JP2015073276A - 半導体装置及びdll回路の遅延調整手法 - Google Patents

半導体装置及びdll回路の遅延調整手法 Download PDF

Info

Publication number
JP2015073276A
JP2015073276A JP2014218862A JP2014218862A JP2015073276A JP 2015073276 A JP2015073276 A JP 2015073276A JP 2014218862 A JP2014218862 A JP 2014218862A JP 2014218862 A JP2014218862 A JP 2014218862A JP 2015073276 A JP2015073276 A JP 2015073276A
Authority
JP
Japan
Prior art keywords
circuit
signal
phase determination
clock signal
reset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014218862A
Other languages
English (en)
Other versions
JP5989058B2 (ja
Inventor
宮野 和孝
Kazutaka Miyano
和孝 宮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PS4 Luxco SARL
Original Assignee
PS4 Luxco SARL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PS4 Luxco SARL filed Critical PS4 Luxco SARL
Priority to JP2014218862A priority Critical patent/JP5989058B2/ja
Publication of JP2015073276A publication Critical patent/JP2015073276A/ja
Application granted granted Critical
Publication of JP5989058B2 publication Critical patent/JP5989058B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

【課題】ノイズの影響でディレイラインが逆方向に調整されたり、ジッタ成分の影響でループに入ることのないDLL回路を提供する。
【解決手段】外部クロック信号CLKの位相に基づいて位相判定信号PD0を生成する位相判定回路140と、位相判定信号PD1に基づいて、サンプリング周期ごとにカウント値が更新されるカウンタ回路130と、カウント値に基づいて外部クロック信号CLKを遅延させることにより、内部クロック信号LCLKを生成するディレイライン110と、位相判定信号PD0が所定の論理レベルを示したことに応答して、同じサンプリング周期内におけるその後の位相判定信号PD0の変化を無効化した位相判定信号PD1を生成する無効化回路200とを備える。これにより、短い周期で位相判定信号に影響を与える成分を排除することが可能となる。
【選択図】図1

Description

本発明はクロック制御回路及びこれを備える半導体装置に関し、特に、DLL回路やデューティ補正回路など、クロック信号の位相やデューティを調整するクロック制御回路及びこれを備える半導体装置に関する。
近年、パーソナルコンピュータなどのメインメモリとして、クロックに同期した動作を行うシンクロナスメモリが広く使用されている。中でも、DDR(Double Data Rate)型のシンクロナスメモリでは、入出力データを外部クロック信号に対して正確に同期させる必要があることから、外部クロック信号に同期した内部クロック信号を生成するためのDLL回路が必須である(特許文献1参照)。
DLL回路は、外部クロック信号の位相に基づいてカウント値が更新されるカウンタ回路と、カウンタ回路のカウント値に基づいて外部クロック信号を遅延させることにより内部クロック信号を生成するディレイラインとを備えている。カウント値の更新は、所定のサンプリング周期で行われる。このため、カウント値を更新するタイミングにおいて、ノイズなどの影響により位相の判定結果が一時的に逆転してしまった場合、カウント値は本来の更新方向とは逆の方向に更新されてしまう。つまり、ディレイラインの遅延量を増大させるはずが減少させてしまったり、逆に、遅延量を減少させるはずが増大させてしまったりすることがある。
また、外部クロック信号には、ジッタ成分が重畳している場合がある。ジッタ成分とはクロック周波数のゆらぎであり、このゆらぎは所定の周波数を有している。ジッタ成分がDLL回路に影響すると、場合によっては、位相が大きくずれているにもかかわらず、アップカウントとダウンカウントを交互に繰り返すループに入り、その状態から抜けられないことがあった。
他方、DLL回路をロックさせるための期間は規格により定められている。このため、ノイズの影響でディレイラインが逆方向に調整されたり、ジッタ成分の影響でループに入ったりすると、規格で定められた期間内にDLL回路をロックすることができなくなってしまう。
特開2008−217947号公報
このように、従来のDLL回路は、ノイズやジッタ成分の影響を受けると正しくロックすることができないという問題があった。このような問題は、DLL回路に限られず、クロック信号を制御する他の種類のクロック制御回路、例えば、内部クロック信号のデューティを補正するデューティ補正回路においても生じる問題である。つまり、デューティ補正回路においても、ノイズやジッタ成分の影響を受けると、内部クロック信号を所望のデューティに調整できなくなることがあった。
本発明の一側面によるによるクロック制御回路は、第1のクロック信号の位相に基づいて位相判定信号を生成する位相判定回路と、前記位相判定信号に基づいて、サンプリング周期ごとにカウント値が更新されるカウンタ回路と、前記カウント値に基づいて前記第1のクロック信号を遅延させることにより、第2のクロック信号を生成するディレイラインと、前記位相判定信号が一方の論理レベルを示したことに応答して、同じサンプリング周期内におけるその後の前記位相判定信号の変化を無効化する無効化回路と、を備えることを特徴とする。
また、本発明による半導体装置は、上記のクロック制御回路と、第2のクロック信号に同期して外部出力信号を出力する出力バッファと、出力バッファと実質的に同一の回路構成を有し、第2のクロック信号に同期して第3のクロック信号を出力するするレプリカバッファとを備え、位相判定回路は、第1及び第3のクロック信号を比較することによって第1のクロック信号の位相を判定することを特徴とする。
本発明の他の側面によるによるクロック制御回路は、第1のクロック信号を遅延させることにより、第2のクロック信号を生成するディレイラインと、前記第2のクロック信号のデューティに基づいてデューティ判定信号を生成するデューティ判定回路と、前記デューティ判定信号に基づいて、前記ディレイラインの遅延量を示すカウント値がサンプリング周期ごとに更新されるカウンタ回路と、前記デューティ判定信号が一方の論理レベルを示したことに応答して、同じサンプリング周期内におけるその後の前記デューティ判定信号の変化を無効化する無効化回路と、を備えることを特徴とする。
このように、本発明によれば、判定信号がサンプリング周期内で変化した場合、無効化回路によって判定信号が所定の論理レベルに固定されることから、ノイズやジッタ成分のように、短い周期で判定信号に影響を与える成分を排除することが可能となる。このため、本発明によるクロック制御回路をDLL回路に適用すれば、DLL回路が長期間ロックしないという現象を防止することができる。また、本発明によるクロック制御回路をデューティ補正回路に適用すれば、内部クロック信号を長期間所望のデューティに調整できなくなるという現象を防止することができる。
本発明の好ましい第1の実施形態による半導体装置10の構成を示すブロック図である。 無効化回路200の回路図である。 第1の実施形態によるDLL回路の動作を示すタイミングチャートである。 第2の実施形態にて用いる無効化回路200aの回路図である。 第2の実施形態によるDLL回路の動作を示すタイミングチャートである。 本発明の好ましい第3の実施形態による半導体装置30の構成を示すブロック図である。 本発明の好ましい第4の実施形態による半導体装置40の構成を示すブロック図である。 本発明の好ましい第5の実施形態による半導体装置50の構成を示すブロック図である。 本発明の好ましい第6の実施形態による半導体装置60の構成を示すブロック図である。
以下、添付図面を参照しながら、本発明の好ましい実施の形態について詳細に説明する。
図1は、本発明の好ましい第1の実施形態による半導体装置10の構成を示すブロック図である。
図1に示すように、本実施形態による半導体装置10は、内部出力信号DRを出力する内部回路11と、内部出力信号DRに基づいて外部出力信号DQを出力する出力バッファ12と、出力バッファ12の動作タイミングを制御するDLL回路100とを備えている。内部回路11については、半導体装置10の種類によって異なり、例えば、本実施形態による半導体装置10がDRAMであれば、メモリセルアレイ、カラムスイッチ、リードアンプなどが含まれる。
出力バッファ12は、出力端子13を介して外部出力信号DQを外部に出力する回路であり、外部出力信号DQの出力タイミングは、クロック端子14を介して入力される外部クロック信号CLK(第1のクロック信号)と同期している必要がある。出力バッファ12の動作タイミングは、DLL回路100によって制御される。以下、DLL回路100の構成について詳細に説明する。
図1に示すように、DLL回路100は、ディレイライン110と、分周回路120と、カウンタ回路130と、位相判定回路140と、無効化回路200とを備えている。
ディレイライン110は、外部クロック信号CLKを遅延させることによって内部クロック信号LCLK(第2のクロック信号)を生成する回路である。特に限定されるものではないが、ディレイライン110には、相対的に粗い調整ピッチで外部クロック信号を遅延させるコースディレイラインと、相対的に細かい調整ピッチで外部クロック信号を遅延させるファインディレイラインを含んでいることが好ましい。
図1に示すように、内部クロック信号LCLKは、出力バッファ12及びレプリカバッファ15に供給される。出力バッファ12は、上述の通り、内部回路11より供給される内部出力信号DRを受け、これを外部出力信号DQとして出力端子13に供給する回路である。一方、レプリカバッファ15は、出力バッファ12と実質的に同一の回路構成を有しており、内部クロック信号LCLKに同期してレプリカクロック信号RCLK(第3のクロック信号)を出力する回路である。これにより、レプリカクロック信号RCLKの位相は、外部出力信号DQの位相と正確に一致することになる。但し、レプリカバッファ15を構成するトランジスタのサイズとしては、出力バッファ12を構成するトランジスタのサイズと同一である必要はなく、インピーダンスが実質的に同じである限り、シュリンクしたトランジスタを用いても構わない。
分周回路120は、外部クロック信号CLKを分周することにより、ワンショットパルスであるリセット信号RSTを生成する回路である。リセット信号RSTは無効化回路200に供給されるとともに、ディレイ回路150に供給される。ディレイ回路150は、リセット信号RSTを遅延させることによって更新タイミング信号SYNCLKを生成する回路である。更新タイミング信号SYNCLKはカウンタ回路130に供給され、カウンタ回路130のカウント値を更新するタイミングを示す同期信号として用いられる。したがって、更新タイミング信号SYNCLKの活性化周期は、DLL回路100のサンプリング周期として定義される。尚、ディレイ回路150の遅延量は、サンプリング周期よりもやや短い量とすることが好ましい。
ここで、リセット信号RSTの生成に分周回路120を用いている理由は、カウンタ回路130の更新及びディレイライン110の遅延量の変更にはある一定の時間が必要だからであり、外部クロック信号CLKの毎周期ごとにカウンタ回路130の更新及びディレイライン110の遅延量変更を行うことは困難だからである。また、カウンタ回路130の更新及びディレイライン110の遅延量変更を必要以上に高頻度に行うと、消費電力が大幅に増大するからである。
カウンタ回路130は、ディレイライン110の遅延量を設定する回路であり、更新タイミング信号SYNCLKに同期して、そのカウント値が更新される。カウント値の増減は、無効化回路200から供給される位相判定信号PD1に基づいて定められる。つまり、位相判定信号PD1がアップカウントを示している場合(ハイレベルである場合)、カウンタ回路130は更新タイミング信号SYNCLKに同期してそのカウント値をアップカウントし、これにより、ディレイライン110の遅延量を増大させる。逆に、位相判定信号PD1がダウンカウントを示している場合(ローレベルである場合)、カウンタ回路130は更新タイミング信号SYNCLKに同期してそのカウント値をダウンカウントし、これにより、ディレイライン110の遅延量を減少させる。
位相判定回路140は、外部クロック信号CLKとレプリカクロック信号RCLKとの位相差を検出する回路である。上述の通り、レプリカクロック信号RCLKの位相は外部出力信号DQの位相と一致するよう、ディレイライン110によって調整されるが、電圧や温度などディレイライン110の遅延量に影響を与えるパラメータの変動や、外部クロック信号CLK自体の周波数変動などによって、両者の位相は刻々と変化する。位相判定回路140はこのような変化を検出し、外部クロック信号CLKに対してレプリカクロック信号RCLKが進んでいるか或いは遅れているかを判定する。判定は外部クロック信号CLKの毎周期ごとに行われ、その結果は位相判定信号PD0として無効化回路200に供給される。
無効化回路200は、位相判定信号PD0及びリセット信号RSTを受け、これらに基づいて位相判定信号PD1を生成する回路である。
図2は、無効化回路200の回路図である。
図2に示すように、無効化回路200は、循環接続されたNAND回路201,202からなるSRラッチ回路210と、リセット信号RSTを反転させてSRラッチ回路210のリセット入力端(R)に供給するインバータ203と、位相判定信号PD0を反転させてSRラッチ回路210のセット入力端(S)に供給するインバータ204とを備える。
かかる構成により、位相判定信号PD0がハイレベルになると、リセット信号RSTの論理レベルにかかわらずSRラッチ回路210はセット状態となり、その出力である位相判定信号PD1はハイレベルとなる。ここで、位相判定信号PD0がハイレベルとなるのは、位相判定回路140によって、外部クロック信号CLKよりもレプリカクロック信号RCLKの位相が進んでいることが検出された場合である。つまり、ディレイライン110の遅延量を増大させる必要があるケースである。
一方、リセット信号RSTがハイレベル且つ位相判定信号PD0がローレベルになると、SRラッチ回路210はリセット状態となり、その出力である位相判定信号PD1はローレベルとなる。ここで、位相判定信号PD0がローレベルとなるのは、位相判定回路140によって、外部クロック信号CLKよりもレプリカクロック信号RCLKの位相が遅れていることが検出された場合である。つまり、ディレイライン110の遅延量を減少させる必要があるケースである。
これにより、SRラッチ回路210がリセットされた後、位相判定信号PD0がハイレベルになるとSRラッチ回路210はセットされ、その後、位相判定信号PD0がローレベルに変化しても、その変化は無効化される。つまり、SRラッチ回路210がセットされた後リセットされるまでの間において、位相判定信号PD0が一度でもハイレベルになると、無効化回路200の出力である位相判定信号PD1はハイレベルに固定される。そして、位相判定信号PD1がローレベルとなるのは、SRラッチ回路210がリセットされた後、位相判定信号PD0がローレベルを維持している期間に限られる。
図3は、本実施形態によるDLL回路の動作を示すタイミングチャートである。
図3に示すように、本例では、ディレイ回路150の遅延量がサンプリング周期よりもやや短い量に設定されている。このため、更新タイミング信号SYNCLKが活性化すると、その直後にリセット信号RSTが活性化することになる。このことは、カウンタ回路130のカウント値が更新されると、その直後にリセット信号RSTが活性化することを意味する。
図3に示すように、サンプリング周期T11,T13,T15においてリセット信号RSTが活性化したタイミングでは、位相判定信号PD0がハイレベルであることから、無効化回路200に含まれるSRラッチ回路210はリセットされない。この場合、SRラッチ回路210は従前からのセット状態が維持されるため、サンプリング周期T13に示すように位相判定信号PD0が途中でローレベルに変化しても、このような変化は無効化され、位相判定信号PD1はハイレベルを維持する。その結果、次に更新タイミング信号SYNCLKが活性化するタイミングで、カウンタ回路130のカウント値は強制的にアップカウントされる。つまり、ディレイライン110の遅延量は、強制的に増大させられる。
これに対し、サンプリング周期T12,T14においてリセット信号RSTが活性化したタイミングでは、位相判定信号PD0がローレベルであることから、SRラッチ回路210はリセット信号RSTに同期してリセットされる。これにより、無効化回路200の出力である位相判定信号PD1はローレベルに変化する。
しかしながら、サンプリング周期T12においては、位相判定信号PD0がその後ハイレベルに変化しているため、これに応答してSRラッチ回路210は再びセットされる。これにより位相判定信号PD1はハイレベルに戻り、その後、同じサンプリング周期内において位相判定信号PD0がローレベルに変化しても、このような変化は無効化され、位相判定信号PD1はハイレベルを維持する。その結果、次に更新タイミング信号SYNCLKが活性化するタイミングで、カウンタ回路130のカウント値は強制的にアップカウントされる。つまり、ディレイライン110の遅延量は、強制的に増大させられる。
一方、サンプリング周期T14においては、リセット信号RSTの活性化によってSRラッチ回路210がリセットされた後、次に更新タイミング信号SYNCLKが活性化するタイミングまで、位相判定信号PD0がローレベルに維持されている。これにより、SRラッチ回路210のリセット状態が維持されるため、次に更新タイミング信号SYNCLKが活性化するタイミングで、カウンタ回路130のカウント値はダウンカウントされる。つまり、ディレイライン110の遅延量は減少させられる。
このように、本実施形態では、カウンタ回路130のカウント値がダウンカウントされるのは、サンプリング周期T14に示すケース、つまり、リセット信号RSTの活性化によってSRラッチ回路210がリセットされた後、次に更新タイミング信号SYNCLKが活性化するタイミングまで、位相判定信号PD0がローレベルに維持されたケースに限られる。その他のケースでは、位相判定信号PD0の変化は無効化回路200によって無効化され、カウンタ回路130のカウント値は強制的にアップカウントされる。
これにより、ノイズやジッタ成分のように、短い周期で位相判定信号PD0に影響を与える成分が排除されるため、DLL回路100が長期間ロックしないという現象を防止することが可能となる。
尚、本実施形態では、カウンタ回路130のアップカウントを優先していることから、ダウンカウントした方がDLLロックに要する時間が短いケース(外部クロック信号CLKに対するレプリカクロック信号RCLKの遅れ量よりも、進み量の方が大きいケース)であっても、アップカウントを続けることによってDLLロックが行われることがある。この場合、DLLロックまでにやや長い時間がかかるが、少なくとも、アップカウントとダウンカウントを交互に繰り返すループに入るという問題が生じないことから、規格で定められた期間内にDLLロックを完了することが可能となる。
次に、本発明の第2の実施形態について説明する。
図4は、第2の実施形態にて用いる無効化回路200aの回路図である。本実施形態は、図1に示した無効化回路200が無効化回路200aに置き換えられている点において第1の実施形態と相違し、その他の点は一致する。このため重複する説明は省略する。
図4に示すように、無効化回路200aは、インバータ204が削除されているとともに、SRラッチ回路210の出力を反転させるインバータ205が追加されている点において、図2に示した無効化回路200と相違する。その他の点は、図2に示した無効化回路200と同じである。
かかる構成により、位相判定信号PD0がローレベルになると、リセット信号RSTの論理レベルにかかわらずSRラッチ回路210はセット状態となり、無効化回路200aの出力である位相判定信号PD1はローレベルとなる。一方、リセット信号RSTと位相判定信号PD0がともにハイレベルになると、SRラッチ回路210はリセット状態となり、無効化回路200aの出力である位相判定信号PD1はハイレベルとなる。
これにより、SRラッチ回路210がリセットされた後、位相判定信号PD0がローレベルになるとSRラッチ回路210はセットされ、その後、位相判定信号PD0がハイレベルに変化しても、その変化は無効化される。つまり、SRラッチ回路210がセットされた後リセットされるまでの間において、位相判定信号PD0が一度でもローレベルになると、無効化回路200aの出力である位相判定信号PD1はローレベルに固定される。そして、位相判定信号PD1がハイレベルとなるのは、SRラッチ回路210がリセットされた後、位相判定信号PD0がハイレベルを維持している期間に限られる。
図5は、本実施形態によるDLL回路の動作を示すタイミングチャートである。
図5に示すように、サンプリング周期T21,T23,T25においてリセット信号RSTが活性化したタイミングでは、位相判定信号PD0がローレベルであることから、無効化回路200aに含まれるSRラッチ回路210はリセットされない。この場合、SRラッチ回路210は従前からのセット状態が維持されるため、サンプリング周期T23に示すように位相判定信号PD0が途中でハイレベルに変化しても、このような変化は無効化され、位相判定信号PD1はローレベルを維持する。その結果、次に更新タイミング信号SYNCLKが活性化するタイミングで、カウンタ回路130のカウント値は強制的にダウンカウントされる。つまり、ディレイライン110の遅延量は、強制的に減少させられる。
これに対し、サンプリング周期T22,T24においてリセット信号RSTが活性化したタイミングでは、位相判定信号PD0がハイレベルであることから、SRラッチ回路210はリセット信号RSTに同期してリセットされる。これにより、無効化回路200aの出力である位相判定信号PD1はハイレベルに変化する。
しかしながら、サンプリング周期T22においては、位相判定信号PD0がその後ローレベルに変化しているため、これに応答してSRラッチ回路210は再びセットされる。これにより位相判定信号PD1はローレベルに戻り、その後、同じサンプリング周期内において位相判定信号PD0がハイレベルに変化しても、このような変化は無効化され、位相判定信号PD1はローレベルを維持する。その結果、次に更新タイミング信号SYNCLKが活性化するタイミングで、カウンタ回路130のカウント値は強制的にダウンカウントされる。つまり、ディレイライン110の遅延量は、強制的に減少させられる。
一方、サンプリング周期T24においては、リセット信号RSTの活性化によってSRラッチ回路210がリセットされた後、次に更新タイミング信号SYNCLKが活性化するタイミングまで、位相判定信号PD0がハイレベルに維持されている。これにより、SRラッチ回路210のリセット状態が維持されるため、次に更新タイミング信号SYNCLKが活性化するタイミングで、カウンタ回路130のカウント値はアップカウントされる。つまり、ディレイライン110の遅延量は増大させられる。
このように、本実施形態では、カウンタ回路130のカウント値がアップカウントされるのは、サンプリング周期T24に示すケース、つまり、リセット信号RSTの活性化によってSRラッチ回路210がリセットされた後、次に更新タイミング信号SYNCLKが活性化するタイミングまで、位相判定信号PD0がハイレベルに維持されたケースに限られる。その他のケースでは、位相判定信号PD0の変化は無効化回路200によって無効化され、カウンタ回路130のカウント値は強制的にダウンカウントされる。
これにより、上述した第1の実施形態と同じ効果を得ることが可能となる。
尚、本実施形態では、カウンタ回路130のダウンカウントを優先していることから、アップカウントした方がDLLロックに要する時間が短いケース(外部クロック信号CLKに対するレプリカクロック信号RCLKの進み量よりも、遅れ量の方が大きいケース)であっても、ダウンカウントを続けることによってDLLロックが行われることがある。この場合、DLLロックまでにやや長い時間がかかるが、少なくとも、アップカウントとダウンカウントを交互に繰り返すループに入るという問題が生じないことから、規格で定められた期間内にDLLロックを完了することが可能となる。
次に、本発明の第3の実施形態について説明する。
図6は、本発明の第3の実施形態による半導体装置の30の構成を示すブロック図である。本実施形態は、無効化回路200,200aの両方が備えられている点、並びに、無効化回路200,200aのいずれか一方を選択する選択回路31を備えている点において、上述した第1の実施形態と異なる。その他の点は、第1の実施形態による半導体装置10と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
図6に示すように、選択回路31には、位相判定回路140の出力である位相判定信号PD0が入力されており、DLL回路100aが動作を開始した後、最初に得られた位相判定信号PD0の論理レベルに基づいて、無効化回路200,200aのいずれか一方を選択する。選択されなかった無効化回路については、その出力は無視される。具体的には、最初に得られた位相判定信号PD0がハイレベルである場合は、アップカウントを優先する無効化回路200を選択し、最初に得られた位相判定信号PD0がローレベルである場合は、ダウンカウントを優先する無効化回路200aを選択する。
最初に得られた位相判定信号PD0がハイレベルである場合は、アップカウントした方がDLLロックに要する時間が短いケース(外部クロック信号CLKに対するレプリカクロック信号RCLKの進み量よりも、遅れ量の方が大きいケース)である確率が高く、逆に、最初に得られた位相判定信号PD0がローレベルである場合は、ダウンカウントした方がDLLロックに要する時間が短いケース(外部クロック信号CLKに対するレプリカクロック信号RCLKの遅れ量よりも、進み量の方が大きいケース)である確率が高い。このため、最初に得られた位相判定信号PD0に基づいて無効化回路200,200aのいずれか一方を選択すれば、上述した第1及び第2の実施形態よりも、より高速にDLL回路100aをロックさせることが可能となる。
次に、本発明の第4の実施形態について説明する。
図7は、本発明の第4の実施形態による半導体装置の40の構成を示すブロック図である。本実施形態は、無効化回路200の上述した無効化動作を停止させる停止回路41を備えている点において、上述した第1の実施形態と異なる。その他の点は、第1の実施形態による半導体装置10と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
停止回路41の出力である停止信号STPは、初期状態においては非活性状態であり、このため、無効化回路200は上述した無効化動作を行う。一方、停止回路41にはカウンタ回路130のカウント値が供給されており、これがあらかじめ定められたパターンで変化した場合、停止信号STPを活性化させる。停止信号STPが活性化すると、無効化回路200は無効化動作を停止し、位相判定信号PD0をそのまま位相判定信号PD1としてカウンタ回路130に供給する。
ここで、あらかじめ定められたパターンとは、DLL回路100bがロックした状態又はロックに近い状態にて現れるパターンである。具体的には、カウンタ回路130のカウント値がアップカウントした後ダウンカウントするパターン、又はその逆のパターンが現れた場合に、停止信号STPを活性化させることが好ましい。これは、このようなパターンが現れるのは、外部クロック信号CLKとレプリカクロック信号RCLKの位相がほぼ一致している場合の特徴だからである。このような場合、無効化回路200によってアップカウントを優先すると、却って位相がずれる可能性があるため、本実施形態では停止回路41によって無効化回路200の動作を停止させているのである。
これにより、本実施形態によれば、第1の実施形態による効果に加え、DLLロック後のロック状態をより確実に維持できるという効果を得ることが可能となる。
尚、停止信号STPが活性化するためのカウント値の変化パターンとしては、上述したパターンの他、アップカウントとダウンカウントが交互に3回又は4回以上繰り返されたパターンとしても構わない。アップカウントとダウンカウントを交互に繰り返すのは、外部クロック信号CLKとレプリカクロック信号RCLKの位相がほぼ一致している場合のより明確な特徴だからである。
次に、本発明の第5の実施形態について説明する。
図8は、本発明の第5の実施形態による半導体装置の50の構成を示すブロック図である。本実施形態は、ディレイライン110がコースディレイライン111とファインディレイライン112を含んでいる点、ファインディレイライン112の遅延量を調整するカウンタ回路132を備えている点、並びに、カウンタ回路130,132のいずれか一方を選択する選択回路51を備えている点において、上述した第1の実施形態と異なる。その他の点は、第1の実施形態による半導体装置10と同一であることから、同一の要素には同一の符号を付し、重複する説明は省略する。
コースディレイライン111は、相対的に遅延量の調整ピッチが粗い大きいディレイラインであり、比較的遅延量の大きいインバータを従属接続したインバータチェーンによって構成される。また、ファインディレイライン112は、相対的に遅延量の調整ピッチが細かいディレイラインであり、比較的遅延量の小さいインバータを従属接続したインバータチェーンによって構成されるか、或いは、コースディレイライン111から得られる2つのクロックを合成するインターポレータによって構成される。
本実施形態では、カウンタ回路130のカウント値によってコースディレイライン111の遅延量が調整され、カウンタ回路132のカウント値によってファインディレイ112の遅延量が調整される。そして、これらコースディレイライン111とファインディレイライン112は直列に接続されており、コースディレイライン111によって大まかな遅延量の調整を行った後、さらに、ファインディレイライン112によって細かな遅延量の調整を行うことで、より高速且つ高精度なDLLロックを実現している。
図8に示すように、コースディレイライン111を制御するカウンタ回路130に対しては、無効化回路200を介した位相判定信号PD1が供給される一方、ファインディレイライン112を制御するカウンタ回路132に対しては、位相判定信号PD0が直接供給される。これは、ファインディレイライン112は主にDLLロック後における微調整に用いられることから、非ロック状態からDLL回路100cがロックするまでの時間にはあまり影響しないからであり、むしろ、ファインディレイライン112に対して無効化動作を行うと、位相のズレが生じる可能性が大きくなるからである。
選択回路51は、カウンタ回路130,132のいずれか一方の動作(カウント値の更新)を許可する回路である。選択回路51は、初期状態においてはカウンタ回路130を選択しており、これにより、ディレイライン110はコースディレイライン111による粗調動作を行う。選択回路51にはカウンタ回路130のカウント値が供給されており、これがあらかじめ定められたパターンで変化した場合、カウンタ回路130の動作を停止させ、その代わりに、カウンタ回路132を選択してファインディレイライン112による微調動作を行う。ここで、あらかじめ定められたパターンとしては、上述した停止信号STPが活性化するパターンと同じパターンを挙げることができる。
これにより、本実施形態によれば、高速にDLLロックを行うことができるとともに、無効化回路200の動作がファインディレイライン112に影響を及ぼさないことから、高精度なDLLロック状態を確保することが可能となる。
次に、本発明の第6の実施形態について説明する。
図9は、本発明の第6の実施形態による半導体装置の60の構成を示すブロック図である。
図9に示すように、本実施形態による半導体装置60は、ディレイライン160、カウンタ回路170、デューティ判定回路180及び無効化回路300をさらに備え、2つのディレイライン110,160の出力を信号合成器190によって合成することによって内部クロック信号LCLKを生成する。その他の点については上述した第1の実施形態による半導体装置10と基本的に同じであることから、同一の要素には同一の符号を付し、重複する説明は省略する。
ディレイライン160及びカウンタ回路170は、インバータ250によって反転した外部クロック信号CLKのデューティを補正するデューティ補正回路を構成する。具体的には、ディレイライン160は、外部クロック信号CLKの立ち下がりエッジの位置を調整することによって内部クロック信号LCLKのデューティを調整する。その調整量は、カウンタ回路170によって定められる。一方、ディレイライン110は、外部クロック信号CLKの立ち上がりエッジの位置を調整することによって内部クロック信号LCLKの位相を調整する。これにより、信号合成器190によって生成される内部クロック信号LCLKは、位相及びデューティとも正しく調整された信号となる。
カウンタ回路170は、ディレイライン160の遅延量を設定する回路であり、更新タイミング信号SYNCLKに同期して、そのカウント値が更新される。カウント値の増減は、無効化回路300から供給されるデューティ判定信号DD1に基づいて定められる。つまり、デューティ判定信号DD1がアップカウントを示している場合、カウンタ回路170は更新タイミング信号SYNCLKに同期してそのカウント値をアップカウントし、これにより、ディレイライン160の遅延量を増大させる。逆に、デューティ判定信号DD1がダウンカウントを示している場合、カウンタ回路170は更新タイミング信号SYNCLKに同期してそのカウント値をダウンカウントし、これにより、ディレイライン160の遅延量を減少させる。
無効化回路300は、デューティ判定信号DD0及びリセット信号RSTを受け、これらに基づいてデューティ判定信号DD1を生成する回路である。その回路構成は、図2に示した無効化回路200又は図4に示した無効化回路200aと同様である。したがって、無効化回路300は、無効化回路200又は200aと同様の無効化動作を行う。
デューティ判定回路180は、ディレイライン110,160の出力に基づいて、内部クロック信号LCLKのデューティを検出し、これによりデューティ判定信号DD0を生成する回路である。
このように、本実施形態によるDLL回路100dは、ノイズやジッタ成分のように、短い周期で位相判定信号PD0に影響を与える成分を無効化回路200によって排除し、短い周期でデューティ判定信号DD0に影響を与える成分を無効化回路300によって排除している。このため、位相のみならずデューティについても、速やかに調整することが可能となる。
以上、本発明の好ましい実施形態について説明したが、本発明は、上記の実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能であり、それらも本発明の範囲内に包含されるものであることはいうまでもない。
例えば、上記各実施形態では、本発明をDLL回路に適用した場合を例に説明したが、本発明の適用対象がこれに限定されるものではなく、他の種類のクロック制御回路、例えばデューティ補正回路(図9参照)に対して適用することも可能である。
また、上記各実施形態では、リセット信号RSTを用いて無効化回路200等をリセットしているが、カウンタ回路130の更新動作と干渉しない限り、更新タイミング信号SYNCLK自体をリセット信号RSTとして用いても構わない。さらには、更新タイミング信号SYNCLKを遅延させることによってリセット信号RSTを生成しても構わない。
10,30,40,50,60 半導体装置
11 内部回路
12 出力バッファ
13 出力端子
14 クロック端子
15 レプリカバッファ
31 選択回路
41 停止回路
51 選択回路
100,100a,100b,100c,100d DLL回路
110,160 ディレイライン
111 コースディレイライン
112 ファインディレイライン
120 分周回路
130,132,170 カウンタ回路
140 位相判定回路
150 ディレイ回路
180 デューティ判定回路
190 信号合成器
200,200a,300 無効化回路
210 SRラッチ回路

Claims (13)

  1. 第1のクロック信号と第2のクロック信号との位相差に基づいて、第1の論理レベルと第2の論理レベルとの間で変化する第1の位相判定信号を生成する位相判定回路と、
    第2の位相判定信号を受け、前記第2の位相判定信号のサンプリング動作を前記第1のクロック信号の周期よりも長い周期で行い、第1の状態である前記第2の位相判定信号がサンプリングされた場合にはカウント値をインクリメントし、第2の状態である前記第2の位相判定信号がサンプリングされた場合には前記カウント値をデクリメントするカウンタ回路と、
    前記カウンタ回路の前記カウント値に基づいて前記第1のクロック信号を遅延させることにより中間クロック信号を生成するディレイラインと、
    前記中間クロック信号に基づいて第2のクロック信号を生成するバッファ回路と、
    前記位相判定回路と前記カウンタ回路との間に設けられ、前記第1の位相判定信号に応じて前記第2の位相判定信号を生成する生成回路と、を備え、
    前記カウンタ回路による隣接するサンプリング動作のインターバル内において、前記第1の位相判定信号は前記第1の論理レベルと前記第2の論理レベルとの間でゼロを含む第1の回数変化し、前記第2の位相判定信号は前記第1の状態と前記第2の状態との間で前記第1の回数と同じか前記第1の回数よりも少なくゼロを含む第2の回数変化することを特徴とする半導体装置。
  2. 前記カウンタ回路は更新タイミング信号を受け、前記生成回路はリセット信号を受け、前記更新タイミング信号は前記サンプリング動作の周期を決定し、前記リセット信号は前記更新タイミング信号と同じ周期で異なる位相を持つ信号であることを特徴とする請求項1記載の半導体装置。
  3. 前記生成回路はSRラッチ回路を含み、前記SRラッチ回路は、前記第1の位相判定信号が第1と第2の論理レベルの一方となったらセットされ、前記第1の位相判定信号が第1と第2の論理レベルのもう一方である間に前記リセット信号が与えられたらリセットされ、前記SRラッチ回路が前記第2の位相判定信号を生成することを特徴とする請求項2記載の半導体装置。
  4. 前記SRラッチ回路はセット端子、リセット端子、および出力端子を備え、前記第1の位相判定信号を入力とする第1のインバータ回路が前記セット端子に接続され、前記リセット信号を入力とする第2のインバータ回路が前記リセット端子に接続され、前記出力端子から前記第2の位相判定信号を出力することを特徴とする請求項3記載の半導体装置。
  5. 前記SRラッチ回路はセット端子、リセット端子、および出力端子を備え、前記第1の位相判定信号を前記セット端子に入力し、前記リセット信号を入力とする第1のインバータ回路が前記リセット端子に接続され、前記SRラッチ回路の前記出力端子が入力に接続された第2のインバータ回路の出力が前記第2の位相判定信号であることを特徴とする請求項3記載の半導体装置。
  6. 前記中間クロック信号に応じて動作する別のバッファ回路をさらに備え、前記別のバッファ回路は前記バッファ回路と同一の構成であることを特徴とする請求項1から5のいずれかに記載の半導体装置。
  7. 前記第1のクロック信号を分周し前記リセット信号を生成する分周回路と、前記分周回路と接続され前記更新タイミング信号を生成する遅延回路をさらに含むことを特徴とする請求項2から5のいずれかに記載の半導体装置。
  8. 外部クロック信号を受け、DLLクロック信号を供給する遅延回路を備えたDLL回路において、
    前記DLLクロック信号と前記外部クロック信号の位相差を検出し、位相検出信号を生成し、
    前記外部クロック信号を分周してリセット信号を生成し、
    前記リセット信号を遅延させて更新タイミング信号を生成し、
    前記リセット信号がアクティブになった時から前記更新タイミング信号がアクティブになった時までのインターバルにおいて、何時においても前記位相検出信号が第1の論理レベルになったら、前記遅延回路の遅延を第1の方向に調整し、
    前記リセット信号がアクティブになった時から前記更新タイミング信号がアクティブになった時までのインターバルにおいて、常に前記位相検出信号が前記第1の論理レベルと異なる第2の論理レベルである場合に、前記遅延回路の遅延を前記第1の方向と逆の第2の方向に調整することを特徴とするDLL回路の遅延調整手法。
  9. 次のリセット信号が更新タイミング信号を生成するまでの時間より短く、前記リセット信号を遅延させることを特徴とする請求項8記載のDLL回路の遅延調整方法。
  10. 前記DLLクロック信号は、DLLレプリカクロック信号であることを特徴とする請求項8または9に記載のDLL回路の遅延調整方法。
  11. 前記DLLレプリカクロック信号は、出力バッファ回路の遅延にあわせて、DLL内部クロック信号を遅延させた信号であることを特徴とする請求項10記載のDLL回路の遅延調整方法。
  12. 前記リセット信号がアクティブになった時から、前記更新タイミング信号がアクティブになった時までのインターバルの何時においても、前記DLLクロック信号が前記外部信号よりも進んでいることを示す前記第1の論理レベルに前記位相検出信号がなったら、遅延回路の遅延量を増やすことを特徴とする請求項8から11のいずれかに記載のDLL回路の遅延調整方法。
  13. 前記リセット信号がアクティブになった時から、前記更新タイミング信号がアクティブになった時までのインターバルの何時においても、前記DLLクロック信号が前記外部信号よりも遅れていることを示す前記第1の論理レベルに前記位相検出信号がなったら、遅延回路の遅延量を減らすことを特徴とする請求項8から11のいずれかに記載のDLL回路の遅延調整方法。
JP2014218862A 2014-10-28 2014-10-28 半導体装置及びdll回路の遅延調整手法 Expired - Fee Related JP5989058B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014218862A JP5989058B2 (ja) 2014-10-28 2014-10-28 半導体装置及びdll回路の遅延調整手法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014218862A JP5989058B2 (ja) 2014-10-28 2014-10-28 半導体装置及びdll回路の遅延調整手法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009030279A Division JP5641697B2 (ja) 2009-02-12 2009-02-12 クロック制御回路及びこれを備える半導体装置

Publications (2)

Publication Number Publication Date
JP2015073276A true JP2015073276A (ja) 2015-04-16
JP5989058B2 JP5989058B2 (ja) 2016-09-07

Family

ID=53015332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014218862A Expired - Fee Related JP5989058B2 (ja) 2014-10-28 2014-10-28 半導体装置及びdll回路の遅延調整手法

Country Status (1)

Country Link
JP (1) JP5989058B2 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117530A (ja) * 1997-06-19 1999-01-22 Nec Corp 多相クロック生成回路
JP2001339294A (ja) * 2000-05-30 2001-12-07 Mitsubishi Electric Corp Dll回路
US6504408B1 (en) * 2001-07-09 2003-01-07 Broadcom Corporation Method and apparatus to ensure DLL locking at minimum delay
JP2003289248A (ja) * 2002-03-27 2003-10-10 Sharp Corp Pll回路
JP2004328459A (ja) * 2003-04-25 2004-11-18 Renesas Technology Corp クロック再生回路及び半導体集積回路
US7002384B1 (en) * 2004-01-16 2006-02-21 Altera Corporation Loop circuitry with low-pass noise filter
JP2009021706A (ja) * 2007-07-10 2009-01-29 Elpida Memory Inc Dll回路及びこれを用いた半導体記憶装置、並びに、データ処理システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1117530A (ja) * 1997-06-19 1999-01-22 Nec Corp 多相クロック生成回路
JP2001339294A (ja) * 2000-05-30 2001-12-07 Mitsubishi Electric Corp Dll回路
US6504408B1 (en) * 2001-07-09 2003-01-07 Broadcom Corporation Method and apparatus to ensure DLL locking at minimum delay
JP2003289248A (ja) * 2002-03-27 2003-10-10 Sharp Corp Pll回路
JP2004328459A (ja) * 2003-04-25 2004-11-18 Renesas Technology Corp クロック再生回路及び半導体集積回路
US7002384B1 (en) * 2004-01-16 2006-02-21 Altera Corporation Loop circuitry with low-pass noise filter
JP2009021706A (ja) * 2007-07-10 2009-01-29 Elpida Memory Inc Dll回路及びこれを用いた半導体記憶装置、並びに、データ処理システム

Also Published As

Publication number Publication date
JP5989058B2 (ja) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5641697B2 (ja) クロック制御回路及びこれを備える半導体装置
US7414445B2 (en) Device and method for the synchronization of clock signals and adjustment of the duty cycle of the clock signal
US6593786B2 (en) Register controlled DLL reducing current consumption
JP2011176615A (ja) クロック制御回路及びこれを備える半導体装置
KR100713082B1 (ko) 클럭의 듀티 비율을 조정할 수 있는 지연 고정 루프
US9030242B2 (en) Data output timing control circuit for semiconductor apparatus
JP4764270B2 (ja) ロックフェイル防止のための遅延固定ループクロックの生成方法及びその装置
US20130099838A1 (en) Semiconductor integrated circuit and method for driving the same
JP2010124020A (ja) Dll回路及びこれを備える半導体装置
US8482331B2 (en) Open loop type delay locked loop and method for operating the same
US8704561B2 (en) Delay locked loop
US8729940B2 (en) Delay locked loop circuit and semiconductor device having the same
US7755401B2 (en) Semiconductor device including DLL circuit, and data processing system
US20100156489A1 (en) Dll circuit, semiconductor device including the same, and data processing system
JP2015162052A (ja) デューティ補正装置ならびにデューティ補正方法
US20110291717A1 (en) Semiconductor device
KR102031201B1 (ko) 레이턴시 제어회로 및 이를 포함하는 반도체 메모리 장치
JP5989058B2 (ja) 半導体装置及びdll回路の遅延調整手法
US8638137B2 (en) Delay locked loop
JP2011205165A (ja) 半導体装置及び遅延量調整方法
KR20090121469A (ko) 반도체 메모리 장치
JP2007228045A (ja) デジタルdll回路
KR20240006462A (ko) 제어회로 및 반도체 기억장치의 제어방법

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20151225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160809

R150 Certificate of patent or registration of utility model

Ref document number: 5989058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees