JP2015093453A - 液体吐出ヘッドおよびその製造方法 - Google Patents

液体吐出ヘッドおよびその製造方法 Download PDF

Info

Publication number
JP2015093453A
JP2015093453A JP2013235146A JP2013235146A JP2015093453A JP 2015093453 A JP2015093453 A JP 2015093453A JP 2013235146 A JP2013235146 A JP 2013235146A JP 2013235146 A JP2013235146 A JP 2013235146A JP 2015093453 A JP2015093453 A JP 2015093453A
Authority
JP
Japan
Prior art keywords
flow path
liquid
forming member
porosity
path forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013235146A
Other languages
English (en)
Inventor
初井 琢也
Takuya Hatsui
琢也 初井
健治 ▲高▼橋
健治 ▲高▼橋
Kenji Takahashi
真 照井
Makoto Terui
真 照井
竹内 創太
Sota Takeuchi
創太 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013235146A priority Critical patent/JP2015093453A/ja
Publication of JP2015093453A publication Critical patent/JP2015093453A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ink Jet (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

【課題】液体を安定に吐出できる液体吐出ヘッドを提供する。【解決手段】基板と、該基板上に設けられるエネルギー発生素子と、該基板との間に液体の流路を形成し、該エネルギー発生素子と対向する位置に吐出口を有する流路形成部材と、を備える液体吐出ヘッドであって、前記流路形成部材が、前記流路側より液体を吸収し、前記流路形成部材内で液体を保持するとともに外部に液体を放湿できる、ポーラス構造を有する無機材料を含み、該流路形成部材の空孔率が30体積%以上である液体吐出ヘッド。【選択図】図1

Description

本発明は液体吐出ヘッドおよびその製造方法に関する。
液体吐出ヘッドの基板の表面にはエネルギー発生素子が設けられている。該エネルギー発生素子に液体を導くために、基板には基板を貫通する供給口が形成されている。また、基板の表面には、エネルギー発生素子を熱したときの泡で液体を所望の方向へ飛ばすための流路形成部材が形成されている。該流路形成部材により、供給口からエネルギー発生素子の上面に液体を供給する流路が形成されている。また、該流路形成部材には液体を吐出するための吐出口が設けられている。
特許文献1には、微細な吐出口から微小なインク滴を吐出して、紙やOHPフィルム等の被記録媒体に画像を記録するインクジェット記録装置が開示されている。しかしながら、非記録動作状態が続いて吐出口から長期にわたってインクが吐出されない場合には、吐出口内のインクが蒸発乾燥し、増粘及び固化したインクが吐出口内に詰まる場合がある。この場合、ヨレ(インクの吐出方向の変化)や吐出不良が生じるため、安定してインクを吐出できない場合がある。そのため、特許文献1では、吐出口近傍に微細な保湿穴を複数開け、吐出口周囲の湿度を保つことでヨレや吐出不良の発生を抑制している。
特開2004−209741号公報
近年、精密な印字を行う観点から、吐出口から一度に飛ばされる液体の量が少なくなっている。また、吐出口から一度に飛ばされる液体の量を少なくするために、吐出口の開口面積が小さくなっている。一方、印字のスピードを保つためには、同じ時間で同じ量の液体を飛ばす必要がある。そのため、吐出口を高密度に配置する必要があり、かつ液体の流路も小さく高密度に配置する必要がある。
ここで、特許文献1に記載されているような保湿穴を形成するためには、吐出口周りにスペースが必要である。該スペースは流路内にも必要であり、保湿穴をあけると流路が大きくなるため、高密度に吐出口を配置できない。仮に保湿穴を配置できたとしても、十分な数の保湿穴を配置することはできず、保湿が不十分である。また、保湿穴をあけると強度が低下する課題がある。特に流路形成部材の厚さが薄いと強度が低下し、破損しやすくなる。また、流路内には液体が存在するため、保湿穴による強度の低下により、液体による流路形成部材の膨潤変形が大きくなる。
本発明は、液体を安定に吐出できる液体吐出ヘッドを提供することを目的とする。
本発明に係る液体吐出ヘッドは、基板と、該基板上に設けられるエネルギー発生素子と、該基板との間に液体の流路を形成し、該エネルギー発生素子と対向する位置に吐出口を有する流路形成部材と、を備える液体吐出ヘッドであって、
前記流路形成部材が、前記流路側より液体を吸収し、前記流路形成部材内で液体を保持するとともに外部に液体を放湿できる、ポーラス構造を有する無機材料を含み、該流路形成部材の空孔率が30体積%以上である。
本発明に係る液体吐出ヘッドの製造方法は、基板と、該基板上に設けられるエネルギー発生素子と、該基板との間に液体の流路を形成し、該エネルギー発生素子と対向する位置に吐出口を有する流路形成部材と、を備える液体吐出ヘッドの製造方法であって、
プラズマCVD法により前記流路形成部材を形成する工程を含み、
前記流路形成部材が、前記流路側より液体を吸収し、前記流路形成部材内で液体を保持するとともに外部に液体を放湿できる、ポーラス構造を有する無機材料を含み、該流路形成部材の空孔率が30体積%以上である。
本発明によれば、液体を安定に吐出できる液体吐出ヘッドを提供することができる。
本発明に係る液体吐出ヘッドの一例を示す断面図である。 本発明に係る液体吐出ヘッドの製造方法の一例を示す断面図である。 本発明に係る液体吐出ヘッドの一例を示す断面図である。 本発明に係る液体吐出ヘッドの製造方法の一例を示す断面図である。 本発明に係る液体吐出ヘッドの一例を示す断面図である。
[液体吐出ヘッド]
本発明に係る液体吐出ヘッドは、基板と、該基板上に設けられるエネルギー発生素子と、該基板との間に液体の流路を形成し、該エネルギー発生素子と対向する位置に吐出口を有する流路形成部材と、を備える。流路形成部材は、前記流路側より液体を吸収し、前記流路形成部材内で液体を保持するとともに、保持された液体を用いる外部への放湿を可能とするポーラス構造を有している。このポーラス構造は、流路形成部材の流路側から吐出口面側まで互いに連通する多数の空孔を有し、ポーラス構造のマトリクス(骨格)または空孔壁が無機材料から形成され、流路形成部材の空孔率は30体積%以上である。
本発明では、流路形成部材が耐液性の高いポーラス構造を有する無機材料を含むことにより、高密度に吐出口を配置した場合にも、強度不足による変形をおこすことなく、流路から吐出口周囲に直接液体を送ることができる。また、流路形成部材の空孔率は30体積%以上であるため、流路形成部材内の吐出口周囲に十分な量の放湿のための液体を供給することができ、十分な保湿を行うことができる。これにより、本発明に係る液体吐出ヘッドは液体を安定に吐出することができる。
本発明に係る液体吐出ヘッドの一例を図1に示す。図1a)は該液体吐出ヘッドの断面図であり、図1b)は該液体吐出ヘッドの上面図である。図1に示される液体吐出ヘッドは、基板101と、吐出口104及び流路115を形成する流路形成部材103とを備える。基板101の表面には、エネルギー発生素子102が配置されている。エネルギー発生素子102としては、熱変換素子(ヒータ)や圧電素子が挙げられる。エネルギー発生素子102は基板101に接していてもよく、基板101から離れ、宙に浮いている部分を有していてもよい。また、基板101とエネルギー発生素子102との間には、絶縁層が設けられていることが好ましい。
基板101の表面には、吐出口104及び流路115を形成する流路形成部材103が形成されている。流路形成部材103のエネルギー発生素子102と対向する位置には、吐出口104が形成されている。本発明において流路形成部材103はポーラス構造を有する無機材料を含み、空孔率は30体積%以上である。基板101には、供給口105が形成されている。供給口105は、流路115及び吐出口104に液体を供給する。供給口105から流路115に供給された液体には、エネルギー発生素子102から発生したエネルギーが与えられ、これにより吐出口104から液体が吐出される。
流路形成部材103は前記無機材料を含むためポーラス構造を有し、流路115内に満たされた液体は流路形成部材103内に蓄えられる。蓄えられた液体はポーラス構造を通り、外部と接する流路形成部材103の表面まで浸透し、蒸発する。本発明に係る液体吐出ヘッドをインクジェット記録ヘッドとして用いる場合には、特に記録動作が行われず、吐出口104周囲の湿度が低下した際にも、前記表面からインクの水性溶媒成分、例えば水及び/または揮発性の水性有機溶剤が蒸発するため吐出口104の周囲が保湿され、印字の安定性が保たれる。流路形成部材103は前記無機材料を90質量%以上含むことが好ましく、95質量%以上含むことがより好ましい。流路形成部材103が前記無機材料からなる、すなわち、前記無機材料を100質量%含むことがさらに好ましい。
流路形成部材103の空孔率は、吐出口周囲に十分な量の液体を供給することができ、十分な保湿を行うことができる観点から、30体積%以上である。該空孔率は40体積%以上であることが好ましく、50体積%以上であることがより好ましく、60体積%以上であることがさらに好ましい。また、流路形成部材の強度の観点から、該空孔率は90体積%以下であることが好ましく、80体積%以下であることがより好ましく、70体積%以下であることがさらに好ましい。なお、該空孔率は透過型電子顕微鏡(TEM)により得られた画像データから、空孔の面積割合を算出して得た値である。
前記無機材料はSi系の無機材料であることが好ましい。該無機材料は、エポキシ系の樹脂材料の10倍以上の強度がある。そのため、該無機材料がポーラス構造を有するために流路形成部材103に空孔が多く形成されている場合にも、十分な強度を確保することができる。また、該無機材料は空孔に液体を吸収するが、膨潤による変形は起こさない。
前記無機材料はケイ素及び炭素を含むことがより好ましい。この時、本発明者らは、ケイ素に対する炭素の含有割合を増やすことで、液体に対する耐性が向上することを見出した。特に、前記無機材料のケイ素の含有率をX(atom%)、炭素の含有率をY(atom%)とする場合、Y/Xが0.001以上であることが好ましい。Y/Xは0.05以上であることがより好ましく、0.1以上であることがさらに好ましい。また、成膜性の観点から、Y/Xは10以下であることが好ましく、5以下であることがより好ましく、3以下であることがさらに好ましい。なお、X及びYは光電子分光装置(XPS)により測定した値である。以下に示す各元素の含有率の測定も同様である。また、無機材料中のケイ素と炭素は、炭化ケイ素(SiC)として存在することが好ましい。無機材料中のケイ素と炭素の合計量、即ちX+Yは50以上であることが好ましい。なお、流路形成部材103が前記無機材料からなる場合には、流路形成部材103はケイ素及び炭素のみで構成されてもよく、その場合X+Y=100である。
また、前記無機材料はケイ素、炭素及び窒素を含むことがさらに好ましい。前記無機材料がさらに窒素を含有することでエッチング性を上げることができる。また、成膜後に行うリモートプラズマによるチャンバーのクリーニング時間を短縮でき、生産性が向上する。ケイ素、炭素及び窒素の組成をSiで表す場合、x+y+z=100、x>0、y≧3及びz>0であることが、耐液性の観点から好ましい。yはy≧10を満たすことがより好ましい。zはz≧10を満たすことがより好ましく、z≧20を満たすことがさらに好ましい。
無機材料中のケイ素、炭素及び窒素は炭窒化ケイ素(SiCN)として存在することが好ましい。前記無機材料の窒素の含有率をZ(atom%)とする場合、X+Y+Zは50以上であることが好ましい。なお、流路形成部材103が前記無機材料からなる場合には、流路形成部材103はケイ素、炭素及び窒素のみで構成されてもよく、その場合X+Y+Z=100である。
また、後述するように、前記無機材料は環状シラザンの骨格形成材料であるガスを原料としたプラズマCVD(Chemical Vapor Deposition)法により好適に合成することができるため、無機材料は環状シラザンを含むことが好ましい。環状シラザンとしては、例えば1,3,5−トリメチル−1,3,5−トリビニルシクロトリシラザン等が挙げられる。前記無機材料はこれらの環状シラザンを一種含んでもよく、二種以上含んでもよい。
水分子は0.4nm以下であるが、液体を空孔内で液体として存在させる観点から、空孔の大きさは0.4nm〜100nmが好ましく、1nm〜90nmがより好ましく、10nm〜80nmがさらに好ましい。なお、空孔の大きさは透過型電子顕微鏡(TEM)により測定した値である。
本発明に係る液体吐出ヘッドは、インクジェット方式によりインクを吐出して記録媒体に記録を行うインクジェット記録ヘッドとして好適に用いることができる。以下、本発明に係る液体吐出ヘッドの実施形態を、その製造方法と共に説明する。
<実施形態1>
本実施形態に係る液体吐出ヘッドの製造方法を、図2を用いて説明する。図2は本実施形態に係る液体吐出ヘッドの各工程における断面図である。
まず、エネルギー発生素子102およびその配線等(不図示)が配置されたシリコンの基板101の表面に、流路の型となる型材110を形成する(図2a))。型材110の材料は、後で除去できる材料であれば特に限定されないが、ポジ型感光性樹脂が好ましい。型材110の材料としては、例えばポリイミド、ポリメチルイソプロペニルケトン等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。型材110は、型材110の材料を基板101の表面上に塗工し、パターニングを行うことで形成することができる。例えば、塗工した材料上にマスクを形成し、Oガス等を用いて異方的なドライエッチングを行うことでパターニングしてもよい。また、型材110の材料として感光性樹脂を用いる場合には、フォトリソグラフィーによって型材110をパターニングしてもよい。型材110の厚さは特に限定されないが、例えば5〜30μmとすることができる。
次に、型材110を覆うように流路形成部材103を形成する(図2b))。流路形成部材103は、プラズマCVD法にて形成することができる。流路形成部材103に含まれる無機材料が環状シラザンを含む場合には、以下の方法により流路形成部材103を形成することができる。まず、CVDチャンバー内に基板101を配置する。その後、CVDチャンバー内に環状シラザンの骨格形成材料である原料ガスを流入させる。該原料ガスとしては、1,3,5−トリメチル−1,3,5−トリビニルシクロトリシラザン等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。次に、CVDチャンバー内にプラズマを発生させる。これにより、原料ガスの結合の一部が切れ、環状シラザンを含むポーラス構造を有する無機材料を含む流路形成部材103が形成される。このとき、成膜温度により形成される流路形成部材103の空孔率が変化する。該流路形成部材の空孔率を30体積%以上とする観点から、該成膜温度は25℃以上、300℃以下が好ましく、100℃以上、300℃以下がより好ましい。
また、流路形成部材103は以下の方法によっても形成することができる。絶縁膜の前駆体と、ポロジェンとを別々に導入し、ポロジェンを含有する絶縁膜を形成する。その後、絶縁膜からポロジェンを熱処理等によって除去する。これにより、ポーラス構造を有する無機材料を含む流路形成部材103が形成される。
流路形成部材103の厚さは特に限定されないが、例えば流路側面の厚さを2〜10μm、基板101と反対側の流路上面の厚さを5〜20μmとすることができる。なお、液体は流路形成部材103中に毛細管現象で浸透していくが、吐出口104から液体を吐出する際のμs単位の急激な流れは流路形成部材103内には伝わらないため、吐出口104からの液体の吐出には影響を及ぼさない。
次に、流路形成部材103に吐出口104を形成する(図2c))。例えば、流路形成部材103上にレジストを塗布し、フォトリソグラフィーによって該レジストにパターンを形成する。続いて、パターンを形成したレジストをマスクとして用いて流路形成部材103をドライエッチングすることで、吐出口104を形成する。吐出口104はフォトリソグラフィーで流路形成部材103を露光、現像することで形成してもよい。各吐出口104の間隔は、本発明の効果をより発揮できる観点から、20μm以上、90μm以下が好ましい。
次に、型材110を除去し、流路形成部材103に流路115を形成する。型材110の除去は、例えばOガス等を用いた等方的なドライエッチング等によって行うことができる。なお、流路形成部材103は、このときのエッチングによってエッチングされにくい材料であることが好ましい。その後、基板101をエッチングして供給口105を形成する(図2d))。その後、電気的な接続及びタンク等の液体供給の手段を適宜配置して、本実施形態に係る液体吐出ヘッドが得られる。
<実施形態2>
本実施形態に係る液体吐出ヘッドの製造方法を、図4を用いて説明する。図4は本実施形態に係る液体吐出ヘッドの各工程における断面図である。まず、実施形態1と同様に基板101上に型材110を形成し(図4a))、型材110を覆うように流路形成部材103を形成する(図4b))。次に、エッチバック又はCMP(Chemical Mechanical Polishing)法を用いて、流路形成部材103を型材110の上面と同じ高さまで削りとる。その後、実施形態1と同様の方法により、下層103a及び型材110上に上層103bを形成する(図4c))。次に、実施形態1と同様に吐出口104を形成し(図4d))、型材110を除去した後、供給口105を形成することで(図4e))、本実施形態に係る液体吐出ヘッドが得られる。本実施形態に係る液体吐出ヘッドは、流路形成部材103が、流路115の側面を形成する下層103aと、基板101と反対側の流路115の上面を形成する上層103bとを備え、上層103bの空孔率は下層103aの空孔率よりも低い。
流路115から流路形成部材103の空孔に入った液体は、湿度が低下するとより蒸発しやすくなる。また、流路115の直上部分の流路形成部材103は薄く、液体の移動がしやすいため蒸発量が多い。実際に保湿が必要な吐出口104は流路115の奥側によっており、湿度が低い場合、保湿能力を上げるために空孔率を大きくし過ぎると吐出口に至るまでに流路上壁の部分で蒸発が進みすぎる場合がある。これにより、安定して吐出口104付近の保湿ができなくなる場合がある。そこで本実施形態では、下層103aと、下層103aよりも空孔率の小さい上層103bとを備える流路形成部材103が形成されている(図3)。本実施形態では外部と接する上層103bの空孔率を小さくすることで、液体の蒸発量を制御することができる。
液体の蒸発量の制御の観点から、上層103bの空孔率は50体積%以下、下層103aの空孔率は60体積%以上であることが好ましい。上層103bの空孔率は40体積%以下、下層103aの空孔率は65体積%以上であることがより好ましく、上層103bの空孔率は30体積%以下、下層103aの空孔率は70体積%以上であることがさらに好ましい。なお、上層103bの空孔率は30体積%以上、下層103aの空孔率は90体積%以下とすることができる。また、流路形成部材103全体としての空孔率は、前述した流路形成部材を一層で形成した場合と同様であり、少なくとも30体積%とされる。また、上層103bの空孔率と下層103aの空孔率との比率は、1:1.5〜1:3が好ましい。
<実施形態3>
本実施形態では、実施形態2の上層103bの形成において、外部と接する表面層103dと、流路115と接する内層103cとを形成する点以外は、実施形態2と同様に液体吐出ヘッドを製造する。本実施形態では図5に示すように、上層103bを表面層103dと内層103cの2層に分けることで、上層103bの空孔率や空孔径を制御でき、液体の移動をより制御できる。本実施形態の表面層103dの空孔率は内層103cの空孔率よりも低い。
本実施形態では表面層103dの空孔率を内層103cより低くすることで、流路115と接する上層103b部分においても液体を吸い上げることができ、より安定した保湿効果が得られる。また、吐出口104面に直接液体が染みだして液体の吐出方向に影響を与えることを防ぐ観点から、表面層103dの厚さを10〜100nmとし、かつ空孔径を1〜10nmとして、液体を気体として吐出口104面に到達させることが好ましい。また、流路形成部材103の表面の硬度が必要な場合は、表面層103dの空孔率を下げることが好ましい。
表面層103dの空孔率は35体積%以下、内層103cの空孔率は40体積%以上であることが好ましい。また、表面層103dの空孔率は32体積%以下、内層103cの空孔率は60体積%以上であることがより好ましい。なお、表面層103dの空孔率は30体積%以上、内層103cの空孔率は90体積%以下とすることができる。また、流路形成部材103全体としての空孔率は、前述した流路形成部材を一層で形成した場合と同様であり、少なくとも30体積%とされる。
また、上層103bを2層に分ける代わりに、成膜条件を変化させて上層103bの空孔率が流路側から外部側へ向けて連続的に低くなっているようにしても、上層103bを2層に分けた場合と同様の効果が得られるため好ましい。
[液体吐出ヘッドの製造方法]
本発明に係る液体吐出ヘッドの製造方法は、基板と、該基板上に設けられるエネルギー発生素子と、該基板との間に液体の流路を形成し、該エネルギー発生素子と対向する位置に吐出口を有する流路形成部材と、を備える液体吐出ヘッドの製造方法であって、プラズマCVD法により前記流路形成部材を形成する工程を含み、前記流路形成部材が、前記流路側より液体を吸収し、前記流路形成部材内で液体を保持するとともに外部に液体を放湿できる、ポーラス構造を有する無機材料を含み、該流路形成部材の空孔率が30体積%以上である。具体的な方法については、上述した方法を用いることができる。該方法によれば、本発明に係る液体吐出ヘッドを効率よく安定して製造することができる。
以下、本発明の実施例を説明するが、本発明はこれらに限定されない。
[実施例1]
図2に示す方法により液体吐出ヘッドを作製した。まず、表面にエネルギー発生素子102とその配線(不図示)が配置されたシリコンの基板101を準備した。この基板101上にポリイミドを塗布し、乾燥させた後、フォトリソグラフィーによりパターニングして厚さ15μmの型材110を形成した(図2a))。
次に、型材110を覆うように流路形成部材103を形成した(図2b))。具体的には、基板101をCVDチャンバー内に配置し、CVDチャンバー内を100℃とした後、環状シラザンの骨格形成材料であるガス(1,3,5−トリメチル−1,3,5−トリビニルシクロトリシラザン)を流入させ、プラズマを発生させた。これにより、流路側面の厚さが4μm、基板101と反対側の流路上面の厚さが10μmの流路形成部材103を形成した。
流路形成部材103は、流路から外部に通じるポーラス構造を有していることが透過型電子顕微鏡(TEM)により確認された。また、流路形成部材103の空孔率は60体積%であった。なお、空孔率は透過型電子顕微鏡(TEM)により測定した。また、流路形成部材103に含まれる無機材料のケイ素の含有率(X)(atom%)と炭素の含有率(Y)(atom%)との比(Y/X)は0.81であった。また、該無機材料の組成はSi48.6%C39.5%N11.9%であった。なお、これらの各元素の含有率は光電子分光装置(XPS)により測定した。
次に、流路形成部材103上にレジストを塗布した後、フォトリソグラフィーによりレジストをパターニングした。該レジストをマスクとして流路形成部材103に対しドライエッチングを行い、42μmの間隔で流路形成部材103に吐出口104を形成した(図2c))。
次に、型材110を酸素アッシングにより除去した。その後、基板101の裏面にレジストを塗布した後、フォトリソグラフィーによりレジストをパターニングした。該レジストをマスクとして基板101に対し異方性エッチングを行い、基板101に供給口105を形成した(図2d))。その後、電気的な接続及びタンク等の液体供給の手段を適宜配置して、図1に示す液体吐出ヘッドを完成させた。
得られた液体吐出ヘッドは、吐出口周辺の保湿を十分に行うことができ、液体を安定に吐出することができた。
[実施例2]
図4に示す方法により液体吐出ヘッドを作製した。まず、実施例1と同様に型材110を形成した(図4a))。次に、型材110を覆うように流路形成部材103を形成した(図4b))。具体的には、基板101をCVDチャンバー内に配置し、CVDチャンバー内を100℃とした後、環状シラザンの骨格形成材料であるガス(1,3,5−トリメチル−1,3,5−トリビニルシクロトリシラザン)を流入させ、プラズマを発生させた。これにより、流路側面の厚さが4μm、基板101と反対側の流路上面の厚さが10μmの流路形成部材103を形成した。
流路形成部材103は、流路から外部に通じるポーラス構造を有していることが確認された。また、流路形成部材103の空孔率は60体積%であった。また、流路形成部材103に含まれる無機材料のケイ素の含有率(X)(atom%)と炭素の含有率(Y)(atom%)との比(Y/X)は0.81であった。また、該無機材料の組成はSi48.6%C39.5%N11.9%であった。
次に、エッチバックにより流路形成部材103を型材110の上面と同じ高さまで削り取り、下層103aとした。その後、下層103a及び型材110上に上層103bを形成した(図4c))。具体的には、基板101をCVDチャンバー内に配置し、CVDチャンバー内を300℃とした後、環状シラザンの骨格形成材料であるガス(1,3,5−トリメチル−1,3,5−トリビニルシクロトリシラザン)を流入させ、プラズマを発生させた。これにより、厚さが10μmの上層103bを形成した。
上層103bは、流路から外部に通じるポーラス構造を有していることが確認された。また、上層103bの空孔率は30体積%であった。また、上層103bに含まれる無機材料のケイ素の含有率(X)(atom%)と炭素の含有率(Y)(atom%)との比(Y/X)は0.72であった。また、該無機材料の組成はSi51.3%C37.0%N11.7%であった。
その後は実施例1と同様に行い、図3に示す液体吐出ヘッドを完成させた。得られた液体吐出ヘッドは、吐出口周辺の保湿を十分に行うことができ、液体を安定に吐出することができた。
[実施例3]
実施例2と同様に、下層103aまで形成した。その後、下層103a及び型材110上に内層103cを形成した。具体的には、基板101をCVDチャンバー内に配置し、CVDチャンバー内を200℃とした後、環状シラザンの骨格形成材料であるガス(1,3,5−トリメチル−1,3,5−トリビニルシクロトリシラザン)を流入させ、プラズマを発生させた。これにより、厚さが5μmの内層103cを形成した。
内層103cは、流路から外部に通じるポーラス構造を有していることが確認された。また、内層103cの空孔率は40体積%であった。また、内層103cに含まれる無機材料のケイ素の含有率(X)(atom%)と炭素の含有率(Y)(atom%)との比(Y/X)は0.8であった。また、該無機材料の組成はSi49.0%C39.2%N11.8%であった。
次に、内層103c上に表面層103dを形成した。具体的には、基板101をCVDチャンバー内に配置し、CVDチャンバー内を300℃とした後、環状シラザンの骨格形成材料であるガス(1,3,5−トリメチル−1,3,5−トリビニルシクロトリシラザン)を流入させ、プラズマを発生させた。これにより、厚さが5μmの表面層103dを形成した。
表面層103dは、流路から外部に通じるポーラス構造を有していることが確認された。また、表面層103dの空孔率は30体積%であった。また、表面層103dに含まれる無機材料のケイ素の含有率(X)(atom%)と炭素の含有率(Y)(atom%)との比(Y/X)は2.8であった。また、該無機材料の組成はSi51.3%C37.0%N11.7%であった。
その後は実施例1と同様に行い、図5に示す液体吐出ヘッドを完成させた。得られた液体吐出ヘッドは、吐出口周辺の保湿を十分に行うことができ、液体を安定に吐出することができた。
101 基板
102 エネルギー発生素子
103 流路形成部材
103a 下層
103b 上層
103c 内層
103d 表面層
104 吐出口
105 供給口
110 型材
115 流路

Claims (11)

  1. 基板と、該基板上に設けられるエネルギー発生素子と、該基板との間に液体の流路を形成し、該エネルギー発生素子と対向する位置に吐出口を有する流路形成部材と、を備える液体吐出ヘッドであって、
    前記流路形成部材が、前記流路側より液体を吸収し、前記流路形成部材内で液体を保持するとともに外部に液体を放湿できる、ポーラス構造を有する無機材料を含み、該流路形成部材の空孔率が30体積%以上である液体吐出ヘッド。
  2. 前記無機材料がケイ素及び炭素を含み、ケイ素の含有率をX(atom%)、炭素の含有率をY(atom%)とする場合、Y/Xが0.001以上である請求項1に記載の液体吐出ヘッド。
  3. 前記無機材料がケイ素、炭素及び窒素を含み、Si(x+y+z=100、x>0、y≧3及びz>0)で表される請求項1又は2に記載の液体吐出ヘッド。
  4. 前記無機材料が環状シラザンを含む請求項1から3のいずれか1項に記載の液体吐出ヘッド。
  5. 前記流路形成部材の空孔率が30体積%以上、90体積%以下である請求項1から4のいずれか1項に記載の液体吐出ヘッド。
  6. 前記流路形成部材の空孔率が50体積%以上、80体積%以下である請求項5に記載の液体吐出ヘッド。
  7. 前記流路形成部材が、前記流路の側面を形成する下層と、前記基板と反対側の前記流路の上面を形成する上層とを備え、
    前記上層の空孔率が前記下層の空孔率よりも低い請求項1から6のいずれか1項に記載の液体吐出ヘッド。
  8. 前記上層の空孔率が50体積%以下であり、前記下層の空孔率が60体積%以上である請求項7に記載の液体吐出ヘッド。
  9. 前記上層が、外部と接する表面層と、前記流路と接する内層とを備え、
    前記表面層の空孔率が前記内層の空孔率よりも低い請求項7又は8に記載の液体吐出ヘッド。
  10. 前記上層の空孔率が、流路側から外部側へ向けて連続的に低くなっている請求項7又は8に記載の液体吐出ヘッド。
  11. 基板と、該基板上に設けられるエネルギー発生素子と、該基板との間に液体の流路を形成し、該エネルギー発生素子と対向する位置に吐出口を有する流路形成部材と、を備える液体吐出ヘッドの製造方法であって、
    プラズマCVD法により前記流路形成部材を形成する工程を含み、
    前記流路形成部材が、前記流路側より液体を吸収し、前記流路形成部材内で液体を保持するとともに外部に液体を放湿できる、ポーラス構造を有する無機材料を含み、該流路形成部材の空孔率が30体積%以上である液体吐出ヘッドの製造方法。
JP2013235146A 2013-11-13 2013-11-13 液体吐出ヘッドおよびその製造方法 Pending JP2015093453A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013235146A JP2015093453A (ja) 2013-11-13 2013-11-13 液体吐出ヘッドおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013235146A JP2015093453A (ja) 2013-11-13 2013-11-13 液体吐出ヘッドおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2015093453A true JP2015093453A (ja) 2015-05-18

Family

ID=53196191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013235146A Pending JP2015093453A (ja) 2013-11-13 2013-11-13 液体吐出ヘッドおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2015093453A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017159554A (ja) * 2016-03-09 2017-09-14 株式会社リコー 液体吐出ヘッド、液体を吐出する装置、及び液体吐出ヘッドの製造方法
JP2019142216A (ja) * 2018-02-22 2019-08-29 キヤノン株式会社 液体吐出ヘッド用基板および液体吐出ヘッド

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017159554A (ja) * 2016-03-09 2017-09-14 株式会社リコー 液体吐出ヘッド、液体を吐出する装置、及び液体吐出ヘッドの製造方法
JP2019142216A (ja) * 2018-02-22 2019-08-29 キヤノン株式会社 液体吐出ヘッド用基板および液体吐出ヘッド
JP7183049B2 (ja) 2018-02-22 2022-12-05 キヤノン株式会社 液体吐出ヘッド用基板および液体吐出ヘッド

Similar Documents

Publication Publication Date Title
US8043517B2 (en) Method of forming openings in substrates and inkjet printheads fabricated thereby
JP2005238842A (ja) インクジェットプリントヘッドのノズルプレート表面への疏水性コーティング膜の形成方法
JP4850637B2 (ja) 液体吐出ヘッドの製造方法および液体吐出ヘッド
JP2005205916A (ja) モノリシック・インクジェット・プリントヘッドの製造方法
TWI275491B (en) Method for fabricating a fluid ejection device
JP2002036562A (ja) バブルジェット(登録商標)方式のインクジェットプリントヘッド及びその製造方法
JP2006150587A (ja) 流体排出装置及び流体排出装置を形成する方法
JP6234095B2 (ja) 液体吐出ヘッド及びその製造方法
JP2015093453A (ja) 液体吐出ヘッドおよびその製造方法
JP3967301B2 (ja) インクジェットプリントヘッド及びその製造方法
US8390423B2 (en) Nanoflat resistor
JP6242174B2 (ja) インク吐出ヘッドの製造方法
RU2468467C2 (ru) Жидкая композиция, способ получения кремниевой подложки и способ получения подложки для головки для выброса жидкости
JP2004042399A (ja) インクジェット記録ヘッド
JP2007160927A (ja) パリレンマスクを用いたシリコン湿式エッチング方法及びこの方法を用いたインクジェットプリントヘッドのノズルプレートの製造方法
JP2018094860A (ja) 液体吐出ヘッド及び液体吐出ヘッドの製造方法
US8435805B2 (en) Method of manufacturing a substrate for liquid ejection head
JP2005144782A (ja) インクジェット記録ヘッドの製造方法。
JP2006321123A (ja) 発熱抵抗素子、サーマルヘッド及びインクジェットヘッド
US9132636B2 (en) Liquid ejection head and production process thereof
JP2006198884A (ja) インクジェット吐出ヘッド用基板
US9205654B2 (en) Method of manufacturing a liquid ejection head
JP6921564B2 (ja) 液体吐出ヘッドの製造方法
JP2013144378A (ja) 液体吐出ヘッドの製造方法
JP5744549B2 (ja) インクジェット記録ヘッドおよびインクジェット記録ヘッドの製造方法