JP3824064B2 - Flame-retardant epoxy resin composition for semiconductor encapsulation and semiconductor device - Google Patents
Flame-retardant epoxy resin composition for semiconductor encapsulation and semiconductor device Download PDFInfo
- Publication number
- JP3824064B2 JP3824064B2 JP2001340528A JP2001340528A JP3824064B2 JP 3824064 B2 JP3824064 B2 JP 3824064B2 JP 2001340528 A JP2001340528 A JP 2001340528A JP 2001340528 A JP2001340528 A JP 2001340528A JP 3824064 B2 JP3824064 B2 JP 3824064B2
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- resin composition
- flame
- inorganic filler
- semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Oc(cc1)ccc1O Chemical compound Oc(cc1)ccc1O QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Epoxy Resins (AREA)
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、成形性に優れるとともに、難燃性及び耐湿信頼性に優れ、臭素化エポキシ樹脂等の臭素化物、三酸化アンチモン等のアンチモン化合物を含有しない硬化物を得ることができる半導体封止用エポキシ樹脂組成物、及び該樹脂組成物の硬化物で封止した半導体装置に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
現在、半導体デバイスは樹脂封止型のダイオード、トランジスター、IC、LSI、超LSIが主流であるが、エポキシ樹脂が他の熱硬化性樹脂に比べ成形性、接着性、電気特性、機械特性、耐湿性等に優れているため、エポキシ樹脂組成物で半導体装置を封止することが一般的である。半導体デバイスは家電製品、コンピュータ等、生活環境のあらゆる所で使用されているため、万が一の火災に備えて、半導体装置には難燃性が要求されている。
【0003】
半導体封止用エポキシ樹脂組成物中には、難燃性を高めるため、一般にハロゲン化エポキシ樹脂と三酸化アンチモンとが配合されている。このハロゲン化エポキシ樹脂と三酸化アンチモンとの組み合わせは、気相においてラジカルトラップ、空気遮断効果が大きく、その結果、高い難燃効果が得られるものである。
【0004】
しかし、ハロゲン化エポキシ樹脂は燃焼時に有毒ガスを発生するという問題があり、また三酸化アンチモンにも粉体毒性があるため、人体、環境に対する影響を考慮すると、これらの難燃剤を樹脂組成物中に全く含まないことが好ましい。
【0005】
このような要求に対して、ハロゲン化エポキシ樹脂あるいは三酸化アンチモンの代替として、従来からAl(OH)3、Mg(OH)2等の水酸化物、赤リン、リン酸エステル等のリン系難燃剤等の検討がなされてきている。しかし、Al(OH)3、Mg(OH)2等の水酸化物は難燃効果が低いため、難燃組成とするためには、エポキシ樹脂組成物中に水酸化物を多量に添加しなければならず、その結果、組成物の粘度が上昇し、成形時にボイド、ワイヤー流れ等の成形不良が発生するという問題がある。一方、赤リン、リン酸エステル等のリン系難燃剤をエポキシ樹脂組成物に添加した場合、半導体装置が高温高湿条件にさらされると、リン系難燃剤が加水分解されてリン酸が生成し、このリン酸がアルミ配線を腐食させ、信頼性を低下させるという大きな問題があった。
【0006】
この問題を解決するため、特許第2843244号公報では、赤リンの表面にSiXOY組成からなる被覆層で被覆した化合物を難燃剤として使用したエポキシ樹脂組成物が提案されているが、上記の耐湿信頼性は改善されていないのが現状である。また、特開平10−259292号公報では、環状ホスファゼン化合物を、充填剤を除く配合成分の合計量に対して、燐原子の量が0.2〜3.0重量%となる量を使用したエポキシ樹脂組成物も提案されているが、難燃性を得るためには相当な量をエポキシ樹脂組成物に添加する必要があり、その場合は硬化性の低下ならびに高温環境下での電気抵抗性低下を引き起こす等の問題点があった。
【0007】
本発明は、上記事情に鑑みなされたもので、臭素化エポキシ樹脂等の臭素化物及び三酸化アンチモン等のアンチモン化合物を含有せず、成形性に優れるとともに、難燃性及び耐湿信頼性に優れる硬化物を得ることができる半導体封止用難燃性エポキシ樹脂組成物、及び該樹脂組成物の硬化物で封止した半導体装置を提供することを目的とする。
【0008】
【課題を解決するための手段及び発明の実施の形態】
本発明者等は、上記目的を達成すべく鋭意検討を行った結果、(A)エポキシ樹脂、(B)硬化剤、(C)無機質充填剤、(D)モリブデン酸亜鉛を無機質充填剤に担持したモリブデン化合物及び(E)下記平均組成式(1)で示されるホスファゼン化合物を必須成分とし、臭素化物及びアンチモン化合物を実質的に含まない半導体封止用難燃性エポキシ樹脂組成物が、成形性に優れるとともに、難燃性、耐湿信頼性に優れる硬化物を得ることができ、また該エポキシ樹脂組成物の硬化物で封止された半導体装置が、難燃性、耐湿信頼性に優れるものであることを見出し、本発明をなすに至ったものである。
【0009】
従って、本発明は、
(A)エポキシ樹脂
(B)硬化剤
(C)無機質充填剤
(D)モリブデン酸亜鉛を無機質充填剤に担持したモリブデン化合物
(E)下記平均組成式(1)で示されるホスファゼン化合物
【化2】
[式中、Xは単結合、又はCH2、C(CH3)2、SO2、S、O、及びO(CO)Oから選ばれる基であり、YはOH、SH又はNH2であり、R1は炭素数1〜4のアルキル基及びアルコキシ基、NH2、NR2R3並びにSR2から選ばれる基であり、R2,R3は水素原子又は炭素数1〜4のアルキル基である。d,e,f,nは0≦d≦0.25n、0≦e<2n、0≦f≦2n、2d+e+f=2n、3≦n≦1000を満たす数である。]
を必須成分とし、臭素化物及びアンチモン化合物を含まないことを特徴とする半導体封止用難燃性エポキシ樹脂組成物、及び上記難燃性エポキシ樹脂組成物の硬化物で封止した半導体装置を提供する。
【0010】
本発明のエポキシ樹脂組成物は、このように、臭素化物、アンチモン化合物を実質的に含まないものである。一般に、エポキシ樹脂組成物中には、難燃性を達成するため、臭素化エポキシ樹脂と三酸化アンチモンとが配合されているが、本発明のエポキシ樹脂組成物は、この臭素化エポキシ樹脂と三酸化アンチモンとを使用せずに、難燃規格であるUL−94、V−0を達成することができるものである。
【0011】
ここで、臭素化エポキシ樹脂あるいは三酸化アンチモンの代替として、従来からAl(OH)3、Mg(OH)2等の水酸化物、赤リン、リン酸エステル等のリン系難燃剤等が検討されている。しかし、これらの公知の代替難燃剤は、特に高温において耐水性が弱く、難燃剤自身が溶解、分解して、抽出水中の不純物イオンを増加させるという共通の欠点があった。このため、臭素化物、アンチモン化合物を実質的に含まない従来の難燃性エポキシ樹脂組成物で封止された半導体装置を長時間高温高湿下に放置すると、半導体装置のアルミ配線が腐食し、耐湿信頼性が低下するという問題があった。
【0012】
本発明者等は、上記不都合を解決すべく鋭意検討を行った結果、難燃剤として、モリブデン酸亜鉛を無機質充填剤に担持したモリブデン化合物(D)、及び下記平均組成式(1)で示されるホスファゼン化合物(E)の2種を併用した半導体封止用エポキシ樹脂組成物が、前述のように抽出水中の不純物イオンを増加させることもなく、成形性に優れ、難燃性及び耐湿信頼性に優れた硬化物を得ることができることを見出したものである。この場合、これら2種類の化合物は、いずれも耐水性が高く、抽出水中の不純物イオンを増加させる作用がないものである。しかし、これらの化合物をそれぞれ単独で使用した場合は、難燃効果が不十分であったり、エポキシ樹脂組成物の流動性が低下したり、あるいは硬化性が低下したりする不都合があったが、本発明の難燃性エポキシ樹脂組成物は、難燃剤として、モリブデン酸亜鉛を無機質充填剤に担持したモリブデン化合物(D)、及び平均組成式(1)で示されるホスファゼン化合物(E)の2種を併用したことにより、それぞれの添加量を最小限に抑えることができるため、上述のような成形時の問題点もなく、しかも難燃性及び耐湿信頼性に特に優れた硬化物を得ることができるものである。
【0013】
以下、本発明について更に詳しく説明する。
本発明のエポキシ樹脂組成物を構成する(A)エポキシ樹脂は特に限定されない。一般的なエポキシ樹脂としては、ノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールアルカン型エポキシ樹脂、アラルキル型エポキシ樹脂、ビフェニル骨格含有アラルキル型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、複素環型エポキシ樹脂、ナフタレン環含有エポキシ樹脂、ビスフェノールA型エポキシ化合物、ビスフェノールF型エポキシ化合物、スチルベン型エポキシ樹脂等が挙げられ、これらのうち1種又は2種以上を併用することができるが、本発明においては臭素化エポキシ樹脂は配合されない。
【0014】
上記エポキシ樹脂は、加水分解性塩素が1000ppm以下、特に500ppm以下であり、ナトリウム及びカリウムはそれぞれ10ppm以下とすることが好ましい。加水分解性塩素が1000ppmを超えたり、ナトリウム又はカリウムが10ppmを超える場合は、長時間高温高湿下に半導体装置を放置すると、耐湿性が劣化する場合がある。
【0015】
本発明に用いる(B)硬化剤も特に限定されるものではない。一般的な硬化剤としては、フェノール樹脂が好ましく、具体的にはフェノールノボラック樹脂、ナフタレン環含有フェノール樹脂、アラルキル型フェノール樹脂、トリフェノールアルカン型フェノール樹脂、ビフェニル骨格含有アラルキル型フェノール樹脂、ビフェニル型フェノール樹脂、脂環式フェノール樹脂、複素環型フェノール樹脂、ナフタレン環含有フェノール樹脂、ビスフェノールA型樹脂、ビスフェノールF型樹脂等のビスフェノール型フェノール樹脂などが挙げられ、これらのうち1種又は2種以上を併用することができる。
【0016】
上記硬化剤は、エポキシ樹脂と同様に、ナトリウム及びカリウムをそれぞれ10ppm以下とすることが好ましい。ナトリウム又はカリウムが10ppmを超える場合は、長時間高温高湿下に半導体装置を放置すると、耐湿性が劣化する場合がある。
【0017】
ここで、エポキシ樹脂、硬化剤の配合量は特に制限されないが、エポキシ樹脂中に含まれるエポキシ基1モルに対して、硬化剤中に含まれるフェノール性水酸基のモル比が0.5〜1.5、特に0.8〜1.2の範囲であることが好ましい。
【0018】
また、本発明において、エポキシ樹脂と硬化剤との硬化反応を促進させるため、硬化促進剤を用いることが好ましい。この硬化促進剤は、硬化反応を促進させるものであれば特に制限はなく、例えばトリフェニルホスフィン、トリブチルホスフィン、トリ(p−メチルフェニル)ホスフィン、トリ(ノニルフェニル)ホスフィン、トリフェニルホスフィン・トリフェニルボラン、テトラフェニルホスフィン・テトラフェニルボレートなどのリン系化合物、トリエチルアミン、ベンジルジメチルアミン、α−メチルベンジルジメチルアミン、1,8−ジアザビシクロ(5.4.0)ウンデセン−7などの第3級アミン化合物、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾールなどのイミダゾール化合物等を使用することができる。
【0019】
硬化促進剤の配合量は有効量であるが、上記リン系化合物、第3級アミン化合物、イミダゾール化合物等のエポキシ樹脂と硬化剤(フェノール樹脂)との硬化反応促進用の硬化促進剤は、(A)、(B)、(E)成分の総量100重量部に対し、0.1〜5重量部、特に0.5〜2重量部とすることが好ましい。
【0020】
本発明のエポキシ樹脂組成物中に配合される(C)無機質充填剤としては、通常エポキシ樹脂組成物に配合されるものを使用することができる。例えば、溶融シリカ、結晶性シリカ等のシリカ類、アルミナ、窒化珪素、窒化アルミニウム、ボロンナイトライド、酸化チタン、ガラス繊維等が挙げられる。
【0021】
これら無機質充填剤の平均粒径や形状及び無機質充填剤の充填量は、特に限定されないが、難燃性を高めるためには、エポキシ樹脂組成物中に成形性を損なわない範囲で可能な限り多量に充填させることが好ましい。この場合、無機質充填剤の平均粒径、形状として、平均粒径5〜30μmの球状の溶融シリカが特に好ましく、また、(C)成分の無機質充填剤の充填量は、(A)、(B)、(E)成分の総量100重量部に対し、400〜1200重量部、特に500〜1000重量部とすることが好ましい。
【0022】
なお、無機質充填剤は、樹脂と無機質充填剤との結合強度を強くするため、シランカップリング剤、チタネートカップリング剤などのカップリング剤で予め表面処理したものを配合することが好ましい。このようなカップリング剤としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルメチルジエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、N−β(アミノエチル)−γ−アミノプロピルトリメトキシシラン、γ−アミノプロピルトリエトキシシラン、N−フェニル−γ−アミノプロピルトリメトキシシラン等のアミノシラン、γ−メルカプトシラン等のメルカプトシランなどのシランカップリング剤を用いることが好ましい。ここで表面処理に用いるカップリング剤の配合量及び表面処理方法については、特に制限されるものではない。
【0023】
本発明の半導体封止用難燃性エポキシ樹脂組成物は、(D)モリブデン酸亜鉛を無機質充填剤に担持したモリブデン化合物を使用するものである。
【0024】
十分な難燃効果を得るためには、モリブデン酸亜鉛をエポキシ樹脂組成物中に均一に分散させることが好ましく、分散性を向上させるためには、予めモリブデン酸亜鉛をシリカ、タルク等の無機質充填剤に担持したモリブデン化合物が最適である。
【0025】
モリブデン酸亜鉛を担持させる無機質充填剤としては、溶融シリカ、結晶性シリカ等のシリカ類、タルク、アルミナ、窒化珪素、窒化アルミニウム、ボロンナイトライド、酸化チタン、酸化亜鉛、ガラス繊維等が挙げられる。この場合、無機質充填剤の平均粒径としては、0.1〜40μmであることが好ましく、特に0.5〜15μmであることが好ましい。また、比表面積は、0.5〜50m2/gであることが好ましく、特に0.7〜10m2/gであることが好ましい。
【0026】
なお、本発明において、平均粒径は、例えばレーザー光回折法等による重量平均値(又はメディアン径)等として求めることができ、比表面積は、例えばBET吸着法により求めることができる。
【0027】
また、無機質充填剤にモリブデン酸亜鉛を担持させたモリブデン化合物中のモリブデン酸亜鉛の含有量は、5〜40重量%、特に10〜30重量%であることが好ましい。モリブデン酸亜鉛の含有量が少なすぎると十分な難燃効果が得られない場合があり、また多すぎると成形時の流動性、硬化性が低下する場合がある。
【0028】
このようなモリブデン酸亜鉛を無機質充填剤に担持したモリブデン化合物としては、例えばSHERWIN−WILLIAMS社のKEMGARD1260、1261、911B、911C等が挙げられる。
【0029】
(D)成分である無機質充填剤にモリブデン酸亜鉛を担持させたモリブデン化合物の添加量としては、(A)、(B)、(E)成分の総量100重量部に対して3〜100重量部、特に5〜100重量部が好ましい。3重量部未満では十分な難燃効果が得られない場合があり、また100重量部を超えると、流動性、硬化性の低下を引き起こす場合がある。この場合、モリブデン化合物中のモリブデン酸亜鉛自体の添加量は、エポキシ樹脂と硬化剤との総量100重量部に対して0.1〜40重量部、特に0.2〜40重量部が好ましい。0.1重量部未満では十分な難燃効果が得られない場合があり、また40重量部を超えると、流動性、硬化性の低下を引き起こす場合がある。
【0030】
更に、本発明の半導体封止用難燃性エポキシ樹脂組成物は、(E)下記平均組成式(1)で示されるホスファゼン化合物を使用するものである。
【0031】
【化3】
[式中、Xは単結合、又はCH2、C(CH3)2、SO2、S、O、及びO(CO)Oから選ばれる基であり、YはOH、SH又はNH2であり、R1は炭素数1〜4のアルキル基及びアルコキシ基、NH2、NR2R3並びにSR2から選ばれる基であり、R2,R3は水素原子又は炭素数1〜4のアルキル基である。d,e,f,nは0≦d≦0.25n、0≦e<2n、0≦f≦2n、2d+e+f=2n、3≦n≦1000を満たす数である。]
【0032】
上記式(1)で示されるホスファゼン化合物を添加した本発明の半導体封止用難燃性エポキシ樹脂組成物は、赤リン、リン酸エステル等のリン系難燃剤を添加したエポキシ樹脂組成物と比較して、熱水抽出特性に優れ、耐湿信頼性に特に優れる硬化物を得ることができる。また、上記式(1)で示されるホスファゼン化合物をモリブデン化合物と併用することにより、更に高い難燃効果を得ることができる。
【0033】
ここで、式(1)において、nは3〜1000であるが、より好ましい範囲は3〜10である。合成上特に好ましくはn=3である。
【0034】
d,e,fの比率は0≦d≦0.25n、0≦e<2n、0≦f≦2n、2d+e+f=2nである。0.25n<dでは、ホスファゼン化合物の分子間架橋が多いため、軟化点が高くなり、エポキシ樹脂中に相溶しにくく、期待される難燃効果が得られない。dの比率は、0.15n≦d≦0.25nであることが好ましい。e、fの比率は、0≦e<2n、0≦f≦2nであるが、難燃性と硬化性、高温保管時の電気抵抗性を高いレベルで両立するためには、0.67n≦e≦1.33n、0.67n≦f≦1.33nが望ましい。
【0035】
X、Y、R1は上記の通りであり、R1は電子供与性の基である。電子供与基の置換が無い場合、Yの求核性が低下するため、エポキシ基との反応性が低くなる。その為、式(1)のホスファゼン化合物の添加量を増やした場合、硬化性の低下、高温時の電気抵抗性低下が生じる。また硬化性が悪いと熱分解しやすい為、難燃性も低下する。また、R1が炭素数5以上のアルキル基、アルコキシ基において、炭素数が増加すると難燃性が低下する。従って、メチル基、メトキシ基、アミノ基、ジメチルアミノ基が望ましい。
なお、Xが単結合である場合、
【化4】
で表される。
【0036】
また、(E)成分であるホスファゼン化合物の添加量は、(A)、(B)、(E)成分の合計量100重量%に対し、1〜50重量%、特に2〜20重量%が好ましい。添加量が1重量%未満では十分な難燃効果が得られない場合があり、また50重量%を超えると、流動性の低下を引き起こす場合がある。
【0037】
本発明の半導体封止用難燃性エポキシ樹脂組成物は、本発明の目的及び効果を発現できる範囲内において、他の難燃剤、例えば水酸化アルミニウム、水酸化マグネシウム等の水酸化物、ホウ酸亜鉛、スズ酸亜鉛等の無機化合物、シリコーン化合物を添加することもできる。但し、三酸化アンチモン等のアンチモン化合物は配合されない。
【0038】
本発明の半導体封止用難燃性エポキシ樹脂組成物には、更に必要に応じて各種の添加剤を配合することができる。例えば熱可塑性樹脂、熱可塑性エラストマー、有機合成ゴム、シリコーン系等の低応力剤、カルナバワックス、高級脂肪酸、合成ワックス等のワックス類、カーボンブラック等の着色剤、ハロゲントラップ剤等の添加剤を添加配合することができる。
【0039】
本発明の半導体封止用難燃性エポキシ樹脂組成物は、エポキシ樹脂、硬化剤、無機質充填剤、その他の添加物を所定の組成比で配合し、これをミキサー等によって十分均一に混合した後、熱ロール、ニーダー、エクストルーダー等による溶融混合処理を行い、次いで冷却固化させ、適当な大きさに粉砕して成形材料とすることができる。
【0040】
このようにして得られる本発明の半導体封止用難燃性エポキシ樹脂組成物は、各種の半導体装置の封止用に有効に利用でき、この場合、封止の最も一般的な方法としては、低圧トランスファー成形法が挙げられる。なお、本発明の半導体封止用難燃性エポキシ樹脂組成物の成形温度は150〜180℃で30〜180秒、後硬化は150〜180℃で2〜16時間行うことが望ましい。
【0041】
【発明の効果】
本発明の半導体封止用難燃性エポキシ樹脂組成物は、成形性に優れるとともに、難燃性及び耐湿信頼性に優れた硬化物を得ることができる。しかも、臭素化エポキシ樹脂等の臭素化物、三酸化アンチモン等のアンチモン化合物をエポキシ樹脂組成物中に含有しないので、人体、環境に対する悪影響もないものである。
【0042】
また、本発明の半導体封止用難燃性エポキシ樹脂組成物の硬化物で封止された半導体装置は、難燃性、耐湿信頼性に優れたものであり、産業上特に有用である。
【0043】
【実施例】
以下、ホスファゼン化合物の合成例、及びエポキシ樹脂組成物の実施例と比較例を示し、本発明を具体的に示すが、本発明は下記の実施例に制限されるものではない。なお、式中のMeはメチル基を示す。
【0044】
[合成例A]
窒素雰囲気下、0℃で水素化ナトリウム8.6g(214mmol)をTHF50mlに懸濁させ、そこにフェノール19.8g(211mmol)のTHF75ml溶液を滴下した。30分攪拌後、ヘキサクロロトリホスファゼン12.0g(34.5mmol)のTHF75ml溶液を滴下し、18時間加熱還流を行った。溶媒を減圧留去し、メタノールを加え、析出した結晶をメタノール、水で洗浄し、白色結晶を23.8g得た。
【0045】
【化5】
【0046】
[合成例B]
窒素雰囲気下、室温にてヘキサクロロトリホスファゼン13.0g(37.0mmol)、ヒドロキノン36.9g(335mmol)、シクロヘキサン150mlの混合物中に、ピリジン32.4g(410mmol)を滴下した。22時間加熱還流後、デカンテーションにより得られた下層の黄色シロップ状物を80%酢酸80mlに溶解し、水500mlに移して結晶を得た。その結晶をメタノールに溶かし、水に移して結晶を得た。この操作を水が中性になるまで繰返し、白色結晶を16.5g得た。
【0047】
【化6】
【0048】
[合成例C]
窒素雰囲気下、室温にてヘキサクロロトリホスファゼン25.5g(73mmol)、メチルヒドロキノン121.8g(733mmol)、シクロヘキサン900mlの混合物中に、γ−ピコリン68.3g(733mmol)を滴下した。4時間加熱還流後、デカンテーションにより得られた下層の黄色シロップ状物を80%酢酸160mlに溶解し、水500mlに移して結晶を得た。その結晶をメタノールに溶かし、水に移して結晶を得た。この操作を水が中性になるまで繰返し、淡茶色結晶を68.2g得た。
【0049】
【化7】
【0050】
[合成例D]
窒素雰囲気下、室温にてヘキサクロロトリホスファゼン12.0g(35.0mmol)、メチルヒドロキノン25.8g(155mmol)、フェノール14.6g(155mmol)、シクロヘキサン150mlの混合物中に、ピリジン30.0g(380mmol)を滴下した。16時間加熱還流後、デカンテーションにより得られた下層の黄色シロップ状物を80%酢酸80mlに溶解し、水500mlに移して結晶を得た。その結晶をメタノールに溶かし、水に移して結晶を得た。この操作を水が中性になるまで繰返し、白色結晶を22.8g得た。
【0051】
【化8】
【0052】
[合成例E]
窒素雰囲気下、0℃で水素化ナトリウム4.8g(119mmol)をTHF50mlに懸濁させ、そこにフェノール10.2g(108mmol)、4,4'−スルホニルジフェノール0.45g(1.8mmol)のTHF50ml溶液を滴下した。30分攪拌後、ヘキサクロロトリホスファゼン12.5g(36.0mmol)のTHF50ml溶液を滴下し、5時間加熱還流を行った。そこに、別途0℃で水素化ナトリウム5.2g(130mmol)をTHF50mlに懸濁させ、そこにフェノール11.2g(119mmol)のTHF50ml溶液を滴下し、更に19時間加熱還流した。溶媒を減圧留去後、クロロベンゼンを加えて溶解し、5%NaOH水溶液200ml×2、5%硫酸水溶液200ml×2、5%炭酸水素ナトリウム水溶液200ml×2、水200ml×2で抽出を行った。溶媒を減圧留去し、黄褐色結晶を20.4g得た。
【0053】
【化9】
【0054】
[合成例F]
窒素雰囲気下、0℃で水素化ナトリウム4.6g(114mmol)をTHF50mlに懸濁させ、そこにフェノール9.7g(104mmol)、4,4’−スルホニルジフェノール0.40g(1.7mmol)のTHF50ml溶液を滴下した。30分攪拌後、ヘキサクロロトリホスファゼン12.5g(36.0mmol)のTHF50ml溶液を滴下し、5時間加熱還流を行った。溶媒を減圧留去後、シクロヘキサン150ml、メチルヒドロキノン57.3g(345mmol)を加え、そこにピリジン27.3g(345mmol)を滴下した。18時間加熱還流した後、デカンテーションにより得られた下層の黄色シロップ状物を80%酢酸80mlに溶解し、水500mlに移して結晶を得た。その結晶をメタノールに溶かし、水に移して結晶を得た。この操作を水が中性になるまで繰返し、茶褐色結晶を25.8g得た。
【0055】
【化10】
【0056】
[実施例1〜4、比較例1〜5]
表1に示す成分を熱2本ロールにて均一に溶融混合し、冷却、粉砕して半導体封止用エポキシ樹脂組成物を得た。これらの組成物につき、次の(i)〜(vi)の諸特性を測定した。結果を表2に示した。
(i)スパイラルフロー値
EMMI規格に準じた金型を使用して、175℃、6.9N/mm2、成形時間120秒の条件で測定した。
(ii)ゲル化時間
組成物のゲル化時間を175℃熱板上で測定した。
(iii)成形硬度
JIS−K6911に準じて175℃、6.9N/mm2、成形時間90秒の条件で10×4×100mmの棒を成形したときの熱時硬度をバーコール硬度計で測定した。
(iv)高温電気抵抗特性
175℃、6.9N/mm2、成形時間120秒の条件で70φ×3mmの円板を成形して180℃で4時間ポストキュアーした。その後150℃雰囲気下で体積抵抗率を測定した。
(v)難燃性
UL−94規格に基づき、1/16インチ厚の板を、成形条件175℃、6.9N/mm2、成形時間120秒で成形し、180℃で4時間ポストキュアーしたものの難燃性を調べた。
(vi)耐湿性
アルミニウム配線を形成した6×6mmの大きさのシリコンチップを14pin−DIPフレーム(42アロイ)に接着し、更にチップ表面のアルミニウム電極とリードフレームとを30μmφの金線でワイヤボンディングした後、これにエポキシ樹脂組成物を成形条件175℃、6.9N/mm2、成形時間120秒で成形し、180℃で4時間ポストキュアーした。このパッケージ20個を140℃/85%RHの雰囲気中−5Vの直流バイアス電圧をかけて500時間放置した後、アルミニウム腐食が発生したパッケージ数を調べた。
【0057】
【表1】
【0058】
エポキシ樹脂:o−クレゾールノボラック型エポキシ樹脂、EOCN1020−55(日本化薬製、エポキシ当量200)
硬化剤:フェノールノボラック樹脂、DL−92(明和化成製、フェノール性水酸基当量110)
モリブデン化合物:モリブデン酸亜鉛、KEMGARD911C(SHERWIN−WILLIAMS製、モリブデン酸亜鉛含有量18重量%、コア材:タルク、平均粒径2.0μm、比表面積2.0m2/g)
無機質充填剤:球状溶融シリカ(龍森製、平均粒径20μm)
硬化触媒:トリフェニルホスフィン(北興化学製)
離型剤:カルナバワックス(日興ファインプロダクツ製)
カーボンブラック:デンカブラック(電気化学工業製)
シランカップリング剤:KBM−403(信越化学工業製)
【0059】
【表2】
【0060】
表2の結果から明らかなように、本発明の半導体封止用難燃性エポキシ樹脂組成物は、硬化性に優れると共に、難燃性、耐湿信頼性に優れ、高温電気抵抗特性に優れる硬化物を得ることができ、本発明のエポキシ樹脂組成物の硬化物で封止された半導体装置は、難燃性、耐湿信頼性に優れるものである。しかも、Br化エポキシ樹脂等の臭素化物、三酸化アンチモン等のアンチモン化合物を樹脂組成物中に含有しないので、人体・環境に対する悪影響がないものである。[0001]
BACKGROUND OF THE INVENTION
The present invention has excellent moldability, flame retardancy and moisture resistance reliability, and can be used to obtain a cured product that does not contain brominated products such as brominated epoxy resins and antimony compounds such as antimony trioxide. The present invention relates to an epoxy resin composition and a semiconductor device sealed with a cured product of the resin composition.
[0002]
[Prior art and problems to be solved by the invention]
Currently, resin-encapsulated diodes, transistors, ICs, LSIs, and super LSIs are the mainstream of semiconductor devices, but epoxy resins are more formable, adhesive, electrical, mechanical, and moisture resistant than other thermosetting resins. It is common to seal a semiconductor device with an epoxy resin composition because of its excellent properties. Since semiconductor devices are used everywhere in the living environment such as home appliances and computers, semiconductor devices are required to be flame retardant in preparation for an emergency fire.
[0003]
In the epoxy resin composition for semiconductor encapsulation, a halogenated epoxy resin and antimony trioxide are generally blended in order to enhance flame retardancy. The combination of the halogenated epoxy resin and antimony trioxide has a large radical trap and air blocking effect in the gas phase, and as a result, a high flame retardant effect can be obtained.
[0004]
However, halogenated epoxy resins have the problem of generating toxic gases when burned, and antimony trioxide is also powder toxic. Considering the effects on the human body and the environment, these flame retardants are contained in the resin composition. It is preferable that it is not contained at all.
[0005]
In response to such demands, as a substitute for halogenated epoxy resin or antimony trioxide, conventionally, hydroxides such as Al (OH) 3 and Mg (OH) 2 , phosphorus-based difficulties such as red phosphorus and phosphate esters are used. Investigations such as flame retardants have been made. However, since hydroxides such as Al (OH) 3 and Mg (OH) 2 have a low flame retardant effect, a large amount of hydroxide must be added to the epoxy resin composition in order to obtain a flame retardant composition. As a result, there is a problem that the viscosity of the composition increases, and molding defects such as voids and wire flow occur during molding. On the other hand, when a phosphorus flame retardant such as red phosphorus or phosphate is added to the epoxy resin composition, when the semiconductor device is exposed to high temperature and high humidity conditions, the phosphorus flame retardant is hydrolyzed and phosphoric acid is generated. This phosphoric acid corrodes the aluminum wiring and has a serious problem of reducing reliability.
[0006]
In order to solve this problem, Japanese Patent No. 2843244 proposes an epoxy resin composition using as a flame retardant a compound in which the surface of red phosphorus is coated with a coating layer made of a Si x O y composition. At present, the moisture resistance reliability is not improved. Japanese Patent Application Laid-Open No. 10-259292 discloses an epoxy in which a cyclic phosphazene compound is used in such an amount that the amount of phosphorus atoms is 0.2 to 3.0% by weight with respect to the total amount of the blending components excluding the filler. A resin composition has also been proposed, but in order to obtain flame retardancy, it is necessary to add a considerable amount to the epoxy resin composition, in which case the curability decreases and the electrical resistance decreases in a high temperature environment. There was a problem such as causing.
[0007]
The present invention has been made in view of the above circumstances, does not contain brominated products such as brominated epoxy resins and antimony compounds such as antimony trioxide, has excellent moldability, and is excellent in flame retardancy and moisture resistance reliability. An object of the present invention is to provide a flame-retardant epoxy resin composition for semiconductor encapsulation capable of obtaining a product, and a semiconductor device encapsulated with a cured product of the resin composition.
[0008]
Means for Solving the Problem and Embodiment of the Invention
As a result of intensive studies to achieve the above object, the present inventors have supported (A) epoxy resin, (B) curing agent, (C) inorganic filler, and (D) zinc molybdate on the inorganic filler. The flame retardant epoxy resin composition for semiconductor encapsulation, which contains the molybdenum compound and (E) a phosphazene compound represented by the following average composition formula (1) as essential components and is substantially free of bromide and antimony compound, In addition, it is possible to obtain a cured product excellent in flame retardancy and moisture resistance reliability, and the semiconductor device sealed with the cured product of the epoxy resin composition is excellent in flame retardancy and moisture resistance reliability. As a result, the present inventors have found that the present invention has been made.
[0009]
Therefore, the present invention
(A) Epoxy resin (B) Curing agent (C) Inorganic filler (D) Molybdenum compound carrying zinc molybdate on the inorganic filler (E) Phosphazene compound represented by the following average composition formula (1)
[Wherein X is a single bond or a group selected from CH 2 , C (CH 3 ) 2 , SO 2 , S, O, and O (CO) O, and Y is OH, SH, or NH 2 . , R 1 is a group selected from alkyl groups and alkoxy groups having 1 to 4 carbon atoms, NH 2 , NR 2 R 3 and SR 2 , and R 2 and R 3 are hydrogen atoms or alkyl groups having 1 to 4 carbon atoms. It is. d, e, f, and n are numbers satisfying 0 ≦ d ≦ 0.25n, 0 ≦ e <2n, 0 ≦ f ≦ 2n, 2d + e + f = 2n, and 3 ≦ n ≦ 1000. ]
The as essential components, flame for semiconductor encapsulation of brominated and antimony compounds, characterized in that that does not contain retardant epoxy resin composition, and a semiconductor device encapsulated with a cured product of the flame-retardant epoxy resin composition provide.
[0010]
Thus, the epoxy resin composition of the present invention is substantially free of bromide and antimony compound. In general, a brominated epoxy resin and antimony trioxide are blended in the epoxy resin composition in order to achieve flame retardancy, but the epoxy resin composition of the present invention is mixed with the brominated epoxy resin and the three. The flame retardant standards UL-94 and V-0 can be achieved without using antimony oxide.
[0011]
Here, as an alternative to brominated epoxy resin or antimony trioxide, conventionally, hydroxides such as Al (OH) 3 and Mg (OH) 2 , phosphorus-based flame retardants such as red phosphorus and phosphate esters, etc. have been studied. ing. However, these known alternative flame retardants have the common disadvantage that the water resistance is particularly weak at high temperatures, and the flame retardant itself dissolves and decomposes to increase impurity ions in the extracted water. For this reason, if a semiconductor device sealed with a conventional flame retardant epoxy resin composition substantially free of bromide and antimony compound is left under high temperature and high humidity for a long time, the aluminum wiring of the semiconductor device corrodes, There was a problem that the moisture resistance reliability deteriorated.
[0012]
As a result of intensive studies to solve the above problems, the present inventors have shown, as a flame retardant, a molybdenum compound (D) in which zinc molybdate is supported on an inorganic filler, and the following average composition formula (1). The epoxy resin composition for semiconductor encapsulation using two types of phosphazene compound (E) is excellent in moldability, flame retardancy and moisture resistance reliability without increasing impurity ions in the extracted water as described above. It has been found that an excellent cured product can be obtained. In this case, these two types of compounds are both highly water-resistant and have no action of increasing impurity ions in the extracted water. However, when each of these compounds was used alone, there was a disadvantage that the flame retardant effect was insufficient, the fluidity of the epoxy resin composition was lowered, or the curability was lowered, The flame retardant epoxy resin composition of the present invention has two types of flame retardants: a molybdenum compound (D) in which zinc molybdate is supported on an inorganic filler, and a phosphazene compound (E) represented by the average composition formula (1). By using together, it is possible to minimize the amount of each added, there is no problem at the time of molding as described above, and it is possible to obtain a cured product particularly excellent in flame retardancy and moisture resistance reliability It can be done.
[0013]
Hereinafter, the present invention will be described in more detail.
The (A) epoxy resin which comprises the epoxy resin composition of this invention is not specifically limited. Common epoxy resins include novolak-type epoxy resins, cresol novolak-type epoxy resins, triphenolalkane-type epoxy resins, aralkyl-type epoxy resins, biphenyl-skeleton-containing aralkyl-type epoxy resins, biphenyl-type epoxy resins, dicyclopentadiene-type epoxy resins. , Heterocyclic epoxy resins, naphthalene ring-containing epoxy resins, bisphenol A type epoxy compounds, bisphenol F type epoxy compounds, stilbene type epoxy resins, and the like, and one or more of these can be used in combination. In the present invention, a brominated epoxy resin is not blended.
[0014]
The epoxy resin has a hydrolyzable chlorine content of 1000 ppm or less, particularly 500 ppm or less, and sodium and potassium are each preferably 10 ppm or less. If the hydrolyzable chlorine exceeds 1000 ppm or the sodium or potassium exceeds 10 ppm, the moisture resistance may deteriorate if the semiconductor device is left under high temperature and high humidity for a long time.
[0015]
The (B) curing agent used in the present invention is not particularly limited. As a general curing agent, a phenol resin is preferable. Specifically, a phenol novolac resin, a naphthalene ring-containing phenol resin, an aralkyl type phenol resin, a triphenol alkane type phenol resin, a biphenyl skeleton-containing aralkyl type phenol resin, or a biphenyl type phenol. Examples thereof include bisphenol type phenol resins such as resin, alicyclic phenol resin, heterocyclic type phenol resin, naphthalene ring-containing phenol resin, bisphenol A type resin, bisphenol F type resin, etc. Can be used together.
[0016]
It is preferable that the said hardening | curing agent shall make sodium and potassium each 10 ppm or less similarly to an epoxy resin. When sodium or potassium exceeds 10 ppm, moisture resistance may deteriorate if the semiconductor device is left under high temperature and high humidity for a long time.
[0017]
Here, although the compounding quantity of an epoxy resin and a hardening | curing agent is not restrict | limited, The molar ratio of the phenolic hydroxyl group contained in a hardening | curing agent with respect to 1 mol of epoxy groups contained in an epoxy resin is 0.5-1. 5, in particular in the range of 0.8 to 1.2.
