy resin containing an aromatic ring, for example, a cresol novolac type or a triphenolalkane type is preferable. In the present invention, a brominated epoxy resin is not blended.

上記エポキシ樹脂は、加水分解性塩素が1000ppm以下、特に500ppm以下であり、ナトリウム及びカリウムはそれぞれ10ppm以下とすることが好ましい。加水分解性塩素が1000ppmを超えたり、ナトリウム又はカリウムが10ppmを超える場合は、封止された半導体装置が長時間高温高湿下に放置された場合の耐湿性に劣る場合がある。   The epoxy resin has a hydrolyzable chlorine content of 1000 ppm or less, particularly 500 ppm or less, and sodium and potassium are each preferably 10 ppm or less. When hydrolyzable chlorine exceeds 1000 ppm or sodium or potassium exceeds 10 ppm, the sealed semiconductor device may be inferior in moisture resistance when left under high temperature and high humidity for a long time.

[(C)硬化剤]
(C)硬化剤としては、フェノール樹脂が好ましく、具体的には、フェノールノボラック樹脂、ナフタレン環含有フェノール樹脂、アラルキル型フェノール樹脂、トリフェノールアルカン型フェノール樹脂、ビフェニル骨格含有アラルキル型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、複素環型フェノール樹脂、ナフタレン環含有フェノール樹脂、ビスフェノールA型樹脂、ビスフェノールF型樹脂等のビスフェノール型フェノール樹脂などが挙げられ、これらのうち1種又は2種以上を併用することができる。
[(C) Curing agent]
(C) The curing agent is preferably a phenol resin, specifically, a phenol novolac resin, a naphthalene ring-containing phenol resin, an aralkyl type phenol resin, a triphenolalkane type phenol resin, a biphenyl skeleton-containing aralkyl type phenol resin, or a biphenyl type. Examples include phenol resins, alicyclic phenol resins, heterocyclic phenol resins, naphthalene ring-containing phenol resins, bisphenol A type resins, bisphenol F type resins and the like, and one or more of these. Can be used in combination.

上記硬化剤は、エポキシ樹脂と同様に、ナトリウム及びカリウムをそれぞれ10ppm以下とすることが好ましい。ナトリウム又はカリウムが10ppmを超える場合は、長時間高温高湿下に半導体装置を放置すると、耐湿性が劣化する場合がある。   It is preferable that the said hardening | curing agent shall make sodium and potassium each 10 ppm or less similarly to an epoxy resin. When sodium or potassium exceeds 10 ppm, moisture resistance may deteriorate if the semiconductor device is left under high temperature and high humidity for a long time.

(B)成分に対する(C)成分の配合割合については特に制限されず、従来一般的に採用されているエポキシ樹脂を硬化し得る有効量とすればよいが、硬化剤としてフェノール樹脂を用いる場合、(B)成分中に含まれるエポキシ基1モルに対して、硬化剤中に含まれるフェノール性水酸基のモル比が、通常0.5〜1.5、特に0.8〜1.2の範囲とすることが好ましい。   The blending ratio of the component (C) with respect to the component (B) is not particularly limited, and may be an effective amount capable of curing an epoxy resin that has been generally employed conventionally, but when a phenol resin is used as a curing agent, (B) The molar ratio of the phenolic hydroxyl group contained in the curing agent with respect to 1 mol of the epoxy group contained in the component is usually in the range of 0.5 to 1.5, particularly 0.8 to 1.2. It is preferable to do.

また、本発明において、エポキシ樹脂と硬化剤との硬化反応を促進させるため、硬化促進剤を用いることが好ましい。この硬化促進剤は、硬化反応を促進させるものであれば特に制限はなく、例えばトリフェニルホスフィン、トリブチルホスフィン、トリ(p−メチルフェニル)ホスフィン、トリ(ノニルフェニル)ホスフィン、トリフェニルホスフィン・トリフェニルボラン、テトラフェニルホスフィン・テトラフェニルボレート、トリフェニルホスフィンと1,4−ベンゾキノンの付加物などのリン系化合物、トリエチルアミン、ベンジルジメチルアミン、α−メチルベンジルジメチルアミン、1,8−ジアザビシクロ(5.4.0)ウンデセン−7などの第3級アミン化合物、2−エチル−4−メチルイミダゾール、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾールなどのイミダゾール化合物等を使用することができる。     In the present invention, it is preferable to use a curing accelerator in order to accelerate the curing reaction between the epoxy resin and the curing agent. The curing accelerator is not particularly limited as long as it accelerates the curing reaction. For example, triphenylphosphine, tributylphosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) phosphine, triphenylphosphine / triphenyl. Phosphorus compounds such as borane, tetraphenylphosphine / tetraphenylborate, an adduct of triphenylphosphine and 1,4-benzoquinone, triethylamine, benzyldimethylamine, α-methylbenzyldimethylamine, 1,8-diazabicyclo (5.4 0.0) Tertiary amine compounds such as undecene-7, imidazole compounds such as 2-ethyl-4-methylimidazole, 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, etc. are used. Door can be.

硬化促進剤は、硬化剤としてフェノール樹脂を使用する場合には、(B)、(C)成分の総量100質量部に対し、0.1〜5質量部、特に0.5〜2質量部とすることが好ましい。     When a phenol resin is used as a curing agent, the curing accelerator is 0.1 to 5 parts by mass, particularly 0.5 to 2 parts by mass with respect to 100 parts by mass of the total amount of the components (B) and (C). It is preferable to do.

[(D)無機充填剤]
本発明のエポキシ樹脂組成物中に配合される(D)無機充填材としては、通常エポキシ樹脂組成物に配合されるものを使用することができる。例えば溶融シリカ、結晶性シリカ等のシリカ類、アルミナ、窒化珪素、窒化アルミニウム、ボロンナイトライド、酸化チタン、ガラス繊維等が挙げられる。
[(D) Inorganic filler]
As the inorganic filler (D) blended in the epoxy resin composition of the present invention, those usually blended in the epoxy resin composition can be used. Examples thereof include silicas such as fused silica and crystalline silica, alumina, silicon nitride, aluminum nitride, boron nitride, titanium oxide, glass fiber, and the like.

これら無機質充填剤の平均粒径や形状及び無機質充填剤の充填量は、特に限定されないが、難燃性を高めるためには、エポキシ樹脂組成物中に成形性を損なわない範囲で可能な限り多量に充填させることが好ましい。この場合、無機質充填剤の平均粒径、形状として、平均粒径5〜30μmの球状の溶融シリカが特に好ましく、また、(D)成分である無機質充填剤の充填量は、(B)、(C)成分の総量100質量部に対し、300〜1200質量部、特に500〜1000重量部とすることが好ましい。   The average particle diameter and shape of these inorganic fillers and the filling amount of the inorganic filler are not particularly limited, but in order to increase the flame retardancy, the amount is as large as possible within the range that does not impair the moldability in the epoxy resin composition. Is preferably filled. In this case, spherical fused silica having an average particle diameter of 5 to 30 μm is particularly preferable as the average particle diameter and shape of the inorganic filler, and the filling amount of the inorganic filler as the component (D) is (B), ( C) It is preferable to set it as 300-1200 mass parts with respect to 100 mass parts of total amounts of component, especially 500-1000 weight part.

なお、本発明において、平均粒径は、例えばレーザー光回折法等による重量平均粒径(又はメディアン径)等として求めることができる。   In the present invention, the average particle diameter can be determined as, for example, a weight average particle diameter (or median diameter) by a laser diffraction method or the like.

なお、無機充填剤は、樹脂との結合強度を高くするため、シランカップリング剤、チタネートカップリング剤等のカップリング剤で予め表面処理したものを配合することが好ましい。このカップリング剤としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−ウレイドプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン類;N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノシラン類;γ−メルカプトプロピルトリメトキシシラン等のメルカプトシラン類等のシランカップリング剤を用いることが好ましい。これらは1種単独でも2種以上を組み合わせても使用することができる。また、表面処理に用いるカップリング剤の配合量及び表面処理方法については、特に制限されるものではない。   The inorganic filler is preferably blended in advance with a surface treatment with a coupling agent such as a silane coupling agent or a titanate coupling agent in order to increase the bond strength with the resin. As this coupling agent, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-ureidopropyltriethoxysilane, β- (3,4) Epoxy silanes such as -epoxycyclohexyl) ethyltrimethoxysilane; N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane It is preferable to use a silane coupling agent such as an aminosilane such as γ-mercaptopropyltrimethoxysilane. These can be used singly or in combination of two or more. Further, the blending amount of the coupling agent used for the surface treatment and the surface treatment method are not particularly limited.

[他の配合成分]
本発明の半導体封止用難燃性エポキシ樹脂組成物は、本発明の目的を損なわない範囲内において、各種の添加剤を配合することができる。該添加剤としては、三酸化アンチモン等のアンチモン化合物を除く他の難燃剤、例えば水酸化アルミニウム、水酸化マグネシウム等の水酸化物、ホウ酸亜鉛、スズ酸亜鉛、モリブデン酸亜鉛;熱可塑性樹脂、熱可塑性エラストマー、有機合成ゴム、及びシリコーン系等の低応力剤;カルナバワックス、高級脂肪酸、合成ワックス等の離型剤;カーボンブラック等の着色剤;ハイドロタルサイト化合物、リン酸ジルコニウム化合物、水酸化ビスマス化合物等のハロゲントラップ剤、及び半導体素子との接着性を高めるためのシランカップリング剤等を添加することもできる。
[Other ingredients]
The flame-retardant epoxy resin composition for semiconductor encapsulation of the present invention can be blended with various additives within a range that does not impair the object of the present invention. Examples of the additive include other flame retardants excluding antimony compounds such as antimony trioxide, such as hydroxides such as aluminum hydroxide and magnesium hydroxide, zinc borate, zinc stannate, zinc molybdate; thermoplastic resin, Low stress agents such as thermoplastic elastomers, organic synthetic rubbers and silicones; mold release agents such as carnauba wax, higher fatty acids and synthetic waxes; colorants such as carbon black; hydrotalcite compounds, zirconium phosphate compounds, hydroxylation A halogen trapping agent such as a bismuth compound and a silane coupling agent for enhancing the adhesion to a semiconductor element can also be added.

離型剤成分としては、例えばカルナバワックス、ライスワックス、ポリエチレン、酸化ポリエチレン、モンタン酸、モンタン酸と飽和アルコール、2−(2−ヒドロキシエチルアミノ)−エタノール、エチレングリコール、グリセリン等とのエステル化合物であるモンタンワックス;ステアリン酸、ステアリン酸エステル、ステアリン酸アミド、エチレンビスステアリン酸アミド、エチレンと酢酸ビニルとの共重合体、等が挙げられこれら1種単独でも2種以上を組み合わせても使用することができる。離型剤の配合比率としては(B)及び(C)成分の総量100質量部に対して、0.1〜5質量部、更に好ましくは0.3〜4質量部であることが望ましい。   Examples of the release agent component include carnauba wax, rice wax, polyethylene, polyethylene oxide, montanic acid, montanic acid and saturated alcohol, 2- (2-hydroxyethylamino) -ethanol, ethylene glycol, glycerin and the like. A certain montan wax; stearic acid, stearic acid ester, stearic acid amide, ethylene bis-stearic acid amide, a copolymer of ethylene and vinyl acetate, and the like. These may be used alone or in combination of two or more. Can do. The mixing ratio of the release agent is preferably 0.1 to 5 parts by mass, more preferably 0.3 to 4 parts by mass with respect to 100 parts by mass of the total amount of the components (B) and (C).

シランカップリング剤としては、上記充填剤の表面処理に使用することができる物の他、γ−グリシドキシプロピルメチルジエトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、γ−メタクリロキシプロピルメチルジメトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルメチルジエトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン、γ−アクリロキシプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリエトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−メルカプトプロピルメチルジメトキシシラン、ビス(トリエトキシプロピル)テトラスルフィド、γ−イソシアネートプロピルトリエトキシシラン等が挙げられる。   As the silane coupling agent, in addition to those which can be used for the surface treatment of the above filler, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane , Γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-methacryloxypropyltriethoxysilane, γ-acryloxypropyltrimethoxysilane, N-β (Aminoethyl) γ-aminopropylmethyldimethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropyltriethoxysilane, γ-aminopropyltrimethoxysilane, γ-mercapto B pills methyldimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, .gamma. isocyanatepropyltriethoxysilane and the like.

[エポキシ樹脂組成物の調製等]
本発明のエポキシ樹脂組成物は、例えば、上記(A)〜(D)成分及びその他の添加物を所定の組成比で配合し、これをミキサー、ボールミル等によって十分均一に混合した後、熱ロール、ニーダー、エクストルーダー等を用いて、加熱下で混合処理を行い、次いで冷却固化させ、所望により、適当な大きさに粉砕して成形材料として得ることができる。(A)難燃剤は、樹脂層で被覆されているので、上記混合工程で、ホスファゼン化合物が(B)エポキシ樹脂中に出てくることはない。
[Preparation of epoxy resin composition, etc.]
The epoxy resin composition of the present invention is prepared by, for example, blending the above components (A) to (D) and other additives in a predetermined composition ratio, mixing them sufficiently uniformly by a mixer, a ball mill or the like, and then heating rolls. Using a kneader, an extruder or the like, the mixture can be mixed under heating, then cooled and solidified, and pulverized to an appropriate size as desired to obtain a molding material. Since the (A) flame retardant is coated with the resin layer, the phosphazene compound does not come out in the (B) epoxy resin in the mixing step.

このようにして得られる本発明のエポキシ樹脂組成物は、各種の半導体装置の封止用として有効に利用できる。封止方法としては、例えば、低圧トランスファー成形法が挙げられる。なお、本発明のエポキシ樹脂組成物の硬化・成形に際しては、例えば、150〜180℃で30〜180秒間処理し、後硬化(ポストキュア)を150〜180℃で2〜16時間の条件で行うことが望ましい。   The epoxy resin composition of the present invention thus obtained can be effectively used for sealing various semiconductor devices. Examples of the sealing method include a low-pressure transfer molding method. In addition, when hardening and shaping | molding of the epoxy resin composition of this invention, it processes for 30 to 180 second at 150-180 degreeC, for example, and postcure (postcure) is performed on the conditions for 2 to 16 hours at 150-180 degreeC. It is desirable.

本発明のエポキシ樹脂組成物は連続成形性に優れる。また、後述するように、その硬化物を水中に放置しても、ホスファゼン化合物が分解されることが無い。   The epoxy resin composition of the present invention is excellent in continuous moldability. Further, as will be described later, even if the cured product is left in water, the phosphazene compound is not decomposed.

以下(A)難燃剤の合成例、エポキシ樹脂組成物の実施例と比較例を示し、本発明を具体的に示すが、本発明は下記の実施例に制限されるものではない。   Hereinafter, (A) Examples of flame retardant synthesis, examples of epoxy resin compositions and comparative examples will be shown, and the present invention will be specifically shown. However, the present invention is not limited to the following examples.

[合成例1]ホスファゼン化合物A−1の合成
窒素雰囲気下、0℃で水素化ナトリウム8.6g(214mmol)をTHF50mlに懸濁させ、そこにフェノール19.8g(211mmol)のTHF75ml溶液を滴下した。30分攪拌後、ヘキサクロロトリホスファゼン12.0g(34.5mmol)のTHF75ml溶液を滴下し、18時間加熱還流を行った。溶媒を減圧留去し、メタノールを加え、析出した結晶をメタノール、水で洗浄し、下記式で示されるホスファゼン化合物(A−1)白色結晶を23.8g得た。
Synthesis Example 1 Synthesis of Phosphazene Compound A-1 Under a nitrogen atmosphere, 8.6 g (214 mmol) of sodium hydride was suspended in 50 ml of THF at 0 ° C., and a solution of 19.8 g (211 mmol) of phenol in 75 ml of THF was added dropwise thereto. . After stirring for 30 minutes, a solution of 12.0 g (34.5 mmol) of hexachlorotriphosphazene in 75 ml of THF was added dropwise, and the mixture was heated to reflux for 18 hours. The solvent was distilled off under reduced pressure, methanol was added, and the precipitated crystals were washed with methanol and water to obtain 23.8 g of phosphazene compound (A-1) white crystals represented by the following formula.

Figure 2007284461
Figure 2007284461

[合成例2]ホスファゼン化合物B−1の合成
窒素雰囲気下、0℃で水素化ナトリウム4.8g(119mmol)をTHF50mlに懸濁させ、そこにフェノール10.2g(108mmol)、4,4’−スルホニルジフェノール0.45g(1.8mmol)のTHF50ml溶液を滴下した。30分攪拌後、ヘキサクロロトリホスファゼン12.5g(36.0mmol)のTHF50ml溶液を滴下し、5時間加熱還流を行った。そこに、別途0℃で水素化ナトリウム5.2g(130mmol)をTHF50mlに懸濁させたものを滴下した後、フェノール11.2g(119mmol)のTHF50ml溶液を滴下して、更に19時間加熱還流した。溶媒を減圧留去後、クロロベンゼンを加えて溶解し、5%NaOH水溶液200ml×2回、5%硫酸水溶液200ml×2回、5%炭酸水素ナトリウム水溶液200ml×2回、水200ml×2回で抽出を行った。溶媒を減圧留去し、黄褐色結晶の下記式で示されるホスファゼン化合物(B−1)を20.4g得た。
[Synthesis Example 2] Synthesis of phosphazene compound B-1 Under a nitrogen atmosphere, 4.8 g (119 mmol) of sodium hydride was suspended in 50 ml of THF at 0 ° C., and 10.2 g (108 mmol) of phenol, 4,4′- A solution of 0.45 g (1.8 mmol) of sulfonyldiphenol in 50 ml of THF was added dropwise. After stirring for 30 minutes, a solution of 12.5 g (36.0 mmol) of hexachlorotriphosphazene in 50 ml of THF was added dropwise, and the mixture was heated to reflux for 5 hours. Thereto was added dropwise sodium hydride (5.2 g, 130 mmol) suspended in THF (50 ml) at 0 ° C. Then, phenol (11.2 g, 119 mmol) in THF (50 ml) was added dropwise, and the mixture was further heated to reflux for 19 hours. . After the solvent was distilled off under reduced pressure, chlorobenzene was added and dissolved, and extracted with 5% NaOH aqueous solution 200 ml x 2 times, 5% sulfuric acid aqueous solution 200 ml x 2 times, 5% sodium hydrogen carbonate aqueous solution 200 ml x 2 times, and water 200 ml x 2 times. Went. The solvent was distilled off under reduced pressure to obtain 20.4 g of a phosphazene compound (B-1) represented by the following formula as tan crystals.

Figure 2007284461
Figure 2007284461

[実施例1]
真空チャンバー内に平均粒径8.8μm、比表面積155m/gの多孔性シリカ微粒子SS−150(三菱レーヨン株式会社製)50質量部用意した。別途、アセトン100質量部中に被担持物質として(A−1)40質量部を加え溶解させたものと、アセトン100質量部中エポキシ樹脂GTR−1800(日本化薬株式会社製)6質量部、硬化剤MEH−7500(明和化成株式会社製)4質量部、トリフェニルホスフィン0.3質量部を加え、均一な溶液としたものを、夫々調製した。次いで真空チャンバー内を0.5〜1Torrの減圧に保ちながら、シールされた口から、先に調製した(A−1)溶液140質量部を滴下し、多孔性シリカ微粒子に十分浸透するように30分間放置した後、30分攪拌して大気圧に戻した。次に再び真空チャンバー内を減圧におきながら60℃に加熱して攪拌しながらアセトンを蒸発分離させた。次いで再び真空チャンバー内を減圧におきながらエポキシ樹脂溶液110.3質量部を加え(A−1)を含む多孔性シリカ微粒子に十分浸透するように30分間放置した後、30分攪拌して大気圧に戻した。次に再び真空チャンバー内を減圧におきながら60℃に加熱して攪拌しながらアセトンを蒸発分離させた。ついで乾燥機中180℃で4時間硬化させることにより、エポキシ樹脂で被覆されたA−1を40質量%担持する難燃剤aを調製した。
[Example 1]
In a vacuum chamber, 50 parts by mass of porous silica fine particles SS-150 (manufactured by Mitsubishi Rayon Co., Ltd.) having an average particle size of 8.8 μm and a specific surface area of 155 m 2 / g were prepared. Separately, 40 parts by mass of (A-1) as a supported substance was dissolved in 100 parts by mass of acetone, and 6 parts by mass of epoxy resin GTR-1800 (manufactured by Nippon Kayaku Co., Ltd.) in 100 parts by mass of acetone. Curing agents MEH-7500 (Maywa Kasei Co., Ltd.) 4 parts by mass and triphenylphosphine 0.3 parts by mass were added to prepare uniform solutions. Next, while keeping the inside of the vacuum chamber at a reduced pressure of 0.5 to 1 Torr, 140 parts by mass of the solution (A-1) prepared previously is dropped from the sealed mouth so that the porous silica fine particles are sufficiently infiltrated. After being left for a minute, the mixture was stirred for 30 minutes and returned to atmospheric pressure. Next, acetone was evaporated and separated with stirring while being heated to 60 ° C. while the vacuum chamber was kept under reduced pressure. Next, 110.3 parts by mass of the epoxy resin solution was added while the pressure in the vacuum chamber was reduced, and the mixture was allowed to stand for 30 minutes so as to sufficiently penetrate the porous silica fine particles containing (A-1), followed by stirring for 30 minutes and atmospheric pressure. Returned to. Next, acetone was evaporated and separated with stirring while being heated to 60 ° C. while the vacuum chamber was kept under reduced pressure. Subsequently, the flame retardant a which carries 40 mass% of A-1 coat | covered with the epoxy resin was prepared by making it harden | cure at 180 degreeC for 4 hours in dryer.

尚、アセトン100質量部中エポキシ樹脂GTR−1800(日本化薬株式会社製)6質量部、硬化剤MEH−7500(明和化成株式会社製)4質量部、トリフェニルホスフィン0.3質量部を加え減圧下60℃で攪拌しながらアセトンを蒸発分離させた固形物を180℃で4時間硬化させた硬化物を大気中、熱重量分析(Rigaku株式会社製 Thermo plus TG 8120)において測定した10重量%熱分解温度は345℃であった。   In addition, 6 parts by mass of epoxy resin GTR-1800 (manufactured by Nippon Kayaku Co., Ltd.), 4 parts by mass of curing agent MEH-7500 (manufactured by Meiwa Kasei Co., Ltd.) and 0.3 part by mass of triphenylphosphine are added in 100 parts by mass of acetone. 10% by weight measured by thermogravimetric analysis (Thermo plus TG 8120, manufactured by Rigaku Corporation) in the atmosphere of a cured product obtained by curing a solid obtained by evaporating and separating acetone by stirring at 60 ° C. under reduced pressure at 180 ° C. for 4 hours. The thermal decomposition temperature was 345 ° C.

[実施例2]
真空チャンバー内に平均粒径3.2μm、比表面積 242m/gの多孔性シリカ微粒子SE−MCB−FP−2(エネックス株式会社製)40質量部用意した。これとは別に アセトン100質量部中に被担持物質として(B−1)55質量部を加え溶解させた。また、アセトン100質量部中ビスマレイミド樹脂BMI(KI化成株式会社製)4.8質量部、AIBN(日本油脂株式会社製)0.2部を加え均一な溶液とした。次いで真空チャンバー内を減圧におきながら、先に調製した(B−1)溶液155質量部を加え、多孔性シリカ微粒子に十分浸透するように30分間放置した後、30分攪拌して大気圧に戻した。次に再び真空チャンバー内を減圧におきながら60℃に加熱して攪拌しながらアセトンを蒸発分離させた。次いで再び真空チャンバー内を減圧におきながらビスマレイミド樹脂溶液105.0質量部を加え(B−1)を含む多孔性シリカ微粒子に十分浸透するように30分間放置した後、30分攪拌して大気圧に戻した。次に再び真空チャンバー内を減圧におきながら100℃に加熱して攪拌しながらアセトンを蒸発分離させた。ついで乾燥機中180℃で2時間、次いで220度で2時間乾燥させることにより、ビスマレイミド樹脂で被覆されたB−1を55質量%担持する難燃剤bを調製した。
[Example 2]
40 parts by mass of porous silica fine particles SE-MCB-FP-2 (manufactured by Enex Co., Ltd.) having an average particle size of 3.2 μm and a specific surface area of 242 m 2 / g were prepared in a vacuum chamber. Separately, 55 parts by mass of (B-1) as a supported substance was added and dissolved in 100 parts by mass of acetone. Further, in 100 parts by mass of acetone, 4.8 parts by mass of bismaleimide resin BMI (manufactured by KI Kasei Co., Ltd.) and 0.2 part of AIBN (manufactured by Nippon Oil & Fats Co., Ltd.) were added to obtain a uniform solution. Next, 155 parts by mass of the previously prepared solution (B-1) was added while leaving the vacuum chamber under reduced pressure, and the mixture was allowed to stand for 30 minutes so as to sufficiently penetrate the porous silica fine particles, and then stirred for 30 minutes to atmospheric pressure. Returned. Next, acetone was evaporated and separated with stirring while being heated to 60 ° C. while the vacuum chamber was kept under reduced pressure. Next, 105.0 parts by mass of the bismaleimide resin solution was added while the pressure in the vacuum chamber was reduced, and the mixture was left for 30 minutes so as to sufficiently penetrate the porous silica fine particles containing (B-1). Returned to atmospheric pressure. Next, acetone was evaporated and separated while being stirred and heated to 100 ° C. while the vacuum chamber was kept under reduced pressure. Subsequently, the flame retardant b carrying 55% by mass of B-1 coated with a bismaleimide resin was prepared by drying in a dryer at 180 ° C. for 2 hours and then at 220 ° C. for 2 hours.

尚、アセトン100質量部中ビスマレイミド樹脂BMI(日本化薬株式会社製)4.8質量部、AIBN(日本油脂株式会社製)0.2質量部を加え減圧下60℃で攪拌しながらアセトンを蒸発分離させた固形物を180℃で2時間、次いで220度で2時間硬化させた硬化物を大気中、熱重量分析(Rigaku株式会社製 Thermo plus TG 8120)において測定した10重量%熱分解温度は360℃であった。   In 100 parts by mass of acetone, 4.8 parts by mass of bismaleimide resin BMI (manufactured by Nippon Kayaku Co., Ltd.) and 0.2 parts by mass of AIBN (manufactured by Nippon Oil & Fats Co., Ltd.) were added and acetone was stirred while stirring at 60 ° C. under reduced pressure. 10% by weight pyrolysis temperature measured by thermogravimetric analysis (Thermoplus TG 8120 manufactured by Rigaku Corporation) in the atmosphere of the cured product obtained by curing the solid separated by evaporation at 180 ° C. for 2 hours and then at 220 ° C. for 2 hours. Was 360 ° C.

[参考例1]
真空チャンバー内に平均粒径8.8μm、比表面積155m/gの多孔性シリカ微粒子SS−150(三菱レーヨン株式会社製)50質量部用意した。これとは別にアセトン100質量部中に被担持物質として(A−1)40質量部を加え溶解させた。同様にN−メチル2−ピロリドン100質量部中PES樹脂4100M(住友化学工業株式会社製)10質量部を加え、60℃に加熱し、均一な溶液とした。次いで真空チャンバー内を減圧におきながら、先に調製した(A−1)溶液140質量部を加え、多孔性シリカ微粒子に十分浸透するように含浸させた後、30分攪拌して大気圧に戻した。次に再び真空チャンバー内を減圧におきながら60℃に加熱して攪拌しながらアセトンを蒸発分離させた。次いで再び真空チャンバー内を減圧におきながら60℃に加熱して上記PES樹脂溶液110質量部を加え、(A−1)を含む多孔性シリカ微粒子に十分浸透するように30分間放置した後、30分攪拌して大気圧に戻した。ろ過により過剰なN−メチル−2−ピロリドンを除去後、乾燥機中200℃で2時間、乾燥させることにより、PES樹脂で被覆されたA−1を40質量%担持する難燃剤cを調製した。
[Reference Example 1]
In a vacuum chamber, 50 parts by mass of porous silica fine particles SS-150 (manufactured by Mitsubishi Rayon Co., Ltd.) having an average particle size of 8.8 μm and a specific surface area of 155 m 2 / g were prepared. Separately, 40 parts by mass of (A-1) as a supported substance was added to 100 parts by mass of acetone and dissolved. Similarly, 10 parts by mass of PES resin 4100M (manufactured by Sumitomo Chemical Co., Ltd.) in 100 parts by mass of N-methyl 2-pyrrolidone was added and heated to 60 ° C. to obtain a uniform solution. Next, while placing the vacuum chamber under reduced pressure, 140 parts by mass of the solution (A-1) prepared above was added and impregnated so as to sufficiently permeate the porous silica fine particles, and then stirred for 30 minutes to return to atmospheric pressure. It was. Next, acetone was evaporated and separated with stirring while being heated to 60 ° C. while the vacuum chamber was kept under reduced pressure. Next, the vacuum chamber was again heated to 60 ° C. under reduced pressure, 110 parts by mass of the PES resin solution was added, and the mixture was allowed to stand for 30 minutes so as to sufficiently permeate the porous silica fine particles containing (A-1). The mixture was stirred for a minute and returned to atmospheric pressure. After removing excess N-methyl-2-pyrrolidone by filtration, the flame retardant c carrying 40% by mass of A-1 coated with PES resin was prepared by drying at 200 ° C. for 2 hours in a dryer. .

尚、PES樹脂4100M(住友化学工業株式会社製)を大気中、熱重量分析(Rigaku株式会社製 Thermo plus TG 8120)において測定した10重量%熱分解温度は500℃より上であった。   In addition, the 10 weight% thermal decomposition temperature which measured PES resin 4100M (made by Sumitomo Chemical Co., Ltd.) in air | atmosphere in the thermogravimetric analysis (Thermoplus TG 8120 made by Rigaku) was 500 degreeC or more.

[参考例2]
真空チャンバー内に平均粒径8.8μm、比表面積155m/gの多孔性シリカ微粒子SS−150(三菱レーヨン株式会社製)50質量部用意した。これとは別にアセトン100質量部中に被担持物質として(A−1)40質量部を加え溶解させた。同様にアセトン100質量部中PMMA樹脂(綜研化学株式会社製)10質量部を加え、60℃に加熱し、均一な溶液とした。次いで真空チャンバー内を減圧におきながら、先に調製した(A−1)溶液140質量部を加え、多孔性シリカ微粒子に十分浸透するように30分間放置した後、30分攪拌して大気圧に戻した。次に再び真空チャンバー内を減圧におきながら60℃に加熱して攪拌しながらアセトンを蒸発分離させた。次いで再び真空チャンバー内を減圧におきながら60℃に加熱して上記PMMA樹脂溶液110質量部を加え、(A−1)を含む多孔性シリカ微粒子に十分浸透するように30分間放置した後、30分攪拌して大気圧に戻した。次に再び真空チャンバー内を減圧におきながら60℃に加熱して攪拌しながらアセトンを蒸発分離させ、PMMA樹脂で被覆されたA−1を40質量%担持する難燃剤dを調製した。
[Reference Example 2]
In a vacuum chamber, 50 parts by mass of porous silica fine particles SS-150 (manufactured by Mitsubishi Rayon Co., Ltd.) having an average particle size of 8.8 μm and a specific surface area of 155 m 2 / g were prepared. Separately, 40 parts by mass of (A-1) as a supported substance was added to 100 parts by mass of acetone and dissolved. Similarly, 10 parts by mass of PMMA resin (manufactured by Soken Chemical Co., Ltd.) in 100 parts by mass of acetone was added and heated to 60 ° C. to obtain a uniform solution. Next, 140 parts by mass of the previously prepared solution (A-1) was added while the vacuum chamber was kept under reduced pressure, and the mixture was allowed to stand for 30 minutes so as to sufficiently penetrate the porous silica fine particles, and then stirred for 30 minutes to atmospheric pressure. Returned. Next, acetone was evaporated and separated with stirring while being heated to 60 ° C. while the vacuum chamber was kept under reduced pressure. Next, the vacuum chamber was again heated to 60 ° C. under reduced pressure, 110 parts by mass of the PMMA resin solution was added, and the mixture was allowed to stand for 30 minutes so as to sufficiently penetrate the porous silica fine particles containing (A-1). The mixture was stirred for a minute and returned to atmospheric pressure. Next, the vacuum chamber was again heated to 60 ° C. under reduced pressure, and acetone was evaporated and separated while stirring to prepare flame retardant d carrying 40% by mass of A-1 coated with PMMA resin.

尚PMMA樹脂(綜研化学)を大気中、熱重量分析(Rigaku株式会社製 Thermo plus TG 8120)において測定した10重量%熱分解温度は240℃であった。   The 10% by weight pyrolysis temperature of PMMA resin (Soken Chemical) measured in the atmosphere by thermogravimetric analysis (Thermoplus TG 8120 manufactured by Rigaku Corporation) was 240 ° C.

[比較例1]
水酸化マグネシウム キスマ8N(協和化学株式会社製)80質量部、とエポキシ樹脂 GTR−1800(日本化薬株式会社製)6質量部、硬化剤 MEH−7500(明和化成株式会社製)3.5質量部、トリフェニルホスフィン0.5質量部を80℃で溶融混合したエポキシ樹脂組成物を10〜50μmに微粉砕したものを、メカノフュージョンシステム(細川ミクロン株式会社製)で高速気流中衝撃法を用いて水酸化マグネシウムを80質量%含む難燃剤eを作成した。
[Comparative Example 1]
Magnesium hydroxide Kisuma 8N (manufactured by Kyowa Chemical Co., Ltd.) 80 parts by mass, epoxy resin GTR-1800 (manufactured by Nippon Kayaku Co., Ltd.) 6 parts by mass, curing agent MEH-7500 (manufactured by Meiwa Kasei Co., Ltd.) 3.5 parts by mass The epoxy resin composition obtained by melt-mixing 0.5 parts by mass of triphenylphosphine at 80 ° C. and finely pulverized to 10 to 50 μm is subjected to a high-speed air current impact method using a mechanofusion system (manufactured by Hosokawa Micron Corporation) Thus, a flame retardant e containing 80% by mass of magnesium hydroxide was prepared.

[実施例3〜7、参考例4〜6、比較例2〜3]
表1に示す成分を熱2本ロールにて均一に溶融混合し、冷却、粉砕して半導体封止用エポキシ樹脂組成物を得た。これらの組成物につき、下記の(i)〜(vii)の諸特性を測定した。結果を表1に示した。
[Examples 3-7, Reference Examples 4-6, Comparative Examples 2-3]
The components shown in Table 1 were uniformly melt-mixed with two hot rolls, cooled and pulverized to obtain an epoxy resin composition for semiconductor encapsulation. With respect to these compositions, the following properties (i) to (vii) were measured. The results are shown in Table 1.

[比較例4]
エポキシ樹脂 GTR−1800(日本化薬株式会社製)36質量部、硬化剤MEH−7500(明和化成株式会社製)23質量部、トリフェニルホスフィン3質量部を80℃で溶融混合したエポキシ樹脂組成物を10〜50μmに微粉砕したものと、ホスファゼン化合物(A−1)を40質量部とを、メカノフュージョンシステム(細川ミクロン株式会社製)で高速気流中衝撃法を用いて混合した。しかし、A−1及びエポキシ樹脂組成物ともに均一に混合してしまい、比較例1と同様のタイプの難燃剤は得られなかった。
[Comparative Example 4]
Epoxy resin GTR-1800 (manufactured by Nippon Kayaku Co., Ltd.) 36 parts by mass, curing agent MEH-7500 (manufactured by Meiwa Kasei Co., Ltd.) 23 parts by mass, and triphenylphosphine 3 parts by mass were melt-mixed at 80 ° C. Was pulverized to 10 to 50 μm and 40 parts by mass of the phosphazene compound (A-1) were mixed with a mechanofusion system (manufactured by Hosokawa Micron Co., Ltd.) using the impact method in high-speed air current. However, both A-1 and the epoxy resin composition were uniformly mixed, and the same type of flame retardant as Comparative Example 1 was not obtained.

諸特性の測定法
(i)流動性
EMMI規格に準じた金型を使用して、175℃、6.9N/mm、成形時間120秒の条件で測定した。
Measuring method of various properties (i) Fluidity Using a mold conforming to the EMMI standard, it was measured under the conditions of 175 ° C., 6.9 N / mm 2 and molding time of 120 seconds.

(ii)成形硬度
JIS−K6911に準じて175℃、6.9N/mm、成形時間90秒の条件で10×4×100mmの棒を成形したときの175℃における硬度をバーコール硬度計で測定した。
(Ii) Molding hardness According to JIS-K6911, the hardness at 175 ° C when a 10 × 4 × 100 mm rod was molded under the conditions of 175 ° C., 6.9 N / mm 2 and molding time of 90 seconds was measured with a Barkol hardness meter. did.

(iii)難燃性
UL−94規格に基づき、各樹脂組成物から、1/16インチ厚の板を、成形条件175℃、6.9N/mm、成形時間120秒で成形し、180℃で4時間ポストキュアーして得られた成形体の難燃性を調べた。
(Iii) Flame retardance Based on the UL-94 standard, a 1/16 inch thick plate was molded from each resin composition under molding conditions of 175 ° C., 6.9 N / mm 2 , molding time of 120 seconds, and 180 ° C. The flame retardancy of the molded product obtained by post-curing for 4 hours was examined.

(iv)イオン性不純物
各組成物を、175℃、6.9N/mm、成形時間90秒で成形し、180℃で4時間ポストキュアーして50mmx3mmの円板を得た。この円板を175℃の雰囲気中1000時間保管後、ディスクミルで粉砕し、粒径63μm〜212μmの粉砕物10gを純水50ml中に加え、125℃で20時間放置した。その後、純水をろ過し、ろ液中のリン酸イオン濃度をイオンクロマトグラフィーで測定した。
(Iv) Ionic Impurities Each composition was molded at 175 ° C., 6.9 N / mm 2 with a molding time of 90 seconds, and post-cured at 180 ° C. for 4 hours to obtain a disc of 50 mm × 3 mm. The disk was stored in an atmosphere at 175 ° C. for 1000 hours, and then pulverized by a disk mill. 10 g of a pulverized product having a particle size of 63 μm to 212 μm was added to 50 ml of pure water and left at 125 ° C. for 20 hours. Thereafter, pure water was filtered, and the phosphate ion concentration in the filtrate was measured by ion chromatography.

(v)高温電気抵抗特性
各樹脂組成物から、温度175℃、成形圧力6.9N/mm、成形時間120秒の条件で70φ×3mmの円板を成形して180℃で4時間ポストキュアーした。該円板の体積抵抗率を、150℃雰囲気下で測定した。
(V) High-temperature electrical resistance characteristics A 70φ × 3 mm disk was molded from each resin composition under the conditions of a temperature of 175 ° C., a molding pressure of 6.9 N / mm 2 and a molding time of 120 seconds, and post-cured at 180 ° C. for 4 hours. did. The volume resistivity of the disc was measured in an atmosphere at 150 ° C.

(vi)耐湿性
5μm幅、5μm間隔のアルミニウム配線を形成した6×6mmの大きさのシリコンチップを14pin−DIPフレーム(42アロイ)に接着し、更にチップ表面のアルミニウム電極とリードフレームとを25μmφの金線でワイヤボンディングした後、これを、各組成物で、175℃、6.9N/mm、時間120秒の成型条件で封止し、180℃で4時間ポストキュアーした。このパッケージ20個を130℃/85%RHの雰囲気中−20Vの直流バイアス電圧をかけて500時間放置した後、アルミニウム腐食が発生したパッケージ数を調べた。
(Vi) Moisture resistance A silicon chip having a size of 6 × 6 mm formed with aluminum wiring of 5 μm width and 5 μm spacing is bonded to a 14 pin-DIP frame (42 alloy), and the aluminum electrode on the chip surface and the lead frame are further bonded to 25 μmφ. After being wire-bonded with a gold wire, the composition was sealed with each composition under molding conditions of 175 ° C., 6.9 N / mm 2 , time 120 seconds, and post-cured at 180 ° C. for 4 hours. Twenty of these packages were left in an atmosphere of 130 ° C./85% RH with a DC bias voltage of −20 V for 500 hours, and then the number of packages in which aluminum corrosion occurred was examined.

(vii)耐熱性
5μm幅、5μm間隔のアルミニウム配線を形成した6×6mmの大きさのシリコンチップを14pin−DIPフレーム(42アロイ)に接着し、該チップ表面のアルミニウム電極とリードフレームとを25μmφの金線でワイヤボンディングした後、これを各組成物で、175℃、6.9N/mm、時間120秒の成形条件で封止し、180℃で4時間ポストキュアーした。このパッケージ20個を175℃の雰囲気中−5Vの直流バイアス電圧をかけて1000時間放置した後、抵抗値の平均値を調べた。
(Vii) Heat resistance A silicon chip having a size of 6 × 6 mm formed with aluminum wiring having a width of 5 μm and an interval of 5 μm is bonded to a 14 pin-DIP frame (42 alloy), and the aluminum electrode on the chip surface and the lead frame are 25 μmφ. After wire bonding with a gold wire, the composition was sealed with each composition under molding conditions of 175 ° C., 6.9 N / mm 2 , time 120 seconds, and post-cured at 180 ° C. for 4 hours. Twenty of these packages were left for 1000 hours in a 175 ° C. atmosphere with a DC bias voltage of −5 V, and the average resistance value was examined.

表1に示す、(B)〜(D)成分、添加剤は、以下のとおりである。
(B)成分
エポキシ樹脂(イ):o−クレゾールノボラック型エポキシ樹脂、EOCN1020−55(日本化薬株式会社製、エポキシ当量200)
エポキシ樹脂(ロ):トリフェニルメタン型 エポキシ樹脂、EPPN−501H(日本化薬株式会社製、エポキシ当量165)
(C)成分
硬化剤(ハ)フェノールノボラック樹脂:DL−92(明和化成株式会社製、フェノール性水酸基当量110)
硬化剤(ニ)トリフェニルメタン型フェノール樹脂:MEH−7500(明和化成株式会社製、フェノール性水酸基当量97)
(D)成分
無機質充填剤:球状溶融シリカ(龍森株式会社製、平均粒径20μm)
The components (B) to (D) and additives shown in Table 1 are as follows.
(B) Component epoxy resin (I): o-cresol novolac type epoxy resin, EOCN1020-55 (manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 200)
Epoxy resin (b): triphenylmethane type epoxy resin, EPPN-501H (manufactured by Nippon Kayaku Co., Ltd., epoxy equivalent 165)
(C) Component curing agent (C) Phenol novolac resin: DL-92 (Maywa Kasei Co., Ltd., phenolic hydroxyl group equivalent 110)
Curing agent (d) Triphenylmethane type phenol resin: MEH-7500 (Maywa Kasei Co., Ltd., phenolic hydroxyl group equivalent 97)
Component (D) inorganic filler: spherical fused silica (manufactured by Tatsumori Co., Ltd., average particle size 20 μm)

添加剤
硬化触媒:トリフェニルホスフィン(北興化学株式会社製)
離型剤:カルナバワックス(日興ファインプロダクツ株式会社製)
カーボンブラック:デンカブラック(電気化学工業株式会社製)
シランカップリング剤:KBM−403(信越化学工業株式会社製)
Additive <br/> Curing catalyst: Triphenylphosphine (made by Hokuko Chemical Co., Ltd.)
Mold release agent: Carnauba wax (manufactured by Nikko Fine Products Co., Ltd.)
Carbon black: Denka Black (manufactured by Denki Kagaku Kogyo Co., Ltd.)
Silane coupling agent: KBM-403 (manufactured by Shin-Etsu Chemical Co., Ltd.)

Figure 2007284461
Figure 2007284461

表1の結果から明らかなように、本発明の難燃剤を含む半導体封止用エポキシ樹脂組成物は成形性に優れ、難燃性、耐湿性、耐熱性に優れた硬化物を与える。参考例1の難燃剤は、被覆樹脂の熱分解温度が高すぎるため、ホスファゼン化合物の難燃効果を得ることができなかった。一方、参考例2の難燃剤は、被覆樹脂の熱分解温度が低すぎるため、ホスファゼン化合物を樹脂に混合した比較例2と同様に、該化合物が水に接し、リン酸イオンが生成し、また、高温体積低効率が低下した。比較例1の難燃剤は、難燃剤が水酸化マグネシウムであり、難燃性に劣るため、V−0を達成するために、150質量部を要した。比較例3は臭素化エポキシ樹脂が分解して発生した臭素ラジカルにより配線が断線した。   As is apparent from the results in Table 1, the epoxy resin composition for semiconductor encapsulation containing the flame retardant of the present invention is excellent in moldability and gives a cured product excellent in flame retardancy, moisture resistance and heat resistance. The flame retardant of Reference Example 1 could not obtain the flame retardant effect of the phosphazene compound because the thermal decomposition temperature of the coating resin was too high. On the other hand, since the thermal decomposition temperature of the coating resin is too low, the flame retardant of Reference Example 2 is in contact with water as in Comparative Example 2 in which the phosphazene compound is mixed with the resin, and phosphate ions are generated. , High temperature volume low efficiency decreased. Since the flame retardant of Comparative Example 1 was magnesium hydroxide and was inferior in flame retardancy, 150 parts by mass were required to achieve V-0. In Comparative Example 3, the wiring was disconnected by bromine radicals generated by decomposition of the brominated epoxy resin.

本発明の難燃剤は、半導体封止用のエポキシ樹脂組成物に好適に使用される。また、該樹脂組成物は、成形性に優れ、難燃性、耐湿性、耐熱性に優れた半導体装置の製造に好適である。   The flame retardant of the present invention is suitably used for an epoxy resin composition for semiconductor encapsulation. The resin composition is excellent in moldability and suitable for the production of a semiconductor device excellent in flame retardancy, moisture resistance and heat resistance.

Claims (6)

多孔性無機微粒子、
前記多孔性無機微粒子に担持された下記平均組成式(1)で示されるホスファゼン化合物、及び、
前記ホスファゼン化合物を担持する多孔性無機微粒子を被覆する樹脂層からなり、
前記樹脂は、熱天秤にて、空気下で、室温から10℃/分で昇温したときに熱分解による重量減が10重量%になる温度が300〜500℃である、
難燃剤。
Figure 2007284461

[但し、Xは単結合、又はCH、C(CH、SO、S、O及びO(CO)Oからなる群より選ばれる基であり、nは3≦n≦1000の整数であり、d及びeは、2d+e=2nを満たす数である。]
Porous inorganic fine particles,
The phosphazene compound represented by the following average composition formula (1) supported on the porous inorganic fine particles, and
A resin layer covering porous inorganic fine particles carrying the phosphazene compound;
The resin has a temperature of 300 to 500 ° C. at which the weight loss due to thermal decomposition becomes 10% by weight when heated from room temperature to 10 ° C./min under air on a thermobalance.
Flame retardants.
Figure 2007284461

[Wherein X is a single bond or a group selected from the group consisting of CH 2 , C (CH 3 ) 2 , SO 2 , S, O and O (CO) O, and n is an integer of 3 ≦ n ≦ 1000. D and e are numbers satisfying 2d + e = 2n. ]
前記多孔性無機微粒子が、平均粒径が0.5〜20μm、比表面積が100〜600m/gの、二酸化珪素、珪酸カルシウム、アパタイト、アルミナ、及びゼオライトからなる群より選ばれることを特徴とする請求項1記載の難燃剤。 The porous inorganic fine particles are selected from the group consisting of silicon dioxide, calcium silicate, apatite, alumina, and zeolite having an average particle size of 0.5 to 20 μm and a specific surface area of 100 to 600 m 2 / g. The flame retardant according to claim 1. 前記樹脂層が、エポキシ樹脂又はビスマレイミド樹脂を含むことを特徴とする請求項1記載の難燃剤。   The flame retardant according to claim 1, wherein the resin layer contains an epoxy resin or a bismaleimide resin. 前記ホスファゼン化合物が、難燃剤中に10〜60質量%含まれることを特徴とする、請求項1〜3のいずれか1項記載の難燃剤。   The flame retardant according to any one of claims 1 to 3, wherein the phosphazene compound is contained in the flame retardant in an amount of 10 to 60% by mass. (A)難燃剤
(B)エポキシ樹脂
(C)硬化剤
(D)無機充填材
を含む半導体封止用エポキシ樹脂組成物であって、
(A)難燃剤が、請求項1〜4のいずれか1項に記載の難燃剤であり、
(A)難燃剤は、(B)エポキシ樹脂と(C)の合計100質量部に対して5〜50質量部で含まれ、及び
該半導体封止用エポキシ樹脂組成物は、臭素化物及びアンチモン化合物を含まない、
ことを特徴とする半導体封止用エポキシ樹脂組成物。
(A) Flame retardant (B) Epoxy resin (C) Curing agent (D) An epoxy resin composition for semiconductor encapsulation containing an inorganic filler,
(A) The flame retardant is the flame retardant according to any one of claims 1 to 4,
(A) Flame retardant is contained in 5 to 50 parts by mass with respect to a total of 100 parts by mass of (B) epoxy resin and (C), and the epoxy resin composition for semiconductor encapsulation is brominated and antimony compound Not including,
An epoxy resin composition for semiconductor encapsulation characterized by the above-mentioned.
請求項5に記載の半導体封止用エポキシ樹脂組成物の硬化物で封止された半導体装置。   The semiconductor device sealed with the hardened | cured material of the epoxy resin composition for semiconductor sealing of Claim 5.
JP2006099556A 2005-04-04 2006-03-31 Flame retardant and epoxy resin composition for semiconductor encapsulation containing the same Active JP4748592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006099556A JP4748592B2 (en) 2005-04-04 2006-03-31 Flame retardant and epoxy resin composition for semiconductor encapsulation containing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005107407 2005-04-04
JP2005107407 2005-04-04
JP2006082688 2006-03-24
JP2006082688 2006-03-24
JP2006099556A JP4748592B2 (en) 2005-04-04 2006-03-31 Flame retardant and epoxy resin composition for semiconductor encapsulation containing the same

Publications (2)

Publication Number Publication Date
JP2007284461A true JP2007284461A (en) 2007-11-01
JP4748592B2 JP4748592B2 (en) 2011-08-17

Family

ID=38756554

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006099556A Active JP4748592B2 (en) 2005-04-04 2006-03-31 Flame retardant and epoxy resin composition for semiconductor encapsulation containing the same

Country Status (1)

Country Link
JP (1) JP4748592B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2056298A1 (en) 2007-10-31 2009-05-06 Sony Corporation Data recording apparatus, method of controlling same, and computer program
JP2012180388A (en) * 2011-02-28 2012-09-20 Toyota Tsusho Corp Method of producing resin composition
JP2015093971A (en) * 2013-11-14 2015-05-18 信越化学工業株式会社 Epoxy resin composition for sealing semiconductor and semiconductor device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4958135A (en) * 1972-10-05 1974-06-05
JPS52101269A (en) * 1976-02-21 1977-08-25 Ig Gijutsu Kenkyusho Kk Spheroidal material
JPH07331244A (en) * 1994-06-07 1995-12-19 Asahi Denka Kogyo Kk Powdery flame retardant
JPH0853569A (en) * 1994-08-10 1996-02-27 Toray Ind Inc Flame retardant for synthetic resin and flame-retardant resin composition containing the same
JPH08325574A (en) * 1995-06-02 1996-12-10 Iwao Hishida Flame retarder and flame retardant resin composition
JPH09278937A (en) * 1996-04-10 1997-10-28 Tosoh Corp Resin-coated ethylenediamine phosphate, its production and frame-retardant resin composition obtained by blending the same compound
JPH11246862A (en) * 1998-02-27 1999-09-14 Toagosei Co Ltd Heat-resistant flame-retardant and flame-retardant epoxy resin composition
JP2000160164A (en) * 1998-12-01 2000-06-13 Otsuka Chem Co Ltd Powdery flame-retardant
JP2001329147A (en) * 2000-03-16 2001-11-27 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003192912A (en) * 2001-12-27 2003-07-09 Kyocera Chemical Corp Sealing resin composition and semiconductor device sealed therewith
JP2003226796A (en) * 2002-02-07 2003-08-12 Shin Etsu Chem Co Ltd Flame-retardant epoxy resin composition for sealing semiconductor, and semiconductor device
JP2003268208A (en) * 2002-01-11 2003-09-25 Shin Etsu Chem Co Ltd Flame retardant epoxy resin composition for sealing of semiconductor and semiconductor device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4958135A (en) * 1972-10-05 1974-06-05
JPS52101269A (en) * 1976-02-21 1977-08-25 Ig Gijutsu Kenkyusho Kk Spheroidal material
JPH07331244A (en) * 1994-06-07 1995-12-19 Asahi Denka Kogyo Kk Powdery flame retardant
JPH0853569A (en) * 1994-08-10 1996-02-27 Toray Ind Inc Flame retardant for synthetic resin and flame-retardant resin composition containing the same
JPH08325574A (en) * 1995-06-02 1996-12-10 Iwao Hishida Flame retarder and flame retardant resin composition
JPH09278937A (en) * 1996-04-10 1997-10-28 Tosoh Corp Resin-coated ethylenediamine phosphate, its production and frame-retardant resin composition obtained by blending the same compound
JPH11246862A (en) * 1998-02-27 1999-09-14 Toagosei Co Ltd Heat-resistant flame-retardant and flame-retardant epoxy resin composition
JP2000160164A (en) * 1998-12-01 2000-06-13 Otsuka Chem Co Ltd Powdery flame-retardant
JP2001329147A (en) * 2000-03-16 2001-11-27 Sumitomo Bakelite Co Ltd Epoxy resin composition and semiconductor device
JP2003192912A (en) * 2001-12-27 2003-07-09 Kyocera Chemical Corp Sealing resin composition and semiconductor device sealed therewith
JP2003268208A (en) * 2002-01-11 2003-09-25 Shin Etsu Chem Co Ltd Flame retardant epoxy resin composition for sealing of semiconductor and semiconductor device
JP2003226796A (en) * 2002-02-07 2003-08-12 Shin Etsu Chem Co Ltd Flame-retardant epoxy resin composition for sealing semiconductor, and semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2056298A1 (en) 2007-10-31 2009-05-06 Sony Corporation Data recording apparatus, method of controlling same, and computer program
JP2012180388A (en) * 2011-02-28 2012-09-20 Toyota Tsusho Corp Method of producing resin composition
JP2015093971A (en) * 2013-11-14 2015-05-18 信越化学工業株式会社 Epoxy resin composition for sealing semiconductor and semiconductor device
KR20150056048A (en) * 2013-11-14 2015-05-22 신에쓰 가가꾸 고교 가부시끼가이샤 Epoxy resin composition for sealing semiconductor and semiconductor device
KR102184955B1 (en) * 2013-11-14 2020-12-01 신에쓰 가가꾸 고교 가부시끼가이샤 Epoxy resin composition for sealing semiconductor and semiconductor device

Also Published As

Publication number Publication date
JP4748592B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
KR101194498B1 (en) Flame Retardant and an Epoxy Resin Composition comprising the Same for Encapsulating Semiconductor Device
JP4692744B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP3582576B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
WO2005116104A1 (en) Semiconductor sealing resin composition and semiconductor device
TW200940638A (en) Epoxy resin composition for encapsulating semiconductor device and semiconductor device using the same
JP4748592B2 (en) Flame retardant and epoxy resin composition for semiconductor encapsulation containing the same
JP2006282958A (en) Semiconductor-sealing epoxy resin composition and semiconductor device
US6783859B2 (en) Semiconductor encapsulating flame retardant epoxy resin composition and semiconductor device
JP3824065B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2007099996A (en) Sealing resin composition and sealing device for semiconductor
JP2012007086A (en) Resin composition for sealing and electronic part device
JP3714399B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device
US7122587B2 (en) Semiconductor encapsulating flame retardant epoxy resin composition and semiconductor device
JPH10306201A (en) Epoxy resin composition
JP2010031233A (en) Semiconductor sealing epoxy resin composition, and one side sealing type semiconductor device produced by sealing semiconductor device using the same
JP3824064B2 (en) Flame-retardant epoxy resin composition for semiconductor encapsulation and semiconductor device
JP2003268208A (en) Flame retardant epoxy resin composition for sealing of semiconductor and semiconductor device
JP2019119862A (en) Encapsulation composition and semiconductor device
JP2000345009A (en) Epoxy resin composition for sealing semiconductor and semiconductor device
JP2013142136A (en) Flame-retardant liquid epoxy resin composition for encapsulating semiconductor and semiconductor device
JP2007211222A (en) Epoxy resin composition for use in semiconductor encapsulation
JP2003138097A (en) Epoxy resin composition for semiconductor encapsulation, and semiconductor device using it
JP2912468B2 (en) Resin composition
JP2004339292A (en) Resin composition for sealing and semiconductor
JP2005281623A (en) Epoxy resin composition and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110511

R150 Certificate of patent or registration of utility model

Ref document number: 4748592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3