JP2015077825A - Cryogenic propellant storage - Google Patents

Cryogenic propellant storage Download PDF

Info

Publication number
JP2015077825A
JP2015077825A JP2013214519A JP2013214519A JP2015077825A JP 2015077825 A JP2015077825 A JP 2015077825A JP 2013214519 A JP2013214519 A JP 2013214519A JP 2013214519 A JP2013214519 A JP 2013214519A JP 2015077825 A JP2015077825 A JP 2015077825A
Authority
JP
Japan
Prior art keywords
tank
medium
gas
liquid
gasification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013214519A
Other languages
Japanese (ja)
Other versions
JP6159641B2 (en
Inventor
真一郎 石崎
Shinichiro Ishizaki
真一郎 石崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Aerospace Co Ltd
Original Assignee
IHI Aerospace Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Aerospace Co Ltd filed Critical IHI Aerospace Co Ltd
Priority to JP2013214519A priority Critical patent/JP6159641B2/en
Publication of JP2015077825A publication Critical patent/JP2015077825A/en
Application granted granted Critical
Publication of JP6159641B2 publication Critical patent/JP6159641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cryogenic propellant storage adaptable to a propulsion system of a liquid-propellant rocket pursuing missions at intervals of months or intervals of years.SOLUTION: A cryogenic propellant storage includes: a fuel tank 2 for storing liquefied natural gas; a LOX tank 3 for storing LOX; a GNtank 4 filled with nitrogen gas; an LNtank 5 filled with liquid nitrogen; a gas pipe 6 in which the nitrogen gas flows; and a liquid pipe 7 in which the liquid nitrogen flows. A turbine 8 actuated by the nitrogen gas from the GNtank 4, and a JT valve 15 liquefying the nitrogen gas and pumping the liquefied nitrogen gas into the LNtank 5 are arranged halfway along the gas pipe 6. A pump 9 increasing a pressure of the liquid nitrogen by actuation of the turbine 8 is arranged halfway along the liquid pipe 7. Re-liquefaction heat exchangers 10 and 11 for heat exchange with the liquid nitrogen are arranged in the fuel tank 2 and the LOX tank 3, respectively. A gasification heat exchanger 12 for heat exchange with the nitrogen gas is arranged between the gas pipe 6 and the liquid pipe 7.

Description

本発明は、液体ロケットの推進系において、宇宙空間や軌道上で極低温推進薬(極低温燃料及び酸化剤LOX)を貯蔵するのに用いられる極低温推進薬貯蔵装置に関するものである。   The present invention relates to a cryogenic propellant storage device used to store cryogenic propellants (cryogenic fuel and oxidizer LOX) in outer space or orbit in a liquid rocket propulsion system.

上記した液体ロケットの推進系には、常温推進薬及び極低温推進薬のいずれかが用いられ、いずれも、断熱材、例えば、発泡断熱材や多層インシュレータで覆うことによって外部からの熱の進入を遮断した金属製のタンクに貯蔵される(例えば、非特許文献1参照)。   Either the room temperature propellant or the cryogenic propellant is used for the propulsion system of the liquid rocket described above, and both of them are covered with a heat insulating material, for example, a foam heat insulating material or a multilayer insulator, so that heat from the outside is covered. It is stored in a blocked metal tank (see, for example, Non-Patent Document 1).

宇宙空間や軌道上において、重量等の制約を受ける都合上完全に近い熱遮断を行うことは困難であり、極低温推進薬の貯蔵タンクの場合には、太陽光で熱されて蒸発して生じるガスを定期的に宇宙空間に放出することで、タンク内の圧力が必要以上に上昇するのを抑えるようにしている。   In space and orbit, it is difficult to cut off heat almost completely because of weight restrictions, and in the case of a cryogenic propellant storage tank, it is heated by sunlight and evaporated. By releasing gas regularly into outer space, the pressure inside the tank is prevented from rising more than necessary.

航空宇宙工学便覧 第3版 日本航空宇宙学会編 第884頁Aerospace Engineering Handbook 3rd edition, Japan Aerospace Society, page 884

上記したように、従来の推進薬貯蔵タンクでは、極低温推進薬が蒸発して生じるガスを定期的に宇宙空間に放出して、タンク内の圧力上昇を抑えるようにしているので、極低温推進薬が徐々に減ることとなり、したがって、採用し得るのは数時間、もしくは長くても数日間のミッションに限られてしまい、月単位や年単位のミッションには用いることができないという問題を有しており、この問題を解決することが従来の課題となっていた。   As described above, in conventional propellant storage tanks, gas generated by evaporation of cryogenic propellant is periodically released into outer space to suppress pressure rise in the tank, so cryogenic propulsion Drugs will be gradually reduced, and therefore can only be used for missions of several hours or at most days, and cannot be used for monthly or yearly missions. It has been a conventional problem to solve this problem.

本発明は、上記した従来の課題に着目してなされたもので、数時間のミッションを行う液体ロケットの推進系のみならず、月単位や年単位のミッションを行う液体ロケットの推進系にも採用し得る極低温推進薬貯蔵装置を提供することを目的としている。   The present invention has been made paying attention to the above-described conventional problems, and is adopted not only for a liquid rocket propulsion system that performs a mission for several hours but also for a liquid rocket propulsion system that performs a monthly or yearly mission. An object of the present invention is to provide a cryogenic propellant storage device.

本発明の請求項1に係る発明は、液体ロケットの推進系において極低温推進薬を貯蔵するのに用いられる極低温推進薬貯蔵装置であって、前記極低温推進薬を構成する極低温燃料を収容する燃料タンクと、前記極低温燃料とともに前記極低温推進薬を構成するLOXを収容するLOXタンクと、ガス化媒体が充填されたガス化媒体タンクと、前記極低温燃料及びLOXよりも温度が低い液化媒体が充填された液化媒体タンクと、前記ガス化媒体タンクから前記液化媒体タンクに向けてガス化媒体が流れるガス配管と、前記液化媒体タンクから前記ガス化媒体タンクに向けて液化媒体が流れる液体配管を備え、前記ガス配管の途上には、前記ガス化媒体タンクからのガス化媒体により作動するタービンと、該ガス化媒体を液化して前記液化媒体タンクに送り込むJT弁が配置され、前記液体配管の途上には、前記タービンの作動により該液体配管を流れる前記液化媒体タンクからの温度の低い液化媒体の圧力を高めるポンプが配置され、前記LOXタンク及び前記燃料タンクの各々には、前記液体配管内を流れる温度が低く且つ圧力が高められた液化媒体との間で熱交換を行って、前記LOXタンク内で蒸発した酸素及び前記燃料タンク内で蒸発した極低温燃料をそれぞれ液体に戻す再液化用熱交換器がそれぞれ配置され、前記ガス化媒体タンクの近傍における前記ガス配管と前記液体配管との間には、該ガス配管から導出されるガス化媒体との間で熱交換を行って、前記液体配管を流れる液化媒体をガス化して前記ガス化媒体タンクに導入するガス化用熱交換器が配置されている構成としたことを特徴としており、この構成の極低温推進薬貯蔵装置を前述の従来の課題を解決するための手段としている。   The invention according to claim 1 of the present invention is a cryogenic propellant storage device used for storing a cryogenic propellant in a propulsion system of a liquid rocket, and comprises a cryogenic fuel constituting the cryogenic propellant. A fuel tank to be stored, a LOX tank that stores LOX that constitutes the cryogenic propellant together with the cryogenic fuel, a gasification medium tank filled with a gasification medium, and a temperature higher than that of the cryogenic fuel and LOX A liquefied medium tank filled with a low liquefied medium; a gas pipe through which the gasified medium flows from the gasified medium tank toward the liquefied medium tank; and a liquefied medium from the liquefied medium tank toward the gasified medium tank. A liquid pipe that flows, and a turbine that is operated by the gasification medium from the gasification medium tank in the middle of the gas pipe; and the liquefaction medium by liquefying the gasification medium A JT valve that feeds into the tank, and a pump that raises the pressure of the low-temperature liquefied medium from the liquefied medium tank that flows through the liquid pipe by the operation of the turbine is disposed in the middle of the liquid pipe. And in each of the fuel tanks, heat exchange is performed with a liquefied medium having a low temperature and a high pressure flowing in the liquid pipe, and oxygen evaporated in the LOX tank and in the fuel tank Reliquefaction heat exchangers for returning the evaporated cryogenic fuel to the liquid are disposed, respectively, and a gas derived from the gas pipe is provided between the gas pipe and the liquid pipe in the vicinity of the gasification medium tank. A heat exchanger for gasification is provided that exchanges heat with the gasification medium, gasifies the liquefaction medium flowing in the liquid pipe, and introduces it into the gasification medium tank. And characterized by a was, and cryogenic propellant storage device of this configuration as a means for solving the conventional problems described above.

本発明の請求項2に係る極低温推進薬貯蔵装置において、前記ガス化媒体タンクと前記LOXタンクとの間、及び、前記ガス化媒体タンクと前記燃料タンクとの間には、ガス化媒体を前記LOXタンク及び前記燃料タンクの双方に対してタンク加圧ガスとして供給する加圧ガス供給配管がそれぞれ配置されている構成としている。   In the cryogenic propellant storage device according to claim 2 of the present invention, a gasification medium is provided between the gasification medium tank and the LOX tank and between the gasification medium tank and the fuel tank. Pressurized gas supply pipes that supply tank pressurized gas to both the LOX tank and the fuel tank are arranged.

本発明の請求項3に係る極低温推進薬貯蔵装置は、前記ガス化媒体を窒素ガスとし、前記液化媒体を液体窒素とした構成としている。   The cryogenic propellant storage device according to claim 3 of the present invention is configured such that the gasification medium is nitrogen gas and the liquefaction medium is liquid nitrogen.

本発明に係る極低温推進薬貯蔵装置において、極低温燃料としては、メタンを主成分とする液化天然ガス(LNG)を主に用いることを想定しているが、液化媒体を変更することで液体水素(LH2)を用いることも可能である。また、燃料タンク、LOXタンク、ガス化媒体タンク及び液化媒体タンクの各タンクには、アルミニウムやSUS等の金属を用いることができるが、いずれも特に限定しない。 In the cryogenic propellant storage device according to the present invention, it is assumed that liquefied natural gas (LNG) mainly composed of methane is mainly used as the cryogenic fuel, but the liquid can be changed by changing the liquefaction medium. Hydrogen (LH 2 ) can also be used. Moreover, although metals, such as aluminum and SUS, can be used for each tank of a fuel tank, a LOX tank, a gasification medium tank, and a liquefaction medium tank, all are not specifically limited.

本発明に係る極低温推進薬貯蔵装置では、高圧のガス化媒体タンクからのガス化媒体によりガス配管の途上のタービンが作動し、このタービンを作動させたガス化媒体はガス配管の途上のJT弁により液化されて内部圧力の低い液化媒体タンクに送り込まれる。   In the cryogenic propellant storage device according to the present invention, the turbine in the middle of the gas pipe is operated by the gasification medium from the high-pressure gasification medium tank, and the gasification medium that operates the turbine is JT in the middle of the gas pipe. It is liquefied by a valve and fed into a liquefied medium tank having a low internal pressure.

この際、ガス配管の途上のタービンの作動により、液体配管の途上のポンプが作動して液体配管を流れる液化媒体タンクからの温度の低い液化媒体の圧力が上昇する。   At this time, due to the operation of the turbine in the middle of the gas piping, the pump in the middle of the liquid piping operates to increase the pressure of the liquefied medium having a low temperature from the liquefied medium tank flowing through the liquid piping.

このようにして温度が低く且つ圧力が高められた液体配管内を流れる液化媒体は、LOXタンク及び燃料タンクの各々に配置された再液化用熱交換器を通過するので、LOXタンク内で蒸発した酸素及び燃料タンク内で蒸発した極低温燃料は、いずれも温度が低く且つ圧力が高められた液化媒体に熱を奪われてLOX及び極低温の液体燃料に戻ることとなる。   The liquefied medium flowing in the liquid pipe whose temperature is low and pressure is increased in this way passes through the reliquefaction heat exchangers arranged in the LOX tank and the fuel tank, and is thus evaporated in the LOX tank. The cryogenic fuel evaporated in the oxygen and fuel tanks is deprived of heat by the liquefied medium whose temperature is low and the pressure is increased, and returns to LOX and the cryogenic liquid fuel.

そして、LOXタンク及び燃料タンクの各再液化用熱交換器を通過して熱を得た液化媒体は、ガス化媒体タンクの近傍におけるガス配管と液体配管との間に位置するガス化用熱交換器を通過するので、ガス配管から導出されるガス化媒体との間で熱交換が行われ、この熱交換によりさらに熱を得た液化媒体は、ガス化してガス化媒体タンクに導入されることとなる。   The liquefied medium that has obtained heat through the re-liquefaction heat exchangers of the LOX tank and the fuel tank is the heat exchange for gasification located between the gas pipe and the liquid pipe in the vicinity of the gasification medium tank. Because it passes through the vessel, heat exchange is performed with the gasification medium led out from the gas pipe, and the liquefied medium that has obtained further heat through this heat exchange is gasified and introduced into the gasification medium tank. It becomes.

上記したように、本発明に係る極低温推進薬貯蔵装置では、ガス化媒体及び液化媒体を循環させるだけで、極低温燃料が蒸発することでタンク内に生じるガスを再液化し得ることとなり、すなわち、極低温燃料が蒸発して生じるガスを定期的に宇宙空間に放出することなく、タンク内の圧力上昇を抑え得ることとなり、したがって、数時間のミッションを行う液体ロケットの推進系だけでなく、月単位や年単位のミッションを行う液体ロケットの推進系にも採用し得ることとなる。   As described above, in the cryogenic propellant storage device according to the present invention, the gas generated in the tank can be re-liquefied by evaporating the cryogenic fuel simply by circulating the gasification medium and the liquefaction medium. In other words, the gas generated by evaporating the cryogenic fuel is not released regularly into outer space, and the pressure rise in the tank can be suppressed. Therefore, not only the propulsion system of a liquid rocket that performs a mission for several hours. It can also be used in propulsion systems for liquid rockets that carry out monthly and yearly missions.

また、ガス化媒体タンクとLOXタンクとの間、及び、ガス化媒体タンクと燃料タンクとの間に、加圧ガス供給配管をそれぞれ配置して、ガス化媒体をLOXタンク及び燃料タンクの双方に対してタンク加圧ガスとして供給するようになせば、極低温燃料の使用時(ロケットエンジン燃焼時)のタンク内圧力の低下を迅速に補い得る加圧が可能となることとなり、コンパクトで効率的な推進薬供給システムの構築が実現することとなる。   Also, pressurized gas supply pipes are arranged between the gasification medium tank and the LOX tank and between the gasification medium tank and the fuel tank, respectively, so that the gasification medium is placed in both the LOX tank and the fuel tank. In contrast, if it is supplied as tank pressurization gas, pressurization that can quickly compensate for the drop in tank pressure when using cryogenic fuel (during rocket engine combustion) becomes possible, making it compact and efficient. A simple propellant supply system will be realized.

さらに、ガス化媒体を窒素ガスとし、液化媒体を液体窒素とすることで、窒素と同様に冷媒として使用され得る極低温のヘリウムと比べて取扱い性に優れると共に、このヘリウムの枯渇問題にも対応し得ることとなり、加えて、上記のように、ガス化媒体をLOXタンク及び燃料タンクの双方に対してタンク加圧ガスとして供給する場合には、大量に必要となるガス化媒体の窒素ガスを液体窒素として液体ロケットに搭載し得るので、収納性が大幅に向上することとなる。   Furthermore, by using nitrogen gas as the gasification medium and liquid nitrogen as the liquefaction medium, it is easier to handle than cryogenic helium, which can be used as a refrigerant in the same way as nitrogen, and also responds to this helium depletion problem. In addition, as described above, when supplying the gasification medium as tank pressurization gas to both the LOX tank and the fuel tank, a large amount of nitrogen gas as the gasification medium is required. Since it can be mounted on a liquid rocket as liquid nitrogen, the storage property is greatly improved.

本発明の請求項1に係る極低温推進薬貯蔵装置では、数時間のミッションを行う液体ロケットの推進系のみならず、月単位や年単位のミッションを行う液体ロケットの推進系にも採用することが可能であるという非常に優れた効果がもたらされる。   In the cryogenic propellant storage device according to claim 1 of the present invention, not only a liquid rocket propulsion system that performs a mission for several hours but also a liquid rocket propulsion system that performs a monthly or yearly mission. This is a very good effect that is possible.

また、本発明の請求項2に係る極低温推進薬貯蔵装置では、コンパクトで効率的な推進薬供給システムを実現することでき、本発明の請求項3に係る極低温推進薬貯蔵装置では、冷媒の取扱い性及び入手性が良く、加えて、窒素ガスをLOXタンク及び燃料タンクの双方に対してタンク加圧ガスとして供給する場合には、窒素ガスを液体窒素として液体ロケットに搭載し得る分だけ収納性の向上をも実現することが可能であるという非常に優れた効果がもたらされる。   In the cryogenic propellant storage device according to claim 2 of the present invention, a compact and efficient propellant supply system can be realized. In the cryogenic propellant storage device according to claim 3 of the present invention, the refrigerant In addition, when nitrogen gas is supplied as tank pressurization gas to both the LOX tank and the fuel tank, the amount of nitrogen gas that can be mounted on a liquid rocket as liquid nitrogen A very excellent effect that it is possible to improve the storage property is also brought about.

本発明の一実施例による極低温推進薬貯蔵装置の概略システム説明図である。It is a schematic system explanatory drawing of the cryogenic propellant storage apparatus by one Example of this invention.

以下、本発明に係る極低温推進薬貯蔵装置を図面に基づいて説明する。
図1は、本発明に係る極低温推進薬貯蔵装置の一実施例を示している。
Hereinafter, a cryogenic propellant storage device according to the present invention will be described with reference to the drawings.
FIG. 1 shows an embodiment of a cryogenic propellant storage device according to the present invention.

図1に示すように、液体ロケットの推進系において極低温推進薬を貯蔵するのに用いられる極低温推進薬貯蔵装置1は、極低温推進薬を構成する極低温燃料である液化天然ガス(LNG)を収容する推進薬タンク2と、液化天然ガスとともに極低温推進薬を構成する酸化剤としてのLOXを収容するLOXタンク3と、ガス化媒体としての窒素ガスが充填されたGN2タンク4と、液化天然ガス及びLOXよりも温度が低い液化媒体としての液体窒素が充填されたLN2タンク5と、GN2タンク4からLN2タンク5に向けて窒素ガスが流れるガス配管6と、LN2タンク5からGN2タンク4に向けて液体窒素が流れる液体配管7を備えている。 As shown in FIG. 1, a cryogenic propellant storage device 1 used to store a cryogenic propellant in a liquid rocket propulsion system is a liquefied natural gas (LNG) that is a cryogenic fuel constituting the cryogenic propellant. ), A LOX tank 3 that stores LOX as an oxidant that constitutes a cryogenic propellant together with liquefied natural gas, and a GN 2 tank 4 that is filled with nitrogen gas as a gasification medium; LN 2 tank 5 filled with liquid nitrogen as a liquefied medium having a temperature lower than that of liquefied natural gas and LOX, gas pipe 6 through which nitrogen gas flows from GN 2 tank 4 toward LN 2 tank 5, and LN 2 A liquid pipe 7 through which liquid nitrogen flows from the tank 5 toward the GN 2 tank 4 is provided.

この場合、ガス配管6の途上には、高圧のGN2タンク4からの窒素ガスにより作動するタービン8と、窒素ガスを液化して低圧のLN2タンク5に送り込むJT弁(ジュールトムソン弁)15が配置され、一方、液体配管7の途上には、タービン8の作動により液体配管7を流れる温度の低い液体窒素の圧力を高めるポンプ9が配置されている。 In this case, in the middle of the gas pipe 6, a turbine 8 that is operated by nitrogen gas from the high-pressure GN 2 tank 4 and a JT valve (Joule Thomson valve) 15 that liquefies the nitrogen gas and sends it to the low-pressure LN 2 tank 5. On the other hand, a pump 9 is disposed in the middle of the liquid pipe 7 to increase the pressure of low temperature liquid nitrogen flowing through the liquid pipe 7 by the operation of the turbine 8.

また、LOXタンク3及び燃料タンク2の各々には、液体配管7内を流れる温度が低く且つ圧力が高められた液体窒素との間で熱交換を行って、LOXタンク3内で蒸発した酸素及び燃料タンク2内で蒸発した液化天然ガスをそれぞれ液体に戻す再液化用熱交換器10,11がそれぞれ配置されている。   Further, in each of the LOX tank 3 and the fuel tank 2, heat exchange is performed with liquid nitrogen whose temperature flowing through the liquid pipe 7 is low and pressure is increased, and oxygen evaporated in the LOX tank 3 and Reliquefaction heat exchangers 10 and 11 for returning the liquefied natural gas evaporated in the fuel tank 2 to liquids are arranged.

さらに、GN2タンク4の近傍におけるガス配管6と液体配管7との間には、このガス配管6から図示しない開閉弁を介して導出される窒素ガスとの間で熱交換を行って、液体配管7を流れる液体窒素をガス化してGN2タンク4に導入するガス化用熱交換器12が配置されている。 Further, heat exchange is performed between the gas pipe 6 and the liquid pipe 7 in the vicinity of the GN 2 tank 4 with nitrogen gas led out from the gas pipe 6 through an on-off valve (not shown), and the liquid A gasification heat exchanger 12 for gasifying the liquid nitrogen flowing through the pipe 7 and introducing it into the GN 2 tank 4 is arranged.

さらにまた、GN2タンク4とLOXタンク3との間、及び、GN2タンク4と燃料タンク2との間には、LOXタンク3及び燃料タンク2の双方に対して窒素ガスをタンク加圧ガスとして供給してタンク内圧力を所定の圧力に維持する加圧ガス供給配管13,14がそれぞれ配置されており、この実施例において、燃料タンク2及びLOXタンク3の各タンク内圧力は、いずれも推進薬保持に必要な一定の圧力に維持されている。 Furthermore, between the GN 2 tank 4 and the LOX tank 3, and between the GN 2 tank 4 and the fuel tank 2, nitrogen gas is supplied to both the LOX tank 3 and the fuel tank 2 as tank pressurized gas. The pressurized gas supply pipes 13 and 14 are respectively provided to maintain the tank internal pressure at a predetermined pressure. In this embodiment, the internal pressures of the fuel tank 2 and the LOX tank 3 are both It is maintained at a certain pressure required for propellant retention.

なお、図1における符号16は流量調整弁、符号17,18は圧力調整弁、符号19は液体窒素充填ラインであり、この極低温推進薬貯蔵装置1の各タンク及び各配管の適宜位置には図示しない圧力センサが配置されている。   In FIG. 1, reference numeral 16 denotes a flow rate adjustment valve, reference numerals 17 and 18 denote pressure adjustment valves, and reference numeral 19 denotes a liquid nitrogen filling line, which is located at an appropriate position of each tank and each pipe of the cryogenic propellant storage device 1. A pressure sensor (not shown) is arranged.

この実施例に係る極低温推進薬貯蔵装置1では、高圧のGN2タンク4からの窒素ガスによりガス配管6の途上のタービン8が作動し、このタービン8を作動させた窒素ガスはガス配管6の途上のJT弁15により液化されて内部圧力の低いLN2タンク5に送り込まれる。 In the cryogenic propellant storage device 1 according to this embodiment, the turbine 8 in the middle of the gas pipe 6 is operated by the nitrogen gas from the high-pressure GN 2 tank 4, and the nitrogen gas that operates the turbine 8 is the gas pipe 6. It is liquefied by the JT valve 15 on the way and sent to the LN 2 tank 5 having a low internal pressure.

この際、ガス配管6の途上のタービン8の作動により、液体配管7の途上のポンプ9が作動して液体配管7を流れるLN2タンク5からの温度の低い液体窒素の圧力が上昇する。 At this time, due to the operation of the turbine 8 in the middle of the gas pipe 6, the pump 9 in the middle of the liquid pipe 7 is operated, and the pressure of the low temperature liquid nitrogen from the LN 2 tank 5 flowing through the liquid pipe 7 increases.

このようにして温度が低く且つ圧力が高められた液体配管7内を流れる液体窒素は、LOXタンク3及び燃料タンク2の各々に配置された再液化用熱交換器10,11を通過するので、LOXタンク3内で蒸発した酸素及び燃料タンク2内で蒸発した液化天然ガスは、いずれも温度が低く且つ圧力が高められた液体窒素に、白抜き矢印に示すように、熱を奪われてLOX及び液化天然ガスに戻ることとなる。   Since the liquid nitrogen flowing in the liquid pipe 7 having a low temperature and a high pressure passes through the reliquefaction heat exchangers 10 and 11 disposed in the LOX tank 3 and the fuel tank 2, respectively. Both the oxygen evaporated in the LOX tank 3 and the liquefied natural gas evaporated in the fuel tank 2 are deprived of heat by liquid nitrogen whose temperature is low and pressure is increased, as indicated by the white arrow. And return to liquefied natural gas.

そして、LOXタンク3及び燃料タンク2の各再液化用熱交換器10,11を通過して熱を得た液体窒素は、GN2タンク4の近傍におけるガス配管6と液体配管7との間に位置するガス化用熱交換器12を通過するので、白抜き矢印に示すように、ガス配管6から導出される窒素ガスとの間で熱交換が行われ、この熱交換によりさらに熱を得た液体窒素は、ガス化してGN2タンク4に導入されることとなる。 The liquid nitrogen obtained through the reliquefaction heat exchangers 10 and 11 of the LOX tank 3 and the fuel tank 2 is between the gas pipe 6 and the liquid pipe 7 in the vicinity of the GN 2 tank 4. Since it passes through the heat exchanger 12 for gasification, heat exchange is performed with the nitrogen gas led out from the gas pipe 6 as indicated by the white arrow, and further heat is obtained by this heat exchange. The liquid nitrogen is gasified and introduced into the GN 2 tank 4.

上記したように、この実施例に係る極低温推進薬貯蔵装置1では、窒素ガス及び液体窒素を循環させるだけで、液化天然ガスが蒸発することで推進薬タンク2内に生じるガスを再液化し得ることとなり、すなわち、液化天然ガスが蒸発して生じるガスを定期的に宇宙空間に放出することなく、燃料タンク2内の圧力上昇を抑え得ることとなり、したがって、数時間のミッションを行う液体ロケットの推進系だけでなく、月単位や年単位のミッションを行う液体ロケットの推進系にも採用し得ることとなる。   As described above, in the cryogenic propellant storage device 1 according to this embodiment, the gas generated in the propellant tank 2 is re-liquefied by the liquefied natural gas evaporating only by circulating nitrogen gas and liquid nitrogen. In other words, the liquid rocket which can suppress the pressure rise in the fuel tank 2 without periodically releasing the gas generated by the evaporation of the liquefied natural gas to the outer space, and thus performs a mission for several hours. It can be used not only for propulsion systems, but also for liquid rocket propulsion systems that perform monthly and yearly missions.

また、この実施例に係る極低温推進薬貯蔵装置1では、GN2タンク4とLOXタンク3との間、及び、GN2タンク4と燃料タンク2との間に、加圧ガス供給配管13,14をそれぞれ配置して、窒素ガスをLOXタンク3及び燃料タンク2の双方に対してタンク加圧ガスとして供給するようにしているので、液化天然ガスの使用時(ロケットエンジン燃焼時)のタンク内圧力の低下を迅速に補い得ることとなり、コンパクトで効率的な推進薬供給システムの構築が実現することとなる。 In the cryogenic propellant storage device 1 according to this embodiment, the pressurized gas supply pipe 13, between the GN 2 tank 4 and the LOX tank 3, and between the GN 2 tank 4 and the fuel tank 2, 14 is arranged so that nitrogen gas is supplied as tank pressurization gas to both the LOX tank 3 and the fuel tank 2, so that the inside of the tank when liquefied natural gas is used (during rocket engine combustion) A drop in pressure can be quickly compensated, and a compact and efficient propellant supply system can be constructed.

さらに、この実施例に係る極低温推進薬貯蔵装置1では、ガス化媒体を窒素ガスとし、液化媒体を液体窒素としているので、窒素と同様に冷媒として使用される極低温のヘリウムと比べて取扱い性に優れていると共に、このヘリウムの枯渇問題にも対応し得ることとなるうえ、上記のように、窒素ガスをLOXタンク3及び燃料タンク2の双方に対してタンク加圧ガスとして供給する場合には、大量に必要となる窒素ガスを液体窒素として液体ロケットに搭載し得る分だけ、収納性が大幅に向上することとなる。   Furthermore, in the cryogenic propellant storage device 1 according to this embodiment, since the gasification medium is nitrogen gas and the liquefaction medium is liquid nitrogen, it is handled in comparison with cryogenic helium used as a refrigerant in the same manner as nitrogen. When the nitrogen gas is supplied to both the LOX tank 3 and the fuel tank 2 as tank pressurization gas as described above, it is possible to cope with this helium depletion problem. Therefore, the storage capacity is greatly improved by the amount that can be mounted on the liquid rocket as the liquid nitrogen as a large amount of nitrogen gas.

上記した実施例の極低温推進薬貯蔵装置1では、ガス化媒体を窒素ガスとし、液化媒体を液体窒素としているが、これに限定されるものではなく、冷媒としてヘリウムを用いてもよく、この場合には、極低温推進薬として液体水素を用いることができる。   In the cryogenic propellant storage device 1 of the above-described embodiment, the gasification medium is nitrogen gas and the liquefaction medium is liquid nitrogen. However, the invention is not limited to this, and helium may be used as a refrigerant. In some cases, liquid hydrogen can be used as a cryogenic propellant.

1 極低温推進薬貯蔵装置
2 燃料(液化天然ガス)タンク
3 LOXタンク
4 GN2タンク(ガス化媒体タンク)
5 LN2タンク(液化媒体タンク)
6 ガス配管
7 液体配管
8 タービン
9 ポンプ
10,11 再液化用熱交換器
12 ガス化用熱交換器
15 JT弁
1 Cryogenic propellant storage device 2 Fuel (liquefied natural gas) tank 3 LOX tank 4 GN 2 tank (gasification medium tank)
5 LN 2 tank (liquefaction medium tank)
6 Gas piping 7 Liquid piping 8 Turbine 9 Pumps 10, 11 Reliquefaction heat exchanger 12 Gasification heat exchanger 15 JT valve

Claims (3)

液体ロケットの推進系において極低温推進薬を貯蔵するのに用いられる極低温推進薬貯蔵装置であって、
前記極低温推進薬を構成する極低温燃料を収容する燃料タンクと、
前記極低温燃料とともに極低温推進薬を構成するLOXを収容するLOXタンクと、
ガス化媒体が充填されたガス化媒体タンクと、
前記極低温燃料及びLOXよりも温度が低い液化媒体が充填された液化媒体タンクと、
前記ガス化媒体タンクから前記液化媒体タンクに向けてガス化媒体が流れるガス配管と、
前記液化媒体タンクから前記ガス化媒体タンクに向けて液化媒体が流れる液体配管を備え、
前記ガス配管の途上には、前記ガス化媒体タンクからのガス化媒体により作動するタービンと、該ガス化媒体を液化して前記液化媒体タンクに送り込むJT弁が配置され、
前記液体配管の途上には、前記タービンの作動により該液体配管を流れる前記液化媒体タンクからの温度の低い液化媒体の圧力を高めるポンプが配置され、
前記LOXタンク及び前記燃料タンクの各々には、前記液体配管内を流れる温度が低く且つ圧力が高められた液化媒体との間で熱交換を行って、前記LOXタンク内で蒸発した酸素及び前記燃料タンク内で蒸発した極低温燃料をそれぞれ液体に戻す再液化用熱交換器がそれぞれ配置され、
前記ガス化媒体タンクの近傍における前記ガス配管と前記液体配管との間には、該ガス配管から導出されるガス化媒体との間で熱交換を行って、前記液体配管を流れる液化媒体をガス化して前記ガス化媒体タンクに導入するガス化用熱交換器が配置されている
ことを特徴とする極低温推進薬貯蔵装置。
A cryogenic propellant storage device used to store cryogenic propellants in a liquid rocket propulsion system,
A fuel tank containing a cryogenic fuel constituting the cryogenic propellant;
A LOX tank containing LOX that constitutes a cryogenic propellant together with the cryogenic fuel;
A gasification medium tank filled with the gasification medium;
A liquefied medium tank filled with the cryogenic fuel and a liquefied medium having a temperature lower than that of LOX;
A gas pipe through which the gasification medium flows from the gasification medium tank toward the liquefaction medium tank;
A liquid pipe through which the liquefied medium flows from the liquefied medium tank toward the gasified medium tank;
In the middle of the gas pipe, a turbine that is operated by the gasification medium from the gasification medium tank, and a JT valve that liquefies the gasification medium and sends it to the liquefaction medium tank are disposed.
In the middle of the liquid pipe, a pump for increasing the pressure of the low-temperature liquefied medium from the liquefied medium tank flowing through the liquid pipe by the operation of the turbine is disposed,
In each of the LOX tank and the fuel tank, oxygen exchanged in the LOX tank and the fuel are performed by exchanging heat with a liquefied medium having a low temperature and a high pressure flowing in the liquid pipe. Re-liquefaction heat exchangers that return the cryogenic fuel evaporated in the tank to liquid respectively are arranged,
Between the gas pipe and the liquid pipe in the vicinity of the gasification medium tank, heat exchange is performed with the gasification medium derived from the gas pipe, and the liquefaction medium flowing through the liquid pipe is gasified. A cryogenic propellant storage device, wherein a heat exchanger for gasification that is converted into gas and introduced into the gasification medium tank is disposed.
前記ガス化媒体タンクと前記LOXタンクとの間、及び、前記ガス化媒体タンクと前記燃料タンクとの間には、ガス化媒体を前記LOXタンク及び前記燃料タンクの双方に対してタンク加圧ガスとして供給する加圧ガス供給配管がそれぞれ配置されている請求項1に記載の極低温推進薬貯蔵装置。   Between the gasification medium tank and the LOX tank, and between the gasification medium tank and the fuel tank, the gasification medium is a tank pressurization gas with respect to both the LOX tank and the fuel tank. The cryogenic propellant storage device according to claim 1, wherein the pressurized gas supply pipes to be supplied as are respectively disposed. 前記ガス化媒体を窒素ガスとし、前記液化媒体を液体窒素とした請求項1又は2に記載の極低温推進薬貯蔵装置。   The cryogenic propellant storage device according to claim 1 or 2, wherein the gasification medium is nitrogen gas and the liquefaction medium is liquid nitrogen.
JP2013214519A 2013-10-15 2013-10-15 Cryogenic propellant storage device Active JP6159641B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013214519A JP6159641B2 (en) 2013-10-15 2013-10-15 Cryogenic propellant storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013214519A JP6159641B2 (en) 2013-10-15 2013-10-15 Cryogenic propellant storage device

Publications (2)

Publication Number Publication Date
JP2015077825A true JP2015077825A (en) 2015-04-23
JP6159641B2 JP6159641B2 (en) 2017-07-05

Family

ID=53009686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013214519A Active JP6159641B2 (en) 2013-10-15 2013-10-15 Cryogenic propellant storage device

Country Status (1)

Country Link
JP (1) JP6159641B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116557171A (en) * 2023-07-05 2023-08-08 北京未来宇航空间科技研究院有限公司 Propulsion system and method of using a propulsion system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102336892B1 (en) * 2020-03-31 2021-12-10 주식회사 패리티 Hydrogen reliquefaction system
KR102336884B1 (en) * 2020-04-03 2021-12-09 주식회사 패리티 Hydrogen liquefaction and bog control system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241647A (en) * 1993-02-17 1994-09-02 Nippon Sanso Kk Hydrogen liquefying equipment and slush hydrogen producing equipment
JPH11118274A (en) * 1997-10-16 1999-04-30 Daido Hoxan Inc Fuel tank device
JP2000248994A (en) * 1999-03-01 2000-09-12 Ishikawajima Harima Heavy Ind Co Ltd Propellant pressurizing device for rocket engine
JP2010265938A (en) * 2009-05-12 2010-11-25 Ihi Marine United Inc Liquefied gas storage system
JP2012214148A (en) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd Aircraft/spacecraft fluid cooling system and aircraft/spacecraft fluid cooling device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06241647A (en) * 1993-02-17 1994-09-02 Nippon Sanso Kk Hydrogen liquefying equipment and slush hydrogen producing equipment
JPH11118274A (en) * 1997-10-16 1999-04-30 Daido Hoxan Inc Fuel tank device
JP2000248994A (en) * 1999-03-01 2000-09-12 Ishikawajima Harima Heavy Ind Co Ltd Propellant pressurizing device for rocket engine
JP2010265938A (en) * 2009-05-12 2010-11-25 Ihi Marine United Inc Liquefied gas storage system
JP2012214148A (en) * 2011-03-31 2012-11-08 Mitsubishi Heavy Ind Ltd Aircraft/spacecraft fluid cooling system and aircraft/spacecraft fluid cooling device
US20140020872A1 (en) * 2011-03-31 2014-01-23 Osamu Kitayama Aircraft/spacecraft fluid cooling system and aircraft/spacecraft fluid cooling method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116557171A (en) * 2023-07-05 2023-08-08 北京未来宇航空间科技研究院有限公司 Propulsion system and method of using a propulsion system
CN116557171B (en) * 2023-07-05 2023-10-27 北京未来宇航空间科技研究院有限公司 Propulsion system and method of using a propulsion system

Also Published As

Publication number Publication date
JP6159641B2 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP6021430B2 (en) Reliquefaction method of boil-off gas generated from liquid hydrogen storage tank
CN107636380B (en) Method for cooling liquefied gases
KR102120584B1 (en) Tank Cooling System, Liquefaction System and Ship having the same
JP6159641B2 (en) Cryogenic propellant storage device
KR102338967B1 (en) floating body
KR20130109559A (en) Liquefied natural gas regasification system with multi-stage
KR20190022200A (en) Fuel gas supply system
KR100885796B1 (en) Boil-off gas reliquefaction apparatus
JP7119063B2 (en) Method and apparatus for storing liquefied gas in container and withdrawing evaporative gas from container
KR102351014B1 (en) LNG Offloading System And Method For FLNG
KR102007363B1 (en) Cryogenic Fuel Tank Having Vaporized Gas Storage Layer for LNG Fueled Ship
Swanger et al. Integrated Refrigeration and Storage for Advanced Liquid Hydrogen Operations
KR20160068179A (en) Reliquefaction system
KR20200022873A (en) N2 Purging System And Method For Ship
KR101701719B1 (en) Reliquefaction system
CN113316696B (en) Device for producing gaseous gases from liquefied gases
KR102173909B1 (en) Fuel supply system
Bahgat Proposed method for dealing with boil-off gas on board LNG carriers during loaded passage
KR102543433B1 (en) LNG Offloading System And Method For FLNG
KR20160074282A (en) System for treating boil-off gas for a ship
JP6338517B2 (en) Portable liquefied natural gas supply equipment
RU2786300C2 (en) Device for production of gas in gaseous form from liquefied gas
KR20190022194A (en) Fuel gas supply system
CN203656481U (en) Ultra-low-temperature heat insulating tube
KR102117388B1 (en) Fuel Supply System and Method for Vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170612

R150 Certificate of patent or registration of utility model

Ref document number: 6159641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250