[0018]
In the present invention, it is preferable to use a curing accelerator in order to accelerate the curing reaction between the epoxy resin and the curing agent. The curing accelerator is not particularly limited as long as it accelerates the curing reaction. For example, triphenylphosphine, tributylphosphine, tri (p-methylphenyl) phosphine, tri (nonylphenyl) phosphine, triphenylphosphine / triphenyl. Phosphorus compounds such as borane, tetraphenylphosphine / tetraphenylborate, tertiary amine compounds such as triethylamine, benzyldimethylamine, α-methylbenzyldimethylamine, 1,8-diazabicyclo (5.4.0) undecene-7 Imidazole compounds such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, and the like can be used.
[0019]
The blending amount of the curing accelerator is an effective amount, but the curing accelerator for promoting the curing reaction between the epoxy compound such as the phosphorus compound, the tertiary amine compound, and the imidazole compound and the curing agent (phenol resin) is ( It is preferable to set it as 0.1-5 weight part with respect to 100 weight part of total amounts of A), (B), (E) component, especially 0.5-2 weight part.
[0020]
As the inorganic filler (C) blended in the epoxy resin composition of the present invention, those usually blended in the epoxy resin composition can be used. Examples thereof include silicas such as fused silica and crystalline silica, alumina, silicon nitride, aluminum nitride, boron nitride, titanium oxide, glass fiber and the like.
[0021]
The average particle diameter and shape of these inorganic fillers and the filling amount of the inorganic filler are not particularly limited, but in order to increase the flame retardancy, the amount is as large as possible within the range that does not impair the moldability in the epoxy resin composition. Is preferably filled. In this case, as the average particle size and shape of the inorganic filler, spherical fused silica having an average particle size of 5 to 30 μm is particularly preferable, and the filling amount of the inorganic filler as the component (C) is (A), (B ), (E) The total amount of the component is preferably 400 to 1200 parts by weight, particularly preferably 500 to 1000 parts by weight with respect to 100 parts by weight.
[0022]
The inorganic filler is preferably blended in advance with a surface treatment with a coupling agent such as a silane coupling agent or a titanate coupling agent in order to increase the bond strength between the resin and the inorganic filler. As such a coupling agent, epoxy silane such as γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, N Silane cups such as amino silanes such as -β (aminoethyl) -γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, and mercaptosilane such as γ-mercaptosilane It is preferable to use a ring agent. Here, the blending amount of the coupling agent used for the surface treatment and the surface treatment method are not particularly limited.
[0023]
The flame-retardant epoxy resin composition for semiconductor encapsulation of the present invention uses (D) a molybdenum compound in which zinc molybdate is supported on an inorganic filler.
[0024]
In order to obtain a sufficient flame retardant effect, it is preferable to uniformly disperse zinc molybdate in the epoxy resin composition. In order to improve dispersibility, zinc molybdate is preliminarily filled with inorganic substances such as silica and talc. Molybdenum compounds supported on the agent are optimal.
[0025]
Examples of the inorganic filler for supporting zinc molybdate include silicas such as fused silica and crystalline silica, talc, alumina, silicon nitride, aluminum nitride, boron nitride, titanium oxide, zinc oxide, and glass fiber. In this case, the average particle diameter of the inorganic filler is preferably 0.1 to 40 μm, and particularly preferably 0.5 to 15 μm. Moreover, it is preferable that a specific surface area is 0.5-50 m < 2 > / g, and it is especially preferable that it is 0.7-10 m < 2 > / g.
[0026]
In the present invention, the average particle diameter can be determined, for example, as a weight average value (or median diameter) by a laser light diffraction method or the like, and the specific surface area can be determined, for example, by a BET adsorption method.
[0027]
In addition, the content of zinc molybdate in the molybdenum compound in which zinc molybdate is supported on the inorganic filler is preferably 5 to 40% by weight, particularly 10 to 30% by weight. If the content of zinc molybdate is too small, a sufficient flame retardant effect may not be obtained, and if it is too large, fluidity and curability during molding may be deteriorated.
[0028]
Examples of the molybdenum compound in which such zinc molybdate is supported on an inorganic filler include KEGGARD 1260, 1261, 911B, and 911C manufactured by SHERWIN-WILLIAMS.
[0029]
The amount of the molybdenum compound in which zinc molybdate is supported on the inorganic filler as component (D) is 3 to 100 parts by weight based on 100 parts by weight of the total amount of components (A), (B), and (E). Particularly preferred is 5 to 100 parts by weight. If it is less than 3 parts by weight, a sufficient flame retardant effect may not be obtained, and if it exceeds 100 parts by weight, fluidity and curability may be lowered. In this case, the amount of zinc molybdate itself in the molybdenum compound is preferably 0.1 to 40 parts by weight, particularly preferably 0.2 to 40 parts by weight, based on 100 parts by weight of the total amount of the epoxy resin and the curing agent. If the amount is less than 0.1 parts by weight, a sufficient flame retardant effect may not be obtained. If the amount exceeds 40 parts by weight, fluidity and curability may be deteriorated.
[0030]
Furthermore, the flame-retardant epoxy resin composition for semiconductor encapsulation of the present invention uses (E) a phosphazene compound represented by the following average composition formula (1).
[0031]
[Chemical Formula 3]
[Wherein X is a single bond or a group selected from CH 2 , C (CH 3 ) 2 , SO 2 , S, O, and O (CO) O, and Y is OH, SH, or NH 2 . , R 1 is a group selected from alkyl groups and alkoxy groups having 1 to 4 carbon atoms, NH 2 , NR 2 R 3 and SR 2 , and R 2 and R 3 are hydrogen atoms or alkyl groups having 1 to 4 carbon atoms. It is. d, e, f, and n are numbers satisfying 0 ≦ d ≦ 0.25n, 0 ≦ e <2n, 0 ≦ f ≦ 2n, 2d + e + f = 2n, and 3 ≦ n ≦ 1000. ]
[0032]
The flame retardant epoxy resin composition for semiconductor encapsulation of the present invention to which the phosphazene compound represented by the above formula (1) is added is compared with the epoxy resin composition to which a phosphorus flame retardant such as red phosphorus or phosphate is added. Thus, a cured product having excellent hot water extraction characteristics and particularly excellent moisture resistance reliability can be obtained. Further, by using a phosphazene compound represented by the above formula (1) in combination with a molybdenum compound, a higher flame retarding effect can be obtained.
[0033]
Here, in Formula (1), n is 3-1000, However, A more preferable range is 3-10. Particularly preferably n = 3 in terms of synthesis.
[0034]
The ratios of d, e, and f are 0 ≦ d ≦ 0.25n, 0 ≦ e <2n, 0 ≦ f ≦ 2n, and 2d + e + f = 2n. When 0.25n <d, since there are many intermolecular crosslinks of the phosphazene compound, the softening point becomes high, it is difficult to be compatible with the epoxy resin, and the expected flame retardant effect cannot be obtained. The ratio of d is preferably 0.15n ≦ d ≦ 0.25n. The ratios of e and f are 0 ≦ e <2n and 0 ≦ f ≦ 2n. However, in order to achieve both high flame retardancy and curability and high-temperature electrical resistance, 0.67n ≦ It is desirable that e ≦ 1.33n and 0.67n ≦ f ≦ 1.33n.
[0035]
X, Y and R 1 are as described above, and R 1 is an electron donating group. When there is no substitution of the electron donating group, the nucleophilicity of Y is lowered, and the reactivity with the epoxy group is lowered. Therefore, when the addition amount of the phosphazene compound of Formula (1) is increased, the curability is lowered and the electrical resistance is lowered at a high temperature. In addition, if the curability is poor, it is easily pyrolyzed, so the flame retardancy is also reduced. In addition, when R 1 is an alkyl group or alkoxy group having 5 or more carbon atoms, the flame retardancy decreases as the carbon number increases. Therefore, a methyl group, a methoxy group, an amino group, and a dimethylamino group are desirable.
In addition, when X is a single bond,
[Formula 4]
It is represented by
[0036]
The amount of the phosphazene compound as the component (E) is preferably 1 to 50% by weight, particularly preferably 2 to 20% by weight with respect to 100% by weight of the total amount of the components (A), (B) and (E). . When the addition amount is less than 1% by weight, a sufficient flame retardant effect may not be obtained, and when it exceeds 50% by weight, fluidity may be lowered.
[0037]
The flame-retardant epoxy resin composition for semiconductor encapsulation of the present invention is within the range in which the objects and effects of the present invention can be exhibited, and other flame retardants, for example, hydroxides such as aluminum hydroxide and magnesium hydroxide, boric acid Inorganic compounds such as zinc and zinc stannate, and silicone compounds can also be added. However, antimony compounds such as antimony trioxide are not blended.
[0038]
The flame-retardant epoxy resin composition for semiconductor encapsulation of the present invention can further contain various additives as necessary. For example, additives such as thermoplastic resins, thermoplastic elastomers, organic synthetic rubbers, silicone-based low stress agents, carnauba wax, higher fatty acids, waxes such as synthetic waxes, colorants such as carbon black, halogen trapping agents, etc. Can be blended.
[0039]
The flame-retardant epoxy resin composition for semiconductor encapsulation of the present invention is obtained by blending epoxy resin, curing agent, inorganic filler, and other additives in a predetermined composition ratio and mixing it sufficiently uniformly by a mixer or the like. Then, it can be melt-mixed by a hot roll, a kneader, an extruder, etc., then cooled and solidified, and pulverized to an appropriate size to obtain a molding material.
[0040]
The flame-retardant epoxy resin composition for semiconductor encapsulation of the present invention thus obtained can be effectively used for sealing various semiconductor devices. In this case, as the most general method of sealing, A low-pressure transfer molding method is mentioned. In addition, as for the molding temperature of the flame-retardant epoxy resin composition for semiconductor sealing of this invention, it is desirable to carry out for 30 to 180 second at 150-180 degreeC, and to perform post-curing at 150-180 degreeC for 2 to 16 hours.
[0041]
【The invention's effect】
The flame-retardant epoxy resin composition for semiconductor encapsulation of the present invention is excellent in moldability and can provide a cured product excellent in flame retardancy and moisture resistance reliability. In addition, since brominated products such as brominated epoxy resins and antimony compounds such as antimony trioxide are not contained in the epoxy resin composition, there are no adverse effects on the human body and the environment.
[0042]
Moreover, the semiconductor device sealed with the hardened | cured material of the flame-retardant epoxy resin composition for semiconductor sealing of this invention is excellent in a flame retardance and moisture resistance reliability, and is especially useful industrially.
[0043]
【Example】
Hereinafter, although the synthesis example of a phosphazene compound and the Example and comparative example of an epoxy resin composition are shown, this invention is shown concretely, This invention is not restrict | limited to the following Example. In the formula, Me represents a methyl group.
[0044]
[Synthesis Example A]
Under a nitrogen atmosphere, 8.6 g (214 mmol) of sodium hydride was suspended in 50 ml of THF at 0 ° C., and a solution of 19.8 g (211 mmol) of phenol in 75 ml of THF was added dropwise thereto. After stirring for 30 minutes, a solution of 12.0 g (34.5 mmol) of hexachlorotriphosphazene in 75 ml of THF was added dropwise, and the mixture was heated to reflux for 18 hours. The solvent was distilled off under reduced pressure, methanol was added, and the precipitated crystals were washed with methanol and water to obtain 23.8 g of white crystals.
[0045]
[Chemical formula 5]
[0046]
[Synthesis Example B]
Under a nitrogen atmosphere, 32.4 g (410 mmol) of pyridine was dropped into a mixture of 13.0 g (37.0 mmol) of hexachlorotriphosphazene, 36.9 g (335 mmol) of hydroquinone, and 150 ml of cyclohexane at room temperature. After heating under reflux for 22 hours, the lower yellow syrup obtained by decantation was dissolved in 80 ml of 80% acetic acid and transferred to 500 ml of water to obtain crystals. The crystals were dissolved in methanol and transferred to water to obtain crystals. This operation was repeated until water became neutral to obtain 16.5 g of white crystals.
[0047]
[Chemical 6]
[0048]
[Synthesis Example C]
Under a nitrogen atmosphere, 68.3 g (733 mmol) of γ-picoline was added dropwise to a mixture of 25.5 g (73 mmol) of hexachlorotriphosphazene, 121.8 g (733 mmol) of methylhydroquinone, and 900 ml of cyclohexane at room temperature. After heating under reflux for 4 hours, the lower yellow syrup obtained by decantation was dissolved in 160 ml of 80% acetic acid and transferred to 500 ml of water to obtain crystals. The crystals were dissolved in methanol and transferred to water to obtain crystals. This operation was repeated until water became neutral to obtain 68.2 g of light brown crystals.
[0049]
[Chemical 7]
[0050]
[Synthesis Example D]
30.0 g (380 mmol) of pyridine in a mixture of 12.0 g (35.0 mmol) of hexachlorotriphosphazene, 25.8 g (155 mmol) of methylhydroquinone, 14.6 g (155 mmol) of phenol and 150 ml of cyclohexane at room temperature under a nitrogen atmosphere Was dripped. After heating under reflux for 16 hours, the lower yellow syrup obtained by decantation was dissolved in 80 ml of 80% acetic acid and transferred to 500 ml of water to obtain crystals. The crystals were dissolved in methanol and transferred to water to obtain crystals. This operation was repeated until water became neutral to obtain 22.8 g of white crystals.
[0051]
[Chemical 8]
[0052]
[Synthesis Example E]
In a nitrogen atmosphere, 4.8 g (119 mmol) of sodium hydride was suspended in 50 ml of THF at 0 ° C., and 10.2 g (108 mmol) of phenol and 0.45 g (1.8 mmol) of 4,4′-sulfonyldiphenol were suspended therein. A 50 ml THF solution was added dropwise. After stirring for 30 minutes, a solution of 12.5 g (36.0 mmol) of hexachlorotriphosphazene in 50 ml of THF was added dropwise, and the mixture was heated to reflux for 5 hours. Separately, 5.2 g (130 mmol) of sodium hydride was suspended in 50 ml of THF at 0 ° C., and a solution of phenol 11.2 g (119 mmol) in 50 ml of THF was added dropwise thereto, and the mixture was further heated and refluxed for 19 hours. After the solvent was distilled off under reduced pressure, chlorobenzene was added and dissolved, followed by extraction with 5% NaOH aqueous solution 200 ml × 2, 5% sulfuric acid aqueous solution 200 ml × 2, 5% sodium hydrogen carbonate aqueous solution 200 ml × 2, and water 200 ml × 2. The solvent was distilled off under reduced pressure to obtain 20.4 g of tan crystals.
[0053]
[Chemical 9]
[0054]
[Synthesis Example F]
Under nitrogen atmosphere, sodium hydride (4.6 g, 114 mmol) was suspended in THF (50 ml) at 0 ° C., and phenol (9.7 g, 104 mmol) and 4,4′-sulfonyldiphenol (0.40 g, 1.7 mmol) were suspended therein. A 50 ml THF solution was added dropwise. After stirring for 30 minutes, a solution of 12.5 g (36.0 mmol) of hexachlorotriphosphazene in 50 ml of THF was added dropwise, and the mixture was heated to reflux for 5 hours. After distilling off the solvent under reduced pressure, 150 ml of cyclohexane and 57.3 g (345 mmol) of methylhydroquinone were added, and 27.3 g (345 mmol) of pyridine was added dropwise thereto. After heating under reflux for 18 hours, the lower yellow syrup obtained by decantation was dissolved in 80 ml of 80% acetic acid and transferred to 500 ml of water to obtain crystals. The crystals were dissolved in methanol and transferred to water to obtain crystals. This operation was repeated until water became neutral to obtain 25.8 g of brown crystals.
[0055]
[Chemical Formula 10]
[0056]
[Examples 1 to 4, Comparative Examples 1 to 5]
The components shown in Table 1 were uniformly melt-mixed with two hot rolls, cooled and pulverized to obtain an epoxy resin composition for semiconductor encapsulation. For these compositions, the following properties (i) to (vi) were measured. The results are shown in Table 2.
(I) Spiral flow value Using a mold conforming to the EMMI standard, measurement was performed under the conditions of 175 ° C., 6.9 N / mm 2 , and a molding time of 120 seconds.
(Ii) Gelation time The gelation time of the composition was measured on a hot plate at 175 ° C.
(Iii) Molding hardness According to JIS-K6911, the hot hardness when a 10 × 4 × 100 mm rod was molded under the conditions of 175 ° C., 6.9 N / mm 2 , and molding time of 90 seconds was measured with a Barcoll hardness meter. .
(Iv) High-temperature electrical resistance characteristics A disc of 70φ × 3 mm was molded under the conditions of 175 ° C., 6.9 N / mm 2 and a molding time of 120 seconds, and post-cured at 180 ° C. for 4 hours. Thereafter, the volume resistivity was measured in an atmosphere of 150 ° C.
(V) Based on flame retardant UL-94 standard, a 1/16 inch thick plate was molded under molding conditions of 175 ° C., 6.9 N / mm 2 , molding time of 120 seconds, and post-cured at 180 ° C. for 4 hours. The flame retardancy of the thing was investigated.
(Vi) A 6 × 6 mm silicon chip formed with moisture-resistant aluminum wiring is bonded to a 14 pin-DIP frame (42 alloy), and the aluminum electrode on the chip surface and the lead frame are wire bonded with a 30 μmφ gold wire. After that, the epoxy resin composition was molded into this with a molding condition of 175 ° C., 6.9 N / mm 2 and a molding time of 120 seconds, and post-cured at 180 ° C. for 4 hours. Twenty of these packages were left in an atmosphere of 140 ° C./85% RH with a DC bias voltage of −5 V for 500 hours, and then the number of packages in which aluminum corrosion occurred was examined.
[0057]
[Table 1]
[0058]
Epoxy resin: o-cresol novolac type epoxy resin, EOCN1020-55 (manufactured by Nippon Kayaku, epoxy equivalent 200)
Curing agent: phenol novolac resin, DL-92 (Maywa Kasei, phenolic hydroxyl group equivalent 110)
Molybdenum compound: zinc molybdate, KEMGARD911C (manufactured by SHERWIN-WILLIAMS, zinc molybdate content 18% by weight, core material: talc, average particle size 2.0 μm, specific surface area 2.0 m 2 / g)
Inorganic filler: Spherical fused silica (manufactured by Tatsumori, average particle size 20 μm)
Curing catalyst: Triphenylphosphine (manufactured by Hokuko Chemical)
Mold release agent: Carnauba wax (Nikko Fine Products)
Carbon black: Denka Black (manufactured by Denki Kagaku Kogyo)
Silane coupling agent: KBM-403 (manufactured by Shin-Etsu Chemical)
[0059]
[Table 2]
[0060]
As is clear from the results in Table 2, the flame-retardant epoxy resin composition for semiconductor encapsulation of the present invention is excellent in curability, flame retardant, moisture resistance reliability, and high-temperature electrical resistance characteristics. The semiconductor device encapsulated with the cured product of the epoxy resin composition of the present invention is excellent in flame retardancy and moisture resistance reliability. In addition, brominated products such as Br-epoxy epoxy resins and antimony compounds such as antimony trioxide are not contained in the resin composition, so that there is no adverse effect on the human body and the environment.
Claims (2)
(B)硬化剤
(C)無機質充填剤
(D)モリブデン酸亜鉛を無機質充填剤に担持したモリブデン化合物
(E)下記平均組成式(1)で示されるホスファゼン化合物
を必須成分とし、臭素化物及びアンチモン化合物を含まないことを特徴とする半導体封止用難燃性エポキシ樹脂組成物。(A) Epoxy resin (B) Curing agent (C) Inorganic filler (D) Molybdenum compound carrying zinc molybdate on inorganic filler (E) Phosphazene compound represented by the following average composition formula (1)
The as essential components, brominated and antimony compounds for semiconductor encapsulation flame retardant epoxy resin composition characterized by that it does not contain.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001340528A JP3824064B2 (en) | 2001-11-06 | 2001-11-06 | Flame-retardant epoxy resin composition for semiconductor encapsulation and semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001340528A JP3824064B2 (en) | 2001-11-06 | 2001-11-06 | Flame-retardant epoxy resin composition for semiconductor encapsulation and semiconductor device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003138102A JP2003138102A (en) | 2003-05-14 |
JP3824064B2 true JP3824064B2 (en) | 2006-09-20 |
Family
ID=19154710
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001340528A Expired - Fee Related JP3824064B2 (en) | 2001-11-06 | 2001-11-06 | Flame-retardant epoxy resin composition for semiconductor encapsulation and semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3824064B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4692744B2 (en) | 2004-08-02 | 2011-06-01 | 信越化学工業株式会社 | Epoxy resin composition for semiconductor encapsulation and semiconductor device |
JP4844726B2 (en) * | 2005-04-25 | 2011-12-28 | 信越化学工業株式会社 | Epoxy resin composition for semiconductor encapsulation and semiconductor device |
EP2899302B1 (en) | 2012-09-21 | 2017-11-15 | Kaneka Corporation | Halogen-containing flame-retardant fibers, method for producing same, and flame-retardant fiber product using same |
-
2001
- 2001-11-06 JP JP2001340528A patent/JP3824064B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2003138102A (en) | 2003-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4692744B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
TWI647275B (en) | Sealing epoxy resin forming material and electronic component device | |
JP3479827B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
TWI503368B (en) | Epoxy resin molding materials and electronic components for packaging | |
JP3582576B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
JP3824065B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
US6783859B2 (en) | Semiconductor encapsulating flame retardant epoxy resin composition and semiconductor device | |
JP3714399B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
JP2005036085A (en) | Epoxy resin molding material for sealing and electronic part device | |
JP3824066B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
JP3824064B2 (en) | Flame-retardant epoxy resin composition for semiconductor encapsulation and semiconductor device | |
US7122587B2 (en) | Semiconductor encapsulating flame retardant epoxy resin composition and semiconductor device | |
JP3871025B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
JP3388536B2 (en) | Epoxy resin composition for semiconductor encapsulation and semiconductor device | |
JP3824063B2 (en) | Flame-retardant epoxy resin composition for semiconductor encapsulation and semiconductor device | |
JP2013142136A (en) | Flame-retardant liquid epoxy resin composition for encapsulating semiconductor and semiconductor device | |
JP2003268208A (en) | Flame retardant epoxy resin composition for sealing of semiconductor and semiconductor device | |
JP2003171534A (en) | Epoxy resin composition for semiconductor sealing and semiconductor device | |
JP2003138097A (en) | Epoxy resin composition for semiconductor encapsulation, and semiconductor device using it | |
JP2000345009A (en) | Epoxy resin composition for sealing semiconductor and semiconductor device | |
JP2003165897A (en) | Epoxy resin composition for semiconductor sealing and semiconductor device using the same | |
JP2004352954A (en) | Epoxy resin composition and semiconductor device | |
JP2003327799A (en) | Semiconductor-sealing, flame-retardant epoxy resin composition and semiconductor device | |
TW202321367A (en) | Resin composition for encapsulating semiconductor, and semiconductor device | |
JP2004155975A (en) | Flame-retardant epoxy resin composition for sealing semiconductor and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040602 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060421 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060607 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060620 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3824064 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090707 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120707 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150707 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |