JP2015076511A - Semiconductor device and manufacturing method of the same - Google Patents

Semiconductor device and manufacturing method of the same Download PDF

Info

Publication number
JP2015076511A
JP2015076511A JP2013211812A JP2013211812A JP2015076511A JP 2015076511 A JP2015076511 A JP 2015076511A JP 2013211812 A JP2013211812 A JP 2013211812A JP 2013211812 A JP2013211812 A JP 2013211812A JP 2015076511 A JP2015076511 A JP 2015076511A
Authority
JP
Japan
Prior art keywords
semiconductor device
solder
positioning
substrate
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013211812A
Other languages
Japanese (ja)
Other versions
JP6200759B2 (en
Inventor
佑 春別府
Yu Harubeppu
佑 春別府
谷江 尚史
Hisafumi Tanie
尚史 谷江
佐々木 康二
Koji Sasaki
康二 佐々木
寛 新谷
Hiroshi Shintani
寛 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Power Semiconductor Device Ltd
Original Assignee
Hitachi Ltd
Hitachi Power Semiconductor Device Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Power Semiconductor Device Ltd filed Critical Hitachi Ltd
Priority to JP2013211812A priority Critical patent/JP6200759B2/en
Publication of JP2015076511A publication Critical patent/JP2015076511A/en
Application granted granted Critical
Publication of JP6200759B2 publication Critical patent/JP6200759B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49113Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting different bonding areas on the semiconductor or solid-state body to a common bonding area outside the body, e.g. converging wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device capable of positioning a substrate with high speed, with high accuracy and with ease.SOLUTION: A semiconductor device 100 comprises: a substrate 4 including an insulation layer 42, a circuit layer 41 and a heat dissipation layer 43 having a rectangular plane shape of a plane size smaller than that of the insulation layer 42; a base 6; a solder 5 under the substrate for connecting the heat dissipation layer 43 and the base 6; and positioning wires 9 provided on a surface the same with a surface of the base 6 to which the substrate 4 is fixed via the solder 5 under the substrate. The positioning wires 9 are arranged in at least two regions, respectively, which are regions sandwiched by the insulation layer 42 and the base 6 and extend along two sides orthogonal to each other of a rectangular plane shape of the heat dissipation layer 43, respectively.

Description

本発明は、大量生産に適した高速、高精度かつ容易に、基板を位置決め可能な半導体装置に関する。   The present invention relates to a semiconductor device capable of positioning a substrate easily at high speed, with high accuracy and suitable for mass production.

パワー半導体装置に代表される半導体装置が、大出力のモータや発電機といった電子機器の制御や電力変換の用途に広く用いられている。このような半導体装置としては、例えばIGBT(Insulated Gate Bipolar Transistor)モジュールが挙げられる。   Semiconductor devices typified by power semiconductor devices are widely used for control of electronic equipment such as high-power motors and generators and for power conversion. An example of such a semiconductor device is an IGBT (Insulated Gate Bipolar Transistor) module.

近年、風力等の発電システムや鉄道、さらには電気自動車、ハイブリッド自動車等に搭載される電力制御装置として半導体装置の需要が拡大してきている。そのため、大量生産に適した組み立てやすい構造や製造方法が求められている。この要求に応えるべく、組み立てやすい半導体装置を提供する技術として、特許文献1〜8に記載の技術が知られている。   In recent years, the demand for semiconductor devices as power control devices mounted on power generation systems such as wind power, railways, electric vehicles, hybrid vehicles, and the like has been increasing. Therefore, a structure and a manufacturing method that are easy to assemble and are suitable for mass production are required. In order to meet this requirement, techniques described in Patent Documents 1 to 8 are known as techniques for providing a semiconductor device that can be easily assembled.

特開2013−38224号公報JP 2013-38224 A 特開2013−115297号公報JP 2013-115297 A 特開2009−188327号公報JP 2009-188327 A 特開2008−243877号公報JP 2008-243877 A 特開平2−266557号公報JP-A-2-266557 米国特許第5497289号明細書US Pat. No. 5,497,289 米国特許出願公開第2003/0151128号明細書US Patent Application Publication No. 2003/0151128 米国特許出願公開第2009/0039498号明細書US Patent Application Publication No. 2009/0039498

半導体装置の組立て工程でベース上に基板をはんだ接続する際、通常、ベース上に治具等の位置決め部材を設けることで、基板の位置決めをする。しかしながら、治具の用意と、その取付け、取外しには多くの時間と製造コストを要することがある。治具を用いず、ベースの表面に凹凸等を設けてそれを位置決め部材として代用することも考えられるが、凹凸を高精度に加工するためには、多くの加工コストがかかることがある。   When soldering a substrate onto a base in an assembling process of a semiconductor device, the substrate is usually positioned by providing a positioning member such as a jig on the base. However, the preparation of jigs and their attachment and removal may require a lot of time and manufacturing costs. It is conceivable to provide unevenness on the surface of the base without using a jig and substitute it as a positioning member. However, in order to process the unevenness with high accuracy, a large processing cost may be required.

本発明は、前記の課題を解決するための発明であって、大量生産に適した高速、高精度かつ容易に、基板を位置決め可能な半導体装置を提供することを目的とする。   An object of the present invention is to provide a semiconductor device capable of positioning a substrate at high speed, high accuracy and easily suitable for mass production.

前記目的を達成するため、本発明の半導体装置は、ベース上にはんだ(例えば、基板下はんだ5)を介して半導体チップを含む電子部品(例えば、基板4)を配置し、はんだをリフロー加熱してはんだ付けする半導体装置であって、ベース上に、はんだおよび電子部品の配置の位置決めをするための位置決め用ワイヤを備え、位置決め用ワイヤに合わせて、はんだおよび電子部品を配置し、リフロー加熱後に電子部品を封止剤で封止することを特徴とする。   In order to achieve the above object, in the semiconductor device of the present invention, an electronic component (for example, substrate 4) including a semiconductor chip is disposed on a base via solder (for example, solder under substrate 5), and the solder is reflow-heated. A soldering and soldering semiconductor device comprising a positioning wire for positioning the placement of solder and electronic components on a base, and placing the solder and electronic components in accordance with the positioning wire, after reflow heating The electronic component is sealed with a sealant.

電子部品は、絶縁層と、絶縁層よりも小さい平面寸法を有していて絶縁層の一方の表面に形成された回路層と、絶縁層よりも小さい平面寸法の矩形平面形状を有していて絶縁層の他方の表面に形成された放熱層とを含んで構成される基板であり、位置決め用ワイヤは、絶縁層の他方の表面のうち放熱層と接する部分以外の部分(例えば、面42a)とベースの基板が固定される表面のうちはんだと接する部分以外の部分とで挟まれる領域であって、放熱層の矩形平面形状の少なくとも互いに直交する2辺のそれぞれに沿った2つの領域に少なくとも1つずつ配置されることを特徴とする。   The electronic component has an insulating layer, a circuit layer having a smaller plane dimension than the insulating layer and formed on one surface of the insulating layer, and a rectangular planar shape having a smaller plane dimension than the insulating layer. A heat dissipation layer formed on the other surface of the insulating layer, and the positioning wire is a portion of the other surface of the insulating layer other than the portion in contact with the heat dissipation layer (for example, the surface 42a). And a portion of the surface to which the base substrate is fixed, which is sandwiched between portions other than the portion in contact with the solder, and at least two regions along at least two sides orthogonal to each other of the rectangular planar shape of the heat dissipation layer It is characterized by being arranged one by one.

本発明によれば、大量生産に適した高速、高精度かつ容易に、基板を位置決め可能な半導体装置を提供することができる。   According to the present invention, it is possible to provide a semiconductor device capable of positioning a substrate easily at high speed, high accuracy and suitable for mass production.

第1実施形態に係る半導体装置であり、(a)は上面図、(b)は断面図である。1A is a semiconductor device according to a first embodiment, FIG. 3A is a top view, and FIG. 半導体装置の製造方法を示すフローチャートである。3 is a flowchart showing a method for manufacturing a semiconductor device. 半導体装置の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of a semiconductor device. 半導体装置における位置決め用ワイヤの配置例を示す上面図である。It is a top view which shows the example of arrangement | positioning of the positioning wire in a semiconductor device. 半導体装置における位置決め用ワイヤの配置例を示す断面図である。It is sectional drawing which shows the example of arrangement | positioning of the positioning wire in a semiconductor device. 第2実施形態に係る半導体装置であり、(a)は側面図、(b)は位置決め用ワイヤの斜視図である。It is a semiconductor device which concerns on 2nd Embodiment, (a) is a side view, (b) is a perspective view of the wire for positioning. 第3実施形態に係る半導体装置であり、(a)は斜視図、(b)は上面図、(c)は位置決め用ワイヤの斜視図である。It is a semiconductor device which concerns on 3rd Embodiment, (a) is a perspective view, (b) is a top view, (c) is a perspective view of the positioning wire. 半導体装置における位置決め用ワイヤの他の配置例を示す上面図である。It is a top view which shows the other example of arrangement | positioning of the positioning wire in a semiconductor device.

以下、本発明の実施形態について、図面を参照しながら詳細に説明する。
[1.第1実施形態]
<構成>
図1は、第1実施形態に係る半導体装置であり、(a)は上面図、(b)は断面図である。図1(a)は、第1実施形態に係る半導体装置100の上面図であり、図1(b)は図1(a)のAA断面における断面図である。図1(a)では図1(b)に示す封止剤8を省略している。半導体装置100は、IGBTチップ1、ダイオードチップ2、チップ下はんだ3、基板4(電子部品)、基板下はんだ5、ベース6、ケース7、封止剤8、配線用ワイヤ10、位置決め用ワイヤ9を備える。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[1. First Embodiment]
<Configuration>
1A and 1B show a semiconductor device according to the first embodiment, in which FIG. 1A is a top view and FIG. 1B is a cross-sectional view. FIG. 1A is a top view of the semiconductor device 100 according to the first embodiment, and FIG. 1B is a cross-sectional view taken along the line AA in FIG. In FIG. 1A, the sealant 8 shown in FIG. 1B is omitted. The semiconductor device 100 includes an IGBT chip 1, a diode chip 2, a solder under chip 3, a substrate 4 (electronic component), a solder under substrate 5, a base 6, a case 7, a sealant 8, a wiring wire 10, and a positioning wire 9. Is provided.

基板4(電子部品)は、回路層41、絶縁層42、放熱層43の3層からなる。回路層41は絶縁層42よりも平面寸法が小さく、絶縁層42の片側の面に形成されている。放熱層43は、絶縁層42よりも平面寸法が小さく、絶縁層42の面のうち、回路層41が形成されている面と逆側の面に形成されている。IGBTチップ1とダイオードチップ2は、それぞれ、チップ下はんだ3を介して回路層41と接続されている。放熱層43は、基板下はんだ5を介してベース6と接続されている。配線用ワイヤ10は、IGBTチップ1、ダイオードチップ2、回路層41の上面に接続されている。   The substrate 4 (electronic component) is composed of three layers: a circuit layer 41, an insulating layer 42, and a heat dissipation layer 43. The circuit layer 41 has a smaller planar dimension than the insulating layer 42, and is formed on one surface of the insulating layer 42. The heat dissipation layer 43 has a smaller planar dimension than the insulating layer 42 and is formed on the surface of the insulating layer 42 opposite to the surface on which the circuit layer 41 is formed. The IGBT chip 1 and the diode chip 2 are each connected to the circuit layer 41 via the under-chip solder 3. The heat dissipation layer 43 is connected to the base 6 via the under-substrate solder 5. The wiring wire 10 is connected to the upper surfaces of the IGBT chip 1, the diode chip 2, and the circuit layer 41.

位置決め用ワイヤ9は、ベース6上面に接続されており、絶縁層42の放熱層43側の面のうち、放熱層43と接する部分以外の部分(例えば、面42a)とベース6とに挟まれる領域に配置されている。詳細は後述するが、本願発明は、位置決め用ワイヤ9を備え、位置決め用ワイヤ9を用いて基板4と基板下はんだ5の位置決めを行うことが最大の特徴である。   The positioning wire 9 is connected to the upper surface of the base 6, and is sandwiched between the base 6 and a portion (for example, the surface 42 a) other than the portion in contact with the heat dissipation layer 43 in the surface on the heat dissipation layer 43 side of the insulating layer 42. Arranged in the area. Although the details will be described later, the present invention is characterized in that the positioning wire 9 is provided, and the positioning of the substrate 4 and the under-substrate solder 5 is performed using the positioning wire 9.

ケース7は、基板4を囲むようにベース6上面に設置されている。ケース7とベース6とで囲まれる領域には封止剤8が充填されている。   The case 7 is installed on the upper surface of the base 6 so as to surround the substrate 4. A region surrounded by the case 7 and the base 6 is filled with a sealant 8.

回路層41と配線用ワイヤ10は、アルミニウム、銅等の金属からなる。配線用ワイヤ10は直径数十μm〜数百μmの線材であり、最適な直径や本数は各装置に必要な通電量等に依存する。IGBTチップ1、ダイオードチップ2が配線用ワイヤ10により回路層41と接続されることで、電力変換や制御を行うための電気的配線を構成する。   The circuit layer 41 and the wiring wire 10 are made of a metal such as aluminum or copper. The wiring wire 10 is a wire having a diameter of several tens to several hundreds of μm, and the optimum diameter and number depend on the energization amount necessary for each device. The IGBT chip 1 and the diode chip 2 are connected to the circuit layer 41 by the wiring wire 10 to constitute electric wiring for power conversion and control.

絶縁層42は、窒化ケイ素や窒化アルミニウム、アルミナ等、電気伝導性の低い材質からなる。絶縁層42により、放熱層43またはベース6と、回路層41とは、電気的に切り離されている。   The insulating layer 42 is made of a material having low electrical conductivity such as silicon nitride, aluminum nitride, or alumina. The insulating layer 42 electrically separates the heat dissipation layer 43 or the base 6 from the circuit layer 41.

放熱層43とベース6はアルミニウム、銅等、熱伝導性の高い金属からなり、IGBTチップ1、ダイオードチップ2の動作時に発生する熱を放熱する。放熱層43、基板下はんだ5の厚さはそれぞれ数百μmである。   The heat dissipation layer 43 and the base 6 are made of a metal having high thermal conductivity such as aluminum and copper, and dissipate heat generated during the operation of the IGBT chip 1 and the diode chip 2. The thickness of the heat dissipation layer 43 and the under-substrate solder 5 is several hundred μm.

位置決め用ワイヤ9は、アルミニウム、銅等の金属からなる線材であり、直径は基板下はんだ5の厚さよりも大きく、かつ放熱層43と基板下はんだ5の厚さの合計よりも小さく、数十μm〜数百μmである。   The positioning wire 9 is a wire made of a metal such as aluminum or copper, and has a diameter larger than the thickness of the under-substrate solder 5 and smaller than the total thickness of the heat dissipation layer 43 and the under-substrate solder 5 and several tens of μm to several hundred μm.

位置決め用ワイヤ9と配線用ワイヤ10の材質や断面形状は、同じである必要はなく、同じでなくても本発明の効果を十分に得られる。ただし、材質と断面形状が同じであれば、ワイヤ部材と製造装置を共通化できる分だけ、製造コストを低減できる。   The positioning wire 9 and the wiring wire 10 need not have the same material and cross-sectional shape, and even if they are not the same, the effects of the present invention can be sufficiently obtained. However, if the material and the cross-sectional shape are the same, the manufacturing cost can be reduced to the extent that the wire member and the manufacturing apparatus can be shared.

ケース7は、PBT(PolyButylene Terephthalate)、PPS(PolyPhenylene Sulfide)等の樹脂からなる。封止剤8はシリコンゲル等の絶縁部材からなる。   The case 7 is made of a resin such as PBT (PolyButylene Terephthalate) or PPS (PolyPhenylene Sulfide). The sealant 8 is made of an insulating member such as silicon gel.

<製造方法>
図2は、半導体装置の製造方法を示すフローチャートである。図3は、半導体装置の製造方法を示す説明図であり、(a)〜(e)は、基板4(電子部品)の製造工程であり、(f)〜(h)は、基板4をベース6に実装する実装工程である。適宜、図1を参照して半導体装置100の製造方法を説明する。
<Manufacturing method>
FIG. 2 is a flowchart showing a method for manufacturing a semiconductor device. FIG. 3 is an explanatory view showing a method of manufacturing a semiconductor device, wherein (a) to (e) are steps for manufacturing a substrate 4 (electronic component), and (f) to (h) are based on the substrate 4. 6 is a mounting process. The manufacturing method of the semiconductor device 100 will be described as appropriate with reference to FIG.

(工程S1):はじめに、図3(a)に示す基板4に、半導体チップであるIGBTチップ1およびダイオードチップ2の平面寸法よりも数百μm大きい幅の穴12の空いたカーボン治具11を載せて取り付ける(図3(b)参照)。 (Step S1): First, on the substrate 4 shown in FIG. 3A, a carbon jig 11 having a hole 12 having a width several hundred μm larger than the planar dimensions of the IGBT chip 1 and the diode chip 2 which are semiconductor chips is provided. Mount and mount (see FIG. 3B).

(工程S2):穴12に沿って、チップ下はんだ3、半導体チップであるIGBTチップ1およびダイオードチップ2を回路層41の上面に載せて設置する(図3(c)参照)。そして、これら全体をリフロー炉で加熱することで、IGBTチップ1、ダイオードチップ2を、チップ下はんだ3を介して回路層41上面に固定する。 (Step S2): Along the hole 12, the under-chip solder 3, the IGBT chip 1 which is a semiconductor chip, and the diode chip 2 are placed on the upper surface of the circuit layer 41 (see FIG. 3C). And the IGBT chip 1 and the diode chip 2 are fixed to the upper surface of the circuit layer 41 via the under-chip solder 3 by heating the whole in a reflow furnace.

(工程S3):リフロー後、カーボン治具11を取り外す(図3(d)参照)。 (Step S3): After the reflow, the carbon jig 11 is removed (see FIG. 3D).

(工程S4):次に、IGBTチップ1、ダイオードチップ2、回路層3の上面に配線用ワイヤ10を接続する(図3(e)参照)。接続方法には超音波接合を用いる。超音波接合は、接続部の上にツールを当て、超音波振動と加圧力を同時に与えることで接続する手法である。高密度な電気配線を行うために、高い位置精度で高速に接続可能な装置が数多く開発されている。 (Step S4): Next, the wiring wire 10 is connected to the upper surfaces of the IGBT chip 1, the diode chip 2, and the circuit layer 3 (see FIG. 3E). Ultrasonic bonding is used as a connection method. Ultrasonic bonding is a technique in which a tool is placed on a connecting portion and connected by applying ultrasonic vibration and pressure simultaneously. Many devices that can be connected at high speed with high positional accuracy have been developed for high-density electrical wiring.

(工程S5):次に、ベース6の上面に位置決め用ワイヤ9を取り付ける(図3(f)参照)。取り付け方法としては、配線用ワイヤ10と同様の超音波接合を用いる。 (Step S5): Next, the positioning wire 9 is attached to the upper surface of the base 6 (see FIG. 3F). As an attachment method, ultrasonic bonding similar to that of the wiring wire 10 is used.

(工程S6):次に、ベース6の上面にシート状の基板下はんだ5を載せ、基板下はんだ5の上に基板4を載せる(図3(g)参照)。このとき、基板下はんだ5と放熱層43の側面が位置決め用ワイヤ9に沿うよう(合わせるよう)に設置することで、基板下はんだ5と基板4の位置決めが可能となる。そしてこれら全体をリフロー炉で加熱することで、基板4が、基板下はんだ5を介して、ベース6に固定される。 (Step S6): Next, the sheet-like under-substrate solder 5 is placed on the upper surface of the base 6, and the substrate 4 is placed on the under-substrate solder 5 (see FIG. 3G). At this time, it is possible to position the under-substrate solder 5 and the substrate 4 by arranging the side-surface of the under-substrate solder 5 and the heat radiation layer 43 so that the side surfaces of the positioning layer 9 are aligned (matched). And the board | substrate 4 is fixed to the base 6 through the solder 5 under a board | substrate by heating these whole with a reflow furnace.

(工程S7):次に、ベース6の上面に接着剤等でケース7を接着して固定し、ケース7とベース6とで囲まれる空間に封止剤8を充填する(図3(h)参照)。以上により半導体装置100が製造される。 (Step S7): Next, the case 7 is bonded and fixed to the upper surface of the base 6 with an adhesive or the like, and the space surrounded by the case 7 and the base 6 is filled with the sealant 8 (FIG. 3 (h)). reference). Thus, the semiconductor device 100 is manufactured.

<効果>
図4は、半導体装置における位置決め用ワイヤの配置例を示す上面図であり、(a)は位置決め用ワイヤ4本の場合、(b)は位置決め用ワイヤ3本の場合、(c)は位置決め用ワイヤ2本の場合、(d)は位置決め用ワイヤ3本の変形例の場合である。図4(a)から図4(d)は、半導体装置100の上面図である。ただし、ケース7と封止剤8は省略している。図4を用いて、位置決め用ワイヤ9による基板4と基板下はんだ5の位置決めについて説明する。
<Effect>
4A and 4B are top views showing examples of positioning wire arrangements in a semiconductor device. FIG. 4A shows a case of four positioning wires, FIG. 4B shows a case of three positioning wires, and FIG. 4C shows a positioning wire. In the case of two wires, (d) is a modification of the three positioning wires. 4A to 4D are top views of the semiconductor device 100. FIG. However, the case 7 and the sealant 8 are omitted. The positioning of the substrate 4 and the under-substrate solder 5 by the positioning wire 9 will be described with reference to FIG.

位置決め用ワイヤ9は、少なくとも2本以上、互いに直交する向きに配置される。図4(a)に示すように4本でも良いし、図4(b)に示すように3本でも良いし、図4(c)に示すように2本でも良い。少なくとも2本以上が直交する向きであれば、図4(d)に示すように、同一線上に2本以上の位置決め用ワイヤ9があっても良い。   At least two positioning wires 9 are arranged in directions orthogonal to each other. 4 may be sufficient as shown to Fig.4 (a), 3 may be sufficient as shown in FIG.4 (b), and 2 may be sufficient as shown in FIG.4 (c). As long as at least two wires are perpendicular to each other, two or more positioning wires 9 may be provided on the same line as shown in FIG.

図4(a)に示すように放熱層43の4辺に沿うように位置決め用ワイヤ9を配置すると、リフロー時に基板下はんだ5や放熱層43の位置ずれが生じにくくなり、位置決め精度が向上する。図4(b)のように位置決め用ワイヤ9の数が少なければ、ワイヤ接続のための時間が短縮され、図4(c)のようにさらに位置決め用ワイヤ9の数が少なければ、さらに時間が短縮される。図4(b)、図4(c)、図4(d)のように、位置決め用ワイヤ9が放熱層43の4辺全てを囲まない場合は、基板下はんだ5や放熱層43の取付けが容易になる。   If the positioning wires 9 are arranged along the four sides of the heat dissipation layer 43 as shown in FIG. 4A, the positional deviation of the under-substrate solder 5 and the heat dissipation layer 43 hardly occurs during reflow, and positioning accuracy is improved. . If the number of positioning wires 9 is small as shown in FIG. 4B, the time for wire connection is shortened. If the number of positioning wires 9 is small as shown in FIG. Shortened. As shown in FIGS. 4B, 4C, and 4D, when the positioning wire 9 does not surround all four sides of the heat dissipation layer 43, the under-substrate solder 5 and the heat dissipation layer 43 are attached. It becomes easy.

従来の製造方法では位置決めにカーボン等の治具を用いるのが一般的だが、治具の用意、取付け、取外しに多くの製造時間とコストを要することがある。これに対し、位置決め用ワイヤ9のベース6上面への接続には超音波接続装置を用いるので、高い位置精度で高速に設置できる。さらに、位置決め用ワイヤ9は金属製なので耐熱性が高く、高温のリフローでの位置決め部材に適している。位置決め用ワイヤ9は金属製なので、リフローでの加熱時に溶融し流動して位置決め精度が低下する懸念が無く、また、溶融してガス等を発生して炉内の腐食等の原因になる懸念も無い。   In the conventional manufacturing method, a jig such as carbon is generally used for positioning, but a lot of manufacturing time and cost may be required to prepare, attach, and remove the jig. On the other hand, since the ultrasonic connection device is used to connect the positioning wire 9 to the upper surface of the base 6, it can be installed at high speed with high positional accuracy. Furthermore, since the positioning wire 9 is made of metal, it has high heat resistance and is suitable for a positioning member in high-temperature reflow. Since the positioning wire 9 is made of metal, there is no fear that it will melt and flow when heated in reflow and the positioning accuracy will decrease, and there is also a concern that it will melt and generate gas etc., which will cause corrosion in the furnace. No.

図5は、半導体装置における位置決め用ワイヤの配置例を示す断面図である。半導体装置100の位置決め用ワイヤ9は、絶縁層42の下面(例えば、面42a)とベース6とで挟まれる領域にあり、IGBTチップ1、ダイオードチップ2、回路層41、配線用ワイヤ10からなる電気配線と切り離されている。電気配線に高電圧が作用する場合も、放熱層43と基板下はんだ5の幅Lを短くすることで電気的絶縁を確保できる。   FIG. 5 is a cross-sectional view illustrating an arrangement example of positioning wires in the semiconductor device. The positioning wire 9 of the semiconductor device 100 is in a region sandwiched between the lower surface (for example, the surface 42 a) of the insulating layer 42 and the base 6, and includes the IGBT chip 1, the diode chip 2, the circuit layer 41, and the wiring wire 10. Separated from electrical wiring. Even when a high voltage acts on the electrical wiring, electrical insulation can be ensured by shortening the width L of the heat dissipation layer 43 and the under-substrate solder 5.

幅Lを短くすると、絶縁層42の端部と位置決め用ワイヤ9との距離が増加し、回路層41と位置決め用ワイヤ9との絶縁層42を挟んだ沿面絶縁距離が増加するため、電気的絶縁が十分に確保される。よって、組立て後に位置決め用ワイヤ9をベース6の上面に設置したままでも電気配線に支障を与えることはないため、位置決め用ワイヤ9の取外しが不要であり、製造時間を短縮できる。なお、絶縁確保のために幅Lをわずかに短くした場合でも、IGBTチップ1やダイオードチップ2の直下における基板4とベース6との接続は維持されるので、放熱性も十分に確保できる。   When the width L is shortened, the distance between the end portion of the insulating layer 42 and the positioning wire 9 increases, and the creeping insulation distance between the circuit layer 41 and the positioning wire 9 sandwiching the insulating layer 42 increases. Insulation is sufficiently secured. Therefore, even if the positioning wire 9 is installed on the upper surface of the base 6 after assembling, the electric wiring is not hindered. Therefore, it is not necessary to remove the positioning wire 9, and the manufacturing time can be shortened. Even when the width L is slightly shortened to ensure insulation, the connection between the substrate 4 and the base 6 immediately below the IGBT chip 1 and the diode chip 2 is maintained, so that sufficient heat dissipation can be ensured.

以上により、本第1実施形態により、大量生産に適した高速、高精度かつ容易に、基板4を位置決め可能な半導体装置100を提供することができる。   As described above, according to the first embodiment, it is possible to provide the semiconductor device 100 capable of positioning the substrate 4 easily at high speed, high accuracy, and suitable for mass production.

[2.第2実施形態]
第2実施形態は、位置決め用ワイヤ9に山型部92(図6(b))を設けたことを特徴の一つとする。
<構成>
図6は、第2実施形態に係る半導体装置であり、(a)は側面図、(b)は位置決め用ワイヤの斜視図である。図6を参照しながら、第2実施形態に係る半導体装置200について説明する。なお、図1に示した半導体装置100と同様の部材については同様の符号を付するものとし、その詳細な説明は省略する。
[2. Second Embodiment]
One of the features of the second embodiment is that the positioning wire 9 is provided with a mountain-shaped portion 92 (FIG. 6B).
<Configuration>
6A and 6B show a semiconductor device according to the second embodiment, in which FIG. 6A is a side view and FIG. 6B is a perspective view of a positioning wire. A semiconductor device 200 according to the second embodiment will be described with reference to FIG. Note that members similar to those of the semiconductor device 100 illustrated in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図6(a)は半導体装置200の側面図であり、図6(b)は半導体装置200の位置決め用ワイヤ9aの斜視図である。半導体装置200は、位置決め用ワイヤ9aを備える。位置決め用ワイヤ9aの各々は、図6(b)に示すように、2箇所以上の接続部91と1箇所以上の山型部92からなる。両端の接続部91はほぼ同一線上にあり、位置決め用ワイヤ9aは、接続部91においてベース6と超音波接合されている。山型部92ではワイヤが山型に曲がっている。このようなワイヤ形状は、配線用ワイヤ10で電子配線を形成する際には一般的な形状であり、通常の超音波接続装置で高精度かつ高速に形成できる。山型部高さ93は、基板下はんだ5の厚さの目標値と放熱層43の厚さとの和と等しくなっている。   6A is a side view of the semiconductor device 200, and FIG. 6B is a perspective view of the positioning wire 9 a of the semiconductor device 200. The semiconductor device 200 includes a positioning wire 9a. Each of the positioning wires 9a includes two or more connecting portions 91 and one or more chevron portions 92 as shown in FIG. 6 (b). The connecting portions 91 at both ends are substantially on the same line, and the positioning wire 9 a is ultrasonically bonded to the base 6 at the connecting portion 91. In the chevron 92, the wire is bent into a chevron. Such a wire shape is a general shape when an electronic wiring is formed by the wiring wire 10 and can be formed with high accuracy and high speed by a normal ultrasonic connection device. The chevron height 93 is equal to the sum of the target thickness of the under-substrate solder 5 and the thickness of the heat dissipation layer 43.

<効果>
通常、カーボン等の治具で位置決めする場合には、リフロー時の基板4の傾き等によって基板下はんだ5が薄くなることがある。これに対し、半導体装置200では、絶縁層42の面42aと山型部92が接すると、それ以上は基板4が下方向へは動かないため、位置決め用ワイヤ9a近傍では基板下はんだ5の厚さが目標値以上に保たれる。
<Effect>
Usually, when positioning with a jig such as carbon, the under-substrate solder 5 may become thin due to the inclination of the substrate 4 during reflow or the like. On the other hand, in the semiconductor device 200, when the surface 42a of the insulating layer 42 and the chevron 92 are in contact with each other, the substrate 4 does not move downward any further. Therefore, the thickness of the lower substrate solder 5 is near the positioning wire 9a. Is kept above the target value.

基板下はんだ5の厚さが目標値以上に保たれることで、基板下はんだ5の熱疲労寿命が向上する。一般に、半導体装置は動作時にチップ発熱で高温になり、停止時に環境温度まで冷却される。そのため、熱膨張係数の異なる部材間には熱応力が作用する。例えば、回路層41と放熱層43が銅からなり、絶縁層42が窒化ケイ素からなり、回路層41、絶縁層42、放熱層43の厚さがそれぞれ0.5mm、0.32mm、0.5mmの場合、基板4全体としての熱膨張率は約11ppm/Kである。一方、ベース6が銅からなる場合、熱膨張率は約17ppm/Kである。   By maintaining the thickness of the under-substrate solder 5 at or above the target value, the thermal fatigue life of the under-substrate solder 5 is improved. Generally, a semiconductor device becomes hot due to chip heat generation during operation, and is cooled to an environmental temperature when stopped. Therefore, thermal stress acts between members having different thermal expansion coefficients. For example, the circuit layer 41 and the heat dissipation layer 43 are made of copper, the insulating layer 42 is made of silicon nitride, and the thicknesses of the circuit layer 41, the insulating layer 42, and the heat dissipation layer 43 are 0.5 mm, 0.32 mm, and 0.5 mm, respectively. In this case, the thermal expansion coefficient of the substrate 4 as a whole is about 11 ppm / K. On the other hand, when the base 6 is made of copper, the coefficient of thermal expansion is about 17 ppm / K.

このように基板4とベース6の熱膨張率は大きく異なる。そのため、前記のような温度変化が作用することで、基板4とベース6の熱変形量に差が生じ、両者間の接続部材である基板下はんだ5には、せん断負荷がかかる。基板下はんだ5が薄いと、基板下はんだ5に作用するせん断ひずみが増加し、基板下はんだ5の内部にき裂が進行しやすくなることがある。すなわち、温度変化の繰返しに対する疲労寿命が低下することがある。基板下はんだ5の内部にき裂が進行すると、IGBTチップ1やダイオードチップ2の動作時に発生する熱をベース6側から放熱する経路が阻害されるため、半導体装置200の温度が上昇し、ひいては機能低下に繋がることがある。   Thus, the thermal expansion coefficients of the substrate 4 and the base 6 are greatly different. Therefore, when the temperature change as described above acts, a difference occurs in the amount of thermal deformation between the substrate 4 and the base 6, and a shear load is applied to the under-substrate solder 5, which is a connecting member between the two. If the under-substrate solder 5 is thin, the shear strain acting on the under-substrate solder 5 may increase, and a crack may easily progress inside the under-substrate solder 5. That is, the fatigue life against repeated temperature changes may be reduced. When a crack progresses inside the under-substrate solder 5, a path for dissipating heat generated during the operation of the IGBT chip 1 and the diode chip 2 from the base 6 side is obstructed, so that the temperature of the semiconductor device 200 rises and eventually May lead to functional degradation.

本第2実施形態では、第1実施形態と同様の効果を得られるのに加えて、位置決め用ワイヤ9に山型部92を設けたことで基板下はんだ5の厚さが目標値以上に保たれる。このことで、基板下はんだ5の熱疲労寿命が向上するという利点がある。   In the second embodiment, in addition to obtaining the same effect as in the first embodiment, the thickness of the under-substrate solder 5 is kept at a target value or more by providing the positioning wire 9 with the chevron 92. Be drunk. This has the advantage that the thermal fatigue life of the under-substrate solder 5 is improved.

[3.第3実施形態]
第3実施形態は、位置決め用ワイヤ9b(図7(a))が基板下はんだ5の角部に配置したことを特徴の一つとする。
<構成>
図7は、第3実施形態に係る半導体装置であり、(a)は斜視図、(b)は上面図、(c)は位置決め用ワイヤの斜視図である。図7を参照して、第3実施形態に係る半導体装置300について説明する。なお、図1に示した半導体装置100と同様の部材については同様の符号を付するものとし、その詳細な説明は省略する。
[3. Third Embodiment]
The third embodiment is characterized in that the positioning wire 9b (FIG. 7A) is arranged at the corner of the under-substrate solder 5.
<Configuration>
7A and 7B show a semiconductor device according to the third embodiment, in which FIG. 7A is a perspective view, FIG. 7B is a top view, and FIG. 7C is a perspective view of a positioning wire. A semiconductor device 300 according to the third embodiment will be described with reference to FIG. Note that members similar to those of the semiconductor device 100 illustrated in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.

図7(a)は半導体装置300の斜視図であり、位置決め用ワイヤ9bの位置を見やすくするために、1つの基板4と基板下はんだ5を分解した分解図として示している。ケース7、封止剤8は省略している。図7(b)は半導体装置300の上面図である。位置決め用ワイヤ9b、基板下はんだ5、ベース6のみを表示し、その他の部材は省略している。図7(c)は、半導体装置300の位置決め用ワイヤ9bを示している。   FIG. 7A is a perspective view of the semiconductor device 300, and shows an exploded view of one substrate 4 and the under-substrate solder 5 in order to make the position of the positioning wire 9b easier to see. Case 7 and sealant 8 are omitted. FIG. 7B is a top view of the semiconductor device 300. Only the positioning wire 9b, the under-substrate solder 5, and the base 6 are shown, and the other members are omitted. FIG. 7C shows the positioning wire 9 b of the semiconductor device 300.

図7(c)に示すように、位置決め用ワイヤ9bは、第2実施形態の位置決め用ワイヤ9a(図6(b)参照)と同様に2箇所以上の接続部91と1箇所以上の山型部92からなり、接続部91においてベース6と超音波接続されている。山型部高さ93は、基板下はんだ5の厚さの目標値と放熱層43の厚さの和と等しくなっている。位置決め用ワイヤ9bでは、少なくとも2つ以上の接続部91が、互いに直交するように配置されている。   As shown in FIG. 7 (c), the positioning wire 9b includes two or more connecting portions 91 and one or more chevron like the positioning wire 9a (see FIG. 6 (b)) of the second embodiment. The connecting portion 91 is ultrasonically connected to the base 6. The chevron height 93 is equal to the sum of the target thickness of the under-substrate solder 5 and the thickness of the heat dissipation layer 43. In the positioning wire 9b, at least two or more connection portions 91 are arranged so as to be orthogonal to each other.

基板下はんだ5と放熱層43の角部は面取りされている。位置決め用ワイヤ9bは、少なくとも2箇所の接続部91がそれぞれ基板下はんだ5の直交する2辺とほぼ平行になるように、基板下はんだ5の角部のうち少なくとも2箇所に配置されている。   The corners of the under-substrate solder 5 and the heat dissipation layer 43 are chamfered. The positioning wires 9b are arranged at at least two corners of the under-substrate solder 5 so that at least two connection portions 91 are substantially parallel to two orthogonal sides of the under-substrate solder 5, respectively.

なお、図7(a)、図7(b)では、1つの基板4の角部4箇所全てに位置決め用ワイヤ9bを配置する例を示しているが、少なくとも角部1箇所に位置決め用ワイヤ9bが配置されていれば良く、基板4と基板下はんだ5を位置決めできる。   7A and 7B show an example in which positioning wires 9b are arranged at all four corners of one substrate 4, but the positioning wires 9b are at least at one corner. The substrate 4 and the under-substrate solder 5 can be positioned.

図8は、半導体装置における位置決め用ワイヤの他の配置例を示す上面図である。半導体装置300aの上面図において、位置決め用ワイヤ9a、基板下はんだ5、ベース6のみを表示し、その他の部材は省略している。半導体装置300aの位置決め用ワイヤとして、図6(b)で示した位置決め用ワイヤ9aを用いても構わない。この場合、位置決め用ワイヤ9aは、基板4と基板下はんだ5の角部4箇所各々において、面取り部とほぼ平行な向きに配置される。   FIG. 8 is a top view showing another arrangement example of the positioning wires in the semiconductor device. In the top view of the semiconductor device 300a, only the positioning wire 9a, the under-substrate solder 5, and the base 6 are shown, and other members are omitted. As the positioning wire of the semiconductor device 300a, the positioning wire 9a shown in FIG. 6B may be used. In this case, the positioning wire 9a is arranged in a direction substantially parallel to the chamfered portion at each of the four corner portions of the substrate 4 and the under-substrate solder 5.

前記したように、図7(b)のように位置決め用ワイヤ9bを配置する場合は、位置決め用ワイヤ9bと基板下はんだ5、放熱層43との接触部が多いため位置ずれが生じにくい。これに対し、図8のように位置決め用ワイヤ9aを配置する場合は、位置決め用ワイヤ9aと基板下はんだ5、放熱層43との接触部が少ないため、基板下はんだ5や基板4の取付けが容易になる。   As described above, when the positioning wire 9b is arranged as shown in FIG. 7B, there are many contact portions between the positioning wire 9b, the under-substrate solder 5, and the heat radiation layer 43, so that the positional deviation is less likely to occur. On the other hand, when the positioning wire 9a is arranged as shown in FIG. 8, since there are few contact portions between the positioning wire 9a and the under-substrate solder 5 and the heat dissipation layer 43, the under-substrate solder 5 and the substrate 4 can be attached. It becomes easy.

<効果>
第3実施形態は、第2実施形態と同様に、山型部92により、位置決め用ワイヤ9b(あるいは9a)近傍ではリフロー後の基板下はんだ5の厚さを目標値以上に保つことができ、温度変化による基板下はんだ5へのせん断負荷を低減できる。
<Effect>
In the third embodiment, like the second embodiment, the thickness of the under-substrate solder 5 after reflow can be maintained at a target value or more near the positioning wire 9b (or 9a) by the chevron 92, It is possible to reduce the shear load on the under-substrate solder 5 due to temperature change.

半導体装置300においては位置決め用ワイヤ9b(あるいは9a)が基板下はんだ5の角部に配置されているので、基板下はんだ5の角部近傍へのせん断負荷が低減される。通常、基板4の対角線上で基板4とベース6との熱変形差が最大となるので、基板下はんだ5の熱ひずみは角部で最大となる。そのため、角部が、基板下はんだ5の内部に発生するき裂の起点となりやすい。   In the semiconductor device 300, the positioning wire 9b (or 9a) is disposed at the corner of the under-substrate solder 5, so that the shear load near the corner of the under-substrate solder 5 is reduced. Normally, the thermal deformation difference between the substrate 4 and the base 6 is maximized on the diagonal line of the substrate 4, so that the thermal strain of the under-substrate solder 5 is maximized at the corners. Therefore, the corner portion tends to be a starting point of a crack generated inside the under-substrate solder 5.

第3実施形態を用いることで、最もき裂の起点となりやすい角部でのせん断負荷が軽減されるので、基板下はんだ5の熱疲労寿命がより向上する。   By using the third embodiment, the shear load at the corner that is most likely to start the crack is reduced, so that the thermal fatigue life of the under-substrate solder 5 is further improved.

[4.変更例]
前記した3つの実施形態の他にも、本発明趣旨を損なわなければ、前記実施形態を適宜変更して実施可能である。例えば、基板4の個数は、前記の実施形態に何ら限定されない。ベース6の上面に任意の個数の基板4が配置される場合も、同様に適用可能である。ベース6の形状は平板に限定されない。効率良く放熱できる限り、下面側にフィン等の凹凸を有する形状等、任意の形状にすることができる。
[4. Example of change]
In addition to the above-described three embodiments, the above-described embodiments can be modified as appropriate without departing from the spirit of the present invention. For example, the number of substrates 4 is not limited to the above embodiment. The same applies to the case where an arbitrary number of substrates 4 are arranged on the upper surface of the base 6. The shape of the base 6 is not limited to a flat plate. As long as heat can be efficiently dissipated, it can have any shape such as a shape having irregularities such as fins on the lower surface side.

回路層41の形状も前記の実施形態に何ら限定されず、任意の電気的配線を構成する形状に、同様に適用可能である。IGBTチップ1、ダイオードチップ2および配線用ワイヤ10それぞれの配置と個数も同様に任意に設定すればよい。   The shape of the circuit layer 41 is not limited to the above embodiment, and can be similarly applied to a shape constituting an arbitrary electric wiring. Similarly, the arrangement and the number of each of the IGBT chip 1, the diode chip 2, and the wiring wire 10 may be arbitrarily set.

以上説明したように、第1実施形態の半導体装置100(図1参照)は、絶縁層42と、回路層41と、絶縁層42よりも小さい平面寸法の矩形平面形状を有する放熱層43とを含んで構成される基板4と、ベース6と、放熱層43とベース6とを接続する基板下はんだ5を有し、ベース6の基板4が基板下はんだ5を介して固定される表面と同じ表面に位置決め用ワイヤ9を備え、位置決め用ワイヤ9は、絶縁層42とベース6とで挟まれる領域であって、放熱層43の矩形平面形状の少なくとも互いに直交する2辺のそれぞれに沿った2つの領域に少なくとも1つずつ配置される。これにより、大量生産に適した高速、高精度かつ容易な、基板(電子部品)の位置決めを可能とする半導体装置を提供することができる。   As described above, the semiconductor device 100 according to the first embodiment (see FIG. 1) includes the insulating layer 42, the circuit layer 41, and the heat dissipation layer 43 having a rectangular planar shape having a smaller plane dimension than the insulating layer 42. The substrate 4 includes the base 4, the base 6, and the under-substrate solder 5 that connects the heat dissipation layer 43 and the base 6, and the same surface as the surface of the base 6 on which the substrate 4 is fixed via the under-substrate solder 5. The positioning wire 9 is provided on the surface, and the positioning wire 9 is a region sandwiched between the insulating layer 42 and the base 6, and is located along each of at least two sides orthogonal to each other of the rectangular planar shape of the heat dissipation layer 43. At least one is arranged in each region. Thus, it is possible to provide a semiconductor device capable of positioning a substrate (electronic component) that is suitable for mass production at high speed, high accuracy, and easy.

1 IGBTチップ(半導体チップ)
2 ダイオードチップ(半導体チップ)
3 チップ下はんだ
4 基板(電子部品)
41 回路層
42 絶縁層
42a 面
43 放熱層
5 基板下はんだ(はんだ)
6 ベース
7 ケース
8 封止剤
9,9a,9b 位置決め用ワイヤ
91 接続部
92 山型部
93 山型部高さ
10 配線用ワイヤ
11 カーボン治具
12 穴
100,200,300,300a 半導体装置
1 IGBT chip (semiconductor chip)
2 Diode chip (semiconductor chip)
3 Under-chip solder 4 Substrate (electronic component)
41 Circuit layer 42 Insulating layer 42a Surface 43 Heat radiation layer 5 Substrate solder (solder)
6 Base 7 Case 8 Sealant 9, 9a, 9b Positioning wire 91 Connection portion 92 Mountain portion 93 Mountain portion height 10 Wiring wire 11 Carbon jig 12 Hole 100, 200, 300, 300a Semiconductor device

Claims (7)

ベース上にはんだを介して半導体チップを含む電子部品を配置し、前記はんだをリフロー加熱してはんだ付けする半導体装置であって、
前記ベース上に、前記はんだおよび前記電子部品の配置の位置決めをするための位置決め用ワイヤを備え、
前記位置決め用ワイヤに合わせて、前記はんだおよび前記電子部品を配置し、前記リフロー加熱後に前記電子部品を封止剤で封止する
ことを特徴とする半導体装置。
A semiconductor device in which an electronic component including a semiconductor chip is disposed on a base via solder, and the solder is soldered by reflow heating,
A positioning wire for positioning the placement of the solder and the electronic component on the base;
The semiconductor device, wherein the solder and the electronic component are arranged in accordance with the positioning wire, and the electronic component is sealed with a sealant after the reflow heating.
前記電子部品は、絶縁層と、前記絶縁層よりも小さい平面寸法を有していて前記絶縁層の一方の表面に形成された回路層と、前記絶縁層よりも小さい平面寸法の矩形平面形状を有していて前記絶縁層の他方の表面に形成された放熱層とを含んで構成される基板であり、
前記位置決め用ワイヤは、前記絶縁層の前記他方の表面のうち前記放熱層と接する部分以外の部分と前記ベースの前記基板が固定される表面のうち前記はんだと接する部分以外の部分とで挟まれる領域であって、前記放熱層の前記矩形平面形状の少なくとも互いに直交する2辺のそれぞれに沿った2つの領域に少なくとも1つずつ配置される
ことを特徴とする請求項1に記載の半導体装置。
The electronic component has an insulating layer, a circuit layer having a smaller planar dimension than the insulating layer and formed on one surface of the insulating layer, and a rectangular planar shape having a smaller planar dimension than the insulating layer. And a heat dissipation layer formed on the other surface of the insulating layer.
The positioning wire is sandwiched between a portion of the other surface of the insulating layer other than the portion in contact with the heat dissipation layer and a portion of the surface of the base to which the substrate is fixed other than the portion in contact with the solder. 2. The semiconductor device according to claim 1, wherein at least one region is disposed in each of the two regions along each of at least two sides orthogonal to each other of the rectangular planar shape of the heat dissipation layer.
前記半導体装置は、前記回路層および前記半導体チップの少なくとも一方の表面に配置され、前記回路層上の電気的配線の一部をなす配線用ワイヤを備え、
前記位置決め用ワイヤと前記配線用ワイヤが同等の金属材質からなり、かつ、同等の断面形状である
ことを特徴とする請求項2に記載の半導体装置。
The semiconductor device includes a wiring wire that is disposed on at least one surface of the circuit layer and the semiconductor chip and forms a part of electrical wiring on the circuit layer;
The semiconductor device according to claim 2, wherein the positioning wire and the wiring wire are made of an equivalent metal material and have an equivalent cross-sectional shape.
前記位置決め用ワイヤの直径が前記はんだの厚さよりも大きい
ことを特徴とする請求項3に記載の半導体装置。
The semiconductor device according to claim 3, wherein a diameter of the positioning wire is larger than a thickness of the solder.
前記位置決め用ワイヤが、前記ベースと接続する少なくとも2つの接続部を有し、前記少なくとも2つの接続部の間が山型に曲がった山型部を有しており、
前記位置決め用ワイヤの山型部が前記ベースに略垂直に配置される
ことを特徴とする請求項1から請求項4のいずれか1項に記載の半導体装置。
The positioning wire has at least two connecting portions connected to the base, and has a mountain-shaped portion bent in a mountain shape between the at least two connecting portions;
5. The semiconductor device according to claim 1, wherein a mountain-shaped portion of the positioning wire is disposed substantially perpendicular to the base.
ベース上にはんだを介して半導体チップを含む電子部品を配置し、前記はんだをリフロー加熱してはんだ付けする半導体装置の製造方法であって、
前記ベース上に、前記はんだおよび前記電子部品の配置の位置決めをするための位置決めワイヤを配置する工程と、
前記位置決めワイヤに合わせて、前記はんだおよび前記電子部品を配置する工程と、
前記リフロー加熱後に前記電子部品を封止剤で封止する工程と、を含む
ことを特徴とする半導体装置の製造方法。
A method of manufacturing a semiconductor device in which an electronic component including a semiconductor chip is disposed on a base via solder, and the solder is soldered by reflow heating,
Arranging a positioning wire for positioning the solder and the electronic component on the base; and
Arranging the solder and the electronic component in accordance with the positioning wire;
Sealing the electronic component with a sealant after the reflow heating. A method for manufacturing a semiconductor device, comprising:
前記電子部品は、絶縁層と、前記絶縁層よりも小さい平面寸法を有していて前記絶縁層の一方の表面に形成された回路層と、前記絶縁層よりも小さい平面寸法の矩形平面形状を有していて前記絶縁層の他方の表面に形成された放熱層とを含んで構成される基板であり、
前記位置決めワイヤを配置する工程は、前記絶縁層の前記他方の表面のうち前記放熱層と接する部分以外の部分と前記ベースの前記基板が固定される表面のうち前記はんだと接する部分以外の部分とで挟まれる領域であって、前記放熱層の前記矩形平面形状の少なくとも互いに直交する2辺のそれぞれに沿った2つの領域に少なくとも1つずつ配置される工程である
ことを特徴とする請求項6に記載の半導体装置の製造方法。
The electronic component has an insulating layer, a circuit layer having a smaller planar dimension than the insulating layer and formed on one surface of the insulating layer, and a rectangular planar shape having a smaller planar dimension than the insulating layer. And a heat dissipation layer formed on the other surface of the insulating layer.
The step of arranging the positioning wire includes a portion other than a portion in contact with the heat dissipation layer of the other surface of the insulating layer, and a portion other than a portion in contact with the solder of the surface to which the substrate of the base is fixed. 7. The step of being arranged at least one in each of two regions along each of at least two sides orthogonal to each other of the rectangular planar shape of the heat dissipation layer. The manufacturing method of the semiconductor device as described in 2. above.
JP2013211812A 2013-10-09 2013-10-09 Semiconductor device and manufacturing method thereof Active JP6200759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013211812A JP6200759B2 (en) 2013-10-09 2013-10-09 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013211812A JP6200759B2 (en) 2013-10-09 2013-10-09 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015076511A true JP2015076511A (en) 2015-04-20
JP6200759B2 JP6200759B2 (en) 2017-09-20

Family

ID=53001137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013211812A Active JP6200759B2 (en) 2013-10-09 2013-10-09 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6200759B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235232A1 (en) * 2017-06-22 2018-12-27 三菱電機株式会社 Semiconductor device and power conversion device
WO2020245890A1 (en) * 2019-06-03 2020-12-10 三菱電機株式会社 Power module and power conversion device
JP2022057189A (en) * 2020-09-30 2022-04-11 三菱電機株式会社 Semiconductor device
WO2023112274A1 (en) * 2021-12-16 2023-06-22 三菱電機株式会社 Semiconductor device
WO2024048187A1 (en) * 2022-09-02 2024-03-07 ローム株式会社 Semiconductor device and method for manufacturing semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059821A (en) * 2007-08-30 2009-03-19 Toyota Motor Corp Semiconductor device
JP2013038224A (en) * 2011-08-08 2013-02-21 Honda Motor Co Ltd Manufacturing method of electronic apparatus and electronic apparatus
JP2013115297A (en) * 2011-11-30 2013-06-10 Hitachi Ltd Power semiconductor device
JP2013161961A (en) * 2012-02-06 2013-08-19 Calsonic Kansei Corp Semiconductor module manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059821A (en) * 2007-08-30 2009-03-19 Toyota Motor Corp Semiconductor device
JP2013038224A (en) * 2011-08-08 2013-02-21 Honda Motor Co Ltd Manufacturing method of electronic apparatus and electronic apparatus
JP2013115297A (en) * 2011-11-30 2013-06-10 Hitachi Ltd Power semiconductor device
JP2013161961A (en) * 2012-02-06 2013-08-19 Calsonic Kansei Corp Semiconductor module manufacturing method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018235232A1 (en) * 2017-06-22 2018-12-27 三菱電機株式会社 Semiconductor device and power conversion device
JPWO2018235232A1 (en) * 2017-06-22 2019-12-12 三菱電機株式会社 Semiconductor device, power conversion device, and semiconductor arrangement method
CN110770883A (en) * 2017-06-22 2020-02-07 三菱电机株式会社 Semiconductor device and power conversion device
US11145616B2 (en) 2017-06-22 2021-10-12 Mitsubishi Electric Corporation Semiconductor device, power conversion apparatus, and method for manufacturing semiconductor device
CN110770883B (en) * 2017-06-22 2023-08-22 三菱电机株式会社 Semiconductor device, power conversion device, and method for manufacturing semiconductor device
WO2020245890A1 (en) * 2019-06-03 2020-12-10 三菱電機株式会社 Power module and power conversion device
JPWO2020245890A1 (en) * 2019-06-03 2021-10-21 三菱電機株式会社 Power module and power converter
JP2022057189A (en) * 2020-09-30 2022-04-11 三菱電機株式会社 Semiconductor device
US11784156B2 (en) 2020-09-30 2023-10-10 Mitsubishi Electric Corporation Semiconductor device
JP7407684B2 (en) 2020-09-30 2024-01-04 三菱電機株式会社 semiconductor equipment
WO2023112274A1 (en) * 2021-12-16 2023-06-22 三菱電機株式会社 Semiconductor device
WO2024048187A1 (en) * 2022-09-02 2024-03-07 ローム株式会社 Semiconductor device and method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP6200759B2 (en) 2017-09-20

Similar Documents

Publication Publication Date Title
JP5948668B2 (en) Semiconductor device and manufacturing method thereof
JP6164364B2 (en) Semiconductor device
JP6361821B2 (en) Semiconductor device
RU2585887C1 (en) Arrangement of electronic power supply unit
JP2011114176A (en) Power semiconductor device
JP6200759B2 (en) Semiconductor device and manufacturing method thereof
JP2006134990A (en) Semiconductor apparatus
JP6327140B2 (en) Electronic equipment
JP2006269721A (en) Thermoelectric module and its manufacturing method
JPWO2016158020A1 (en) Semiconductor module
JP6048238B2 (en) Electronic equipment
JP2012064855A (en) Semiconductor device
JP2011018933A (en) Semiconductor device, and method of manufacturing the same
US10373919B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2013026296A (en) Power module
JP2019083292A (en) Semiconductor device
JP7059714B2 (en) Power converter and manufacturing method of power converter
JP5840102B2 (en) Power semiconductor device
JP2010021410A (en) Thermo-module
JP2008186977A (en) Thermo-module and its manufacturing method
CN107078106B (en) Heat radiation structure
JP6488658B2 (en) Electronic equipment
JP2011249636A (en) Semiconductor device and method of manufacturing the same
JP4795103B2 (en) Thermo module and manufacturing method thereof
JP5145168B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160425

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20160715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170828

R150 Certificate of patent or registration of utility model

Ref document number: 6200759

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350