JP2015081826A - 評価装置、評価方法、半導体装置、およびコンピュータプログラム - Google Patents

評価装置、評価方法、半導体装置、およびコンピュータプログラム Download PDF

Info

Publication number
JP2015081826A
JP2015081826A JP2013219461A JP2013219461A JP2015081826A JP 2015081826 A JP2015081826 A JP 2015081826A JP 2013219461 A JP2013219461 A JP 2013219461A JP 2013219461 A JP2013219461 A JP 2013219461A JP 2015081826 A JP2015081826 A JP 2015081826A
Authority
JP
Japan
Prior art keywords
wafer
evaluation
hole
unit
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013219461A
Other languages
English (en)
Inventor
義彦 藤森
Yoshihiko Fujimori
義彦 藤森
高志 津藤
Takashi Tsudo
高志 津藤
塚本 宏之
Hiroyuki Tsukamoto
宏之 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2013219461A priority Critical patent/JP2015081826A/ja
Publication of JP2015081826A publication Critical patent/JP2015081826A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

【課題】精度の高い評価または検査が可能な装置を提供する。
【解決手段】検査装置1が、内部に延在するパターンを有するウェハWを照明する第1照明部20および第2照明部40と、第1照明部20または第2照明部40により照明されたウェハWからの光を検出して検出信号を出力する第1検出部30および第2検出部50と、第1検出部30または第2検出部50から出力された検出信号に基づいてパターン形状の評価を行う評価部63と、パターン形状の変形に対する光学シミュレーションを行うことによりパターン形状の評価条件を設定する条件設定部64とを備えている。
【選択図】図1

Description

本発明は、基板の評価装置および評価方法に関する。また、本発明は、この評価方法を用いて製造された半導体装置および、この評価装置の設定に用いられるコンピュータプログラムに関する。
TSV(Through Silicon Via:シリコン貫通電極)を用いたWafer-to-Waferの接合による3次元実装において、TSV形成過程での検査・評価が求められている。TSV形成過程においてシリコンウェハ(以下、単にウェハと称する)に形成されたアスペクト比の高い穴状のパターンを評価するには、近赤外光を用いた回折検査や偏光検査が有効である(例えば、特許文献1を参照)。なお、回折検査とは、ウェハを照明し、ウェハから射出された回折光を検出してパターンの形状変形を検出する技術である。また、偏光検査とは、ウェハを直線偏光で照明し、ウェハでの正反射光の偏光状態の変化を検出してパターンの形状変形を検出する技術である。
米国特許出願公開第2012/0122252号明細書
しかしながら、従来においては、テストウェハを作製してパターンの評価条件を求めていたため、パターンの評価条件の設定を行うのに多くの時間と費用を要していた。
本発明は、このような問題に鑑みてなされたものであり、パターン形状の評価を短時間で且つ低コストで行うことが可能な評価装置、評価方法、半導体装置、およびコンピュータプログラムを提供することを目的とする。
このような目的達成のため、本願の態様に従えば、基板に設けられ該基板の内部に延在するパターンを有する該基板を照明する照明部と、前記照明部により照明された前記基板からの光を検出して検出信号を出力する検出部と、前記検出部から出力された検出信号に基づいて前記パターン形状の評価を行う評価部と、前記パターン形状の変形に対する光学シミュレーションを行うことにより前記パターン形状の評価条件を設定する条件設定部とを備える評価装置が提供される。
また、本願の態様に従えば、基板に設けられ該基板の内部に延在するパターンを有する該基板を照明し、前記照明した前記基板からの光を検出して検出信号を出力し、前記出力した検出信号に基づいて前記パターン形状の評価を行い、前記パターン形状の変形に対する光学シミュレーションを行うことにより前記パターン形状の評価条件を設定する評価方法が提供される。
また、本願の態様に従えば、半導体製造工程で加工された基板を準備し、上述の評価方法で評価し、前記評価の結果に基づいて前記加工の条件を調整する半導体装置の製造方法により製造された半導体装置が提供される。
また、本願の態様に従えば、基板に設けられ該基板の内部に延在するパターンを有する該基板を照明する照明部と、前記照明部により照明された前記基板からの光を検出して検出信号を出力する検出部と、前記検出部から出力された検出信号に基づいて前記パターン形状の評価を行う評価部とを備えた評価装置の設定に用いられるコンピュータプログラムであって、前記パターン形状の変形に対する光学シミュレーションを行い、前記光学シミュレーションの結果に基づいて前記パターン形状の評価条件を設定するコンピュータプログラムが提供される。
本発明によれば、パターン形状の評価を短時間で且つ低コストで行うことが可能になる。
検査装置の概略図である。 パターン形状に対する評価条件の設定方法を示すフローチャートである。 第1〜第3実施形態におけるパターン形状の評価方法を示すフローチャートである。 (a)はウェハを上から見たときの拡大図であり、(b)はウェハの断面拡大図である。 (a)は標準穴の断面拡大図であり、(b)は標準穴の平面拡大図である。 (a)は直径変形穴の平面拡大図であり、(b)はテーパー穴の断面拡大図であり、(c)は深さ変形穴の断面拡大図である。 (a)は穴の直径変形に対する回折光の検出信号の変化を示すグラフであり、(b)は正反射光の検出信号の変化を示すグラフであり、(c)は偏光の検出信号の変化を示すグラフである。 (a)は穴底の直径変形に対する回折光の検出信号の変化を示すグラフであり、(b)は正反射光の検出信号の変化を示すグラフであり、(c)は偏光の検出信号の変化を示すグラフである。 (a)は穴の深さ変形に対する回折光の検出信号の変化を示すグラフであり、(b)は正反射光の検出信号の変化を示すグラフであり、(c)は偏光の検出信号の変化を示すグラフである。 第4実施形態の評価装置の模式図である。 強度・位相テーブルの一例を示す図である。 (a)は比例縮小穴の断面拡大図であり、(b)は先細り穴の断面拡大図であり、(c)はボーイング穴の断面拡大図である。 反射偏光にFDTD法を適用した算出結果のグラフである。 透過偏光にFDTD法を適用した算出結果のグラフである。 第4実施形態におけるパターン形状の評価方法を示すフローチャートである。 半導体装置の製造方法を示すフローチャートである。
以下、図面を参照して本発明の好ましい実施形態について説明する。本願に係る評価装置の第1実施形態として検査装置を図1に示す。第1実施形態の検査装置1は、ウェハWを支持するウェハホルダ10と、チルト機構19と、第1照明部20と、第1検出部30と、第2照明部40と、第2検出部50と、回転移動部56と、制御部60と、画像処理部61と、記憶部62と、検査部63と、条件設定部64と、コンソール部65と、出力部66とを備えている。
なお、本実施形態において、図1に示した矢印X,Y,Zの方向をそれぞれX軸方向、Y軸方向、Z軸方向として説明する。また、ウェハW上で規定された所定の径方向の軸(ウェハ10の中心とウェハWの外周の所定の一点とを通る軸)とX軸との成す角度を、便宜的にウェハ方位角度と称して説明する。なお、各実施形態において、Z軸方向の正方向(矢印の方向)を適宜上方と称する。また、第1照明部20の光軸AxがウェハWと交差する点から延びるウェハWの垂線と光軸Axとを含む面を第1入射面と称する。また、第2照明部40の光軸AxがウェハWと交差する点から延びるウェハWの垂線と光軸Axとを含む面を第2入射面と称する。なお、ウェハWの表面と裏面は平行であり、それぞれの垂線同士は平行である。本実施形態でおいて第1入射面と第2入射面は一致しており、適宜入射面と称する。
ウェハホルダ10は、ウェハホルダ10の上に載置されたウェハWを真空吸着によって固定保持する。チルト機構19は、第1照明部20の光軸AxがウェハWと交差する点から延び入射面に垂直な軸(以下、傾動軸Tcと称する)を中心に、ウェハホルダ10をウェハWとともに傾動させる。
本実施形態において、ウェハWの表面に入射する照明光の入射角とは、ウェハWの表面もしくは裏面の垂線とウェハWの表面に入射する照明光との成す角である。本実施形態において、ウェハWの表面から射出する射出光の射出角とは、ウェハWの表面もしくは裏面の垂線とウェハW表面からの射出光との成す角である。
また、ウェハホルダ10は、ウェハWの異なる部位を保持可能な2組の保持部(図示せず)を有し、2組の保持部のうち第1の保持部でウェハWを保持する状態(以降、便宜的に第1保持状態と称する)と、第2の保持部でウェハWを保持する状態(以降、便宜的に第2保持状態と称する)とに切り替えることができる。第1保持状態で保持されたウェハWと第1の保持部とが重なる領域と、第2保持状態で保持されたウェハWと第2の保持部とが重なる領域とが、重複しないように構成される。
第1照明部20は、第1照明ユニット21と、第1照明側凹面鏡25と、第1照明側偏光フィルタ26とを有している。第1照明ユニット21は、第1光源部22と、第1導光ファイバ24とを有している。第1光源部22は、ハロゲンランプ、メタルハライドランプまたは水銀ランプを用いて構成され、第1導光ファイバ24を介して所定の波長(例えば、1100nmの波長)の光を射出する。なお、第1光源部22には、所定の波長を有する光を抽出し強度を調節する第1調光部23が設けられている。第1導光ファイバ24は、基端部が第1光源部22に接続され、先端部(光の射出端)が第1照明側凹面鏡25の焦点面に配置される。
第1照明側凹面鏡25は、第1導光ファイバ24から射出された光をウェハホルダ10上のウェハWの表面に向けて反射し、平行光となった照明光をウェハWの表面全体に照射する。第1照明側偏光フィルタ26は、図1に示すように、第1導光ファイバ24と第1照明側凹面鏡25との間の光路に挿脱可能に設けられ、透過軸を回転調整可能に構成されている。光路に挿入された第1照明側偏光フィルタ26は、第1導光ファイバ24から射出された光のうち透過軸と一致する直線偏光のみを透過させる。第1照明側偏光フィルタ26の透過軸の方位は、所定の方位(例えば、p偏光が得られる方位)に設定される。
第1検出部30は、第1受光側凹面鏡31と、第1撮像部35と、第1検出側偏光フィルタ32とを有している。第1受光側凹面鏡31は、ウェハW表面からの射出光(回折光や正反射光等)集光して第1撮像部35へ導く。第1受光側凹面鏡31で反射した射出光は第1撮像部35の撮像面上に達し、撮像面上にウェハWの表面全体の像が結像される。第1撮像部35は、図示しない対物レンズやイメージセンサ等から構成され、イメージセンサの撮像面上に生成されたウェハWの像を光電変換して画像信号(検出信号)を生成し、生成した画像信号を制御部60に出力する。制御部60は、第1撮像部35から出力された画像信号を画像処理部61に送る。
第1検出側偏光フィルタ32は、図1に示すように、第1受光側凹面鏡31と第1撮像部35との間の光路に挿脱可能に設けられ、透過軸を回転調整可能に構成されている。第1検出側偏光フィルタ32の透過軸の方位は、第1照明側偏光フィルタ26または第2照明側偏光フィルタ46の透過軸に対して直交するように(クロスニコルの状態となるように)設定される。
第2照明部40は、第1照明部20と同様に、第2照明ユニット41と、第2照明側凹面鏡45と、第2照明側偏光フィルタ46とを有している。第2照明部40は、第1照明部20と同様の構成であり、詳細な説明を省略する。なお、以降の実施形態では、照明光として1100nmの波長の赤外線を用いる。
第2検出部50は、第1検出部30と同様に、第2受光側凹面鏡51と、第2撮像部55と、第2検出側偏光フィルタ52とを有している。第2検出部50は、第1検出部30と同様の構成であり、詳細な説明を省略する。なお、第2検出側偏光フィルタ52は、第1検出側偏光フィルタ32と同様の構成であり、詳細な説明を省略する。
画像処理部61は、第1撮像部35または第2撮像部55から出力された画像信号に基づいて、ウェハWの画像データを生成する。画像処理部61で処理されたウェハWの画像データは、制御部60を介して検査部63に送られる。なお、この画像データとは、第1撮像部35または第2撮像部55で検出したウェハWからの光に基づく信号強度である。
記憶部62には、欠陥の無いパターン若しくは、許容される程度の欠陥を有するパターンが所定のピッチで形成されたウェハ(以下、良品ウェハと称する)の画像データ(すなわち、第1撮像部35または第2撮像部55で検出した良品ウェハからの光に基づく信号強度)が予め記憶されている。検査部63は、制御部60からウェハWの画像データと良品ウェハの画像データとを受け取り比較して、ウェハWに形成されたパターンにおける異常の有無の検査またはパターン形状の評価を行う。検査部63による評価結果は、制御部60によりコンソール部65の画像表示装置(図示せず)で出力表示される。また、画像処理部61で処理されたウェハWの画像データに基づくウェハWの画像を、制御部60によりコンソール部65の画像表示装置(図示せず)で表示させてもよい。
なお、検査部63によるウェハWの評価結果および画像データは、制御部60により記憶部62に送られて記憶される。また、検査部63によるウェハWの評価結果および画像データは、制御部60により出力部66から外部へ出力することも可能である。なお、この外部は、例えば、半導体製造ラインの管理システムや露光装置等を挙げることができる。
回転移動部56は、傾動軸Tcを中心に反射光を検出可能な状態を保って、第1検出部30と第2検出部50とを一体的に回転移動させる。なお、図1において、ウェハホルダ10、第1検出部30および第2検出部50等を視認し易くするため、回転移動部56の図示を一部省略している。これにより、ウェハ10に対する第1検出部30および第2検出部50の検出角を調整可能となる。本実施形態において、第1検出部30の検出角とは、ウェハ10の表面の垂線と、ウェハホルダ10と第1受光側凹面鏡31との間の光軸Axとの成す角である。また、第2検出部50の検出角とは、ウェハ10の裏面の垂線と、ウェハホルダ10と第2受光側凹面鏡51との間の光軸との成す角である。
制御部60は、ウェハホルダ10およびチルト機構19、第1および第2照明ユニット21,41、第1および第2撮像部35,55、回転移動部56等をそれぞれ制御する。制御部60は、ウェハホルダ10を制御し、ウェハWにおいて各保持部に保持される部分を切り替える。なお、以降の実施形態で保持部の影が撮像される場合には、保持される部分を切り替えた複数の画像を合成することで、影のない画像を得ることができる。また、制御部60は、チルト機構19を制御し、照明光の入射角を調整する。また、制御部60は、第1照明ユニット21または第2照明ユニット41を制御し、照明光の波長および強度を調節する。また、制御部60は、回転移動部56を制御し、第1検出部30または第2検出部50の検出角を調整する。
制御部60による各部の制御は、記憶部62に記憶されたレシピに基づいて行われる。記憶部62は、制御部60を介してコンソール部65の入力装置(図示せず)と接続され、操作者が入力装置を使ってウェハWの検査・評価条件をレシピとして登録できるように構成されている。なお、コンソール部65は、キーボード等の入力装置(図示せず)と、液晶モニタ等の画像表示装置(図示せず)とを有している。条件設定部64は、コンソール部65から入力されたウェハWやパターンの条件について、所定のコンピュータプログラムに基づいて作動し、光学シミュレーションを行うことによりウェハWの最適な検査・評価条件を求めて設定できるように構成されている。
ウェハWは、所定の加工処理(例えば、露光・現像・エッチング処理)が行われており、ウェハWの表面に、例えば図4に示すような繰り返しパターン(ホールパターン)Aが形成される。このパターンAは、シリコン(Si)からなるベアウェハに規則的な配置で延在する穴(ビア又はホール)が形成された構造となっている。検査・評価対象のパターンAが形成されたウェハWは、不図示の搬送装置により、不図示のウェハカセットまたはエッチング装置からウェハホルダ10上に搬送される。
以上のように構成される検査装置1を用いたウェハWの評価方法について、図2〜図3のフローチャートを参照して説明する。まず予め、評価対象のウェハWのパターン形状に対する評価条件を設定する。ウェハWのパターン形状に対する評価条件は、回折検査または偏光検査で用いられる各種パラメータである。回折検査のパラメータには、照明光の波長、パターンに対する照明方位(ウェハ方位角度)、照明光の偏光/非偏光、照明光の入射角、第1検出部30または第2検出部50の検出角、回折光の次数等がある。偏光検査のパラメータには、照明光の波長、パターンに対する照明方位(ウェハ方位角度)、照明光の偏光方位、照明光の入射角(および射出角)等がある。
以下の各実施形態では、パターン形状、パターン配列、パターンピッチ、ウェハWの材料等の情報を用いて、光学シミュレーションを行い、ウェハWのパターン形状の評価に適したパラメータを求める。これにより、回折検査または偏光検査を利用したパターン形状の評価のための最適なパラメータを求める時間を短縮することができ、半導体装置の製造コストを低減することが可能になる。
具体的には、まず、ウェハWのパターンに関する情報に基づいて、標準パターン及び変形パターンのモデルを作成する。ここで、標準パターンとは、設計通りのパターン形状であって、パターン形状に対する検査・評価の基準となるパターンである。また、変形パターンとは、標準パターンに対してパターン形状が変形したパターンである。次に、これらのパターンについて光学シミュレーションを行い、標準パターン及び変形パターンに対する検出信号の信号強度を、複数組のパラメータの組み合わせ毎に求める。そして、各パラメータの組み合わせ毎に検出信号の変化率を求め、最適な検出信号の変化率が得られる組み合わせのパラメータを求める。ここで、検出信号の変化率を感度と捉えることもできる。
なお、信号強度とは、第1撮像部35または第2撮像部55の撮像素子で検出される光の強度に応じた信号強度である。光の強度は、例えば、ウェハ10に入射した光量に対する第1撮像部35または第2撮像部55に達した光量の割合に基づくものである。
そこで、図2のフローチャートを用いて、ウェハWのパターン形状に対する評価条件の設定方法について説明する。第1実施形態では、説明容易化のため、ウェハWの回折検査に適した検出信号の変化率(感度)が得られる1組のパラメータセットを決定する場合について説明する。
まず、ウェハWのパターンに関する情報と、検出したい変形の種類の情報に基づいて、光学シミュレーションを行うための標準パターン及び変形パターンのモデルを作成する(ステップST101)。パターンに関する情報には、パターンの穴の直径、穴の深さ、パターン配列、パターンピッチ等がある。検出したい変形の種類には、穴(全体)の直径変形、穴底の直径変形、穴の深さ変形がある。なお、穴底の直径変形は、穴の開口部の直径は変形せず、穴底の直径が変形することを指し、穴の側壁がテーパーになる変形を指す。
標準パターンのモデルの一例を図5に示す。図5に示す標準パターンは、直径1μm、深さ10μmの円柱状の穴(以降、標準穴a0と称する)から構成される。変形パターンのモデルの一例を図6に示す。図6(a)に示す変形パターンは、標準穴a0に対して穴の直径が変形した穴から構成される。以降、標準穴a0に対して穴の直径が変形した穴を直径変形穴a1と称する。図6(b)に示す変形パターンは、標準穴a0に対して穴底の直径が変形した穴から構成される。以降、標準穴a0に対して穴底の直径が変形した穴をテーパー穴a2と称し、単に「穴底の直径が変形」と記載したときはテーパー穴a2の穴底の直径の変形を指すものとする。図6(c)に示す変形パターンは、標準穴a0に対して穴の深さが変形した穴から構成される。以降、標準穴a0に対して穴の深さが変形した穴を深さ変形穴a3と称する。
モデルの作成は、条件設定部64が所定のコンピュータプログラムに基づいて行う。以降の各ステップST102〜ST105についても、条件設定部64が所定のコンピュータプログラムに基づいて行う。すなわち、図2に示すフローチャートの各ステップST101〜ST105は、条件設定部64を構成するコンピュータプログラムの処理ステップともいえる。なお、ウェハWの屈折率やウェハWのパターンに関する情報と、検出したい変形の種類の情報は、操作者がコンソール部65の入力装置(図示せず)を使って入力する。操作者によって入力された情報は、制御部60を介して記憶部62に送られ記憶される。条件設定部64は、記憶部62に記憶されたウェハWのパターンに関する情報と、検出したい変形の種類の情報を、制御部60を介して受け取り、標準パターン及び変形パターンのモデルを作成する。
次に、条件設定部64は、複数組の各パラメータの組み合わせ毎に、先のステップST101でモデル化された標準パターン及び変形パターンについて光学シミュレーションを行い、標準パターン及び変形パターンに対してそれぞれ回折検査を行った場合の検出信号の信号強度を求める(ステップST102)。第1実施形態のパラメータは、回折検査のパラメータとして、照明光の波長、パターンに対する照明方位、照明光の偏光/非偏光、照明光の入射角、第1検出部30または第2検出部50の検出角、回折光の次数とする。第1実施形態における複数組の各パラメータの組み合わせは、回折検査のパラメータのうち少なくともいずれかを少しずつ変化させたものである。
光学シミュレーションの方法には、FDTD法やRCWA法などを用いることができる。必要とされる計算精度と計算速度に応じて、FDTD法やRCWA法などの中から適した光学シミュレーションの方法が選択される。
次に、条件設定部64は、先のステップST102で求めた信号強度から、各パラメータの組み合わせ毎に、パターンの変形に対する検出信号の変化率を算出する(ステップST103)。検出信号の変化率は、例えば、パターンの変形に対する相対的な信号強度(相対変化率)の変化を線形近似してその傾きを求める。
次に、条件設定部64は、先のステップST103で算出した検出信号の変化率から、ウェハWの回折検査に適したパラメータの組み合わせを求める(ステップST104)。具体的には、パターンの変形に対する検出信号の変化率が相対的に高い1組のパラメータの組み合わせを求める。このとき、穴(全体)の直径変形、テーパー穴の穴底の直径変形、穴の深さ変形の全て、すなわち各種変形に対する検出信号の変化率が高いパラメータの組み合わせを選択する。
なお、穴(全体)の直径変形、テーパー穴の穴底の直径変形、穴の深さ変形のうち一つの変形に対する検出信号の変化率が高く、他の変形に対する検出信号の変化率がゼロとなる(もしくは、検出信号の変化率が十分に低い)パラメータの組み合わせを選択することも可能である。
そして、条件設定部64は、先のステップST104で求めたパラメータの組み合わせを、ウェハWの評価(回折検査)の際に設定するパラメータセットとして決定する(ステップST105)。条件設定部64が決定したパラメータセットは、制御部60を介して記憶部62に送られ記憶される。
このような方法により求めた、パターンの変形に対する検出信号の変化率(感度)が高いパラメータセットによる検出信号の変化の一例を、図7〜図9に示す。図7〜図9に示すグラフの横軸はパターンの変形量である。具体的には、図7に示すグラフの横軸はパターンの穴(全体)の直径変形量であり、図8に示すグラフの横軸はパターンのテーパー穴の穴底の直径変形量であり、図9に示すグラフの横軸はパターンの穴の深さ変形量である。
図7〜図9に示すグラフの縦軸は、標準パターンの検出信号の信号強度を基準とした、変形パターンの相対的な信号強度(相対変化率)である。変形パターンの相対的な信号強度は、標準パターンの検出信号の信号強度を基準とした相対変化率Scngとして、次式(1)で求められる。
Scng=(Sa−Sо)/Sо …(1)
ここで、Sоは標準パターンの信号強度(光の強度)である。また、Saはパターンの変形量(穴(全体)の直径変形量、テーパー穴の穴底の直径変形量、もしくは穴の深さ変形量)がaのときの変形パターンの信号強度である。
図7(a)は、穴(全体)の直径変形に対する回折光の検出信号の変化率が高いパラメータセットによる回折光の検出信号の変化を示すグラフある。図7(a)のグラフを示すパラメータの概略は、ウェハW上方(表面側)からの照明光の照射、照明光の入射角が60度、検出光が−1次回折光となっている。図7(a)のグラフにおける破線は、回折光の検出信号の変化を直線近似したもので、近似直線の式がグラフ中に記載されている。この近似直線の傾きは、穴(全体)の直径変形に対する回折光の検出信号の変化率を示す。近似直線の傾き(絶対値)が大きいほど、穴(全体)の直径変形に対する感度が高いと解釈することができる。そのため、この近似直線の傾きを指標に、穴(全体)の直径変形に対する回折光の検出信号の変化率が高いパラメータの組み合わせを選択することができる。
なお、図7(b)は、穴(全体)の直径変形に対する正反射光の検出信号の変化率が高いパラメータセットによる正反射光の検出信号の変化を示すグラフある。図7(b)のグラフを示すパラメータの概略は、ウェハW上方(表面側)からの照明光の照射、照明光の入射角が15度、検出光が正反射光(0次回折光)となっている。そのため、上述の場合と同様にして、図7(b)のグラフに示す近似直線の傾きを指標に、穴(全体)の直径変形に対する正反射光(0次回折光)の検出信号の変化率が高いパラメータの組み合わせを選択することができる。
また、図7(c)は、穴(全体)の直径変形に対する偏光の検出信号の変化率が高いパラメータセットによる偏光の検出信号の変化を示すグラフある。図7(c)のグラフを示すパラメータの概略は、ウェハW裏面側からの照明光の照射、照明光の入射角が60度、検出光が偏光となっている。偏光検査の場合でも、回折検査の場合と同様にして、図7(c)のグラフに示す近似直線の傾きを指標に、穴(全体)の直径変形に対する偏光の検出信号の変化率が高いパラメータの組み合わせを選択することができる(詳細は後述)。
図8(a)は、テーパー穴の穴底の直径変形に対する回折光の検出信号の変化率が高いパラメータセットによる回折光の検出信号の変化を示すグラフある。図8(a)のグラフを示すパラメータの概略は、ウェハW裏面側からの照明光の照射、照明光の入射角が45度、検出光が−1次回折光となっている。図8(a)のグラフにおける破線は、回折光の検出信号の変化を直線近似したもので、近似直線の式がグラフ中に記載されている。この近似直線の傾きは、穴底の直径変形に対する回折光の検出信号の変化率を示す。近似直線の傾き(絶対値)が大きいほど、穴底の直径変形に対する感度が高いと解釈することができる。そのため、この近似直線の傾きを指標に、穴底の直径変形に対する回折光の検出信号の変化率が高いパラメータの組み合わせを選択することができる。
なお、図8(b)は、テーパー穴の穴底の直径変形に対する正反射光の検出信号の変化率が高いパラメータセットによる正反射光の検出信号の変化を示すグラフある。図8(b)のグラフを示すパラメータの概略は、ウェハW上方(表面側)からの照明光の照射、照明光の入射角が15度、検出光が正反射光(0次回折光)となっている。そのため、上述の場合と同様にして、図8(b)のグラフに示す近似直線の傾きを指標に、穴底の直径変形に対する正反射光(0次回折光)の検出信号の変化率が高いパラメータの組み合わせを選択することができる。
また、図8(c)は、テーパー穴の穴底の直径変形に対する偏光の検出信号の変化率が高いパラメータセットによる偏光の検出信号の変化を示すグラフある。図8(c)のグラフを示すパラメータの概略は、ウェハW裏面側からの照明光の照射、照明光の入射角が15度、検出光が偏光となっている。偏光検査の場合でも、回折検査の場合と同様にして、図8(c)のグラフに示す近似直線の傾きを指標に、穴底の直径変形に対する偏光の検出信号の変化率が高いパラメータの組み合わせを選択することができる(詳細は後述)。
図9(a)は、穴の深さ変形に対する回折光の検出信号の変化率が高いパラメータセットによる回折光の検出信号の変化を示すグラフある。図9(a)のグラフを示すパラメータの概略は、ウェハW裏面側からの照明光の照射、照明光の入射角が75度、検出光が−3次回折光となっている。図9(a)のグラフにおける破線は、回折光の検出信号の変化を直線近似したもので、近似直線の式がグラフ中に記載されている。この近似直線の傾きは、穴の深さ変形に対する回折光の検出信号の変化率を示す。近似直線の傾き(絶対値)が大きいほど、穴の深さ変形に対する感度が高いと解釈することができる。そのため、この近似直線の傾きを指標に、穴の深さ変形に対する回折光の検出信号の変化率が高いパラメータの組み合わせを選択することができる。
なお、図9(b)は、穴の深さ変形に対する正反射光の検出信号の変化率が高いパラメータセットによる正反射光の検出信号の変化を示すグラフある。図9(b)のグラフを示すパラメータの概略は、ウェハW裏面側からの照明光の照射、照明光の入射角が75度、検出光が正反射光(0次回折光)となっている。そのため、上述の場合と同様にして、図9(b)のグラフに示す近似直線の傾きを指標に、穴の深さ変形に対する正反射光(0次回折光)の検出信号の変化率が高いパラメータの組み合わせを選択することができる。
また、図9(c)は、穴の深さ変形に対する偏光の検出信号の変化率が高いパラメータセットによる偏光の検出信号の変化を示すグラフある。図9(c)のグラフを示すパラメータの概略は、ウェハW裏面側からの照明光の照射、照明光の入射角が15度、検出光が偏光となっている。偏光検査の場合でも、回折検査の場合と同様にして、図9(c)のグラフに示す近似直線の傾きを指標に、穴の深さ変形に対する偏光の検出信号の変化率が高いパラメータの組み合わせを選択することができる(詳細は後述)。
次に、図3のフローチャートを用いて、ウェハWのパターン形状の評価方法について説明する。まず、評価対象のウェハWを準備し、準備したウェハWを不図示の搬送装置により表面(評価対象のパターンが設けられた面)が上方を向くようにウェハホルダ10上に搬送する(ステップST201)。
次に、予め設定したウェハWのパターン形状に対する評価条件、すなわち、パターン形状の評価に適した回折検査のパラメータセットに基づいて、検査装置1の各部の設定調整を行う(ステップST202)。なおこのとき、制御部60は、記憶部62に記憶されたパラメータセットを読み出して、ウェハホルダ10、チルト機構19、第1および第2照明ユニット21,41、第1および第2撮像部35,55、回転移動部56等を制御する。
回折検査を利用したパターン形状の評価を行う場合、ウェハWの表面上における照明方向(第1照明部20からウェハWへ向かう方向および第2照明部40からウェハWへ向かう方向)とパターンAの繰り返し方向とが一致するようにウェハWがウェハホルダ10上に載置される。また、チルト機構19によりウェハホルダ10およびウェハWを傾動(チルト)させ、回転移動部56により第1検出部30および第2検出部50を回転移動させて、パターンAのピッチをPとし、照明光の波長をλとし、照明光の入射角をθ1とし、n次回折光の射出角をθ2としたとき、次式(2)を満足するように調整する。
P=n×λ/{sin(θ1)−sin(θ2)} …(2)
次に、先のステップST202で設定調整したパラメータセットに応じて、第1照明部20または第2照明部40がウェハホルダ10上のウェハWに照明光を照射する(ステップST203)。次に、先のステップST202で設定調整したパラメータセットに応じて、第1撮像部35または第2撮像部55がウェハWからの回折光を検出し、第1撮像部35または第2撮像部55から出力された画像信号(検出信号)に基づいて、画像処理部61がウェハWの画像を生成する(ステップST204)。このとき、画像処理部61で処理されたウェハWの画像データは、制御部60を介して検査部63に送られる。
そして、検査部63は、画像処理部61から送られたウェハWの画像データと、記憶部62に記憶された良品ウェハの画像データとを比較して、良品ウェハの画像データに対するウェハ10の画像データの信号強度(輝度)の差が予め定められた閾値より大きければ「異常」と判定し、閾値より小さければ「正常」と判定することで、ウェハWの表面の繰り返しパターンAの異常(欠陥)の有無を検査・評価する(ステップST205)。
TSV形成過程でのウェハの検査・評価において、ウェハの検査・評価条件を求めるのに多くの時間と費用を要していた。作為的に欠陥のあるパターンを形成したテストウェハを作製するのが難しいためである。前述のように、評価対象のパターンAは、ウェハWの表面にエッチングで形成された穴形状の繰り返しパターンである。穴の直径については、露光時のドーズ量をウェハ面内の位置毎に変えることで、穴の直径を変形させることが比較的容易である。しかしながら、穴の深さや側壁傾斜角(穴底の直径)を変えるには、エッチング条件を変える必要があり、ウェハ単位でしか変更することができない。また、テストウェハにおいて穴の深さや側壁傾斜角(穴底の直径)を確認するには、テストウェハを切断して断面を観察すること等が必要で、多くの時間と費用がかかる。
これに対し、本実施形態においては、前述したように、ウェハWのパターン形状の変形に対する光学シミュレーションを行うことにより、ウェハWのパターン形状の評価条件を設定する。これにより、テストウェハを作製する手間を省くことができるため、パターン形状の評価を短時間で且つ低コストで行うことが可能になる。
また、パターン形状の評価条件として、ウェハWからの回折光を検出する回折検査のパラメータを設定することで、通常のウェハW全体の撮像では解像が難しい微小なパターン形状の評価が可能になる。
また、パターン形状の評価条件として、パターン形状の変形に対する検出信号の変化率が相対的に大きい評価条件を設定することで、パターン形状の変形に対して感度の良い高精度なパターン形状の評価が可能になる。
なお、第1実施形態において、穴底の直径変形と穴の深さ変形に対する回折光の検出信号の変化率(感度)が高いパラメータセットとして、ウェハWの裏面に照明光を照射し、ウェハWの裏面側に射出した−3次回折光を検出する例を示した(図8(a)および図9(a)を参照)。
一方、図7、図8、図9の例には含まれていないが、ウェハWの裏面に照明光を照射し、ウェハWの表面側に透過した回折光を検出することも可能である。具体的には、ウェハWに照明光を照射するステップST203において、第2照明ユニット41から射出された光でウェハWの裏面全体に照射する。このとき、ウェハWの繰り返しパターンAで回折して表面側に透過した回折光によるウェハWの像が、第1撮像部35の撮像面上に結像される。そして、ウェハWの画像を取得するステップST204において、第1撮像部35のイメージセンサは、撮像面上に形成されたウェハWの像を光電変換して画像信号を生成し、生成した画像信号を、制御部60を介して画像処理部61に出力する。
また、第1実施形態において、検出したい変形の種類に応じてパラメータを絞り込むようにしてもよい。例えば、穴の深さ変形に対する評価を行う場合は、ウェハWの裏面側が照明される回折検査に対して感度が高く、ウェハWの表面または裏面での正反射光する場合には感度が低いので、この条件にパラメータを絞り込むことができる。
このとき、第1実施形態のステップST102において、条件設定部64は、光学シミュレーションを行い、標準パターン及び変形パターンに対してそれぞれ回折検査を行った場合の検出信号の信号強度を求める。また、第1実施形態のステップST103において、条件設定部64は、限定したパラメータの組み合わせ毎に、パターンの変形に対する検出信号の変化率を算出する。そして、第1実施形態のステップST104において、条件設定部64は、限定したパラメータの組み合わせの中から、ウェハWの回折検査に適したパラメータの組み合わせを求める。これにより、全てのパラメータ対して光学シミュレーションを行う必要がないため、条件設定部64での演算量を減らすことができ、ウェハWの回折検査に適したパラメータの組み合わせを短時間で求めることができる。
次に、第2実施形態について説明する。第2実施形態の検査装置は、第1実施形態の検査装置1と同様の構成であり、各部に第1実施形態の場合と同一の符号を付して詳細な説明を省略する。
第2実施形態の評価方法について説明する。まず予め、第1実施形態と同様に、評価対象のウェハWのパターン形状に対する評価条件を設定する。なお、第2実施形態の設定フローは第1実施形態の設定フローと同様である。第2実施形態では、ウェハWの回折検査に適した検出信号の変化率が得られる2組のパラメータセットを決定する場合について説明する。なお、ステップST101〜ST103までの処理は、第1実施形態と同様であるため、詳細な説明を省略する。
ステップST103の次に、条件設定部64は、先のステップST103で算出した検出信号の変化率から、ウェハWの回折検査に適した2組のパラメータの組み合わせを求める(ステップST104)。複数組のパラメータセットの演算は、複数組のパラメータセットのそれぞれにおいてウェハWの画像を取得し、取得した複数の画像を演算して合成して1つの画像を作り出すことに相当する。これにより例えば、穴(全体)の直径変形に対する検出信号の変化率(感度)を実質的にゼロにすることができる。
パターンの変形の種類毎に検出信号を分離できれば、パターン形状の検査・評価においてパターンの欠陥の種類を認識することができ、パターンの変形量の計測にも応用できる。パターンの変形の種類毎に検出信号を分離する方法には、次の2種類の方法がある。この2種類の方法の一方もしくは両方を用いることで、検出信号の分離が可能になる。
第1の方法は、穴(全体)の直径変形、穴底の直径変形、穴の深さ変形のうち一つの変形に対する検出信号の変化率が高く、他の変形に対する検出信号の変化率がゼロとなる(もしくは、検出信号の変化率が十分に低い)1組のパラメータの組み合わせを選択する方法である。この第1の方法は、第1実施形態でも述べた方法である。
第2の方法は、異なる種類の変形に対して感度の異なる複数組のパラメータの組み合わせに基づいて、穴(全体)の直径変形、穴底の直径変形、穴の深さ変形のうち一つの変形に対する検出信号の変化率が高く、他の変形に対する検出信号の変化率がゼロとなる(もしくは、検出信号の変化率が十分に低い)条件を作り出す方法である。この第2の方法が本実施形態で述べる方法である。
第2の方法による画像の演算の具体例について述べる。具体例では単純化して、2種類の変形として穴(全体)の直径変形と穴の深さ変形のみを考え、両変形に感度のある2種類の評価条件(パラメータセット)から、一方の変形のみに感度のある画像の演算例を示す。第1の評価条件(パラメータセット)により取得されるウェハWの第1の画像の信号強度をI1とし、第1の画像における穴(全体)の直径変形に対する検出信号の変化率をK1とし、第1の画像における穴の深さ変形に対する検出信号の変化率をF1とする。第2の評価条件(パラメータセット)により取得されるウェハWの第2の画像の信号強度をI2とし、第2の画像における穴(全体)の直径変形に対する検出信号の変化率をK2とし、第2の画像における穴の深さ変形に対する検出信号の変化率をF2とする。
ここで、画像の信号強度とは、画像処理部61で生成されるウェハWの各部分の信号強度の集合である。なお、撮像時の射出角θ2によってウェハWの像は変形して撮像される。画像処理部61では、得られた撮像結果を射出角θ2=0°で得られる像に変換している。
2種類の評価条件は、F1/K1≠F2/K2、F1≠F2、K1≠K2を満たす関係にあるものを選択する。このとき、次式(3)〜(4)のようなウェハWの合成画像を生成することにより、穴(全体)の直径変形と穴の深さ変形とを分離することができる。
I3=W1×I1+W2×I2 …(3)
I4=W3×I1+W4×I2 …(4)
ここで、I3は、穴の深さ変形に対する検出信号の変化率が高く、穴(全体)の直径変形に対する検出信号の変化率がゼロとなる第1の合成画像の信号強度である。また、I4は、穴(全体)の直径変形に対する検出信号の変化率が高く、穴の深さ変形に対する検出信号の変化率がゼロとなる第2の合成画像の信号強度である。また、W1、W2、W3、W4は、画像合成時の重みで、次式(5)〜(8)で求められる。
W1=(−K2)/(K1−K2) …(5)
W2=K1/(K1−K2) …(6)
W3=(−F2)/(F1−F2) …(7)
W4=F1/(F1−F2) …(8)
第1の合成画像における穴(全体)の直径変形に対する検出信号の変化率をK3とする。式(3)において、I1にK1を代入し、I2にK2を代入し、I3にK3を代入することにより、次式(9)が得られ、第1の合成画像の穴(全体)の直径変形に対する検出信号の変化率がゼロであることがわかる。
K3=(−K2×K1)/(K1−K2)+(K1×K2)/(K1−K2)=0
…(9)
第1の合成画像における穴の深さ変形に対する検出信号の変化率をF3とする。式(3)において、I1にF1を代入し、I2にF2を代入し、I3にF3を代入することにより、次式(10)が得られ、第1の合成画像の穴の深さ変形に対する検出信号の変化率がゼロでないことがわかる。なお、F1/K1≠F2/K2であるので、K1×F2−K2×F1≠0である。
F3=(−K2×F1)/(K1−K2)+(K1×F2)/(K1−K2)
=(K1×F2−K2×F1)/(K1−K2) …(10)
第2の合成画像における穴(全体)の直径変形に対する検出信号の変化率をK4とする。式(4)において、I1にK1を代入し、I2にK2を代入し、I4にK4を代入することにより、次式(11)が得られ、第2の合成画像の穴(全体)の直径変形に対する検出信号の変化率がゼロでないことがわかる。なお、F1/K1≠F2/K2であるので、F1×K2−F2×K1≠0である。
K4=(−F2×K1)/(F1−F2)+(F1×K2)/(F1−F2)
=(F1×K2−F2×K1)/(F1−F2) …(11)
第2の合成画像における穴の深さ変形に対する検出信号の変化率をF4とする。式(4)において、I1にF1を代入し、I2にF2を代入し、I4にF4を代入することにより、次式(12)が得られ、第2の合成画像の穴の深さ変形に対する検出信号の変化率がゼロであることがわかる。
F4=(−F2×F1)/(F1−F2)+(F1×F2)/(F1−F2)=0
…(12)
なお、前述の式(5)および式(6)で示した第1の合成画像の重みW1、W2の計算式は、次の連立方程式(13)〜(14)を解くことによって得られる。
W1×K1+W2×K2=0 …(13)
W1+W2=1 …(14)
また、前述の式(7)および式(8)で示した第2の合成画像の重みW3、W4の計算式は、次の連立方程式(15)〜(16)を解くことによって得られる。
W3×F1+W4×F2=0 …(15)
W3+W4=1 …(16)
以上の説明において、穴(全体)の直径変形に対する検出信号の変化率K1、K2として、例えば図7(a)のグラフに示した近似直線の傾きを用いることができる。また、穴の深さ変形に対する検出信号の変化率をF1、F2として、例えば図9(a)のグラフに示した近似直線の傾きを用いることができる。
2種類の評価条件を選択する条件式、F1/K1≠F2/K2、F1≠F2、K1≠K2のうち、F1/K1≠F2/K2は必須の条件式である。一方、F1≠F2、K1≠K2は、計算式を単純化してわかりやすくするための条件式であり、必ずしも両方とも満足する必要はない。なお、F1≠F2、K1≠K2のうち、少なくとも一方を満足する必要がある。F1≠F2、K1≠K2の両方とも満足しない場合、F1/K1=F2/K2となり、必須の条件式を満足しなくなる。また、合成画像の重みの計算式を求めるための2つの連立方程式のうち、式(14)および式(16)は必ずしもこの例に限られるものではない。例えば、式(14)に代えて、W1+W2=2という式を用いてもよい。
なお、上述した画像の演算の具体例において、穴(全体)の直径変形と穴の深さ変形について説明しているが、これに限られるものではなく、穴(全体)の直径変形、穴底の直径変形、穴の深さ変形のうち二つを用いることができる。このようにすることで、2種類の変形に対する信号の分離が可能である。
また、重みの数が3種類の3個の合成画像を用いるようにすれば、3組のパラメータの組み合わせに基づいて、穴(全体)の直径変形、穴底の直径変形、穴の深さ変形のうち一つの変形に対する検出信号の変化率が高く、他の変形に対する検出信号の変化率がゼロとなる(もしくは、検出信号の変化率が十分に低い)条件を作り出すことが可能である。なおこの場合、重みに関する3元連立方程式を解くことにより、3個の合成画像の重みをそれぞれ求めることができる。このようにすることで、3種類の変形に対する信号の分離が可能である。さらに、変形の種類が3種類を超える場合も、同様にして信号を分離することが可能である。
そして、条件設定部64は、先のステップST104で求めた2組のパラメータの組み合わせを、ウェハWの評価の際に設定する2組のパラメータセットとして決定する(ステップST105)。またこのとき、条件設定部64は、穴の深さ変形に対する検出信号の変化率が高く、穴(全体)の直径変形に対する検出信号の変化率がゼロとなる第1の合成画像の重みW1、W2を求める。またこのとき、条件設定部64は、穴(全体)の直径変形に対する検出信号の変化率が高く、穴の深さ変形に対する検出信号の変化率がゼロとなる第2の合成画像の重みW3、W4を求める。条件設定部64が決定した2組のパラメータセット、第1の合成画像の重みW1、W2、第2の合成画像の重みW3、W4は、制御部60を介して記憶部62に送られ記憶される。
次に、ウェハWのパターン形状の評価方法について説明する。第2実施形態では、第1実施形態と同様に調整して、2つのパラメータセットの第1の画像と第2の画像を生成する(ステップST201〜ST204)。
第2実施形態では、画像処理部61は、ウェハWの第1の画像と第2の画像に基づいて、ウェハWの合成画像を生成する(ステップST204)。このとき、画像処理部61は、ウェハWの第1の画像と第2の画像の画像信号と、第1の合成画像の重みW1、W2と、前述の式(3)を用いて信号強度の算出を行い、第1の合成画像を生成する。またこのとき、画像処理部61は、ウェハWの第1の画像と第2の画像の画像信号と、第2の合成画像の重みW3、W4と、前述の式(4)を用いて信号強度の算出を行い、第2の合成画像を生成する。なお、画像処理部61で処理されたウェハWの第1の合成画像データと第2の合成画像データは、制御部60を介して検査部63に送られる。
そして、検査部63は、第1の合成画像データおよび第2の合成画像データと、記憶部62に記憶された良品ウェハの画像データとをそれぞれ比較して、第1実施形態と同様に、ウェハWの表面の繰り返しパターンAの異常(欠陥)の有無を検査・評価する(ステップST205)。第1の合成画像により検出される欠陥は穴の深さ変形であり、第2の合成画像により検出される欠陥は穴(全体)の直径変形である。さらには、その信号の変化率から、変形の程度を知ることができる。このとき、検査部63による評価結果がコンソール部65の画像表示装置(図示せず)に出力表示される。
このように、第2実施形態によれば、第1実施形態と同様の効果を得ることができる。
上述の第2実施形態において、ウェハWの画像として符号なし8ビットの画像を用いる場合、信号強度(輝度)の階調が0〜255の範囲になる。この場合、異常(欠陥)の有無を検査・評価するステップST205において、画像信号の演算により算出された信号強度の値をそのまま用いるようにすれば、階調化に伴う信号強度の丸めの誤差を抑えることができる。また、このようにすれば、例えば数値が255を超えて信号変化の情報が失われてしまうことも防止することができる。
上述の第2実施形態において、第1実施形態と同様に、検出したい変形の種類に応じてパラメータを絞り込むようにしてもよい。
上述の第1および第2実施形態において、第1照明側偏光フィルタ26および第2照明側偏光フィルタ46のうち少なくともいずれかを光路に挿入し、照明光として直線偏光(例えば、p偏光)をウェハWに照射するようにしてもよい。
次に、第3実施形態について説明する。第3実施形態の検査装置は、第1実施形態の検査装置1と同様の構成であり、各部に第1実施形態の場合と同一の符号を付して詳細な説明を省略する。
第3実施形態の評価方法について説明する。まず予め、第1実施形態と同様に、評価条件を設定する。なお、第3実施形態の設定フローは、偏光検査である点以外は、第1実施形態の設定フローと同様である。
第3実施形態のパラメータは、偏光検査のパラメータとして、照明光の波長、パターンに対する照明方位、照明光の偏光方位、照明光の入射角(および射出角)とする。第3実施形態における複数組の各パラメータの組み合わせは、偏光検査のパラメータのうち少なくともいずれかを少しずつ変化させたものである。
本実施形態の方法により求めた、パターンの変形に対する検出信号の変化率(感度)が高いパラメータセットによる検出信号の変化の一例を、図7(c)〜図9(c)に示す。第1実施形態で述べたように、図7(c)のグラフに示す近似直線の傾きを指標に、穴(全体)の直径変形に対する偏光の検出信号の変化率が高いパラメータの組み合わせを選択することができる。また、図8(c)のグラフに示す近似直線の傾きを指標に、穴底の直径変形に対する偏光の検出信号の変化率が高いパラメータの組み合わせを選択することができる。また、図9(c)のグラフに示す近似直線の傾きを指標に、穴の深さ変形に対する偏光の検出信号の変化率が高いパラメータの組み合わせを選択することができる。
第3実施形態の評価フローは第1実施形態の評価フローと同様である。
第3実施形態では、偏光検査を利用してパターン形状の評価を行う。評価に先立って、第1照明側偏光フィルタ26、第1検出側偏光フィルタ32、第2照明側偏光フィルタ46、および第2検出側偏光フィルタ52が光路に挿入される。前述したように、ウェハWの表面には、穴形状の繰り返しパターンAが形成されている。ウェハWの表面もしくは裏面に対して斜めに入射する照明光(偏光)を想定すれば、例え平面境界でも、入射照明光と反射光では偏光状態が変化する。なぜなら、p偏光成分の反射率とs偏光成分の反射率が異なるためである。ウェハWに穴構造がある場合、当該穴構造の部分で変調が加わる。電場の振動方向と穴の各部位の向きとの関係が、s偏光による入射照明光とp偏光による入射照明光で異なることから、穴構造の部分で加わる変調の量も偏光によって異なる。このように、穴の存在、あるいは穴の変形により、反射光または透過光の偏光状態が変わるため、偏光検査を利用したパターン形状の評価が可能である。
ステップST203では、先のステップST202で設定調整したパラメータセットに応じて、ウェハホルダ10上のウェハWに照明光として直線偏光を照射する。ステップST204では、先のステップST202で設定調整したパラメータセットに応じて、ウェハWからの反射光(正反射光)もしくは透過光を検出し、第1撮像部35または第2撮像部55から出力された画像信号(検出信号)に基づいて、画像処理部61がウェハWの画像を生成する。このとき、ウェハWの画像データは、制御部60を介して検査部63に送られる。
そして、検査部63は、第1実施形態と同様に、ウェハWの表面の繰り返しパターンAの異常(欠陥)の有無を検査・評価する(ステップST205)。このとき、検査部63による評価結果がコンソール部65の画像表示装置(図示せず)に出力表示される。
このように、第3実施形態によれば、第1実施形態と同様に、テストウェハを作製する手間を省くことができるため、パターン形状の評価を短時間で且つ低コストで行うことが可能になる。
なお、第3実施形態において、穴(全体)の直径変形、穴底の直径変形、穴の深さ変形に対する偏光の検出信号の変化率(感度)が高いパラメータセットとして、ウェハWの裏面に照明光(直線偏光)を照射し、ウェハWの裏面で反射した正反射光の偏光状態の変化を検出する例を示した(図7(c)〜図9(c)を参照)。この場合、第2照明部40から照明光が照射されたウェハW裏面からの反射光(正反射光)を第2検出部50で検出することができる。ウェハWの撮像は、第1実施形態と同様に行うことができるため、詳細な説明は省略する。
上述の第1実施形態において、パターン形状の評価に適した回折検査のパラメータセットを設定し、上述の第3実施形態において、パターン形状の評価に適した偏光検査のパラメータセットを設定しているが、これに限られるものではない。例えば、上述の第1実施形態と第3実施形態とを組み合わせて、回折検査と偏光検査のパラメータセットのうち、パターン形状の評価に最適な方のパラメータセットを選択し、回折検査もしくは偏光検査を利用したパターンの形状評価を行うようにしてもよい。また、回折検査および偏光検査に限らず、ウェハWの表面または裏面に照明光を照射し、ウェハWの表面または裏面からの正反射光を検出する技術(以降、正反射検査と称する)を利用して、パターンの形状評価を行うようにしてもよい。なお、偏光検査を利用してパターンの形状評価を行う場合でも、第2実施形態と同様にして、複数組のパラメータセットに基づいて評価を行うことができる。また、複数組のパラメータセットに基づいてパターンの形状評価を行う場合でも、回折検査と偏光検査のパラメータセットのうち、パターン形状の評価に最適な方のパラメータセットを選択して評価を行うことができる。
上述の第1〜第3実施形態において、条件設定部64は、所定のコンピュータプログラムに基づいて作動し、光学シミュレーションを行うことによりウェハWの最適な検査・評価条件を求めて設定できるように構成されているが、これに限られるものではない。例えば、条件設定部64と同様の処理が可能なコンピュータプログラムを外部の演算処理装置(例えば、パーソナルコンピュータ等)にインストールし、当該演算処理装置を用いて、光学シミュレーションを行うことによりウェハWの最適な検査・評価条件を求めるようにしてもよい。
次に、第4実施形態について説明する。図10に示すように、第4実施形態の評価装置100は、第1実施形態の制御部60、画像処理部61、記憶部62、検査部63、条件設定部64、コンソール部65に代えて、制御部110、記憶部120を備える他は、第1実施形態の検査装置1と同様の構成である。そこで、共通部分に第1実施形態の場合と同一の符号を付して図10に簡易的に示し、詳細な説明を省略する。第4実施形態の評価装置100は、ウェハホルダ10(図10では図示を省略)と、チルト機構19(図10では図示を省略)と、第1照明部20と、第1検出部30と、第2照明部40と、第2検出部50と、回転移動部56(図10では図示を省略)と、制御部110と、記憶部120と、出力部66とを備えている。
第4実施形態の第1照明部20は、第3実施形態と同様に、照明光として直線偏光をウェハWの表面に照射する。第1照明部20の照明光の入射角は45度に設定される。第4実施形態の第2照明部40は、第3実施形態と同様に、照明光として直線偏光をウェハWの裏面に照射する。第2照明部40の照明光の入射角は45度に設定される。
第4実施形態の第1検出部30は、第1照明部20から照明光が照射されてウェハWの表面で反射した反射偏光を検出する。また、第1検出部30は、第2照明部40から照明光が照射されてウェハWの表面側に透過した透過偏光を検出する。第1検出部30の検出角は45度に設定される。第1検出部30は、検出した偏光の強度に対応する電気的な強度信号を出力する。また、第1検出部30は、公知の回転移相子法を用いて、検出した偏光の位相に対応する電気的な位相信号を出力する。
第4実施形態の第2検出部50は、第1検出部30と同様に、第2照明部40から照明光が照射されてウェハWの裏面で反射した反射偏光を検出する。また、第2照明部40は、第1検出部30と同様に、第1照明部20から照明光が照射されてウェハWの裏面側に透過した透過偏光を検出する。
なお、第1検出部30(または第2検出部50)から出力される強度信号は、第1〜第3実施形態の検出信号と同義であり、ウェハWで反射した偏光のp偏光およびs偏光の強度信号と、ウェハWを透過した偏光のp偏光およびs偏光の強度信号を含むものである。また、第1検出部30(または第2検出部50)から出力される位相信号は、ウェハWで反射した偏光のp偏光およびs偏光の位相信号と、ウェハWを透過した偏光のp偏光およびs偏光の位相信号を含むものである。
制御部110は、第1実施形態の制御部60と同様に、ウェハホルダ10およびチルト機構19、第1および第2照明ユニット21,41、第1および第2撮像部35,55、回転移動部56等をそれぞれ制御する。制御部110は、形状検出部111と、条件設定部112とを有している。形状検出部111は、第1検出部30(または第2検出部50)から出力された検出信号に基づいて、ウェハW上のパターンAにおける穴の深さ形状を求め、TSVの深さ形状を特定する。
具体的には、形状検出部111は、第1検出部30(または第2検出部50)から出力された強度信号および位相信号に基づいて、第1検出部30(または第2検出部50)で検出された偏光の強度変化および位相変化を求める。ここで、偏光の強度とは、p偏光成分とs偏光成分の振幅を指す。形状検出部111は、記憶部120に記憶された強度・位相テーブル121を参照して、求めた偏光の強度変化および位相変化に対応する穴の深さ形状を特定し、評価対象のパターンAにおける穴の深さ形状を求める。形状検出部111は、求めた穴の深さ形状に基づいて、TSVの深さ形状を特定する。
強度・位相テーブル121の一例を図11に示す。強度・位相テーブル121は、偏光の強度変化に関する強度変化データおよび偏光の位相変化に関する位相変化データと、既知の穴の深さ形状データとが関連付けられた構成となっている。偏光の強度変化および位相変化は、次式(17)〜(18)を用いて算出される。
強度変化=(モデル形状の強度/標準穴a0の強度)−1 [単位:なし] …(17)
位相変化=モデル形状の位相−標準穴a0の位相 [単位:rad] …(18)
式(17)において、「モデル形状の強度」は、モデル形状を有するパターンから検出される偏光の強度であり、照明強度で規格化されている。また、「標準穴a0の強度」は、標準穴a0の形状を有するパターンから検出される偏光の強度である。式(18)において、「モデル形状の位相」は、モデル形状を有するパターンから検出される偏光の位相である。また、「標準穴a0の位相」は、標準穴a0の形状を有するパターンから検出される偏光の位相である。
モデル形状とは、標準穴a0(図5を参照)に対して変形した穴のモデル形状(深さ形状)を総称したものである。図11の強度・位相テーブル121において、深さ1/2形状とは、標準穴a0に対して穴の深さが1/2に変形した深さ変形穴a3(図6(c)を参照)の深さ形状である。テーパー形状とは、標準穴a0に対して穴底の直径が変形したテーパー穴a2(図6(b)を参照)の深さ形状である。比例縮小形状とは、図12(a)に示すように、標準穴a0に対して形状が3次元方向に比例縮小変形した穴(以降、比例縮小穴a4と称する)の深さ形状である。先細り形状とは、図12(b)に示すように、標準穴a0に対して穴底側の端部が円錐状に形成された穴(以降、先細り穴a5と称する)の深さ形状である。ボーイング形状とは、図12(c)に示すように、標準穴a0に対して胴部が膨らんで形成された穴(以降、ボーイング穴a6と称する)の深さ形状である。
図11の強度・位相テーブル121において、例えば、深さ1/2形状に対応する反射偏光のp偏光の強度変化データは0.08であり、ボーイング形状に対応する反射偏光のp偏光の強度変化データは−0.64である。また、深さ1/2形状に対応する反射偏光のs偏光の強度変化データは−0.01であり、テーパー形状に対応する反射偏光のs偏光の強度変化データは−0.50である。また、深さ1/2形状に対応する反射偏光のp偏光の位相変化データは0.02であり、テーパー形状に対応する反射偏光のp偏光の位相変化データは0.16である。
形状検出部111は、このような強度・位相テーブル121を参照して、求めた偏光の強度変化および位相変化の組み合わせが、強度変化データおよび位相変化データの組み合わせに最も近いモデル形状(深さ形状)を選定し、パターンAにおける穴の深さ形状として求める。具体的には、求めた偏光の強度変化および位相変化と、モデル形状に対応する強度変化および位相変化との差をそれぞれ求める。そして、求めた偏光の強度変化と強度変化データの強度変化との差の絶対値と、求めた偏光の位相変化と位相変化データの位相変化との差の絶対値とを足した合計が最も小さい組み合わせとなるモデル形状を、強度変化データおよび位相変化データの組み合わせに最も近いモデル形状と選定し、パターンAにおける穴の深さ形状として求める。
また、形状検出部111は、特定したTSVの深さ形状に基づき、記憶部120に記憶された対策テーブル122を参照して、特定したTSVの深さ形状に対する対策を選定する。対策テーブル122は、TSVの深さ形状とこれに対する対策とが関連付けられた構成となっている。
制御部110は、出力部66を介して、TSVを形成するための露光装置140、現像装置142、エッチング装置144、および接合装置146と接続されている。形状検出部111は、特定したTSVの深さ形状のデータおよび、これに対する対策のデータを、出力部66を介して、露光装置140、現像装置142、エッチング装置144、および接合装置146に出力する。
条件設定部112は、所定のコンピュータプログラムに基づいて作動し、光学シミュレーションを行うことにより、パターンAの穴の深さ形状の評価に適した強度・位相テーブル121を求めて設定できるように構成されている。記憶部120には、前述したように、強度・位相テーブル121と、対策テーブル122とが記憶される。
以上のように構成される評価装置1を用いたウェハWの評価方法について説明する。まず予め、光学シミュレーションを行うことにより、評価対象のパターンAの穴の深さ形状に対応する強度・位相テーブル121を求めて設定する。
そこで、光学シミュレーションを用いた強度・位相テーブル121の設定方法について説明する。まず、光学シミュレーションの対象となるモデル形状および光学シミュレーションの条件について説明する。
評価対象のウェハWは、厚さ3.2μmであり、屈折率3.4のシリコンを用いて形成されている。ウェハWの表面に設計通りに形成された標準穴a0は、直径1μm、深さ2μmの円柱状の穴である。ウェハWの周囲および標準穴a0の内部は、屈折率1の空気である。図5(b)においてハッチングを含む領域が、シミュレーションによる単位解析領域である。
反射偏光用の照明光は、45度の入射角でウェハWの上方(表面側)から照射される。透過偏光用の照明光は、45度の入射角でウェハWの下方(裏面側)から照射される。反射偏光および透過偏光のp偏光は、入射面と平行な方向が電界の振動方向である。反射偏光および透過偏光のs偏光は、入射面と垂直な方向が電界の振動方向である。
深さ1/2形状の深さ変形穴a3(図6(c)を参照)は、直径1μm、深さ1μmの円柱状の穴である。なお、深さ1/2形状の深さ変形穴a3の容積は、標準穴a0の容積の1/2である。
テーパー形状のテーパー穴a2(図6(b)を参照)の深さは、2.55μmである。テーパー形状のテーパー穴a2は、開口部直径が1.534μmで、穴底の直径が0である。テーパー形状のテーパー穴a2の先端の内角θ11(図6(b)を参照)は、33.48度である。なお、テーパー形状のテーパー穴a2の容積は、標準穴a0と同じである。
比例縮小形状の比例縮小穴a4(図12(a)を参照)は、直径0.7937μm、深さ1.5874μmの円柱状の穴である。なお、比例縮小穴a4の容積は、標準穴a0の容積の1/2である。
先細り形状の先細り穴a5(図12(b)を参照)の深さは、2μmである。先細り穴a5の上側の深さ1μmまでは、円柱状に形成されている。先細り穴a5の下側の深さ1μmから最深部までは、円錐状に形成されている。なお、先細り穴a5の容積は、標準穴a0の容積の2/3である。
ボーイング形状のボーイング穴a6(図12(c)を参照)の深さは、約2μmである。ボーイング穴a6の深さ0.2μmから1.0μmまでの部分は、直径1.5μmの円柱状に形成されている。ボーイング穴a6の他の部分は、標準穴a0と同じ直径1μmの円柱状に形成されている。なお、ボーイング穴a6の容積は、標準穴a0の容積の2/3である。
条件設定部112は、標準穴a0、深さ変形穴a3、テーパー穴a2、比例縮小穴a4、先細り穴a5、ボーイング穴a6に対し、FDTD法を用いて光学シミュレーションを行い、偏光の強度および位相を算出する。反射偏光にFDTD法を適用して算出した結果の一例を、図13に示す。また、透過偏光にFDTD法を適用して算出した結果の一例を、図14に示す。なお、各穴(ビアホール)には、空気が充填されているものとする。
図13は、反射偏光のp偏光およびs偏光の強度変化および位相変化を示すグラフである。図14は、透過偏光のp偏光およびs偏光の強度変化および位相変化を示すグラフである。なお、偏光の強度変化および位相変化は、前述の式(17)〜(18)を用いて算出される。図13に示すように、ボーイング形状のボーイング穴a6は、反射偏光のp偏光の強度変化および位相変化が大きいことがわかる。また、テーパー形状のテーパー穴a2は、反射偏光のp偏光およびs偏光の強度変化が大きく、反射偏光のs偏光の位相変化が大きいことがわかる。図14に示すように、略全てのモデル形状において、透過偏光の強度変化が反射偏光の強度変化よりも大きいことがわかる。なお、透過偏光はウェハWを透過するので、各モデル形状の深い領域の情報の感度が高いことに起因すると考えられる。特に、深さ1/2形状の深さ変形穴a3、比例縮小形状の比例縮小穴a4、先細り形状の先細り穴a5において、透過偏光の強度変化が反射偏光の強度変化よりも大きいことがわかる。
条件設定部112は、光学シミュレーションを行って算出した、図13および図14に示すような強度変化および位相変化の値に基づいて、図11に示すような強度・位相テーブル121を作成して求める。条件設定部112により作成された強度・位相テーブル121は、記憶部120に記憶される。
次に、図15のフローチャートを用いて、第4実施形態におけるウェハWのパターン形状の評価方法について説明する。なお、パターン形状の評価は、ウェハWに繰り返しパターンAの穴(ビアホール)が形成され、導電材が充填される前の状態で行われる。
まず、制御部110は、第1照明部20に照射指示を出力する(ステップST401)。これにより、第1照明部20は、照明光として反射用の偏光(直線偏光)をウェハWの表面に照射する。第1検出部30は、ウェハWの表面で反射した反射偏光を検出して、強度信号および位相信号を形状検出部111に出力する(ステップST402)。形状検出部111は、第1検出部30から出力された反射偏光の強度信号および位相信号を取得する(ステップST403)。
次に、制御部110は、第2照明部40に照射指示を出力する(ステップST404)。これにより、第2照明部40は、照明光として透過用の偏光(直線偏光)をウェハWの裏面に照射する。第1検出部30は、ウェハWの表面側に透過した透過偏光を検出して、強度信号および位相信号を形状検出部111に出力する(ステップST405)。形状検出部111は、第1検出部30から出力された透過偏光の強度信号および位相信号を取得する(ステップST406)。
次に、形状検出部111は、取得した反射偏光の強度信号および位相信号に基づいて、反射偏光の強度変化および位相変化を求める。また、形状検出部111は、取得した透過偏光の強度信号および位相信号に基づいて、透過偏光の強度変化および位相変化を求める(ステップST407)。
次に、形状検出部111は、記憶部120に記憶された強度・位相テーブル121を参照して、求めた偏光の強度変化および位相変化の組み合わせが、強度変化データおよび位相変化データの組み合わせに最も近いモデル形状(深さ形状)を選定し、パターンAにおける穴の深さ形状として求める。形状検出部111は、求めた穴の深さ形状に基づいて、TSVの深さ形状を特定する(ステップST408)。
次に、形状検出部111は、特定したTSVの深さ形状に基づき、記憶部120に記憶された対策テーブル122を参照して、特定したTSVの深さ形状に対する対策を選定する。形状検出部111は、特定したTSVの深さ形状のデータおよび、これに対する対策のデータを、出力部66を介して、露光装置140、現像装置142、エッチング装置144、および接合装置146に出力する(ステップST409)。
対策のデータを取得した装置は、当該対策に応じて対応する。例えば、1/2深さ形状のデータおよび、これに対する対策のデータが、接合装置146に出力された場合、接合装置146は、TSVの1/2深さ形状に対する対策に基づいて、アライメントレシピ、加熱加圧レシピ等を変更する。また例えば、先細り形状のデータおよび、これに対する対策のデータが、接合装置146に出力された場合、接合装置146は、TSVの先細り形状に対する対策に基づいて、先細り形状のTSVが折れることを抑制するために、ゆっくりと加圧するようにレシピを変更する。
なお、形状検出部111は、TSVの深さ形状が生じた原因を特定して、特定した原因に関わる装置のみに、TSVの深さ形状のデータおよび、これに対する対策のデータを出力するようにしてもよい。例えば、形状検出部111は、TSVの1/2深さ形状の原因がエッチング装置144と特定すると、1/2深さ形状のデータおよび、エッチングレシピを変更する旨の対策のデータを、エッチング装置144のみに出力する。
このように、第4実施形態によれば、光学シミュレーションを行うことにより、強度・位相テーブル121を求めて設定するため、テストウェハを作製する手間を省くことができる。そのため、パターンAにおける穴の深さ形状の評価を、短時間で且つ低コストで行うことが可能になる。
また、第4実施形態では、第1検出部30が偏光を検出し、深さ形状によって異なる偏光の強度および位相に基づいて、形状検出部111が、パターンAにおける穴(ビアホール)の深さ形状から、TSVの深さを特定する。これにより、特定されたTSVの深さ形状に基づいて、対策を考えることができる。例えば、TSVの深さ形状が1/2深さ形状と特定されると、エッチングの時間を長くするという対策が考えられる。また、TSVの深さ形状がテーパー形状と特定されると、異方性エッチングが可能なエッチング方法を採用するという対策が考えられる。
また、第1検出部30が偏光を検出し、形状検出部111が、強度・位相テーブル121を参照して、偏光の強度および位相に対応する穴の深さ形状を求める。これにより、より確実に、パターンAにおける穴の深さ形状を求め、TSVの深さ形状を特定することができる。
上述の第4実施形態において、第1検出部30が検出したウェハWの表面側からの反射偏光および透過偏光と、第2検出部50が検出したウェハWの裏面側からの反射偏光および透過偏光とに基づいて、穴の深さ形状を求めるようにしてもよい。この場合、ウェハWの表面側からの反射偏光および透過偏光に対応する強度・位相テーブルと、ウェハWの裏面側からの反射偏光および透過偏光に対応する強度・位相テーブルの2種類用意する必要があるが、情報が増えるため、穴の深さ形状を精度よく求めることができる。また、上述したように、第2検出部50がウェハWの裏面側で反射した回折光およびウェハWの裏面側に透過した回折光を検出するようにしてもよい。
上述の第4実施形態において、照明光として直線偏光を用いているが、これに限られるものではなく、円偏光を用いるようにしてもよい。
上述の各実施形態において、ウェハWに対して透過性を有する照明光の波長として、1100μmを例示したが、これに限られるものではなく、照明光の波長を適宜偏光してもよい。例えば、照明光の波長は、700μm〜1200μmの範囲であってもよい。特に、透過偏光用の照明光の波長は、ウェハWの材質に応じて、ウェハWを透過可能な波長とする。
続いて、上述した評価方法によりウェハWの検査・評価が行われる半導体装置の製造方法について、図16に示すフローチャートを参照しながら説明する。図16のフローチャートは、3次元積層型の半導体装置におけるTSV形成プロセスを示している。このTSV形成プロセスにおいて、まず、ウェハ(ベアウェハなど)の表面にレジストを塗布する(ステップST501)。
次に、レジストが塗布されたウェハの表面に、所定のパターン(ホールパターン)を投影露光する(ステップST502)。この露光工程では、露光装置140(図10を参照)を用いて、例えば、所定のパターンが形成されたフォトマスクを通して、所定波長の光線(紫外線などのエネルギー線)をウェハ表面のレジストに照射し、マスクパターンをウェハ表面に転写する。
次に、現像を行う(ステップST503)。この現像工程では、現像装置142(図10を参照)を用いて、例えば、露光部のレジストを現像液で溶かし、未露光部のレジストパターンを残す処理を行う。
次に、レジストパターン(ホールパターン)が形成されたウェハの表面検査を行う(ステップST504)。この検査工程において、レジストパターンの良否を判定し、不良の場合はレジストを剥離してレジスト塗布工程からやり直すアクション、すなわちリワークを行うか否かの判断を行う。リワークが必要な異常(欠陥)が検出された場合、レジストを剥離し(ステップST505)、ステップST501〜ST503までの工程をやり直す。なお、表面検査装置による検査結果は、レジスト塗布装置、露光装置140、および現像装置142にそれぞれフィードバックされる。
現像後の検査工程で異常が無いことを確認すると、エッチングを行う(ステップST506)。このエッチング工程では、エッチング装置144(図10を参照)を用いて、例えば、残っているレジストをマスクにして、下地のベアウェハのシリコンの部分をエッチングし、TSV形成用の穴を形成する。これにより、ウェハWの表面にTSV用ホールパターンが形成される。
次に、エッチングによりパターンAが形成されたウェハWの検査・評価を行う(ステップST507)。エッチング後の検査・評価工程は、上述したいずれかの実施形態に係る検査装置1もしくは評価装置100を用いて行われる。この検査・評価工程において、異常が検出された場合、判別された異常の深さを含む異常の種類及び異常の程度に応じて、露光装置140の露光条件(変形照明条件・フォーカスオフセット条件等)やエッチング装置144のどのパラメータを調整する。エッチング後のウェハWに重大かつ広範囲な異常が発見された場合、リワークできないので、そのウェハWは廃棄されるか、もしくは断面観察などの解析に回される(ステップST508)。
エッチング後の検査・評価工程で異常が無いことを確認すると、穴の側壁に絶縁膜(やバリアメタル)を形成し(ステップST509)、絶縁膜を形成した穴の部分にCuを充填する(ステップST510)。これにより、ウェハ(ベアウェハ)に3次元実装用貫通電極が形成される。
エッチング後の検査・評価工程において、エッチング装置144に異常がないかを監視して、異常を検出したらエッチング装置144を止めて調整するというフィードバック運用が主に行われる。エッチング装置を調整するためのパラメータとして、例えば、縦方向と横方向のエッチングレート比を制御するパラメータや、エッチング時間などの穴の深さを制御するパラメータ、ウェハ面内での均一性を制御するパラメータなどが考えられる。
なお、現像後の検査工程が実施されていれば、レジスト塗布装置、露光装置140、および現像装置142の異常は基本的に現像後の検査工程で検出されるが、現像後の検査工程が実施されていない場合や、エッチングしてみて初めて分かるこれらの装置の問題が発見された場合には、各装置へのフィードバック(各装置の調整)が行われる。
本実施形態の半導体装置の製造方法により製造される半導体装置は、エッチング後の検査・評価工程が上述したいずれかの実施形態に係る評価方法を用いて行われるため、テストウェハを作製する手間を省くことができる。そのため、エッチング後の検査・評価工程を短時間で且つ低コストで行うことが可能となり、半導体装置の製造コストを低減させることができる。
なお、上述のTSV形成プロセスにおいて、ウェハ上に素子を形成する前の最初の段階でTSVを形成しているが、これに限られるものではなく、素子を形成してからTSVを形成してもよく、素子形成の途中でTSVを形成してもよい。なおこの場合、素子形成過程でイオンの打ち込みなどがされる結果、赤外線に対する透明度が低下するが、完全に不透明になるわけではないので、透明度の変化分を考慮して波長選択や照明光量の調整をすればよい。イオンの打ち込みなどにより素子を形成した部分が赤外線を全く透過しない状態になってしまった場合でも、裏面回折検査による穴形状の検査は可能である。また、このような方式の生産ラインであっても、ラインの条件出し及びQC目的として、ベアウェハにTSVを形成し検査を行うようにすれば、イオンの打ち込みによる透明度の低下に影響されない検査が可能である。
なお、上述の各実施形態の構成要素は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。また、法令で許される限りにおいて、上述の各実施形態および変形例で引用した装置などに関する全ての公開公報および米国特許の開示を援用して本文の記載の一部とする。
1 検査装置(評価装置)
10 ウェハホルダ
20 第1照明部 30 第1検出部
40 第2照明部 50 第2検出部
60 制御部 61 画像処理部
63 検査部(評価部) 64 条件設定部
100 評価装置(第4実施形態)
110 制御部
111 形状検出部(評価部) 112 条件設定部
W ウェハ A パターン

Claims (15)

  1. 基板に設けられ該基板の内部に延在するパターンを有する該基板を照明する照明部と、
    前記照明部により照明された前記基板からの光を検出して検出信号を出力する検出部と、
    前記検出部から出力された検出信号に基づいて前記パターン形状の評価を行う評価部と、
    前記パターン形状の変形に対する光学シミュレーションを行うことにより前記パターン形状の評価条件を設定する条件設定部とを備える評価装置。
  2. 前記照明部は、前記基板に対し透過性を有する光を用いて前記基板を照明する請求項1に記載の評価装置。
  3. 前記条件設定部は、前記評価条件として前記基板からの回折光の強度を検出する条件を設定する請求項1または2に記載の評価装置。
  4. 前記条件設定部は、前記評価条件として前記基板からの偏光の強度を検出する条件を設定する請求項1または2に記載の評価装置。
  5. 前記条件設定部は、前記パターン形状の変形に対する前記検出信号の変化率が相対的に大きい前記評価条件を設定する請求項1から4のいずれか一項に記載の評価装置。
  6. 基板に設けられ該基板の内部に延在するパターンを有する該基板を照明し、
    前記照明した前記基板からの光を検出して検出信号を出力し、
    前記出力した検出信号に基づいて前記パターン形状の評価を行い、
    前記パターン形状の変形に対する光学シミュレーションを行うことにより前記パターン形状の評価条件を設定する評価方法。
  7. 前記基板に対し透過性を有する光を用いて前記基板を照明する請求項6に記載の評価方法。
  8. 前記評価条件として前記基板からの回折光の強度を検出する条件を設定する請求項6または7に記載の評価方法。
  9. 前記評価条件として前記基板からの偏光の強度を検出する条件を設定する請求項6または7に記載の評価方法。
  10. 前記パターン形状の変形に対する前記検出信号の変化率が相対的に大きい前記評価条件を設定する請求項6から9のいずれか一項に記載の評価方法。
  11. 半導体製造工程で加工された基板を準備し、
    請求項6から10のいずれか一項に記載の評価方法で評価し、
    前記評価の結果に基づいて前記加工の条件を調整する半導体装置の製造方法により製造された半導体装置。
  12. 基板に設けられ該基板の内部に延在するパターンを有する該基板を照明する照明部と、前記照明部により照明された前記基板からの光を検出して検出信号を出力する検出部と、前記検出部から出力された検出信号に基づいて前記パターン形状の評価を行う評価部とを備えた評価装置の設定に用いられるコンピュータプログラムであって、
    前記パターン形状の変形に対する光学シミュレーションを行い、
    前記光学シミュレーションの結果に基づいて前記パターン形状の評価条件を設定するコンピュータプログラム。
  13. 前記評価条件として前記基板からの回折光の強度を検出する条件を設定する請求項12に記載のコンピュータプログラム。
  14. 前記評価条件として前記基板からの偏光の強度を検出する条件を設定する請求項12に記載のコンピュータプログラム。
  15. 前記パターン形状の変形に対する前記検出信号の変化率が相対的に大きい前記評価条件を設定する請求項12から14のいずれか一項に記載のコンピュータプログラム。
JP2013219461A 2013-10-22 2013-10-22 評価装置、評価方法、半導体装置、およびコンピュータプログラム Pending JP2015081826A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013219461A JP2015081826A (ja) 2013-10-22 2013-10-22 評価装置、評価方法、半導体装置、およびコンピュータプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013219461A JP2015081826A (ja) 2013-10-22 2013-10-22 評価装置、評価方法、半導体装置、およびコンピュータプログラム

Publications (1)

Publication Number Publication Date
JP2015081826A true JP2015081826A (ja) 2015-04-27

Family

ID=53012497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013219461A Pending JP2015081826A (ja) 2013-10-22 2013-10-22 評価装置、評価方法、半導体装置、およびコンピュータプログラム

Country Status (1)

Country Link
JP (1) JP2015081826A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225406A1 (ja) * 2017-06-08 2018-12-13 コニカミノルタ株式会社 表面欠陥検査装置の配置決定方法、該装置、該プログラムおよび記録媒体
WO2022163859A1 (ja) * 2021-02-01 2022-08-04 三菱重工業株式会社 検査装置、および検査方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018225406A1 (ja) * 2017-06-08 2018-12-13 コニカミノルタ株式会社 表面欠陥検査装置の配置決定方法、該装置、該プログラムおよび記録媒体
WO2022163859A1 (ja) * 2021-02-01 2022-08-04 三菱重工業株式会社 検査装置、および検査方法

Similar Documents

Publication Publication Date Title
TWI541922B (zh) A substrate inspection method, a substrate inspection apparatus, an exposure system, and a manufacturing method of a semiconductor device
CN105593973B (zh) 用于确定聚焦的方法及设备
JP4548385B2 (ja) 表面検査装置
JP2019535143A (ja) 半導体ウェハ検査用三次元イメージング
JP2017207506A (ja) 計測システムおよび計測方法
JP5790644B2 (ja) 検査装置および検査方法
JP6036680B2 (ja) 検査装置および半導体装置の製造方法
TW201706593A (zh) 在雷射暗場系統中用於斑點抑制之方法及裝置
TWI673487B (zh) 度量系統、度量設備及度量方法
JP7303887B2 (ja) プロセス変動に対する計量感度を定量するためのスケーリング指標
JP6952033B2 (ja) Vuv光学素子の非接触サーマル測定
KR20220073766A (ko) 멀티 이미징 모드 이미지 정렬
JP2020506552A (ja) 三次元半導体ウェハ上の埋没欠陥を測定するための3次元較正構造及び方法
JP2015081826A (ja) 評価装置、評価方法、半導体装置、およびコンピュータプログラム
JP4462232B2 (ja) 表面検査装置
JP2007309874A (ja) 表面検査装置
JP2012098131A (ja) 配光特性測定装置、配光特性検査装置、配光特性測定プログラム、配光特性測定方法および配光特性検査方法
JP2009198396A (ja) 表面検査装置および表面検査方法
KR101785069B1 (ko) 다크 필드 조명 장치
JP5994308B2 (ja) 検査装置、検査方法、およびデバイス製造方法
JP2010107465A (ja) 欠陥検査装置及び欠陥検査方法
JP2011118269A (ja) 対物レンズの調整方法、対物レンズユニット、および表面検査装置
Quintanilha et al. Sub-50-nm measurements using a 193-nm angle-resolved scatterfield microscope
TW201729315A (zh) 用於使用靈活取樣之程序控制之方法及系統
JP5299764B2 (ja) 評価装置および評価方法