JP2015072455A - Radiation-sensitive resin composition, polymer composition, cured film, method for producing the same, and electronic device - Google Patents

Radiation-sensitive resin composition, polymer composition, cured film, method for producing the same, and electronic device Download PDF

Info

Publication number
JP2015072455A
JP2015072455A JP2014153350A JP2014153350A JP2015072455A JP 2015072455 A JP2015072455 A JP 2015072455A JP 2014153350 A JP2014153350 A JP 2014153350A JP 2014153350 A JP2014153350 A JP 2014153350A JP 2015072455 A JP2015072455 A JP 2015072455A
Authority
JP
Japan
Prior art keywords
group
structural unit
radiation
resin composition
sensitive resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014153350A
Other languages
Japanese (ja)
Other versions
JP6492444B2 (en
Inventor
安田 博幸
Hiroyuki Yasuda
博幸 安田
大吾 一戸
Daigo Ichinohe
大吾 一戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2014153350A priority Critical patent/JP6492444B2/en
Priority to KR1020140113245A priority patent/KR102220675B1/en
Publication of JP2015072455A publication Critical patent/JP2015072455A/en
Application granted granted Critical
Publication of JP6492444B2 publication Critical patent/JP6492444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0757Macromolecular compounds containing Si-O, Si-C or Si-N bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a radiation-sensitive resin composition that has excellent water repellency, good coatability, and sufficient radiation sensitivity, to provide a polymer composition for preparing the radiation-sensitive resin composition, to provide a cured film formed from the radiation-sensitive resin composition, and to provide an electronic device having the cured film.SOLUTION: The radiation-sensitive resin composition contains: a polymer component having a first structural unit including an acid-dissociative group, a second structural unit including a crosslinkable group, and a third structural unit including at least one of a fluoroalkyl group and a group having a siloxane bond; and a radiation-sensitive acid generator. The polymer composition comprises a polymer component having a first structural unit, a second structural unit, and a third structural unit as mentioned above. The cured film is formed from the radiation-sensitive resin composition. The electronic device has the cured film.

Description

本発明は、感放射線性樹脂組成物、重合体組成物、硬化膜、その形成方法、及び電子デバイスに関する。   The present invention relates to a radiation-sensitive resin composition, a polymer composition, a cured film, a method for forming the same, and an electronic device.

薄膜トランジスタ型液晶表示素子や有機エレクトロルミネッセンス素子(有機EL素子)等の表示素子は、一般に層間絶縁膜や平坦化膜等の絶縁膜を有している。このような絶縁膜は、一般的に感放射線性組成物を用いて形成されている。このような感放射線性組成物としては、パターニング性能の観点からナフトキノンジアジド等の酸発生剤を用いたポジ型感放射線性樹脂組成物が用いられていたが(特開2001−354822号公報参照)、近年では種々の感放射線性組成物が提案されている。   A display element such as a thin film transistor type liquid crystal display element or an organic electroluminescence element (organic EL element) generally has an insulating film such as an interlayer insulating film or a planarizing film. Such an insulating film is generally formed using a radiation sensitive composition. As such a radiation-sensitive composition, a positive-type radiation-sensitive resin composition using an acid generator such as naphthoquinonediazide has been used from the viewpoint of patterning performance (see JP-A-2001-354822). In recent years, various radiation-sensitive compositions have been proposed.

その一例として、特開2004−4669号公報では、ナフトキノンジアジド等の酸発生剤を用いたポジ型感放射線性樹脂組成物よりも高い感度で表示素子用の硬化膜を形成することを目的とするポジ型化学増幅材料が提案されている。このポジ型化学増幅材料は、架橋剤、酸発生剤、及び酸解離性樹脂を含有するものである。酸解離性樹脂は、酸の作用により解裂しうる保護基を有するものであり、アルカリ水溶液に不溶又は難溶であるが、酸の作用により保護基が解裂することでアルカリ水溶液に可溶となる。また、特開2004−264623号公報、特開2011−215596号公報及び特開2008−304902号公報には、酸発生剤と、アセタール構造及び/又はケタール構造並びにエポキシ基を有する樹脂とを含有するポジ型感放射線性組成物が提案されている。   As an example, Japanese Patent Application Laid-Open No. 2004-4669 aims to form a cured film for a display element with higher sensitivity than a positive radiation-sensitive resin composition using an acid generator such as naphthoquinonediazide. Positive chemical amplification materials have been proposed. This positive chemical amplification material contains a cross-linking agent, an acid generator, and an acid dissociable resin. The acid dissociable resin has a protecting group that can be cleaved by the action of an acid and is insoluble or hardly soluble in an aqueous alkali solution, but is soluble in an aqueous alkali solution by cleaving the protecting group by the action of an acid. It becomes. JP 2004-264623 A, JP 2011-215596 A, and JP 2008-304902 A include an acid generator, an acetal structure and / or a ketal structure, and a resin having an epoxy group. Positive radiation sensitive compositions have been proposed.

その一方で、近年、有機EL素子では、パネルの大型化、照明用途での量産化などの理由から、生産性向上、具体的には発光層等の生産性向上が望まれている。そのため、有機EL素子では、発光層の形成手法として、従来の蒸着法から、生産性の向上が望まれるインクジェット塗布等の塗布法の採用が進められている。これに伴い、発光層を形成するための材料として、インクジェット塗布に対応した発光性材料の検討がなされている(特開平11−54270号公報)。   On the other hand, in recent years, organic EL elements have been desired to improve productivity, specifically, productivity of light-emitting layers and the like, for reasons such as panel enlargement and mass production for lighting applications. For this reason, in organic EL elements, as a method for forming a light emitting layer, a coating method such as ink jet coating, which is desired to improve productivity, is being promoted from a conventional vapor deposition method. Accordingly, as a material for forming the light emitting layer, a light emitting material corresponding to ink jet coating has been studied (Japanese Patent Laid-Open No. 11-54270).

インクジェット塗布による発光層の形成は、例えば画素を区画するバンク(隔壁)を形成し、このバンクで囲まれる画素領域(凹部)にインクを滴下することで行われる(国際公開第2008/090827号)。このような方法では、上記画素領域にインク滴を滴下すると、バンクを超えて隣の画素領域にインク滴が溢れ出すおそれがある。そのため、インク滴の溢れ出しを抑制するために、基板に親インク性(親水性)を持たせると共に、バンク表面に撥水性を持たせる等の対応が必要となる。   The formation of the light emitting layer by inkjet coating is performed, for example, by forming a bank (partition wall) for partitioning pixels and dropping ink into a pixel region (concave portion) surrounded by the bank (International Publication No. 2008/090828). . In such a method, when ink droplets are dropped on the pixel region, there is a possibility that the ink droplet overflows to the adjacent pixel region beyond the bank. Therefore, in order to suppress the overflow of ink droplets, it is necessary to take measures such as imparting ink affinity (hydrophilicity) to the substrate and imparting water repellency to the bank surface.

しかし、上記バンクを形成するための材料としては、優れた撥水性を有し、かつパネルの大型化や量産等に対応できる塗布性(例えば塗膜の外観特性や膜厚の均一性)及び十分な放射線感度を有するものは提案されていない。   However, as a material for forming the above bank, it has excellent water repellency and can be applied to panel enlargement, mass production, etc. (for example, coating film appearance characteristics and film thickness uniformity) and sufficient Have not been proposed.

特開2001−354822号公報JP 2001-354822 A 特開2004−4669号公報JP 2004-4669 A 特開2004−264623号公報JP 2004-264623 A 特開2011−215596号公報JP 2011-215596 A 特開2008−304902号公報JP 2008-304902 A 特開平11−54270号公報Japanese Patent Laid-Open No. 11-54270 国際公開第2008/090827号International Publication No. 2008/090828

本発明は、以上のような事情に基づいてなされたものであり、優れた撥水性を有し、塗布性が良好であり、かつ十分な放射線感度を有する感放射線性樹脂組成物を提供することを目的とする。本発明はさらに、当該感放射線性樹脂組成物を調製するための重合体組成物、当該感放射線性樹脂組成物から形成される硬化膜及びその形成方法、並びに当該硬化膜を備える電子デバイスを提供することを目的とする。   The present invention has been made based on the above circumstances, and provides a radiation-sensitive resin composition having excellent water repellency, good applicability, and sufficient radiation sensitivity. With the goal. The present invention further provides a polymer composition for preparing the radiation-sensitive resin composition, a cured film formed from the radiation-sensitive resin composition, a method for forming the polymer film, and an electronic device including the cured film. The purpose is to do.

上記課題を解決するためになされた発明は、酸解離性基を含む第1構造単位(以下、「構造単位(I)」ともいう」)と、架橋性基を含む第2構造単位(以下、「構造単位(II)」ともいう」)と、フルオロアルキル基及びシロキサン結合を有する基の少なくとも一方を含む構造単位(以下、「構造単位(III)」ともいう」)とを有する重合体成分(以下、「[A]重合体成分」ともいう)、並びに感放射性酸発生体(以下、「[B]感放射性酸発生体」ともいう)を含有する感放射線性樹脂組成物である。   The invention made in order to solve the above problems includes a first structural unit containing an acid dissociable group (hereinafter also referred to as “structural unit (I)”) and a second structural unit containing a crosslinkable group (hereinafter referred to as “structural unit (I)”). And a polymer component (hereinafter also referred to as “structural unit (III)”) including at least one of a fluoroalkyl group and a group having a siloxane bond (hereinafter also referred to as “structural unit (III)”). Hereinafter, it is a radiation-sensitive resin composition containing “[A] polymer component”) and a radiation-sensitive acid generator (hereinafter also referred to as “[B] radiation-sensitive acid generator”).

上記課題を解決するためになされた別の発明は、酸解離性基を含む第1構造単位と、架橋性基を含む第2構造単位と、フルオロアルキル基及びシロキサン結合を有する基の少なくとも一方を含む第3構造単位とを有する重合体成分を含有する重合体組成物である。   Another invention made in order to solve the above-described problem is that at least one of a first structural unit containing an acid dissociable group, a second structural unit containing a crosslinkable group, a group having a fluoroalkyl group and a siloxane bond is used. It is a polymer composition containing a polymer component having a third structural unit.

本発明はさらに、当該感放射線性樹脂組成物から形成される硬化膜、及び当該硬化膜を備える電子デバイスを含む。   The present invention further includes a cured film formed from the radiation-sensitive resin composition, and an electronic device including the cured film.

本発明の硬化膜の形成方法は、基板上に塗膜を形成する工程、上記塗膜の少なくとも一部に放射線を照射する工程、上記放射線を照射された塗膜を現像する工程、及び上記現像された塗膜を加熱する工程を含む硬化膜の形成方法であって、上記塗膜を当該感放射線性樹脂組成物を用いて形成するものである。   The method for forming a cured film of the present invention includes a step of forming a coating film on a substrate, a step of irradiating at least a part of the coating film, a step of developing the coating film irradiated with the radiation, and the development. It is a formation method of the cured film including the process of heating the applied coating film, Comprising: The said coating film is formed using the said radiation sensitive resin composition.

本発明の感放射線性樹脂組成物は、優れた撥水性を有し、パネルの大型化や量産等に対応できる優れた塗布性(例えば塗膜の外観特性や膜厚の均一性)及び優れた放射線感度を満たす。本発明はさらに、当該感放射線性樹脂組成物から形成される硬化膜及びその形成方法、並びに当該硬化膜を備える電子デバイスを提供することができる。従って、当該感放射線性樹脂組成物、当該硬化膜及びその形成方法、並びに当該電子デバイスは、液晶素子、有機EL素子、電子回路、センサー等の製造プロセスに好適に使用することができる。   The radiation-sensitive resin composition of the present invention has excellent water repellency, excellent coating properties (for example, the appearance characteristics of the coating film and uniformity of film thickness) and the like that can cope with the enlargement and mass production of panels. Satisfies radiation sensitivity. The present invention can further provide a cured film formed from the radiation-sensitive resin composition, a method for forming the cured film, and an electronic device including the cured film. Therefore, the radiation-sensitive resin composition, the cured film and the method for forming the same, and the electronic device can be suitably used for manufacturing processes of liquid crystal elements, organic EL elements, electronic circuits, sensors, and the like.

<感放射線性樹脂組成物>
本発明の感放射線性樹脂組成物は、[A]重合体成分及び[B]感放射性酸発生体を含有し、好適成分として酸化防止剤(以下、「[C]酸化防止剤」ともいう)を含有していてもよい。また、当該感放射線性樹脂組成物は、本発明の効果を損なわない範囲で、その他の任意成分を含有してもよい。以下、各成分について詳述する。
<Radiation sensitive resin composition>
The radiation-sensitive resin composition of the present invention contains [A] a polymer component and [B] a radiation-sensitive acid generator, and an antioxidant (hereinafter, also referred to as “[C] antioxidant”) as a suitable component. May be contained. Moreover, the said radiation sensitive resin composition may contain another arbitrary component in the range which does not impair the effect of this invention. Hereinafter, each component will be described in detail.

<[A]重合体成分>
[A]重合体成分は、構造単位(I)、構造単位(II)、及び構造単位(III)を含む。構造単位(III)としては、フルオロアルキル基を含む構造単位(以下、「構造単位(III−1)」ともいう)及びシロキサン結合を有する基を含む構造単位(以下、「構造単位(III−2)」ともいう)等が挙げられる。
<[A] Polymer component>
[A] The polymer component includes the structural unit (I), the structural unit (II), and the structural unit (III). The structural unit (III) includes a structural unit containing a fluoroalkyl group (hereinafter also referred to as “structural unit (III-1)”) and a structural unit containing a group having a siloxane bond (hereinafter referred to as “structural unit (III-2)”. ) ")) And the like.

当該感放射線性樹脂組成物は、[A]重合体成分が上記構造単位を有するため、放射線感度に優れると共に、層間絶縁膜、発光素子形成用バンク等の絶縁膜の撥水性を向上することが可能となる。また、[A]重合体成分は、本発明の効果を損なわない範囲で、構造単位(I)〜(III)以外のその他の構造単位を有していてもよい。なお、[A]重合体成分は、各構造単位を2つ以上有していてもよい。   Since the [A] polymer component has the above structural unit, the radiation-sensitive resin composition has excellent radiation sensitivity and can improve water repellency of insulating films such as interlayer insulating films and light emitting element forming banks. It becomes possible. [A] The polymer component may have other structural units other than the structural units (I) to (III) as long as the effects of the present invention are not impaired. In addition, the [A] polymer component may have two or more of each structural unit.

[A]重合体成分は、1種の重合体のみを含むものであってもよいし、複数種の重合体を含み、複数種の重合体全体で構造単位(I)〜(III)を含んでいてもよい。[A]重合体成分としては、例えば
(1) 構造単位(I)、構造単位(II)及び構造単位(III−1)を有する重合体を含む重合体成分;
(2) 構造単位(I)、構造単位(II)及び構造単位(III−2)を有する重合体を含む重合体成分;
(3) 構造単位(I)、構造単位(II)、構造単位(III−1)及び構造単位(III−2)を有する重合体を含む重合体成分;
(4) 構造単位(I)を有する重合体と、構造単位(II)及び構造単位(III−1)を有する重合体とを含む重合体成分;
(5) 構造単位(I)を有する重合体と、構造単位(II)及び構造単位(III−2)を有する重合体とを含む重合体成分;
(6) 構造単位(I)を有する重合体と、構造単位(II)、構造単位(III−1)及び構造単位(III−2)を有する重合体とを含む重合体成分;
(7) 構造単位(II)を有する重合体と、構造単位(I)及び構造単位(III−1)を有する重合体とを含む重合体成分;
(8) 構造単位(II)を有する重合体と、構造単位(I)及び構造単位(III−2)を有する重合体とを含む重合体成分;
(9) 構造単位(II)を有する重合体と、構造単位(I)、構造単位(III−1)及び構造単位(III−2)を有する重合体とを含む重合体成分;
(10) 構造単位(III)を有する重合体と、構造単位(I)及び構造単位(II)及び構造単位(III−2)を有する重合体とを含む重合体成分;
(11) 構造単位(III−2)を有する重合体と、構造単位(I)、構造単位(II)及び構造単位(III−1)を有する重合体とを含む重合体成分等が挙げられる。
[A] The polymer component may include only one type of polymer, or may include a plurality of types of polymers, and the structural units (I) to (III) may be included in the plurality of types of polymers as a whole. You may go out. [A] Examples of the polymer component include (1) a polymer component including a polymer having the structural unit (I), the structural unit (II), and the structural unit (III-1);
(2) a polymer component including a polymer having the structural unit (I), the structural unit (II), and the structural unit (III-2);
(3) a polymer component including a polymer having the structural unit (I), the structural unit (II), the structural unit (III-1), and the structural unit (III-2);
(4) a polymer component comprising a polymer having the structural unit (I) and a polymer having the structural unit (II) and the structural unit (III-1);
(5) A polymer component comprising a polymer having the structural unit (I) and a polymer having the structural unit (II) and the structural unit (III-2);
(6) A polymer component comprising a polymer having the structural unit (I) and a polymer having the structural unit (II), the structural unit (III-1) and the structural unit (III-2);
(7) A polymer component comprising a polymer having the structural unit (II) and a polymer having the structural unit (I) and the structural unit (III-1);
(8) A polymer component comprising a polymer having the structural unit (II) and a polymer having the structural unit (I) and the structural unit (III-2);
(9) A polymer component comprising a polymer having the structural unit (II) and a polymer having the structural unit (I), the structural unit (III-1) and the structural unit (III-2);
(10) A polymer component comprising a polymer having the structural unit (III) and a polymer having the structural unit (I), the structural unit (II) and the structural unit (III-2);
(11) Polymer components including a polymer having the structural unit (III-2) and a polymer having the structural unit (I), the structural unit (II), and the structural unit (III-1) are included.

以下、構造単位(I)〜(III)、及びその他の構造単位について詳述する。   Hereinafter, the structural units (I) to (III) and other structural units will be described in detail.

[構造単位(I)]
構造単位(I)は、酸解離性基を有する。この酸解離性基は、重合体においてカルボキシ基やフェノール性水酸基等を保護する保護基として作用する。このような保護基を有する重合体は、通常、アルカリ水溶液に不溶又は難溶である。この重合体は、保護基が酸解離性基であることから、酸の作用により保護基が解裂することで、アルカリ水溶液に可溶となる。
[Structural unit (I)]
The structural unit (I) has an acid dissociable group. This acid-dissociable group acts as a protecting group for protecting a carboxy group, a phenolic hydroxyl group and the like in the polymer. A polymer having such a protective group is usually insoluble or hardly soluble in an alkaline aqueous solution. Since this protecting group is an acid-dissociable group, this polymer becomes soluble in an alkaline aqueous solution when the protecting group is cleaved by the action of an acid.

当該感放射線性樹脂組成物は、[A]重合体成分が構造単位(I)を有することで、高い放射線感度を達成し、現像等により得られるパターン形状の安定性を向上することが可能となる。   In the radiation-sensitive resin composition, the [A] polymer component has the structural unit (I), thereby achieving high radiation sensitivity and improving the stability of the pattern shape obtained by development or the like. Become.

酸解離性基を含む構造単位(I)としては、下記式(3)又は下記式(4)で表される構造単位が好ましい。   As the structural unit (I) containing an acid dissociable group, a structural unit represented by the following formula (3) or the following formula (4) is preferable.

Figure 2015072455
Figure 2015072455

式(3)中、R17は、水素原子又はメチル基である。R18及びR19は、それぞれ独立して、水素原子、炭素数1〜12の1価の鎖状炭化水素基、炭素数6〜15の1価の芳香族炭化水素基、炭素数4〜20の1価の脂環式炭化水素基又はこれらの基の有する水素原子の一部もしくは全部がフッ素原子で置換された基である。 In the formula (3), R 17 is a hydrogen atom or a methyl group. R 18 and R 19 are each independently a hydrogen atom, a monovalent chain hydrocarbon group having 1 to 12 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 15 carbon atoms, or 4 to 20 carbon atoms. Are monovalent alicyclic hydrocarbon groups or groups in which some or all of the hydrogen atoms of these groups are substituted with fluorine atoms.

式(4)中、R20は、水素原子又はメチル基である。R21〜R27は、それぞれ独立して、水素原子、炭素数1〜12の1価の鎖状炭化水素基又は上記基の有する水素原子の一部もしくは全部がフッ素原子で置換された基である。nは、1又は2である。nが2の場合、複数のR26及びR27はそれぞれ同一でも異なっていてもよい。 In Formula (4), R 20 is a hydrogen atom or a methyl group. R 21 to R 27 are each independently a hydrogen atom, a monovalent chain hydrocarbon group having 1 to 12 carbon atoms, or a group in which part or all of the hydrogen atoms of the above group are substituted with fluorine atoms. is there. n is 1 or 2. When n is 2, the plurality of R 26 and R 27 may be the same or different.

上記R18及びR19で表される炭素数1〜12の1価の鎖状炭化水素基としては、例えばメチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−オクチル基等の直鎖状アルキル基;i−プロピル基、i−ブチル基、t−ブチル基、ネオペンチル基等の分岐状のアルキル基などが挙げられる。 Examples of the monovalent chain hydrocarbon group having 1 to 12 carbon atoms represented by R 18 and R 19 include, for example, methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group, n -Linear alkyl groups such as hexyl group and n-octyl group; branched alkyl groups such as i-propyl group, i-butyl group, t-butyl group and neopentyl group.

上記R18及びR19で表される炭素数6〜15の1価の芳香族炭化水素基としては、例えばフェニル基、ナフチル基等が挙げられる。 Examples of the monovalent aromatic hydrocarbon group having 6 to 15 carbon atoms represented by R 18 and R 19 include a phenyl group and a naphthyl group.

上記R18及びR19で表される炭素数4〜20の1価の脂環式炭化水素基としては、例えばシクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロデシル基、メチルシクロヘキシル基、エチルシクロヘキシル基等の単環式シクロアルキル基;シクロブテニル基、シクロペンテニル基、シクロヘキセニル基、シクロヘプテニル基、シクロオクテニル基、シクロデセニル基、シクロペンタジエニル基、シクロヘキサジエニル基、シクロオクタジエニル基、シクロデカジエン等の単環式シクロアルケニル基;ビシクロ[2.2.2]オクチル基、トリシクロ[5.2.1.02,6]デシル基、テトラシクロ[6.2.1.13,6.02,7]ドデシル基、ノルボルニル基、アダマンチル基等の多環式シクロアルキル基などが挙げられる。 Examples of the monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms represented by R 18 and R 19 include a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a cyclooctyl group, a cyclodecyl group, methyl Monocyclic cycloalkyl groups such as cyclohexyl and ethylcyclohexyl; cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclooctenyl, cyclodecenyl, cyclopentadienyl, cyclohexadienyl, cyclooctadienyl Group, monocyclic cycloalkenyl group such as cyclodecadiene; bicyclo [2.2.2] octyl group, tricyclo [5.2.1.0 2,6 ] decyl group, tetracyclo [6.2.1.1 3,6 . 0 2,7 ] dodecyl group, norbornyl group, a polycyclic cycloalkyl group such as adamantyl group and the like.

18及びR19で表される炭素数1〜12の1価の鎖状炭化水素基、炭素数6〜15の1価の芳香族炭化水素基及び炭素数4〜20の1価の脂環式炭化水素基は、フッ素原子で置換されていてもよいが、置換するフッ素原子の数には特に制限はない。これらの基がフッ素原子で置換されている場合には、当該感放射線性樹脂組成物の塗膜の未露光部の撥水性が向上する。 A monovalent chain hydrocarbon group having 1 to 12 carbon atoms, a monovalent aromatic hydrocarbon group having 6 to 15 carbon atoms, and a monovalent alicyclic ring having 4 to 20 carbon atoms represented by R 18 and R 19 The formula hydrocarbon group may be substituted with a fluorine atom, but the number of fluorine atoms to be substituted is not particularly limited. When these groups are substituted with fluorine atoms, the water repellency of the unexposed part of the coating film of the radiation-sensitive resin composition is improved.

上記式(3)で示される構造単位としては、例えば下記式(3−1)〜(3−28)で表される構造単位等が挙げられる。   Examples of the structural unit represented by the above formula (3) include structural units represented by the following formulas (3-1) to (3-28).

Figure 2015072455
Figure 2015072455

Figure 2015072455
Figure 2015072455

Figure 2015072455
Figure 2015072455

Figure 2015072455
Figure 2015072455

上記式(3−1)〜(3−28)中、R17は、上記式(3)と同義である。 In the above formulas (3-1) to (3-28), R 17 has the same meaning as the above formula (3).

構造単位(I)の式(3)で表される構造単位を与える単量体としては、例えばメタクリル酸1−エトキシエチル、メタクリル酸1−ブトキシエチル、メタクリル酸1−(トリシクロデカニルオキシ)エチル、メタクリル酸1−(ペンタシクロペンタデカニルメチルオキシ)エチル、メタクリル酸1−(ペンタシクロペンタデカニルオキシ)エチル、メタクリル酸1−(テトラシクロドデカニルメチルオキシ)エチル、メタクリル酸1−(アダマンチルオキシ)エチル、ペンタフルオロエチルオキシエチレンメタクリレート、ヘプタフルオロプロピルオキシエチレンメタクリレート、ノナフルオロブチルオキシエチレンメタクリレート等が挙げられる。   Examples of the monomer that gives the structural unit represented by the formula (3) of the structural unit (I) include 1-ethoxyethyl methacrylate, 1-butoxyethyl methacrylate, 1- (tricyclodecanyloxy) methacrylate. Ethyl, 1- (pentacyclopentadecanylmethyloxy) ethyl methacrylate, 1- (pentacyclopentadecanyloxy) ethyl methacrylate, 1- (tetracyclododecanylmethyloxy) ethyl methacrylate, 1- (methacrylate Adamantyloxy) ethyl, pentafluoroethyloxyethylene methacrylate, heptafluoropropyloxyethylene methacrylate, nonafluorobutyloxyethylene methacrylate and the like.

上記式(4)中、R21〜R27で表される炭素数1〜12の1価の鎖状炭化水素基としては、例えばメチル基、エチル基、n−プロピル基、n−ブチル基等の直鎖状のアルキル基;i−プロピル基、i−ブチル基、sec−ブチル基、t−ブチル基等の分岐状のアルキル基;エテニル基、n−プロペニル基等の直鎖状のアルケニル基;i−プロペニル基、i−ブテニル基等の分岐状のアルケニル基などが挙げられる。 In the above formula (4), examples of the monovalent chain hydrocarbon group having 1 to 12 carbon atoms represented by R 21 to R 27 include a methyl group, an ethyl group, an n-propyl group, an n-butyl group, and the like. A linear alkyl group; a branched alkyl group such as i-propyl group, i-butyl group, sec-butyl group and t-butyl group; a linear alkenyl group such as ethenyl group and n-propenyl group A branched alkenyl group such as i-propenyl group and i-butenyl group;

21〜R27で表される炭素数1〜12の1価の鎖状炭化水素基は、フッ素原子で置換されていてもよいが、置換するフッ素原子の数には特に制限はない。これらの基がフッ素原子で置換されている場合には、当該感放射線性樹脂組成物の塗膜の未露光部の撥水性が向上する。 The monovalent chain hydrocarbon group having 1 to 12 carbon atoms represented by R 21 to R 27 may be substituted with a fluorine atom, but the number of substituted fluorine atoms is not particularly limited. When these groups are substituted with fluorine atoms, the water repellency of the unexposed part of the coating film of the radiation-sensitive resin composition is improved.

上記式(4)で表される構造単位としては、例えば下記式(4−1)〜(4−5)で表される構造単位等が挙げられる。   Examples of the structural unit represented by the above formula (4) include structural units represented by the following formulas (4-1) to (4-5).

Figure 2015072455
Figure 2015072455

上記式(4−1)〜(4−5)中、R20は、上記式(4)と同義である。 In the above formulas (4-1) to (4-5), R 20 has the same meaning as the above formula (4).

上記式(4)で表される構造単位を与える単量体としては、上記式(4−3)で表される構造単位を与えるテトラヒドロ−2H−ピラン−2−イルメタクリレートが好ましい。   As the monomer that gives the structural unit represented by the above formula (4), tetrahydro-2H-pyran-2-yl methacrylate that gives the structural unit represented by the above formula (4-3) is preferable.

構造単位(I)の含有割合としては、[A]重合体成分を構成する全構造単位に対して、0.1モル%以上が好ましく、1モル%以上がより好ましく、10モル%以上がさらに好ましい。一方、上記含有割合としては80モル%以下が好ましく、60モル%以下がより好ましく、40モル%以下がさらに好ましい。   As a content rate of structural unit (I), 0.1 mol% or more is preferable with respect to all the structural units which comprise a [A] polymer component, 1 mol% or more is more preferable, and 10 mol% or more is further more preferable. On the other hand, the content is preferably 80 mol% or less, more preferably 60 mol% or less, and even more preferably 40 mol% or less.

[構造単位(II)]
構造単位(II)は、架橋性基を含んでいる。当該感放射線性樹脂組成物から形成される硬化膜は、[A]重合体成分が架橋性基を含む構造単位(II)を有することで、[A]重合体成分を構成する重合体同士又は[A]重合体成分を構成する重合体と後述する[D]環状エーテル化合物等との架橋により強度を高めることができる。
[Structural unit (II)]
The structural unit (II) contains a crosslinkable group. The cured film formed from the radiation-sensitive resin composition has [A] polymer components having a structural unit (II) containing a crosslinkable group, so that the polymers constituting the [A] polymer components or [A] The strength can be increased by crosslinking the polymer constituting the polymer component with the [D] cyclic ether compound described later.

上記架橋性基としては、例えば重合性炭素−炭素二重結合を含む基、重合性炭素−炭素三重結合を含む基、オキシラニル基、オキセタニル基、アルコキシメチル基、ホルミル基、アセチル基、ジアルキルアミノメチル基、ジメチロールアミノメチル基等が挙げられる。   Examples of the crosslinkable group include a group containing a polymerizable carbon-carbon double bond, a group containing a polymerizable carbon-carbon triple bond, an oxiranyl group, an oxetanyl group, an alkoxymethyl group, a formyl group, an acetyl group, and a dialkylaminomethyl. Group, dimethylolaminomethyl group and the like.

上記架橋性基としては、(メタ)アクリロイル基、オキシラニル基及びオキセタニル基からなる群より選択される少なくとも1種であることが好ましい。これにより、当該感放射線性樹脂組成物から形成される硬化膜の強度をより高めることができる。   The crosslinkable group is preferably at least one selected from the group consisting of a (meth) acryloyl group, an oxiranyl group, and an oxetanyl group. Thereby, the intensity | strength of the cured film formed from the said radiation sensitive resin composition can be raised more.

構造単位(II)としては、例えば下記式で表される構造単位等が挙げられる。   Examples of the structural unit (II) include a structural unit represented by the following formula.

Figure 2015072455
Figure 2015072455

上記式中、R29は、水素原子又はメチル基である。 In the above formula, R 29 is a hydrogen atom or a methyl group.

構造単位(II)を与える単量体としては、(メタ)アクリロイル基、オキシラニル基又はオキセタニル基を含む単量体が好ましく、オキシラニル基又はオキセタニル基を含む単量体がより好ましく、メタクリル酸グリシジル、3−メタクリロイルオキシメチル−3−エチルオキセタン、3,4−エポキシシクロヘキシルメチルメタアクリレート又は3,4−エポキシトリシクロ[5.2.1.02.6]デシルアクリレートがさらに好ましい。 As the monomer that gives the structural unit (II), a monomer containing a (meth) acryloyl group, an oxiranyl group or an oxetanyl group is preferred, a monomer containing an oxiranyl group or an oxetanyl group is more preferred, glycidyl methacrylate, 3-Methacryloyloxymethyl-3-ethyloxetane, 3,4-epoxycyclohexylmethyl methacrylate or 3,4-epoxytricyclo [5.2.1.0 2.6 ] decyl acrylate is more preferred.

構造単位(II)の含有割合としては、[A]重合体成分を構成する全構造単位に対して、0.1モル%以上が好ましく、1モル%以上がより好ましい。一方、上記含有割合としては80モル%以下が好ましく、60モル%以下がより好ましい。構造単位(II)の含有割合を上記範囲とすることで、形成される硬化膜の強度を効果的に高めることができる。   As a content rate of structural unit (II), 0.1 mol% or more is preferable with respect to all the structural units which comprise a [A] polymer component, and 1 mol% or more is more preferable. On the other hand, the content ratio is preferably 80 mol% or less, and more preferably 60 mol% or less. By making the content rate of structural unit (II) into the said range, the intensity | strength of the cured film formed can be raised effectively.

[構造単位(III)]
構造単位(III)は、フルオロアルキル基及びシロキサン結合を有する基の少なくとも一方を含む。構造単位(III)としては、フルオロアルキル基を含む構造単位(以下、「構造単位(III−1)」ともいう)及びシロキサン結合を有する基を含む構造単位(以下、「構造単位(III−2)」ともいう)等が挙げられる。
[Structural unit (III)]
The structural unit (III) includes at least one of a fluoroalkyl group and a group having a siloxane bond. The structural unit (III) includes a structural unit containing a fluoroalkyl group (hereinafter also referred to as “structural unit (III-1)”) and a structural unit containing a group having a siloxane bond (hereinafter referred to as “structural unit (III-2)”. ) ")) And the like.

(構造単位III−1)
構造単位(III−1)は、フルオロアルキル基を含んでいる(ただし、酸解離性基を含む構造単位(I)に該当するものを除く)。フルオロアルキル基は、アルキル基の一つ以上の水素原子がフッ素原子で置換されたものである。そのため、構造単位(III−1)は、カルボキシル基、水酸基、エステル結合を有する溶媒や樹脂に対して撥水性を示すことができる。
(Structural unit III-1)
The structural unit (III-1) contains a fluoroalkyl group (except for those corresponding to the structural unit (I) containing an acid dissociable group). A fluoroalkyl group is one in which one or more hydrogen atoms of an alkyl group are substituted with fluorine atoms. Therefore, the structural unit (III-1) can exhibit water repellency with respect to a solvent or resin having a carboxyl group, a hydroxyl group, or an ester bond.

当該感放射線性樹脂組成物は、撥水性を示すことができる構造単位(III−1)を有することで、層間絶縁膜、発光素子形成用バンク等の絶縁膜のレベリング性を向上することが可能となる。また、当該感放射線性樹脂組成物は、構造単位(III−1)に起因する撥水性により基板への塗布ムラ等を改善することで塗布性が向上し、特に大型基板に対する塗膜形成に有利となる。   The radiation-sensitive resin composition can improve the leveling properties of insulating films such as interlayer insulating films and light emitting element forming banks by having the structural unit (III-1) capable of exhibiting water repellency. It becomes. In addition, the radiation-sensitive resin composition improves coating properties by improving uneven coating on the substrate due to water repellency resulting from the structural unit (III-1), and is particularly advantageous for forming a coating film on a large substrate. It becomes.

構造単位(III−1)としては、下記式(1)で表される構造単位が好ましい   As the structural unit (III-1), a structural unit represented by the following formula (1) is preferable.

Figure 2015072455
Figure 2015072455

式(1)中、Rは、水素原子又はメチル基である。R及びRは、それぞれ独立して、水素原子、トリフルオロメチル基、ペンタフルオロエチル基、水酸基、炭素数1〜12の1価の脂肪族炭化水素基、炭素数1〜12のアルコキシ基、又は炭素数6〜15の1価の芳香族炭化水素基である。a及びbは、それぞれ独立して、0〜12の整数である。aが2以上の場合、複数のR、及び複数のRは、それぞれ同一でも異なっていてもよい。 In formula (1), R 1 is a hydrogen atom or a methyl group. R 2 and R 3 are each independently a hydrogen atom, a trifluoromethyl group, a pentafluoroethyl group, a hydroxyl group, a monovalent aliphatic hydrocarbon group having 1 to 12 carbon atoms, or an alkoxy group having 1 to 12 carbon atoms. Or a monovalent aromatic hydrocarbon group having 6 to 15 carbon atoms. a and b are each independently an integer of 0 to 12. When a is 2 or more, the plurality of R 2 and the plurality of R 3 may be the same or different.

上記式(1)中のR及びRで表される炭素数1〜12の1価の脂肪族炭化水素基としては、例えばn−オクチル基、メチルヘキシル基、エチルヘキシル基、シクロオクチル基、メチルシクロヘキシル基、シクロヘキシルメチル基等が挙げられる。 Examples of the monovalent aliphatic hydrocarbon group having 1 to 12 carbon atoms represented by R 2 and R 3 in the above formula (1) include an n-octyl group, a methylhexyl group, an ethylhexyl group, a cyclooctyl group, Examples thereof include a methylcyclohexyl group and a cyclohexylmethyl group.

上記R及びRで表される炭素数1〜12のアルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペントキシ基等が挙げられる。 The alkoxy group having 1 to 12 carbon atoms represented by R 2 and R 3, for example, methoxy, ethoxy, propoxy, butoxy, pentoxy, and the like.

上記R及びRで表される炭素数6〜15の1価の芳香族炭化水素基としては例えばフェニル基、ナフチル基等が挙げられる。 Examples of the monovalent aromatic hydrocarbon group having 6 to 15 carbon atoms represented by R 2 and R 3 include a phenyl group and a naphthyl group.

上記R及びRとしては、水素原子、ペンタフルオロエチル基、水酸基が好ましい。 R 2 and R 3 are preferably a hydrogen atom, a pentafluoroethyl group, or a hydroxyl group.

上記aとしては、0〜2の整数が好ましい。   As said a, the integer of 0-2 is preferable.

上記bとしては、0〜4の整数が好ましい。   As said b, the integer of 0-4 is preferable.

上記式(1)で表される構造単位(III−1)としては、例えば下記式(1−1)〜(1−12)で表される構造単位等が挙げられる。   Examples of the structural unit (III-1) represented by the above formula (1) include structural units represented by the following formulas (1-1) to (1-12).

Figure 2015072455
Figure 2015072455

上記式(1−1)〜(1−12)中、Rは上記式(1)と同義である。 In the formulas (1-1) to (1-12), R 1 has the same meaning as the formula (1).

構造単位(III−1)の含有割合としては、[A]重合体成分を構成する全構造単位に対して、0モル%以上が好ましく、1モル%以上がより好ましい。一方、上記含有割合としては80モル%以下が好ましく、60モル%以下がより好ましい。構造単位(III−1)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物から形成されるバンク等の絶縁膜の撥水性と塗布性とをより高いレベルで両立することができる。   As a content rate of structural unit (III-1), 0 mol% or more is preferable with respect to all the structural units which comprise a [A] polymer component, and 1 mol% or more is more preferable. On the other hand, the content ratio is preferably 80 mol% or less, and more preferably 60 mol% or less. By setting the content ratio of the structural unit (III-1) in the above range, it is possible to achieve both higher levels of water repellency and applicability of an insulating film such as a bank formed from the radiation-sensitive resin composition. it can.

(構造単位(III−2))
構造単位(III−2)は、シロキサン結合を有する基を含んでいる。シロキサン結合を有する基は、撥水性を発現する。そのため、構造単位(III−2)は、フルオロアルキル基を含む構造単位(III−1)と同様に、カルボキシル基、水酸基、エステル基を有する溶媒や樹脂に対して撥水性を示すことができる。
(Structural unit (III-2))
The structural unit (III-2) includes a group having a siloxane bond. A group having a siloxane bond exhibits water repellency. Therefore, similarly to the structural unit (III-1) containing a fluoroalkyl group, the structural unit (III-2) can exhibit water repellency with respect to a solvent or a resin having a carboxyl group, a hydroxyl group, or an ester group.

当該感放射線性樹脂組成物は、撥水性を示すことができる構造単位(III−2)を有することで、層間絶縁膜、発光素子形成用バンク等の絶縁膜の撥水性を向上することが可能となる。また、当該感放射線性樹脂組成物は、構造単位(III−2)に由来するレベリング性により基板への塗布ムラ等を改善することで塗布性が向上し、特に大型基板に対する塗膜形成に有利となる。   The radiation-sensitive resin composition can improve the water repellency of insulating films such as interlayer insulating films and light emitting element forming banks by having the structural unit (III-2) capable of exhibiting water repellency. It becomes. In addition, the radiation-sensitive resin composition improves coating properties by improving coating unevenness on the substrate due to leveling properties derived from the structural unit (III-2), and is particularly advantageous for forming a coating film on a large substrate. It becomes.

構造単位(III−2)としては、下記式(2)で表される構造単位が好ましい。   As the structural unit (III-2), a structural unit represented by the following formula (2) is preferable.

Figure 2015072455
Figure 2015072455

式(2)中、Rは、水素原子又はメチル基である。R及びRは、それぞれ独立して、水素原子、炭素数1〜12の1価の脂肪族炭化水素基、炭素数1〜12のアルコキシ基又は炭素数6〜15の1価の芳香族炭化水素基である。R及びRは、それぞれ独立して、水素原子、炭素数1〜12の1価の脂肪族炭化水素基又は下記式(2−1)で表される基である。R〜R11は、それぞれ独立して、水素原子又は炭素数1〜12の1価の炭化水素基である。c及びdは、それぞれ独立して、0〜12の整数である。cが2以上の場合、複数のR、及び複数のRは、それぞれ同一でも異なっていてもよい。dが2以上の場合、複数のR、及び複数のRは、それぞれ同一でも異なっていてもよい。 In formula (2), R 4 is a hydrogen atom or a methyl group. R 5 and R 6 are each independently a hydrogen atom, a monovalent aliphatic hydrocarbon group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, or a monovalent aromatic group having 6 to 15 carbon atoms. It is a hydrocarbon group. R 7 and R 8 are each independently a hydrogen atom, a monovalent aliphatic hydrocarbon group having 1 to 12 carbon atoms, or a group represented by the following formula (2-1). R 9 to R 11 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. c and d are each independently an integer of 0 to 12. When c is 2 or more, the plurality of R 5 and the plurality of R 6 may be the same or different. When d is 2 or more, the plurality of R 7 and the plurality of R 8 may be the same or different.

Figure 2015072455
Figure 2015072455

式(2−1)中、R12〜R16は、それぞれ独立して、水素原子、炭素数1〜12の1価の脂肪族炭化水素基又は炭素数6〜12の1価の芳香族炭化水素基である。eは、1〜12の整数である。eが2以上の場合、複数のR12、及び複数のR13は、それぞれ同一でも異なっていてもよい。*は、上記式(2)におけるR及びRが結合するケイ素原子との結合部位を表す。 In formula (2-1), R 12 to R 16 each independently represent a hydrogen atom, a monovalent aliphatic hydrocarbon group having 1 to 12 carbon atoms, or a monovalent aromatic carbon group having 6 to 12 carbon atoms. It is a hydrogen group. e is an integer of 1-12. When e is 2 or more, the plurality of R 12 and the plurality of R 13 may be the same or different from each other. * Represents a bonding site with the silicon atom to which R 7 and R 8 in the formula (2) are bonded.

上記式(2)のR〜R11で表される炭素数1〜12の1価の脂肪族炭化水素基としては、例えばメチル基、エチル基、n−プロピル基、n−ブチル基、n−ペンチル基、n−ヘキシル基、n−オクチル基等の直鎖状アルキル基;i−プロピル基、i−ブチル基、t−ブチル基、ネオペンチル基等の分岐状のアルキル基などが挙げられる。 Examples of the monovalent aliphatic hydrocarbon group having 1 to 12 carbon atoms represented by R 5 to R 11 in the above formula (2) include, for example, a methyl group, an ethyl group, an n-propyl group, an n-butyl group, n -Linear alkyl groups such as -pentyl group, n-hexyl group and n-octyl group; branched alkyl groups such as i-propyl group, i-butyl group, t-butyl group and neopentyl group.

上記R及びRで表される炭素数1〜12のアルコキシ基としては、例えばメトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基等が挙げられる。 Examples of the alkoxy group having 1 to 12 carbon atoms represented by R 5 and R 6 include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, a pentyloxy group, a hexyloxy group, a heptyloxy group, and an octyloxy group. Is mentioned.

上記R及びRで表される炭素数6〜15の1価の芳香族炭化水素基としては、例えばフェニル基、ナフチル基等が挙げられる。 Examples of the monovalent aromatic hydrocarbon group having 6 to 15 carbon atoms represented by R 5 and R 6 include a phenyl group and a naphthyl group.

上記R12〜R16で表される炭素数1〜12の1価の脂肪族炭化水素基としては、上記R〜R11として例示した基と同様なものが挙げられる。 Examples of the monovalent aliphatic hydrocarbon group R 12 1 to 12 carbon atoms represented by to R 16, those similar to the groups exemplified as the above R 5 to R 11 can be mentioned.

上記R12〜R16で表される炭素数6〜12の1価の芳香族炭化水素基としては、例えばフェニル基、ナフチル基等が挙げられる。 Examples of the monovalent aromatic hydrocarbon group having 6 to 12 carbon atoms represented by R 12 to R 16 include a phenyl group and a naphthyl group.

上記式(2)で表される構造単位(III−2)を与える単量体としては、例えば下記式(2−A)〜(2−F)で表される単量体等が挙げられる。   Examples of the monomer that gives the structural unit (III-2) represented by the above formula (2) include monomers represented by the following formulas (2-A) to (2-F).

Figure 2015072455
Figure 2015072455

式(2−A)〜(2−F)中、f、g及びhは、1〜12の整数である。   In formulas (2-A) to (2-F), f, g and h are integers of 1 to 12.

構造単位(III−2)の含有割合としては、[A]重合体成分を構成する全構造単位に対して、0モル%以上が好ましく、1モル%以上がより好ましい。一方、上記含有割合としては80モル%以下が好ましく、60モル%以下がより好ましい(III−2)の含有割合を上記範囲とすることで、当該感放射線性樹脂組成物から形成されるバンク等の絶縁膜の撥水性と塗布性とを両立することができる。   As a content rate of structural unit (III-2), 0 mol% or more is preferable with respect to all the structural units which comprise a [A] polymer component, and 1 mol% or more is more preferable. On the other hand, the content ratio is preferably 80 mol% or less, more preferably 60 mol% or less, and the content ratio of (III-2) within the above range makes it possible to form a bank formed from the radiation-sensitive resin composition. Both the water repellency and the coating property of the insulating film can be achieved.

[その他の構造単位]
[A]重合体成分は、本発明の効果を損なわない範囲で、構造単位(I)〜構造単位(III)以外のその他の構造単位を有していてもよい。
[Other structural units]
[A] The polymer component may have other structural units other than the structural unit (I) to the structural unit (III) as long as the effects of the present invention are not impaired.

その他の構造単位を与える単量体としては、例えば不飽和カルボン酸及びその無水物、水酸基を有する(メタ)アクリル酸エステル、(メタ)アクリル酸鎖状アルキルエステル、(メタ)アクリル酸脂環式エステル、(メタ)アクリル酸アリールエステル、不飽和芳香族化合物、N−置換マレイミド、共役ジエン、テトラヒドロフラン骨格等をもつ不飽和化合物などが挙げられる。   Other monomers that give structural units include, for example, unsaturated carboxylic acids and anhydrides thereof, (meth) acrylic acid esters having hydroxyl groups, (meth) acrylic acid chain alkyl esters, (meth) acrylic acid alicyclics. Examples include esters, (meth) acrylic acid aryl esters, unsaturated aromatic compounds, N-substituted maleimides, conjugated dienes, and unsaturated compounds having a tetrahydrofuran skeleton.

不飽和カルボン酸及びその無水物としては、例えば
アクリル酸、メタクリル酸、クロトン酸等の不飽和モノカルボン酸、マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸等の不飽和ジカルボン酸、又はその無水物;
コハク酸モノ〔2−(メタ)アクリロイルオキシエチル〕、フタル酸モノ〔2−(メタ)アクリロイルオキシエチル〕、へキサヒドロフタル酸モノ2−(メタクリロイルオキシ)エチル等の多価カルボン酸のモノ[(メタ)アクリロイルオキシアルキル]エステル;
ω−カルボキシポリカプロラクトンモノ(メタ)アクリレート等の両末端にカルボキシル基と水酸基とを有するポリマーのモノ(メタ)アクリレート;
5−カルボキシビシクロ[2.2.1]ヘプト−2−エン、5,6−ジカルボキシビシクロ[2.2.1]ヘプト−2−エン、5−カルボキシ−5−メチルビシクロ[2.2.1]ヘプト−2−エン、5−カルボキシ−5−エチルビシクロ[2.2.1]ヘプト−2−エン、5−カルボキシ−6−メチルビシクロ[2.2.1]ヘプト−2−エン、5−カルボキシ−6−エチルビシクロ[2.2.1]ヘプト−2−エン、5,6−ジカルボキシビシクロ[2.2.1]ヘプト−2−エン無水物等のカルボキシル基を有する不飽和多環式化合物又はその無水物などが挙げられる。
Examples of unsaturated carboxylic acids and anhydrides thereof include unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid and crotonic acid, unsaturated dicarboxylic acids such as maleic acid, fumaric acid, citraconic acid, mesaconic acid and itaconic acid, or Its anhydride;
Mono [2- (meth) acryloyloxyethyl] succinate, mono [2- (meth) acryloyloxyethyl] phthalate, mono 2- (methacryloyloxy) ethyl hexahydrophthalate mono [ (Meth) acryloyloxyalkyl] ester;
mono (meth) acrylate of a polymer having a carboxyl group and a hydroxyl group at both ends, such as ω-carboxypolycaprolactone mono (meth) acrylate;
5-carboxybicyclo [2.2.1] hept-2-ene, 5,6-dicarboxybicyclo [2.2.1] hept-2-ene, 5-carboxy-5-methylbicyclo [2.2. 1] hept-2-ene, 5-carboxy-5-ethylbicyclo [2.2.1] hept-2-ene, 5-carboxy-6-methylbicyclo [2.2.1] hept-2-ene, Unsaturation having a carboxyl group such as 5-carboxy-6-ethylbicyclo [2.2.1] hept-2-ene and 5,6-dicarboxybicyclo [2.2.1] hept-2-ene anhydride Examples thereof include polycyclic compounds or anhydrides thereof.

これらのうち、不飽和モノカルボン酸又は不飽和ジカルボン酸の無水物が好ましく、(メタ)アクリル酸又は無水マレイン酸が、共重合反応性、アルカリ水溶液に対する溶解性及び入手の容易性からより好ましい。   Among these, an anhydride of unsaturated monocarboxylic acid or unsaturated dicarboxylic acid is preferable, and (meth) acrylic acid or maleic anhydride is more preferable from the viewpoint of copolymerization reactivity, solubility in an alkaline aqueous solution, and availability.

水酸基を有する(メタ)アクリル酸エステルとしては、例えばアクリル酸2−ヒドロキシエチル、アクリル酸3−ヒドロキシプロピル、アクリル酸4−ヒドロキシブチル、アクリル酸5−ヒドロキシペンチル、アクリル酸6−ヒドロキシヘキシル、メタクリル酸2−ヒドロキシエチル、メタクリル酸3−ヒドロキシプロピル、メタクリル酸4−ヒドロキシブチル、メタクリル酸5−ヒドロキシペンチル、メタクリル酸6−ヒドロキシヘキシル等が挙げられる。   Examples of the (meth) acrylic acid ester having a hydroxyl group include 2-hydroxyethyl acrylate, 3-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 5-hydroxypentyl acrylate, 6-hydroxyhexyl acrylate, and methacrylic acid. Examples include 2-hydroxyethyl, 3-hydroxypropyl methacrylate, 4-hydroxybutyl methacrylate, 5-hydroxypentyl methacrylate, and 6-hydroxyhexyl methacrylate.

(メタ)アクリル酸鎖状アルキルエステルとしては、例えばメタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−ブチル、メタクリル酸sec−ブチル、メタクリル酸t−ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸イソデシル、メタクリル酸n−ラウリル、メタクリル酸トリデシル、メタクリル酸n−ステアリル、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸sec−ブチル、アクリル酸t−ブチル、アクリル酸2−エチルヘキシル、アクリル酸イソデシル、アクリル酸n−ラウリル、アクリル酸トリデシル、アクリル酸n−ステアリル等が挙げられる。   Examples of the (meth) acrylic acid chain alkyl ester include methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, sec-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, isodecyl methacrylate, methacrylic acid. N-lauryl acid, tridecyl methacrylate, n-stearyl methacrylate, methyl acrylate, ethyl acrylate, n-butyl acrylate, sec-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, isodecyl acrylate , N-lauryl acrylate, tridecyl acrylate, n-stearyl acrylate, and the like.

(メタ)アクリル酸脂環式エステルとしては、例えばメタクリル酸シクロヘキシル、メタクリル酸2−メチルシクロヘキシル、メタクリル酸トリシクロ[5.2.1.02,6]デカン−8−イル、メタクリル酸トリシクロ[5.2.1.02,6]デカン−8−イルオキシエチル、メタクリル酸イソボロニル、アクリル酸シクロヘキシル、アクリル酸2−メチルシクロヘキシル、アクリル酸トリシクロ[5.2.1.02,6]デカン−8−イル、アクリル酸トリシクロ[5.2.1.02,6]デカン−8−イルオキシエチル、アクリル酸イソボロニル等が挙げられる。 Examples of (meth) acrylic acid alicyclic esters include cyclohexyl methacrylate, 2-methylcyclohexyl methacrylate, tricyclo [5.2.1.0 2,6 ] decane-8-yl methacrylate, and tricyclomethacrylate [5. .2.1.0 2,6 ] decan-8-yloxyethyl, isobornyl methacrylate, cyclohexyl acrylate, 2-methylcyclohexyl acrylate, tricyclo [5.2.1.0 2,6 ] decane- Examples include 8-yl, tricyclo [5.2.1.0 2,6 ] decan-8-yloxyethyl acrylate, and isobornyl acrylate.

(メタ)アクリル酸アリールエステルとしては、例えばメタクリル酸フェニル、メタクリル酸ベンジル、アクリル酸フェニル、アクリル酸ベンジル等が挙げられる。   Examples of the (meth) acrylic acid aryl ester include phenyl methacrylate, benzyl methacrylate, phenyl acrylate, and benzyl acrylate.

不飽和芳香族化合物としては、例えばスチレン、α−メチルスチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、p−メトキシスチレン等が挙げられる。   Examples of the unsaturated aromatic compound include styrene, α-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, and p-methoxystyrene.

N−置換マレイミドとしては、例えばN−フェニルマレイミド、N−シクロヘキシルマレイミド、N−トリルマレイミド、N−ナフチルマレイミド、N−エチルマレイミド、N−ヘキシルマレイミド、N−ベンジルマレイミド等が挙げられる。   Examples of the N-substituted maleimide include N-phenylmaleimide, N-cyclohexylmaleimide, N-tolylmaleimide, N-naphthylmaleimide, N-ethylmaleimide, N-hexylmaleimide, N-benzylmaleimide and the like.

共役ジエンとしては、例えば1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン等が挙げられる。   Examples of the conjugated diene include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene and the like.

テトラヒドロフラン骨格等を持つ不飽和化合物としては、例えば3−テトラヒドロフルフリル(メタ)アクリレート、2−メタクリロイルオキシ−プロピオン酸テトラヒドロフルフリルエステル、3−(メタ)アクリロイルオキシテトラヒドロフラン−2−オン等が挙げられる。   Examples of the unsaturated compound having a tetrahydrofuran skeleton include 3-tetrahydrofurfuryl (meth) acrylate, 2-methacryloyloxy-propionic acid tetrahydrofurfuryl ester, 3- (meth) acryloyloxytetrahydrofuran-2-one, and the like. .

その他の構造単位の含有割合としては、[A]重合体成分を構成する全構造単位に対して、通常50モル%以下であり、上限として好ましくは30モル%、より好ましくは25モル%である。一方下限として好ましくは5モル%、より好ましくは10モル%である。その他の構造単位の含有割合を上記範囲とすることで、アルカリ水溶液に対する溶解性を最適化すると共に放射線性感度により優れる感放射線性樹脂組成物が得られる。   The content ratio of other structural units is usually 50 mol% or less with respect to all the structural units constituting the [A] polymer component, and the upper limit is preferably 30 mol%, more preferably 25 mol%. . On the other hand, the lower limit is preferably 5 mol%, more preferably 10 mol%. By setting the content ratio of other structural units in the above range, a radiation-sensitive resin composition that optimizes solubility in an alkaline aqueous solution and is superior in radiation sensitivity can be obtained.

<[A]重合体成分の合成方法>
[A]重合体成分は、例えば所定の構造単位に対応する単量体を、ラジカル重合開始剤を使用し、適当な溶媒中で重合することにより製造できる。例えば単量体及びラジカル開始剤を含有する溶液を、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法、単量体を含有する溶液と、ラジカル開始剤を含有する溶液とを各別に、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法、各々の単量体を含有する複数種の溶液と、ラジカル開始剤を含有する溶液とを各別に、反応溶媒又は単量体を含有する溶液に滴下して重合反応させる方法等の方法で合成することが好ましい。
<[A] Polymer component synthesis method>
[A] The polymer component can be produced, for example, by polymerizing a monomer corresponding to a predetermined structural unit in a suitable solvent using a radical polymerization initiator. For example, a method of dropping a solution containing a monomer and a radical initiator into a reaction solvent or a solution containing the monomer to cause a polymerization reaction, a solution containing the monomer, and a solution containing the radical initiator A method in which a polymerization reaction is carried out by dropping the reaction solution into a solution containing a reaction solvent or a monomer, a plurality of types of solutions each containing a monomer, and a solution containing a radical initiator are reacted separately. It is preferable to synthesize by a method such as a method of dropping a solvent or a monomer-containing solution to cause a polymerization reaction.

[A]重合体成分の重合反応に用いられる溶媒としては、例えば後述する「<感放射線性樹脂組成物の調製>」の項において例示するものと同様の溶媒等が挙げられる。   [A] Examples of the solvent used for the polymerization reaction of the polymer component include the same solvents as those exemplified in the section “<Preparation of Radiation Sensitive Resin Composition>” described below.

重合反応に用いられる重合開始剤としては、一般的にラジカル重合開始剤として知られているものが使用できるが、例えば2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス−(4−メトキシ−2,4−ジメチルバレロニトリル)、2,2’−アゾビス(2−メチルプロピオン酸メチル)等のアゾ化合物;ベンゾイルペルオキシド、ラウロイルペルオキシド、t−ブチルペルオキシピバレート、1,1’−ビス−(t−ブチルペルオキシ)シクロヘキサン等の有機過酸化物;過酸化水素等が挙げられる。   As the polymerization initiator used in the polymerization reaction, those generally known as radical polymerization initiators can be used. For example, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2 , 4-dimethylvaleronitrile), 2,2′-azobis- (4-methoxy-2,4-dimethylvaleronitrile), 2,2′-azobis (methyl 2-methylpropionate), etc .; benzoyl peroxide , Organic peroxides such as lauroyl peroxide, t-butylperoxypivalate, 1,1′-bis- (t-butylperoxy) cyclohexane; hydrogen peroxide and the like.

[A]重合体成分の重合反応においては、分子量を調整するために分子量調整剤を使用することもできる。分子量調整剤としては、例えばクロロホルム、四臭化炭素等のハロゲン化炭化水素類;n−ヘキシルメルカプタン、n−オクチルメルカプタン、n−ドデシルメルカプタン、t−ドデシルメルカプタン、チオグリコール酸等のメルカプタン類;ジメチルキサントゲンスルフィド、ジイソプロピルキサントゲンジスルフィド等のキサントゲン類;ターピノーレン、α−メチルスチレンダイマーなどが挙げられる。   [A] In the polymerization reaction of the polymer component, a molecular weight modifier may be used to adjust the molecular weight. Examples of the molecular weight modifier include halogenated hydrocarbons such as chloroform and carbon tetrabromide; mercaptans such as n-hexyl mercaptan, n-octyl mercaptan, n-dodecyl mercaptan, t-dodecyl mercaptan, and thioglycolic acid; Xanthogens such as xanthogen sulfide and diisopropylxanthogen disulfide; terpinolene, α-methylstyrene dimer and the like.

[A]重合体のゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算重量平均分子量(Mw)としては、2.0×10以上1.0×10以下が好ましく、5.0×10以上5.0×10以下がより好ましい。[A]重合体成分のMwを上記範囲とすることで当該感放射線性樹脂組成物の放射線感度及び現像性を高めることができる。 [A] The weight average molecular weight (Mw) in terms of polystyrene by gel permeation chromatography (GPC) of the polymer is preferably 2.0 × 10 3 or more and 1.0 × 10 5 or less, and preferably 5.0 × 10 3 or more. 5.0 × 10 4 or less is more preferable. [A] By making Mw of a polymer component into the said range, the radiation sensitivity and developability of the said radiation sensitive resin composition can be improved.

[A]重合体成分のGPCによるポリスチレン換算数平均分子量(Mn)としては、2.0×10以上1.0×10以下が好ましく、5.0×10以上5.0×10以下がより好ましい。[A]重合体のMnを上記範囲とすることで、当該感放射線性樹脂組成物の塗膜の硬化時の硬化反応性を向上させることができる。 [A] The number average molecular weight (Mn) in terms of polystyrene by GPC of the polymer component is preferably 2.0 × 10 3 or more and 1.0 × 10 5 or less, and 5.0 × 10 3 or more and 5.0 × 10 4. The following is more preferable. [A] By making Mn of a polymer into the said range, the cure reactivity at the time of hardening of the coating film of the said radiation sensitive resin composition can be improved.

[A]重合体成分の分子量分布(Mw/Mn)としては、3.0以下が好ましく、2.6以下がより好ましい。[A]重合体成分のMw/Mnを上記範囲とすることで、得られる硬化膜の感度を高めることができる。   [A] The molecular weight distribution (Mw / Mn) of the polymer component is preferably 3.0 or less, and more preferably 2.6 or less. [A] By making Mw / Mn of a polymer component into the said range, the sensitivity of the cured film obtained can be improved.

<[B]感放射性酸発生体>
[B]感放射性酸発生体は、放射線の照射によって酸を発生する化合物である。放射線としては、例えば可視光線、紫外線、遠紫外線、電子線、X線等を使用できる。当該感放射線性樹脂組成物が[B]感放射性酸発生体を含有することで、当該感放射線性樹脂組成物は感放射線特性を発揮することができ、かつ良好な放射線感度を有することができる。当該感放射線性樹脂組成物における[B]感放射性酸発生体の含有形態としては、後述するように化合物の形態(以下、適宜「[B]感放射性酸発生剤」と称する)でも、[A]重合体成分を構成する重合体の一部として組み込まれた光酸発生基の形態でも、これらの両方の形態でもよい。これらの[B]感放射性酸発生体は、単独で使用しても2種類以上を併用してもよい。
<[B] Radioactive acid generator>
[B] The radioactive acid generator is a compound that generates an acid upon irradiation with radiation. As the radiation, for example, visible light, ultraviolet light, far ultraviolet light, electron beam, X-ray or the like can be used. When the radiation-sensitive resin composition contains the [B] radiation-sensitive acid generator, the radiation-sensitive resin composition can exhibit radiation-sensitive characteristics and can have good radiation sensitivity. . The inclusion form of the [B] radiation-sensitive acid generator in the radiation-sensitive resin composition is a compound form (hereinafter referred to as “[B] radiation-sensitive acid generator” as appropriate) as described later. It may be in the form of a photoacid generating group incorporated as part of the polymer constituting the polymer component, or in both forms. These [B] radioactive acid generators may be used alone or in combination of two or more.

[B]感放射性酸発生体としては、例えばオキシムスルホネート化合物、オニウム塩、N−スルホニルオキシイミド化合物、ハロゲン含有化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物、カルボン酸エステル化合物等が挙げられる。   [B] Examples of the radiation-sensitive acid generator include oxime sulfonate compounds, onium salts, N-sulfonyloxyimide compounds, halogen-containing compounds, diazomethane compounds, sulfone compounds, sulfonic acid ester compounds, and carboxylic acid ester compounds.

[オキシムスルホネート化合物]
オキシムスルホネート化合物としては、下記式(5)で表されるオキシムスルホネート基を含む化合物が好ましい。
[Oxime sulfonate compound]
As the oxime sulfonate compound, a compound containing an oxime sulfonate group represented by the following formula (5) is preferable.

Figure 2015072455
Figure 2015072455

式(5)中、R28は、アルキル基、1価の脂環式炭化水素基、アリール基又はこれらの基の水素原子の一部若しくは全部を置換基で置換した基である。 In formula (5), R 28 represents an alkyl group, a monovalent alicyclic hydrocarbon group, an aryl group, or a group in which part or all of the hydrogen atoms of these groups have been substituted with a substituent.

上記R28で表されるアルキル基としては、炭素数1〜12の直鎖状又は分岐状のアルキル基が好ましい。 The alkyl group represented by R 28 is preferably a linear or branched alkyl group having 1 to 12 carbon atoms.

上記R28で表される1価の脂環式炭化水素基としては、炭素数4〜12の脂環式炭化水素基が好ましい。 The monovalent alicyclic hydrocarbon group represented by R 28 is preferably an alicyclic hydrocarbon group having 4 to 12 carbon atoms.

上記R28で表されるアリール基としては、炭素数6〜20のアリール基が好ましく、フェニル基、ナフチル基、トリル基又はキシリル基がより好ましい。 The aryl group represented by R 28 is preferably an aryl group having 6 to 20 carbon atoms, and more preferably a phenyl group, a naphthyl group, a tolyl group, or a xylyl group.

上記置換基としては、例えば炭素数1〜5のアルキル基、アルコキシ基、オキソ基、ハロゲン原子等が挙げられる。   As said substituent, a C1-C5 alkyl group, an alkoxy group, an oxo group, a halogen atom etc. are mentioned, for example.

上記式(5)で表される基を含有する化合物としては、例えば下記式(5−1)〜(5−3)で表されるオキシムスルホネート化合物等が挙げられる。   Examples of the compound containing a group represented by the above formula (5) include oxime sulfonate compounds represented by the following formulas (5-1) to (5-3).

Figure 2015072455
Figure 2015072455

上記式(5−1)〜(5−3)中、R28は、上記式(5)と同義である。上記式(5−1)及び式(5−2)中、R30は、炭素数1〜12のアルキル基、炭素数1〜12のフルオロアルキル基である。式(5−3)中、Xは、アルキル基、アルコキシ基、又はハロゲン原子である。iは、0〜3の整数である。但し、iが2又は3の場合、複数のXは同一であっても異なっていてもよい。 R < 28 > is synonymous with the said Formula (5) in said Formula (5-1)-(5-3). The formula (5-1) and formula (5-2), R 30 represents an alkyl group having 1 to 12 carbon atoms, a fluoroalkyl group having 1 to 12 carbon atoms. In formula (5-3), X represents an alkyl group, an alkoxy group, or a halogen atom. i is an integer of 0-3. However, when i is 2 or 3, a plurality of X may be the same or different.

上記Xで表されるアルキル基としては、炭素数1〜4の直鎖状又は分岐状のアルキル基が好ましい。上記Xで表されるアルコキシ基としては、炭素数1〜4の直鎖状又は分岐状のアルコキシ基が好ましい。上記Xで表されるハロゲン原子としては、塩素原子又はフッ素原子が好ましい   The alkyl group represented by X is preferably a linear or branched alkyl group having 1 to 4 carbon atoms. The alkoxy group represented by X is preferably a linear or branched alkoxy group having 1 to 4 carbon atoms. The halogen atom represented by X is preferably a chlorine atom or a fluorine atom.

上記(5−3)で表されるオキシムスルホネート化合物としては、例えば下記式(5−4)〜(5−8)で表される化合物等が挙げられる。   Examples of the oxime sulfonate compound represented by the above (5-3) include compounds represented by the following formulas (5-4) to (5-8).

Figure 2015072455
Figure 2015072455

上記式(5−4)〜(5−8)で表される化合物は、それぞれ(5−プロピルスルフォニルオキシイミノ−5H−チオフェン−2−イリデン)−(2−メチルフェニル)アセトニトリル、(5−オクチルスルフォニルオキシイミノ−5H−チオフェン−2−イリデン)−(2−メチルフェニル)アセトニトリル、(カンファースルフォニルオキシイミノ−5H−チオフェン−2−イリデン)−(2−メチルフェニル)アセトニトリル、(5−p−トルエンスルフォニルオキシイミノ−5H−チオフェン−2−イリデン)−(2−メチルフェニル)アセトニトリル、(2−(オクチルスルホニルオキシイミノ)−2−(4−メトキシフェニル)アセトニトリルであり、市販品として入手できる。   The compounds represented by the above formulas (5-4) to (5-8) are respectively (5-propylsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile, (5-octyl). Sulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile, (camphorsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile, (5-p-toluene) They are sulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile and (2- (octylsulfonyloxyimino) -2- (4-methoxyphenyl) acetonitrile, which are commercially available.

[N−スルホニルオキシイミド化合物]
N−スルホニルオキシイミド化合物としては、例えばN−(トリフルオロメチルスルホニルオキシ)スクシンイミド、N−(カンファスルホニルオキシ)スクシンイミド、N−(4−メチルフェニルスルホニルオキシ)スクシンイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)スクシンイミド、N−(4−フルオロフェニルスルホニルオキシ)スクシンイミド、N−(トリフルオロメチルスルホニルオキシ)フタルイミド、N−(カンファスルホニルオキシ)フタルイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)フタルイミド、N−(2−フルオロフェニルスルホニルオキシ)フタルイミド、N−(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N−(カンファスルホニルオキシ)ジフェニルマレイミド、4−メチルフェニルスルホニルオキシ)ジフェニルマレイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)ジフェニルマレイミド、N−(4−フルオロフェニルスルホニルオキシ)ジフェニルマレイミド、N−(4−フルオロフェニルスルホニルオキシ)ジフェニルマレイミド、N−(フェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−メチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(トリフルオロメタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(ノナフルオロブタンスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(カンファスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(カンファスルホニルオキシ)−7−オキサビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(トリフルオロメチルスルホニルオキシ)−7−オキサビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−メチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−メチルフェニルスルホニルオキシ)−7−オキサビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)−7−オキサビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−フルオロフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(4−フルオロフェニルスルホニルオキシ)−7−オキサビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(トリフルオロメチルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン−5,6−オキシ−2,3−ジカルボキシイミド、N−(カンファスルホニルオキシ)ビシクロ[2.2.1]ヘプタン−5,6−オキシ−2,3−ジカルボキシイミド、N−(4−メチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン−5,6−オキシ−2,3−ジカルボキシイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン−5,6−オキシ−2,3−ジカルボキシイミド、N−(4−フルオロフェニルスルホニルオキシ)ビシクロ[2.2.1]ヘプタン−5,6−オキシ−2,3−ジカルボキシイミド、N−(トリフルオロメチルスルホニルオキシ)ナフチルジカルボキシイミド、N−(カンファスルホニルオキシ)ナフチルジカルボキシイミド、N−(4−メチルフェニルスルホニルオキシ)ナフチルジカルボキシイミド、N−(フェニルスルホニルオキシ)ナフチルジカルボキシイミド、N−(2−トリフルオロメチルフェニルスルホニルオキシ)ナフチルジカルボキシイミド、N−(4−フルオロフェニルスルホニルオキシ)ナフチルジカルボキシイミド、N−(ペンタフルオロエチルスルホニルオキシ)ナフチルジカルボキシイミド、N−(ヘプタフルオロプロピルスルホニルオキシ)ナフチルジカルボキシイミド、N−(ノナフルオロブチルスルホニルオキシ)ナフチルジカルボキシイミド、N−(エチルスルホニルオキシ)ナフチルジカルボキシイミド、N−(プロピルスルホニルオキシ)ナフチルジカルボキシイミド、N−(ブチルスルホニルオキシ)ナフチルジカルボキシイミド、N−(ペンチルスルホニルオキシ)ナフチルジカルボキシイミド、N−(ヘキシルスルホニルオキシ)ナフチルジカルボキシイミド、N−(ヘプチルスルホニルオキシ)ナフチルジカルボキシイミド、N−(オクチルスルホニルオキシ)ナフチルジカルボキシイミド、N−(ノニルスルホニルオキシ)ナフチルジカルボキシイミド等が挙げられる。
[N-sulfonyloxyimide compound]
Examples of the N-sulfonyloxyimide compound include N- (trifluoromethylsulfonyloxy) succinimide, N- (camphorsulfonyloxy) succinimide, N- (4-methylphenylsulfonyloxy) succinimide, N- (2-trifluoromethyl). Phenylsulfonyloxy) succinimide, N- (4-fluorophenylsulfonyloxy) succinimide, N- (trifluoromethylsulfonyloxy) phthalimide, N- (camphorsulfonyloxy) phthalimide, N- (2-trifluoromethylphenylsulfonyloxy) Phthalimide, N- (2-fluorophenylsulfonyloxy) phthalimide, N- (trifluoromethylsulfonyloxy) diphenylmaleimide, N- (camphorsulfonyloxy) Phenylmaleimide, 4-methylphenylsulfonyloxy) diphenylmaleimide, N- (2-trifluoromethylphenylsulfonyloxy) diphenylmaleimide, N- (4-fluorophenylsulfonyloxy) diphenylmaleimide, N- (4-fluorophenylsulfonyloxy) ) Diphenylmaleimide, N- (phenylsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (4-methylphenylsulfonyloxy) bicyclo [2.2.1]. ] Hept-5-ene-2,3-dicarboximide, N- (trifluoromethanesulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (nonafluoro) Butanesulfonyloxy) bicyclo [2.2 1] Hept-5-ene-2,3-dicarboximide, N- (camphorsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (camphorsulfonyl) Oxy) -7-oxabicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (trifluoromethylsulfonyloxy) -7-oxabicyclo [2.2.1] hept -5-ene-2,3-dicarboximide, N- (4-methylphenylsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (4- Methylphenylsulfonyloxy) -7-oxabicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2-trifluoromethylphenylsulfonyloxy) B) Bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (2-trifluoromethylphenylsulfonyloxy) -7-oxabicyclo [2.2.1] hept- 5-ene-2,3-dicarboximide, N- (4-fluorophenylsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (4-fluoro Phenylsulfonyloxy) -7-oxabicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (trifluoromethylsulfonyloxy) bicyclo [2.2.1] heptane-5 , 6-oxy-2,3-dicarboximide, N- (camphorsulfonyloxy) bicyclo [2.2.1] heptane-5,6-oxy-2,3-dicarboximide N- (4-methylphenylsulfonyloxy) bicyclo [2.2.1] heptane-5,6-oxy-2,3-dicarboximide, N- (2-trifluoromethylphenylsulfonyloxy) bicyclo [2. 2.1] Heptane-5,6-oxy-2,3-dicarboximide, N- (4-fluorophenylsulfonyloxy) bicyclo [2.2.1] heptane-5,6-oxy-2,3- Dicarboximide, N- (trifluoromethylsulfonyloxy) naphthyl dicarboximide, N- (camphorsulfonyloxy) naphthyl dicarboximide, N- (4-methylphenylsulfonyloxy) naphthyl dicarboximide, N- (phenylsulfonyl) Oxy) naphthyl dicarboximide, N- (2-trifluoromethylphenyl) Sulfonyloxy) naphthyl dicarboximide, N- (4-fluorophenylsulfonyloxy) naphthyl dicarboximide, N- (pentafluoroethylsulfonyloxy) naphthyl dicarboximide, N- (heptafluoropropylsulfonyloxy) naphthyl dicarboximide, N- (nonafluorobutylsulfonyloxy) naphthyl dicarboximide, N- (ethylsulfonyloxy) naphthyl dicarboximide, N- (propylsulfonyloxy) naphthyl dicarboximide, N- (butylsulfonyloxy) naphthyl dicarboximide, N- (pentylsulfonyloxy) naphthyl dicarboximide, N- (hexylsulfonyloxy) naphthyl dicarboximide, N- (heptylsulfonyloxy) naphthy Rudicarboximide, N- (octylsulfonyloxy) naphthyl dicarboximide, N- (nonylsulfonyloxy) naphthyl dicarboximide and the like.

オニウム塩、ハロゲン含有化合物、ジアゾメタン化合物、スルホン化合物、スルホン酸エステル化合物、カルボン酸エステル化合物等は、特開2011−232632号公報に記載の化合物を使用することができる。   As the onium salt, the halogen-containing compound, the diazomethane compound, the sulfone compound, the sulfonic acid ester compound, the carboxylic acid ester compound, and the like, the compounds described in JP 2011-232632 A can be used.

[B]感放射性酸発生体としては、オキシムスルホネート化合物、N−スルホニルオキシイミド化合物が好ましく、オキシムスルホネート化合物がより好ましい。上記オキシムスルホネート化合物としては、上記式(5)で表されるオキシムスルホネート基を含む化合物が好ましく、上記式(5−4)〜(5−8)で表される化合物がより好ましい。   [B] The radiation-sensitive acid generator is preferably an oxime sulfonate compound or an N-sulfonyloxyimide compound, and more preferably an oxime sulfonate compound. As said oxime sulfonate compound, the compound containing the oxime sulfonate group represented by said Formula (5) is preferable, and the compound represented by said Formula (5-4)-(5-8) is more preferable.

当該感放射線性樹脂組成物は、[B]感放射性酸発生体として例示した化合物を使用することで、放射線感度を向上させることができる。   The said radiation sensitive resin composition can improve radiation sensitivity by using the compound illustrated as a [B] radiation sensitive acid generator.

[B]感放射性酸発生体の含有量としては、[A]重合体成分100質量部に対して、0.1質量部以上が好ましく1質量部以上がより好ましい。一方、上記含有量としては10質量部以下が好ましく、5質量部以下がより好ましい。[B]感放射性酸発生体の含有量を上記範囲とすることで、当該感放射線性樹脂組成物の感度を最適化し、透明性を維持しつつ表面硬度が高い硬化膜を形成できる。   [B] The content of the radioactive acid generator is preferably 0.1 parts by mass or more and more preferably 1 part by mass or more with respect to 100 parts by mass of the polymer component [A]. On the other hand, as said content, 10 mass parts or less are preferable, and 5 mass parts or less are more preferable. [B] By making content of a radiation sensitive acid generator into the said range, the sensitivity of the said radiation sensitive resin composition can be optimized, and a cured film with high surface hardness can be formed, maintaining transparency.

<[C]酸化防止剤>
[C]酸化防止剤は、露光若しくは加熱により発生したラジカルの捕捉により、又は酸化によって生成した過酸化物の分解により、重合体分子の結合の解裂を抑制する成分である。
<[C] Antioxidant>
[C] Antioxidant is a component that suppresses the breakage of the bond of polymer molecules by capturing radicals generated by exposure or heating, or by decomposing a peroxide generated by oxidation.

当該感放射線性樹脂組成物は、[C]酸化防止剤を含有することで、当該感放射線性樹脂組成物から形成される硬化膜中における重合体分子の解裂劣化が抑制され、耐光性等を向上させることができる。   By containing the [C] antioxidant, the radiation-sensitive resin composition suppresses the degradation degradation of the polymer molecules in the cured film formed from the radiation-sensitive resin composition, and the light resistance, etc. Can be improved.

[C]酸化防止剤としては、例えばヒンダードフェノール構造を有する化合物、ヒンダードアミン構造を有する化合物、アルキルホスファイト構造を有する化合物、チオエーテル構造を有する化合物等が挙げられる。これらの[C]酸化防止剤は、単独で使用しても2種以上を併用してもよい。   [C] Examples of the antioxidant include a compound having a hindered phenol structure, a compound having a hindered amine structure, a compound having an alkyl phosphite structure, and a compound having a thioether structure. These [C] antioxidants may be used alone or in combination of two or more.

上記ヒンダードフェノール構造を有する化合物としては、例えばペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、チオジエチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−イソシアヌレイト、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、N,N’−ヘキサン−1,6−ジイルビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニルプロピオンアミド)、3,3’,3’,5’,5’−ヘキサ−tert−ブチル−a,a’,a’−(メシチレン−2,4,6−トリイル)トリ−p−クレゾール、4,6−ビス(オクチルチオメチル)−o−クレゾール、4,6−ビス(ドデシルチオメチル)−o−クレゾール、エチレンビス(オキシエチレン)ビス[3−(5−tert−ブチル−4−ヒドロキシ−m−トリル)プロピオネート、ヘキサメチレンビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]、1,3,5−トリス[(4−tert−ブチル−3−ヒドロキシ−2,6−キシリル)メチル]−1,3,5−トリアジン−2,4,6(1H,3H,5H)−トリオン、2,6−ジ−tert−ブチル−4−(4,6−ビス(オクチルチオ)−1,3,5−トリアジン−2−イルアミン)フェノール、3,9−ビス{2−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1−ジメチルエチル}2,4,8,10−テトラオキサスピロ[5,5]−ウンデカン等が挙げられる。   Examples of the compound having a hindered phenol structure include pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], thiodiethylenebis [3- (3,5-di-). tert-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, tris- (3,5-di-tert-butyl-4-hydroxy Benzyl) -isocyanurate, 1,3,5-trimethyl-2,4,6-tris (3,5-di-tert-butyl-4-hydroxybenzyl) benzene, N, N′-hexane-1,6 -Diylbis [3- (3,5-di-tert-butyl-4-hydroxyphenylpropionamide), , 3 ′, 3 ′, 5 ′, 5′-hexa-tert-butyl-a, a ′, a ′-(mesitylene-2,4,6-triyl) tri-p-cresol, 4,6-bis ( Octylthiomethyl) -o-cresol, 4,6-bis (dodecylthiomethyl) -o-cresol, ethylenebis (oxyethylene) bis [3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate , Hexamethylenebis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 1,3,5-tris [(4-tert-butyl-3-hydroxy-2,6-xylyl) ) Methyl] -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -trione, 2,6-di-tert-butyl-4- (4,6-bis (octylthio) -1 , 3, -Triazin-2-ylamine) phenol, 3,9-bis {2- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl} 2,4 , 8,10-tetraoxaspiro [5,5] -undecane and the like.

上記ヒンダードフェノール構造を有する化合物の市販品としては、例えば
「アデカスタブAO−20」、「アデカスタブAO−30」、「アデカスタブAO−40」、「アデカスタブAO−50」、「アデカスタブAO−60」、「アデカスタブAO−70」、「アデカスタブAO−80」、「アデカスタブAO−330」(以上、ADEKA社)、「sumilizerGM」、「sumilizerGS」、「sumilizerMDP−S」、「sumilizerBBM−S」、「sumilizerWX−R」、「sumilizerGA−80」(以上、住友化学製);
「IRGANOX1010」、「IRGANOX1035」、「IRGANOX1076」、「IRGANOX1098」、「IRGANOX1135」、「IRGANOX1330」、「IRGANOX1726」、「IRGANOX1425WL」、「IRGANOX1520L」、「IRGANOX245」、「IRGANOX259」、「IRGANOX3114」、「IRGANOX565」、「IRGAMOD295」(以上、チバジャパン社);
「ヨシノックスBHT」、「ヨシノックスBB」、「ヨシノックス2246G」、「ヨシノックス425」、「ヨシノックス250」、「ヨシノックス930」、「ヨシノックスSS」、「ヨシノックスTT」、「ヨシノックス917」、「ヨシノックス314」(以上、エーピーアイコーポレーション社)等が挙げられる。
Examples of commercially available compounds having the hindered phenol structure include “ADK STAB AO-20”, “ADK STAB AO-30”, “ADK STAB AO-40”, “ADK STAB AO-50”, “ADK STAB AO-60”, “ADK STAB AO-70”, “ADK STAB AO-80”, “ADK STAB AO-330” (hereinafter, ADEKA), “SUMILIZER GM”, “SUMILIZER GS”, “SUMILIZER MDP-S”, “SUMILIZER BBM-S”, “SUMILZER” R "," sumilizer GA-80 "(manufactured by Sumitomo Chemical);
"IRGANOX1010", "IRGANOX1035", "IRGANOX1076", "IRGANOX1098", "IRGANOX1135", "IRGANOX1330", "IRGANOX1726", "IRGANOX1425WL", "IRGANOX1520L", "IRGANOX245", "IRGANOX245", "IRGANOX245", "IRGANOX245", "IRGANOX245" “IRGAMOD295” (Ciba Japan)
“Yoshinox BHT”, “Yoshinox BB”, “Yoshinox 2246G”, “Yoshinox 425”, “Yoshinox 250”, “Yoshinox 930”, “Yoshinox SS”, “Yoshinox TT”, “Yoshinox 917”, “Yoshinox 314” ( As above, API Corporation) and the like can be mentioned.

これらの中で、[C]酸化防止剤としては、ヒンダードフェノール構造を有することが好ましい。[C]酸化防止剤がヒンダードフェノール構造を有することで、当該感放射線性樹脂組成物から形成される硬化膜中における重合体分子の解裂劣化をより抑制することができる。また、ヒンダードフェノール構造を有する化合物の中でも、ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]又はトリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−イソシアヌレイトがより好ましい。   In these, as [C] antioxidant, it is preferable to have a hindered phenol structure. [C] When the antioxidant has a hindered phenol structure, the degradation degradation of the polymer molecules in the cured film formed from the radiation-sensitive resin composition can be further suppressed. Among compounds having a hindered phenol structure, pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] or tris- (3,5-di-tert-butyl- 4-Hydroxybenzyl) -isocyanurate is more preferred.

[C]酸化防止剤の含有量としては、[A]重合体成分100質量部に対して、通常15質量部以下であり、0.1質量部以上10質量部以下が好ましく、0.2質量部以上5質量部以下がより好ましい。[C]酸化防止剤の含有量を上記範囲とすることで、当該感放射線性樹脂組成物から形成される硬化膜の解裂劣化をより効果的に抑制することができる。   [C] The content of the antioxidant is usually 15 parts by mass or less, preferably 0.1 parts by mass or more and 10 parts by mass or less, and 0.2 parts by mass with respect to 100 parts by mass of the polymer component [A]. More preferred is 5 parts by mass or more and 5 parts by mass or less. [C] By making content of antioxidant into the said range, the cracking degradation of the cured film formed from the said radiation sensitive resin composition can be suppressed more effectively.

<その他の任意成分>
当該感放射線性樹脂組成物は、上記[A]〜[C]成分に加え、本発明の効果を損なわない範囲で、必要に応じて[D]環状エーテル基を有する化合物、[E]酸拡散制御剤、[F]界面活性剤、[G]密着助剤、[H]溶媒等のその他の任意成分を含有してもよい。その他の任意成分は、それぞれ単独で使用しても2種以上を併用してもよい。以下、各成分を詳述する。
<Other optional components>
In addition to the components [A] to [C], the radiation-sensitive resin composition includes a compound [D] having a cyclic ether group, and [E] acid diffusion as long as the effects of the present invention are not impaired. Other optional components such as a control agent, [F] surfactant, [G] adhesion assistant, and [H] solvent may be contained. Other optional components may be used alone or in combination of two or more. Hereinafter, each component will be described in detail.

<[D]環状エーテル基を有する化合物>
[D]環状エーテル基を有する化合物(以下、「[D]化合物」ともいう)は、環状エーテル基を有し、かつ[A]重合体成分が有する重合体とは異なる化合物である。当該感放射線性樹脂組成物は、[D]化合物を含有することで、[D]化合物の熱反応性により[A]重合体成分等の架橋を促進し、当該感放射線性樹脂組成物から形成される硬化膜の硬度をより高めることができると共に、当該感放射線性樹脂組成物の放射線感度を高めることができる。
<[D] Compound having cyclic ether group>
[D] A compound having a cyclic ether group (hereinafter also referred to as “[D] compound”) is a compound having a cyclic ether group and different from the polymer of the [A] polymer component. The radiation-sensitive resin composition contains the [D] compound, thereby promoting the crosslinking of the [A] polymer component and the like by the thermal reactivity of the [D] compound, and formed from the radiation-sensitive resin composition. The hardness of the cured film can be further increased, and the radiation sensitivity of the radiation-sensitive resin composition can be increased.

[D]化合物としては、分子内に2個以上のエポキシ基(オキシラニル基、オキセタニル基)を有する化合物が好ましい。   [D] As the compound, a compound having two or more epoxy groups (oxiranyl group, oxetanyl group) in the molecule is preferable.

分子内に2個以上のオキシラニル基を有する化合物としては、例えば
ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、ビスフェノールSジグリシジルエーテル、水添ビスフェノールAジグリシジルエーテル、水添ビスフェノールFジグリシジルエーテル、水添ビスフェノールADジグリシジルエーテル等のビスフェノール型ジグリシジルエーテル類;
1,4−ブタンジオールジグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、グリセリントリグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル等の多価アルコールのポリグリシジルエーテル類;
エチレングリコール、プロピレングリコール、グリセリン等の脂肪族多価アルコールに1種または2種以上のアルキレンオキサイドを付加することにより得られるポリエーテルポリオールのポリグリシジルエーテル類;
フェノールノボラック型エポキシ樹脂;
クレゾールノボラック型エポキシ樹脂;
ポリフェノール型エポキシ樹脂;
脂肪族長鎖二塩基酸のジグリシジルエステル類;
高級脂肪酸のグリシジルエステル類;
脂肪族ポリグリシジルエーテル類;
エポキシ化大豆油、エポキシ化アマニ油などが挙げられる。これらの[D]化合物は、単独で使用しても2種以上を併用してもよい。
Examples of the compound having two or more oxiranyl groups in the molecule include bisphenol A diglycidyl ether, bisphenol F diglycidyl ether, bisphenol S diglycidyl ether, hydrogenated bisphenol A diglycidyl ether, hydrogenated bisphenol F diglycidyl ether, Bisphenol type diglycidyl ethers such as hydrogenated bisphenol AD diglycidyl ether;
Polyhydric alcohols such as 1,4-butanediol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, polyethylene glycol diglycidyl ether, and polypropylene glycol diglycidyl ether Glycidyl ethers;
Polyglycidyl ethers of polyether polyols obtained by adding one or more alkylene oxides to aliphatic polyhydric alcohols such as ethylene glycol, propylene glycol and glycerin;
Phenol novolac type epoxy resin;
Cresol novolac type epoxy resin;
Polyphenol type epoxy resin;
Diglycidyl esters of aliphatic long-chain dibasic acids;
Glycidyl esters of higher fatty acids;
Aliphatic polyglycidyl ethers;
Examples include epoxidized soybean oil and epoxidized linseed oil. These [D] compounds may be used alone or in combination of two or more.

分子内に2個以上のオキシラニル基を有する[D]化合物の市販品としては、例えば
ビスフェノールA型エポキシ樹脂として、「エピコート1001」、「エピコート1002」、「エピコート1003」、「エピコート1004」、「エピコート1007」、「エピコート1009」、「エピコート1010」、「エピコート828」(以上、ジャパンエポキシレジン社)等;
ビスフェノールF型エポキシ樹脂として、「エピコート807」(ジャパンエポキシレジン社)等;
フェノールノボラック型エポキシ樹脂として、「エピコート152」、「エピコート154」、「エピコート157S65」(以上、ジャパンエポキシレジン社)、「EPPN201」、「EPPN202」(以上、日本化薬社)等;
クレゾールノボラック型エポキシ樹脂として、「EOCN102」、「EOCN103S」、「EOCN104S」、「EOCN1020」、「EOCN1025」、「EOCN1027」(以上、日本化薬社)、エピコート180S75(ジャパンエポキシレジン社)等;
ポリフェノール型エポキシ樹脂として、「エピコート1032H60」、「エピコートXY−4000」(以上、ジャパンエポキシレジン社)等;
環状脂肪族エポキシ樹脂として、「CY−175」、「CY−177」、「CY−179」、「アラルダイトCY−182」、「アラルダイト192」、「アラルダイト184」(以上、チバ・スペシャルティ・ケミカルズ社)、「ERL−4234」、「ERL−4299」、「ERL−4221」、「ERL−4206」(以上、U.C.C社)、「ショーダイン509」(昭和電工社)、「エピクロン200」、「エピクロン400」(以上、大日本インキ社)、「エピコート871」、「エピコート872」(以上、ジャパンエポキシレジン社)、「ED−5661」、「ED−5662」(以上、セラニーズコーティング社)等;
脂肪族ポリグリシジルエーテルとして、「エポライト100MF」(共栄社化学社)、「エピオールTMP」(日本油脂社)等が挙げられる。
Commercially available products of [D] compounds having two or more oxiranyl groups in the molecule include, for example, “Epicoat 1001”, “Epicoat 1002”, “Epicoat 1003”, “Epicoat 1004”, “ “Epicoat 1007”, “Epicoat 1009”, “Epicoat 1010”, “Epicoat 828” (Japan Epoxy Resin Co., Ltd.), etc .;
As bisphenol F type epoxy resin, “Epicoat 807” (Japan Epoxy Resin Co., Ltd.) and the like;
Examples of phenol novolac type epoxy resins include “Epicoat 152”, “Epicoat 154”, “Epicoat 157S65” (above, Japan Epoxy Resin), “EPPN201”, “EPPN202” (above, Nippon Kayaku), etc .;
Examples of cresol novolac type epoxy resins include “EOCN102”, “EOCN103S”, “EOCN104S”, “EOCN1020”, “EOCN1025”, “EOCN1027” (Nippon Kayaku Co., Ltd.), Epicort 180S75 (Japan Epoxy Resin), etc .;
As the polyphenol type epoxy resin, “Epicoat 1032H60”, “Epicoat XY-4000” (Japan Epoxy Resin Co., Ltd.) and the like;
Cycloaliphatic epoxy resins include “CY-175”, “CY-177”, “CY-179”, “Araldite CY-182”, “Araldite 192”, “Araldite 184” (above, Ciba Specialty Chemicals) ), “ERL-4234”, “ERL-4299”, “ERL-4221”, “ERL-4206” (above U.C.C.), “Shaudyne 509” (Showa Denko), “Epicron 200” ”,“ Epicron 400 ”(above, Dainippon Ink Co., Ltd.),“ Epicoat 871 ”,“ Epicoat 872 ”(above, Japan Epoxy Resin Co., Ltd.),“ ED-5661 ”,“ ED-5562 ”(above, Celanese Coating Etc.);
Examples of the aliphatic polyglycidyl ether include “Epolite 100MF” (Kyoeisha Chemical Co.), “Epiol TMP” (Nippon Yushi Co., Ltd.) and the like.

分子内に2個以上のオキセタニル基を有する[D]化合物としては、例えばイソフタル酸ビス[(3−エチルオキセタン−3−イル)メチル]、1,4−ビス[(3−エチルオキセタン−3−イル)メトキシメチル]ベンゼン、1,4−ビス[(3−エチル−3−オキセタニルメトキシ)メチル]ベンゼン、ジ[1−エチル−(3−オキセタニル)メチル]エーテル(別名:ビス(3−エチル−3−オキセタニルメチル)エーテル)、3,7−ビス(3−オキセタニル)−5−オキサ−ノナン、3,3’−[1,3−(2−メチレニル)プロパンジイルビス(オキシメチレン)]ビス−(3−エチルオキセタン)、1,2−ビス[(3−エチル−3−オキセタニルメトキシ)メチル]エタン、1,3−ビス[(3−エチル−3−オキセタニルメトキシ)メチル]プロパン、エチレングリコールビス(3−エチル−3−オキセタニルメチル)エーテル、ジシクロペンテニルビス(3−エチル−3−オキセタニルメチル)エーテル、トリエチレングリコールビス(3−エチル−3−オキセタニルメチル)エーテル、テトラエチレングリコールビス(3−エチル−3−オキセタニルメチル)エーテル、トリシクロデカンジイルジメチレン(3−エチル−3−オキセタニルメチル)エーテル、トリメチロールプロパントリス(3−エチル−3−オキセタニルメチル)エーテル、1,4−ビス(3−エチル−3−オキセタニルメトキシ)ブタン、キシレンビスオキセタン、1,6−ビス(3−エチル−3−オキセタニルメトキシ)ヘキサン、ペンタエリスリトールトリス(3−エチル−3−オキセタニルメチル)エーテル、ペンタエリスリトールテトラキス(3−エチル−3−オキセタニルメチル)エーテル、ポリエチレングリコールビス(3−エチル−3−オキセタニルメチル)エーテル、ジペンタエリスリトールヘキサキス(3−エチル−3−オキセタニルメチル)エーテル、ジペンタエリスリトールペンタキス(3−エチル−3−オキセタニルメチル)エーテル、ジペンタエリスリトールテトラキス(3−エチル−3−オキセタニルメチル)エーテル、カプロラクトン変性ジペンタエリスリトールヘキサキス(3−エチル−3−オキセタニルメチル)エーテル、カプロラクトン変性ジペンタエリスリトールペンタキス(3−エチル−3−オキセタニルメチル)エーテル、ジトリメチロールプロパンテトラキス(3−エチル−3−オキセタニルメチル)エーテル、EO変性ビスフェノールAビス(3−エチル−3−オキセタニルメチル)エーテル、PO変性ビスフェノールAビス(3−エチル−3−オキセタニルメチル)エーテル、EO変性水添ビスフェノールAビス(3−エチル−3−オキセタニルメチル)エーテル、PO変性水添ビスフェノールAビス(3−エチル−3−オキセタニルメチル)エーテル、EO変性ビスフェノールF(3−エチル−3−オキセタニルメチル)エーテル等が挙げられる。   Examples of the [D] compound having two or more oxetanyl groups in the molecule include bis [(3-ethyloxetane-3-yl) methyl] isophthalate, 1,4-bis [(3-ethyloxetane-3- Yl) methoxymethyl] benzene, 1,4-bis [(3-ethyl-3-oxetanylmethoxy) methyl] benzene, di [1-ethyl- (3-oxetanyl) methyl] ether (also known as bis (3-ethyl-) 3-oxetanylmethyl) ether), 3,7-bis (3-oxetanyl) -5-oxa-nonane, 3,3 ′-[1,3- (2-methylenyl) propanediylbis (oxymethylene)] bis- (3-ethyloxetane), 1,2-bis [(3-ethyl-3-oxetanylmethoxy) methyl] ethane, 1,3-bis [(3-ethyl-3-oxetanyl) Toxi) methyl] propane, ethylene glycol bis (3-ethyl-3-oxetanylmethyl) ether, dicyclopentenylbis (3-ethyl-3-oxetanylmethyl) ether, triethyleneglycolbis (3-ethyl-3-oxetanylmethyl) ) Ether, tetraethylene glycol bis (3-ethyl-3-oxetanylmethyl) ether, tricyclodecanediyldimethylene (3-ethyl-3-oxetanylmethyl) ether, trimethylolpropane tris (3-ethyl-3-oxetanylmethyl) ) Ether, 1,4-bis (3-ethyl-3-oxetanylmethoxy) butane, xylenebisoxetane, 1,6-bis (3-ethyl-3-oxetanylmethoxy) hexane, pentaerythritol tris (3-ethyl-3) - Cetanylmethyl) ether, pentaerythritol tetrakis (3-ethyl-3-oxetanylmethyl) ether, polyethylene glycol bis (3-ethyl-3-oxetanylmethyl) ether, dipentaerythritol hexakis (3-ethyl-3-oxetanylmethyl) ether Dipentaerythritol pentakis (3-ethyl-3-oxetanylmethyl) ether, dipentaerythritol tetrakis (3-ethyl-3-oxetanylmethyl) ether, caprolactone-modified dipentaerythritol hexakis (3-ethyl-3-oxetanylmethyl) ) Ether, caprolactone-modified dipentaerythritol pentakis (3-ethyl-3-oxetanylmethyl) ether, ditrimethylolpropane tetrakis (3-ethyl-3-) Oxetanylmethyl) ether, EO-modified bisphenol A bis (3-ethyl-3-oxetanylmethyl) ether, PO-modified bisphenol A bis (3-ethyl-3-oxetanylmethyl) ether, EO-modified hydrogenated bisphenol A bis (3-ethyl) -3-Oxetanylmethyl) ether, PO-modified hydrogenated bisphenol A bis (3-ethyl-3-oxetanylmethyl) ether, EO-modified bisphenol F (3-ethyl-3-oxetanylmethyl) ether, and the like.

これらの中で、[D]化合物としては、分子内に2個以上のオキセタニル基を有する化合物が好ましく、イソフタル酸ビス[(3−エチルオキセタン−3−イル)メチル]又は1,4−ビス[(3−エチルオキセタン−3−イル)メトキシメチル]ベンゼンがより好ましい。   Among these, as the [D] compound, a compound having two or more oxetanyl groups in the molecule is preferable, and bis [(3-ethyloxetan-3-yl) methyl] isophthalate or 1,4-bis [ (3-Ethyloxetane-3-yl) methoxymethyl] benzene is more preferred.

[D]化合物の含有量としては、[A]重合体成分100質量部に対して、通常150質量部以下であり、0.5質量部以上100質量部以下が好ましく、1質量部以上50質量部以下がより好ましく、10質量部以上25質量部以下がさらに好ましい。[D]化合物の含有量を上記範囲とすることで、当該感放射線性樹脂組成物から形成される硬化膜の硬度をより高めることができる。   [D] The content of the compound is usually 150 parts by mass or less, preferably 0.5 parts by mass or more and 100 parts by mass or less, and preferably 1 part by mass or more and 50 parts by mass with respect to 100 parts by mass of the polymer component [A]. Is more preferably 10 parts by mass or more and 25 parts by mass or less. [D] By making content of a compound into the said range, the hardness of the cured film formed from the said radiation sensitive resin composition can be raised more.

<[E]酸拡散制御剤>
[E]酸拡散制御剤としては、化学増幅レジストで用いられるものから任意に選択して使用できる。当該感放射線性樹脂組成物は、[E]酸拡散制御剤を含有することで、露光により[B]感放射性酸発生体から発生した酸の拡散長を適度に制御することができ、パターン現像性を良好にできる。
<[E] acid diffusion controller>
[E] The acid diffusion control agent can be arbitrarily selected from those used in chemically amplified resists. The radiation-sensitive resin composition contains an [E] acid diffusion control agent, whereby the diffusion length of the acid generated from the [B] radiation-sensitive acid generator by exposure can be appropriately controlled, and pattern development Can be improved.

[E]酸拡散制御剤としては、特開2011−232632号公報に記載の酸拡散制御剤を用いることができる。   [E] As the acid diffusion control agent, an acid diffusion control agent described in JP2011-232632 can be used.

[E]酸拡散制御剤の含有量としては、[A]重合体成分100質量部に対して、通常2質量部以下であり、0.001質量部以上1質量部以下が好ましく、0.005質量部以上0.2質量部以下がより好ましい。[E]酸拡散制御剤の含有量を上記範囲とすることで、パターン現像性がより向上する。   [E] The content of the acid diffusion controller is usually 2 parts by mass or less with respect to 100 parts by mass of the polymer component [A], preferably 0.001 to 1 part by mass, and 0.005. More preferably, it is not less than 0.2 parts by mass. [E] By making content of an acid diffusion control agent into the said range, pattern developability improves more.

<[F]界面活性剤>
[F]界面活性剤は、当該感放射線性樹脂組成物の塗膜形成性を高める成分である。当該感放射線性樹脂組成物は、[F]界面活性剤を含有することで、塗膜の表面平滑性を向上でき、その結果、当該感放射線性樹脂組成物から形成される硬化膜の膜厚均一性をより向上できる。
<[F] Surfactant>
[F] Surfactant is a component which improves the film-forming property of the said radiation sensitive resin composition. The said radiation sensitive resin composition can improve the surface smoothness of a coating film by containing [F] surfactant, As a result, the film thickness of the cured film formed from the said radiation sensitive resin composition Uniformity can be further improved.

[F]界面活性剤としては、例えばフッ素系界面活性剤、シリコーン系界面活性剤等が挙げられる。これらの[F]界面活性剤は、単独で使用しても2種以上を併用してもよい。[F]界面活性剤としては、特開2011−18024号公報に記載の界面活性剤を用いることができる。   [F] Examples of the surfactant include a fluorine-based surfactant and a silicone-based surfactant. These [F] surfactants may be used alone or in combination of two or more. [F] As the surfactant, surfactants described in JP 2011-18024 A can be used.

[F]界面活性剤の含有量としては、[A]重合体成分100質量部に対して、通常3質量部以下であり、0.01質量部以上2質量部以下が好ましく、0.05質量部以上1質量部以下がより好ましい。[F]界面活性剤の含有量を上記範囲とすることで、形成される塗膜の膜厚均一性をより向上できる。   [F] The content of the surfactant is usually 3 parts by mass or less, preferably 0.01 parts by mass or more and 2 parts by mass or less, and 0.05 parts by mass with respect to 100 parts by mass of the polymer component [A]. More preferred is 1 part by weight or more and 1 part by weight or less. [F] By making content of surfactant into the said range, the film thickness uniformity of the coating film formed can be improved more.

<[G]密着助剤>
[G]密着助剤は、基板等の膜形成対象物と硬化膜との接着性を向上させる成分である。[G]密着助剤は、特に無機物の基板と硬化膜との接着性を向上させるために有用である。無機物としては、例えばシリコン、酸化シリコン、窒化シリコン等のシリコン化合物、金、銅、アルミニウム等の金属などが挙げられる。
<[G] Adhesion aid>
[G] Adhesion aid is a component that improves the adhesion between a film-forming object such as a substrate and a cured film. [G] The adhesion aid is particularly useful for improving the adhesion between the inorganic substrate and the cured film. Examples of the inorganic substance include silicon compounds such as silicon, silicon oxide, and silicon nitride, and metals such as gold, copper, and aluminum.

[G]密着助剤としては、官能性シランカップリング剤が好ましい。この官能性シランカップリング剤としては、例えばカルボキシ基、メタクリロイル基、イソシアネート基、エポキシ基(好ましくはオキシラニル基)、チオール基等の反応性置換基を有するシランカップリング剤等が挙げられる。これらの[G]密着助剤は、単独で使用しても2種以上を併用してもよい。   [G] As the adhesion assistant, a functional silane coupling agent is preferable. Examples of the functional silane coupling agent include a silane coupling agent having a reactive substituent such as a carboxy group, a methacryloyl group, an isocyanate group, an epoxy group (preferably an oxiranyl group), and a thiol group. These [G] adhesion assistants may be used alone or in combination of two or more.

官能性シランカップリング剤としては、例えばトリメトキシシリル安息香酸、γ−メタクリロキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、ビニルトリメトキシシラン、γ−イソシアネートプロピルトリエトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルアルキルジアルコキシシラン、γ−クロロプロピルトリアルコキシシラン、γ−メルカプトプロピルトリアルコキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。これらの中で、官能性シランカップリング剤としては、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルアルキルジアルコキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン又はγ−メタクリロキシプロピルトリメトキシシランが好ましい。   Examples of the functional silane coupling agent include trimethoxysilylbenzoic acid, γ-methacryloxypropyltrimethoxysilane, vinyltriacetoxysilane, vinyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, γ-glycidoxypropyltri Examples include methoxysilane, γ-glycidoxypropylalkyldialkoxysilane, γ-chloropropyltrialkoxysilane, γ-mercaptopropyltrialkoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and the like. Among these, as the functional silane coupling agent, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylalkyldialkoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane or γ-Methacryloxypropyltrimethoxysilane is preferred.

[G]密着助剤の含有量としては、[A]重合体成分100質量部に対して、通常30質量部以下であり、0.5質量部以上20質量部以下が好ましく、1質量部以上10質量部以下がより好ましい。[G]密着助剤の含有量を上記範囲とすることで、形成される硬化膜と基板との密着性がより改善される。   [G] The content of the adhesion assistant is usually 30 parts by mass or less, preferably 0.5 parts by mass or more and 20 parts by mass or less, and 1 part by mass or more with respect to 100 parts by mass of the polymer component [A]. 10 parts by mass or less is more preferable. [G] By setting the content of the adhesion assistant in the above range, the adhesion between the formed cured film and the substrate is further improved.

<[H]溶媒>
[H]溶媒としては、当該感放射線性樹脂組成物中の他の成分を均一に溶解又は分散し、上記他の成分と反応しないものが好適に用いられる。このような[H]溶媒としては、例えばアルコール類、エーテル類、グリコールエーテル、エチレングリコールアルキルエーテルアセテート、ジエチレングリコールアルキルエーテル、プロピレングリコールモノアルキルエーテル、プロピレングリコールモノアルキルエーテルアセテート、プロピレングリコールモノアルキルエーテルプロピオネート、芳香族炭化水素類、ケトン類、他のエステル類等が挙げられる。[H]溶媒としては、特開2011−232632号公報に記載の溶媒を用いることができる。
<[H] solvent>
[H] As the solvent, a solvent that uniformly dissolves or disperses other components in the radiation-sensitive resin composition and does not react with the other components is preferably used. Examples of the [H] solvent include alcohols, ethers, glycol ethers, ethylene glycol alkyl ether acetates, diethylene glycol alkyl ethers, propylene glycol monoalkyl ethers, propylene glycol monoalkyl ether acetates, propylene glycol monoalkyl ether propio. Nates, aromatic hydrocarbons, ketones, and other esters. [H] As the solvent, the solvents described in JP2011-232632 can be used.

<感放射線性樹脂組成物の調製方法>
当該感放射線性樹脂組成物は、溶媒に[A]重合体成分及び[B]感放射性酸発生体、必要に応じて好適成分、その他の任意成分を混合することによって溶解又は分散させた状態に調製される。例えば溶媒中で各成分を所定の割合で混合することにより、当該感放射線性樹脂組成物を調製できる。
<Method for preparing radiation-sensitive resin composition>
The radiation-sensitive resin composition is dissolved or dispersed by mixing the [A] polymer component and the [B] radiation-sensitive acid generator, a suitable component as necessary, and other optional components in a solvent. Prepared. For example, the said radiation sensitive resin composition can be prepared by mixing each component in a predetermined ratio in a solvent.

<重合体組成物>
本発明の重合体組成物は、酸解離性基を含む第1構造単位と、架橋性基を含む第2構造単位と、フルオロアルキル基を含む構造単位及びシロキサン結合を有する基を含む構造単位からなる群より選択される少なくとも1種である第3構造単位とを有する重合体成分を含有する。この重合体成分は、当該感放射線性樹脂組成物の[A]重合体成分と同様なものである。上記重合体成分は、同一の重合体中に第1構造単位、第2構造単位、及び第3構造単位を含むものであっても、異なる重合体中に第1構造単位、第2構造単位、及び第3構造単位を含むものであってもよい。当該重合体組成物は、[A]重合体成分と同様な重合体成分を含有するため、当該感放射線性樹脂組成物の調製に好適に使用することができる。
<Polymer composition>
The polymer composition of the present invention includes a first structural unit containing an acid dissociable group, a second structural unit containing a crosslinkable group, a structural unit containing a fluoroalkyl group, and a structural unit containing a group having a siloxane bond. A polymer component having at least one third structural unit selected from the group consisting of: This polymer component is the same as the [A] polymer component of the radiation-sensitive resin composition. Even if the polymer component includes the first structural unit, the second structural unit, and the third structural unit in the same polymer, the first structural unit, the second structural unit in different polymers, And a third structural unit. Since the said polymer composition contains the polymer component similar to a [A] polymer component, it can be used conveniently for preparation of the said radiation sensitive resin composition.

<硬化膜>
本発明の硬化膜は、当該感放射線性樹脂組成物から形成される。当該硬化膜は、当該感放射線性樹脂組成物から形成されているため、優れた撥水性、塗膜の外観特性及び膜厚の均一性を有する。このような特性を有する当該硬化膜は、例えば表示素子等の電子デバイスの層間絶縁膜、平坦化膜、発光層を形成するための領域を規定するバンク(隔壁)、スペーサー、保護膜、カラーフィルタ用着色パターン等に使用できる。なお、当該硬化膜の形成方法としては特に限定されないが、次に説明する硬化膜の形成方法を適用することが好ましい。
<Curing film>
The cured film of the present invention is formed from the radiation sensitive resin composition. Since the said cured film is formed from the said radiation sensitive resin composition, it has the outstanding water repellency, the external appearance characteristic of a coating film, and the uniformity of a film thickness. The cured film having such characteristics includes, for example, banks (partitions), spacers, protective films, and color filters that define regions for forming interlayer insulating films, planarization films, and light emitting layers of electronic devices such as display elements. It can be used for coloring patterns. In addition, although it does not specifically limit as a formation method of the said cured film, It is preferable to apply the formation method of the cured film demonstrated below.

<硬化膜の形成方法>
当該感放射線性樹脂組成物は、硬化膜の形成に好適に用いることができる。
<Method for forming cured film>
The said radiation sensitive resin composition can be used suitably for formation of a cured film.

本発明の硬化膜の形成方法は、当該感放射線性樹脂組成物を用い、基板上に塗膜を形成する工程(以下、「工程(1)」ともいう)、上記塗膜の少なくとも一部に放射線を照射する工程(以下、「工程(2)」ともいう)、放射線が照射された塗膜を現像する工程(以下、「工程(3)」ともいう)、及び現像された塗膜を加熱する工程(以下、「工程(4)」ともいう)を有する。   The method for forming a cured film of the present invention includes a step of forming a coating film on a substrate using the radiation-sensitive resin composition (hereinafter also referred to as “step (1)”), and at least a part of the coating film. A step of irradiating radiation (hereinafter also referred to as “step (2)”), a step of developing a coating film irradiated with radiation (hereinafter also referred to as “step (3)”), and heating the developed coating film (Hereinafter, also referred to as “step (4)”).

当該硬化膜の形成方法によれば、パターン形状の安定性が高い硬化膜を形成できる。また、未露光部の膜厚変化量を抑制できることから、結果として生産プロセスマージンを向上でき、歩留まりの向上を達成できる。さらに、感光性を利用した露光、現像、加熱によりパターンを形成することによって、容易に微細かつ精巧なパターンを有する硬化膜を形成できる。   According to the method for forming a cured film, a cured film having high pattern shape stability can be formed. Further, since the amount of change in the film thickness of the unexposed portion can be suppressed, the production process margin can be improved as a result, and the yield can be improved. Furthermore, a cured film having a fine and elaborate pattern can be easily formed by forming a pattern by exposure, development and heating utilizing photosensitivity.

[工程(1)]
本工程では、当該感放射線性樹脂組成物を用い、基板上に塗布して塗膜を形成する。当該感放射線性樹脂組成物が溶媒を含む場合には、塗布面をプレベークすることによって溶媒を除去することが好ましい。
[Step (1)]
In this step, the radiation-sensitive resin composition is used and applied onto a substrate to form a coating film. When the said radiation sensitive resin composition contains a solvent, it is preferable to remove a solvent by prebaking an application surface.

上記基板としては、例えばガラス、石英、シリコーン、樹脂等が挙げられる。上記樹脂としては、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルスルホン、ポリカーボネート、ポリイミド、環状オレフィンの開環重合体及びその水素添加物等が挙げられる。プレベークの条件としては、各成分の種類、配合割合等によっても異なるが、通常70℃以上120℃以下、1分以上10分間以下程度である。   Examples of the substrate include glass, quartz, silicone, and resin. Examples of the resin include polyethylene terephthalate, polybutylene terephthalate, polyethersulfone, polycarbonate, polyimide, a ring-opening polymer of a cyclic olefin, and a hydrogenated product thereof. Prebaking conditions vary depending on the type of each component, the blending ratio, and the like, but are usually 70 ° C. or higher and 120 ° C. or lower and 1 minute or longer and 10 minutes or shorter.

[工程(2)]
本工程では、塗膜の少なくとも一部に放射線を照射し露光する。露光する際には、通常所定のパターンを有するフォトマスクを介して露光する。露光に使用される放射線としては、波長が190nm以上450nm以下の範囲にある放射線が好ましく、365nmの紫外線を含む放射線がより好ましい。露光量としては、500J/m以上が好ましく、1,500J/m以上がより好ましい。一方、上記露光量としては6,000J/m以下が好ましく、1,800J/m以下がより好ましい。この露光量は、放射線の波長365nmにおける強度を照度計(OAI Optical Associates社の「OAI model356」)により測定した値である。
[Step (2)]
In this step, at least a part of the coating film is irradiated with radiation and exposed. When exposing, it exposes normally through the photomask which has a predetermined pattern. The radiation used for exposure is preferably radiation having a wavelength in the range of 190 nm or more and 450 nm or less, and more preferably radiation containing ultraviolet light of 365 nm. The exposure amount is preferably 500 J / m 2 or more, 1,500J / m 2 or more is more preferable. On the other hand, preferably 6,000J / m 2 or less as the exposure amount, 1,800J / m 2 or less is more preferable. This exposure amount is a value obtained by measuring the intensity of radiation at a wavelength of 365 nm with an illuminometer (“OAI model 356” manufactured by OAI Optical Associates).

[工程(3)]
本工程では、放射線が照射された塗膜を現像する。露光後の塗膜を現像することにより、不要な部分(放射線の照射部分)を除去して所定のパターンを形成する。
[Step (3)]
In this step, the coating film irradiated with radiation is developed. By developing the coated film after exposure, unnecessary portions (radiation irradiated portions) are removed to form a predetermined pattern.

この工程で使用される現像液としては、アルカリ性の水溶液が好ましい。アルカリとしては、例えば水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、ケイ酸ナトリウム、メタケイ酸ナトリウム、アンモニア等の無機アルカリ;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド等の4級アンモニウム塩などが挙げられる。現像液としては、ケトン系有機溶媒、アルコール系有機溶媒等の有機溶媒を使用することもできる。   The developer used in this step is preferably an alkaline aqueous solution. Examples of the alkali include inorganic alkalis such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium silicate, sodium metasilicate, and ammonia; and quaternary ammonium salts such as tetramethylammonium hydroxide and tetraethylammonium hydroxide. . As the developer, an organic solvent such as a ketone organic solvent or an alcohol organic solvent can be used.

アルカリ水溶液には、メタノール、エタノール等の水溶性有機溶媒や界面活性剤を適当量添加して使用することもできる。アルカリ水溶液におけるアルカリの濃度としては、好適な現像性を得る観点から、0.1質量%以上5質量%以下が好ましい。   An appropriate amount of a water-soluble organic solvent such as methanol or ethanol, or a surfactant can be added to the alkaline aqueous solution. As a density | concentration of the alkali in aqueous alkali solution, from a viewpoint of obtaining suitable developability, 0.1 to 5 mass% is preferable.

現像方法としては、例えば液盛り法、ディッピング法、揺動浸漬法、シャワー法等が挙げられる。現像時間としては、当該感放射線性樹脂組成物の組成によって異なるが、通常10秒間以上180秒間以下程度である。   Examples of the developing method include a liquid piling method, a dipping method, a rocking dipping method, and a shower method. The development time varies depending on the composition of the radiation sensitive resin composition, but is usually about 10 seconds to 180 seconds.

このような現像処理に続いて、例えば流水洗浄を30秒間以上90秒間以下行った後、例えば圧縮空気や圧縮窒素で風乾させることによって、所望のパターンを形成できる。   Following such development processing, for example, after washing with running water for 30 seconds or more and 90 seconds or less, a desired pattern can be formed by, for example, air drying with compressed air or compressed nitrogen.

現像前の塗膜の膜厚に対する現像後の膜厚の膜厚変化率は、90%以上であることが好ましい。上述したように、当該感放射線性樹脂組成物を用いた当該形成方法によると、現像時間に対する未露光部の膜厚変化量を抑制でき、現像後の膜厚は、現像前の膜厚の90%以上を維持することができる。   It is preferable that the film thickness change rate of the film thickness after development with respect to the film thickness of the coating film before development is 90% or more. As described above, according to the forming method using the radiation-sensitive resin composition, the amount of change in the film thickness of the unexposed portion with respect to the development time can be suppressed, and the film thickness after development is 90% of the film thickness before development. % Or more can be maintained.

[工程(4)]
本工程では、現像された塗膜を加熱する。加熱には、ホットプレート、オーブン等の加熱装置を用い、パターニングされた薄膜を加熱することで、[A]重合体成分の硬化反応を促進して、硬化膜を形成することができる。加熱温度としては、例えば120℃以上250℃以下程度である。加熱時間としては、加熱機器の種類により異なるが、例えばホットプレートでは5分間以上30分間以下程度、オーブンでは30分間以上90分間以下程度である。また、2回以上の加熱工程を行うステップベーク法等を用いることもできる。このようにして、目的とする硬化膜に対応するパターン状薄膜を基板の表面上に形成できる。この硬化膜の膜厚としては、0.05μm以上が好ましく、一方、8μm以下が好ましく、6μm以下がより好ましい。
[Step (4)]
In this step, the developed coating film is heated. For heating, the patterned thin film is heated using a heating device such as a hot plate or an oven, whereby the curing reaction of the polymer component [A] can be promoted to form a cured film. As heating temperature, it is about 120 degreeC or more and 250 degrees C or less, for example. The heating time varies depending on the type of heating device, but for example, it is about 5 minutes to 30 minutes for a hot plate, and about 30 minutes to 90 minutes for an oven. Moreover, the step baking method etc. which perform a heating process 2 times or more can also be used. In this way, a patterned thin film corresponding to the desired cured film can be formed on the surface of the substrate. The thickness of the cured film is preferably 0.05 μm or more, on the other hand, preferably 8 μm or less, more preferably 6 μm or less.

<電子デバイス>
本発明の電子デバイスは、当該硬化膜を備えている。当該電子デバイスは、例えば液晶表示素子、有機EL表示素子である。
<Electronic device>
The electronic device of the present invention includes the cured film. The electronic device is, for example, a liquid crystal display element or an organic EL display element.

液晶表示素子は、例えば液晶セル、偏光板等により構成されている。この液晶表示素子は、当該硬化膜を備えているため、例えば耐熱性等の信頼性に優れる。   The liquid crystal display element is composed of, for example, a liquid crystal cell, a polarizing plate, and the like. Since the liquid crystal display element includes the cured film, the liquid crystal display element is excellent in reliability such as heat resistance.

液晶表示素子の製造方法としては、まず片面に透明導電膜(電極)を有する透明基板を一対(2枚)準備し、そのうちの一枚の基板の透明導電膜上に、当該感放射線性樹脂組成物を用い、上述の「<硬化膜の形成方法>」において説明した方法に従い、層間絶縁膜、スペーサー若しくは保護膜又はその双方を形成する。次いで、これらの基板の透明導電膜及びスペーサー又は保護膜上に液晶配向能を有する配向膜を形成する。これら基板を、その配向膜が形成された側の面を内側にして、それぞれの配向膜の液晶配向方向が直交又は逆平行となるように一定の間隙(セルギャップ)を介して対向配置し、基板の表面(配向膜)及びスペーサーにより区画されたセルギャップ内に液晶を充填し、充填孔を封止して液晶セルを構成する。そして、液晶セルの両外表面に、偏光板を、その偏光方向が当該基板の一面に形成された配向膜の液晶配向方向と一致又は直交するように貼り合わせることにより、本発明の電子デバイスとしての液晶表示素子が得られる。   As a manufacturing method of a liquid crystal display element, first, a pair (two) of transparent substrates having a transparent conductive film (electrode) on one side is prepared, and the radiation-sensitive resin composition is formed on the transparent conductive film of one of the substrates. In accordance with the method described in the above “<Method for forming cured film>”, an interlayer insulating film, a spacer, a protective film, or both are formed. Next, an alignment film having liquid crystal alignment ability is formed on the transparent conductive film and the spacer or protective film of these substrates. These substrates are arranged facing each other with a certain gap (cell gap) so that the liquid crystal alignment direction of each alignment film is orthogonal or antiparallel, with the surface on which the alignment film is formed inside. A liquid crystal is filled in the cell gap defined by the surface of the substrate (alignment film) and the spacer, and the filling hole is sealed to constitute a liquid crystal cell. And as an electronic device of the present invention, the polarizing plate is bonded to both outer surfaces of the liquid crystal cell so that the polarization direction thereof coincides with or orthogonal to the liquid crystal alignment direction of the alignment film formed on one surface of the substrate. The liquid crystal display element can be obtained.

他の液晶表示素子の製造方法としては、上記製造方法と同様にして透明導電膜と、層間絶縁膜、保護膜若しくはスペーサー又はその双方と、配向膜とを形成した一対の透明基板を準備する。その後、一方の基板の端部に沿って、ディスペンサーを用いて紫外線硬化型シール剤を塗布し、次いで液晶ディスペンサーを用いて微小液滴状に液晶を滴下し、真空下で両基板の貼り合わせを行う。そして、上記のシール剤部に、高圧水銀ランプを用いて紫外線を照射して両基板を封止する。最後に、液晶セルの両外表面に偏光板を貼り合わせることにより、本発明の電子デバイスとしての液晶表示素子が得られる。   As another method for manufacturing a liquid crystal display element, a pair of transparent substrates on which a transparent conductive film, an interlayer insulating film, a protective film, a spacer, or both, and an alignment film are formed are prepared in the same manner as the above manufacturing method. After that, along the edge of one of the substrates, an ultraviolet curable sealant is applied using a dispenser, then the liquid crystal is dropped into a fine droplet using a liquid crystal dispenser, and the two substrates are bonded together under vacuum. Do. Then, both the substrates are sealed by irradiating the sealing agent part with ultraviolet rays using a high-pressure mercury lamp. Finally, a liquid crystal display element as an electronic device of the present invention is obtained by attaching polarizing plates to both outer surfaces of the liquid crystal cell.

上述の液晶表示素子の製造方法において使用される液晶としては、例えばネマティック型液晶、スメクティック型液晶等が挙げられる。また、液晶セルの外側に使用される偏光板としては、ポリビニルアルコールを延伸配向させながら、ヨウ素を吸収させた「H膜」と呼ばれる偏光膜を酢酸セルロース保護膜で挟んだ偏光板、又はH膜そのものからなる偏光板等が挙げられる。   Examples of the liquid crystal used in the above-described method for manufacturing a liquid crystal display element include nematic liquid crystal and smectic liquid crystal. In addition, as a polarizing plate used outside the liquid crystal cell, a polarizing film in which a polarizing film called an “H film” that absorbs iodine while stretching and aligning polyvinyl alcohol is sandwiched between cellulose acetate protective films, or an H film Examples thereof include a polarizing plate made of itself.

一方、有機エレクトロルミネッセンス素子においては、当該感放射線性樹脂組成物から形成される硬化膜は、TFT素子上に形成される平坦化膜、発光部位を規定する隔壁等として使用できる。   On the other hand, in the organic electroluminescence element, the cured film formed from the radiation-sensitive resin composition can be used as a planarization film formed on the TFT element, a partition defining a light emitting site, or the like.

以下、本発明を実施例に基づいて具体的に説明するが、本発明は、これらの実施例に限定されるものではない。なお、[A]重合体成分の重量平均分子量(Mw)は、以下の方法により測定した。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In addition, the weight average molecular weight (Mw) of [A] polymer component was measured with the following method.

[重量平均分子量(Mw)]
下記条件下、ゲルパーミエーションクロマトグラフィー(GPC)により測定した。
装置:昭和電工社の「GPC−101」
カラム:GPC−KF−801、GPC−KF−802、GPC−KF−803及びGPC−KF−804を結合
移動相:テトラヒドロフラン
カラム温度:40℃
流速:1.0mL/分
試料濃度:1.0質量%
試料注入量:100μL
検出器:示差屈折計
標準物質:単分散ポリスチレン
[Weight average molecular weight (Mw)]
It measured by gel permeation chromatography (GPC) under the following conditions.
Equipment: “GPC-101” from Showa Denko
Column: GPC-KF-801, GPC-KF-802, GPC-KF-803 and GPC-KF-804 are combined Mobile phase: Tetrahydrofuran Column temperature: 40 ° C
Flow rate: 1.0 mL / min Sample concentration: 1.0% by mass
Sample injection volume: 100 μL
Detector: Differential refractometer Standard material: Monodisperse polystyrene

<[A]重合体成分の合成>
[合成例1](重合体(A−1)の合成)
冷却管及び攪拌機を備えたフラスコに、2,2’−アゾビス(2,4−ジメチルバレロニトリル)7質量部及びジエチレングリコールエチルメチルエーテル200質量部を仕込んだ。引き続きメタクリル酸10質量部、構造単位(I)を与える単量体としてのメタクリル酸1−ブトキシエチル50質量部、構造単位(II)を与える単量体としての3−メタクリロイルオキシメチル−3−エチルオキセタン30質量部及び構造単位(III)を与える単量体としてのメタクリル酸2,2,2−トリフルオロエチル20質量部を仕込み窒素置換した後、ゆるやかに撹拌を始めた。溶液の温度を70℃に上昇させ、この温度を5時間保持し重合体(A−1)を含む重合体溶液を得た。重合体(A−1)のポリスチレン換算重量平均分子量(Mw)は9,000であった。ここで得られた重合体溶液の固形分濃度は、31.4質量%であった。
<[A] Synthesis of polymer component>
[Synthesis Example 1] (Synthesis of polymer (A-1))
A flask equipped with a condenser and a stirrer was charged with 7 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 200 parts by mass of diethylene glycol ethyl methyl ether. Subsequently, 10 parts by weight of methacrylic acid, 50 parts by weight of 1-butoxyethyl methacrylate as a monomer giving structural unit (I), and 3-methacryloyloxymethyl-3-ethyl as a monomer giving structural unit (II) After 30 parts by mass of oxetane and 20 parts by mass of 2,2,2-trifluoroethyl methacrylate as a monomer giving structural unit (III) were charged and purged with nitrogen, stirring was started gently. The temperature of the solution was raised to 70 ° C., and this temperature was maintained for 5 hours to obtain a polymer solution containing the polymer (A-1). The polystyrene equivalent weight average molecular weight (Mw) of the polymer (A-1) was 9,000. The solid content concentration of the polymer solution obtained here was 31.4% by mass.

[合成例2](重合体(A−2)の合成)
冷却管及び攪拌機を備えたフラスコに、2,2’−アゾビス(2,4−ジメチルバレロニトリル)7質量部及びジエチレングリコールエチルメチルエーテル200質量部を仕込んだ。引き続きメタクリル酸10質量部、構造単位(I)を与える単量体としてのテトラヒドロ−2H−ピラン−2−イルメタクリレート40質量部、構造単位(II)を与える単量体としてのメタクリル酸グリシジル45質量部及び構造単位(III)を与える単量体としての上記式(2−A)で表される化合物5質量部を仕込み窒素置換した後、ゆるやかに撹拌を始めた。溶液の温度を70℃に上昇させ、この温度を5時間保持し重合体(A−2)を含む重合体溶液を得た。重合体(A−2)のポリスチレン換算重量平均分子量(Mw)は8,500であった。ここで得られた重合体溶液の固形分濃度は、32.6質量%であった。
[Synthesis Example 2] (Synthesis of polymer (A-2))
A flask equipped with a condenser and a stirrer was charged with 7 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 200 parts by mass of diethylene glycol ethyl methyl ether. Subsequently, 10 parts by weight of methacrylic acid, 40 parts by weight of tetrahydro-2H-pyran-2-yl methacrylate as a monomer giving structural unit (I), and 45 parts by weight of glycidyl methacrylate as a monomer giving structural unit (II) Part 5 and 5 parts by mass of the compound represented by the above formula (2-A) as a monomer giving the structural unit (III) were charged and purged with nitrogen, and then gently stirred. The temperature of the solution was raised to 70 ° C., and this temperature was maintained for 5 hours to obtain a polymer solution containing the polymer (A-2). The polymer (A-2) had a weight average molecular weight (Mw) in terms of polystyrene of 8,500. The solid content concentration of the polymer solution obtained here was 32.6% by mass.

[合成例3](重合体(A−3)の合成)
冷却管及び攪拌機を備えたフラスコに、2,2’−アゾビス(2,4−ジメチルバレロニトリル)7質量部及びジエチレングリコールエチルメチルエーテル200質量部を仕込んだ。引き続き構造単位(I)を与える単量体としてのノナフルオロブチルオキシエチレンメタクリレート40質量部、構造単位(II)を与える単量体として3,4−エポキシシクロヘキシルメチルメタアクリレート40質量部及び構造単位(III)を与える単量体としてのメタクリル酸2,2,3,3,3−ペンタフルオロプロパン20質量部を仕込み窒素置換した後、ゆるやかに撹拌を始めた。溶液の温度を70℃に上昇させ、この温度を5時間保持し重合体(A−3)を含む重合体溶液を得た。重合体(A−3)のポリスチレン換算重量平均分子量(Mw)は11,000であった。ここで得られた重合体溶液の固形分濃度は、32.4質量%であった。
[Synthesis Example 3] (Synthesis of Polymer (A-3))
A flask equipped with a condenser and a stirrer was charged with 7 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 200 parts by mass of diethylene glycol ethyl methyl ether. Subsequently, 40 parts by mass of nonafluorobutyloxyethylene methacrylate as a monomer giving structural unit (I), 40 parts by mass of 3,4-epoxycyclohexylmethyl methacrylate as monomer giving structural unit (II) and structural unit ( After adding 20 parts by mass of 2,2,3,3,3-pentafluoropropane methacrylate as a monomer to give III) and substituting with nitrogen, stirring was started gently. The temperature of the solution was raised to 70 ° C., and this temperature was maintained for 5 hours to obtain a polymer solution containing the polymer (A-3). The polymer (A-3) had a polystyrene equivalent weight average molecular weight (Mw) of 11,000. The solid content concentration of the polymer solution obtained here was 32.4% by mass.

[合成例4](重合体(A−4)の合成)
冷却管及び攪拌機を備えたフラスコに、2,2’−アゾビス(2,4−ジメチルバレロニトリル)7質量部及びジエチレングリコールエチルメチルエーテル200質量部を仕込んだ。引き続き構造単位(I)を与える単量体としてテトラヒドロ−2H−ピラン−2−イルメタクリレート50質量部、メタクリル酸ベンジル35質量部及びメタクリル酸ヒドロキシエチル15質量部を仕込み窒素置換した後、ゆるやかに撹拌を始めた。溶液の温度を70℃に上昇させ、この温度を5時間保持し重合体(A−4)を含む重合体溶液を得た。重合体(A−4)のポリスチレン換算重量平均分子量(Mw)は10,500であった。ここで得られた重合体溶液の固形分濃度は、31.8質量%であった。
[Synthesis Example 4] (Synthesis of Polymer (A-4))
A flask equipped with a condenser and a stirrer was charged with 7 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 200 parts by mass of diethylene glycol ethyl methyl ether. Subsequently, 50 parts by mass of tetrahydro-2H-pyran-2-yl methacrylate, 35 parts by mass of benzyl methacrylate and 15 parts by mass of hydroxyethyl methacrylate were charged as a monomer to give the structural unit (I), and after nitrogen substitution, the mixture was gently stirred. Started. The temperature of the solution was raised to 70 ° C., and this temperature was maintained for 5 hours to obtain a polymer solution containing the polymer (A-4). The polystyrene equivalent weight average molecular weight (Mw) of the polymer (A-4) was 10,500. The solid content concentration of the polymer solution obtained here was 31.8% by mass.

[合成例5](重合体(A−5)の合成)
冷却管及び攪拌機を備えたフラスコに、2,2’−アゾビス(2,4−ジメチルバレロニトリル)7質量部及びジエチレングリコールエチルメチルエーテル200質量部を仕込んだ。引き続き構造単位(II)を与える単量体としてのメタクリル酸グリシジル60質量部、スチレン20質量部及び構造単位(III)を与える単量体としてのメタクリル酸2,2,2−トリフルオロエチル20質量部を仕込み窒素置換した後、ゆるやかに撹拌を始めた。溶液の温度を70℃に上昇させ、この温度を5時間保持し重合体(A−5)を含む重合体溶液を得た。重合体(A−5)のポリスチレン換算重量平均分子量(Mw)は10,000であった。ここで得られた重合体溶液の固形分濃度は、32.0質量%であった。
[Synthesis Example 5] (Synthesis of Polymer (A-5))
A flask equipped with a condenser and a stirrer was charged with 7 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 200 parts by mass of diethylene glycol ethyl methyl ether. Subsequently, 60 parts by mass of glycidyl methacrylate as a monomer giving structural unit (II), 20 parts by mass of styrene and 20 masses of 2,2,2-trifluoroethyl methacrylate as monomers giving structural unit (III) After the part was charged and purged with nitrogen, stirring was started gently. The temperature of the solution was raised to 70 ° C., and this temperature was maintained for 5 hours to obtain a polymer solution containing the polymer (A-5). The polymer (A-5) had a polystyrene equivalent weight average molecular weight (Mw) of 10,000. The solid content concentration of the polymer solution obtained here was 32.0% by mass.

[比較合成例1](重合体(a−1)の合成)
この比較合成例では、フルオロアルキル基を含む構造単位(III−1)及びシロキサン結合を含む基を有する構造単位(III−2)を与える単量体をいずれも使用せずに重合体を合成した。冷却管及び攪拌機を備えたフラスコに、2,2’−アゾビス(2,4−ジメチルバレロニトリル)7質量部及びジエチレングリコールエチルメチルエーテル200質量部を仕込んだ。引き続きメタクリル酸10質量部、構造単位(I)を与える単量体としてのメタクリル酸1−ブトキシエチル50質量部、構造単位(II)を与える単量体としての3−メタクリロイルオキシメチル−3−エチルオキセタン30質量部及びメタクリル酸メチル20質量部を仕込み窒素置換した後、ゆるやかに撹拌を始めた。溶液の温度を70℃に上昇させ、この温度を5時間保持し重合体(a−1)を含む重合体溶液を得た。重合体(a−1)のポリスチレン換算重量平均分子量(Mw)は11,000であった。ここで得られた重合体溶液の固形分濃度は、32.4質量%であった。
[Comparative Synthesis Example 1] (Synthesis of polymer (a-1))
In this comparative synthesis example, a polymer was synthesized without using any monomer that gave the structural unit (III-1) containing a fluoroalkyl group and the structural unit (III-2) having a group containing a siloxane bond. . A flask equipped with a condenser and a stirrer was charged with 7 parts by mass of 2,2′-azobis (2,4-dimethylvaleronitrile) and 200 parts by mass of diethylene glycol ethyl methyl ether. Subsequently, 10 parts by weight of methacrylic acid, 50 parts by weight of 1-butoxyethyl methacrylate as a monomer giving structural unit (I), and 3-methacryloyloxymethyl-3-ethyl as a monomer giving structural unit (II) After 30 parts by mass of oxetane and 20 parts by mass of methyl methacrylate were charged and purged with nitrogen, stirring was started gently. The temperature of the solution was raised to 70 ° C., and this temperature was maintained for 5 hours to obtain a polymer solution containing the polymer (a-1). The polystyrene equivalent weight average molecular weight (Mw) of the polymer (a-1) was 11,000. The solid content concentration of the polymer solution obtained here was 32.4% by mass.

<感放射線性樹脂組成物の調製>
感放射線性樹脂組成物の調製に用いた[B]感放射性酸発生剤、[C]酸化防止剤、[D]環状エーテル基を有する化合物及び[E]酸拡散制御剤を以下に示す。
<Preparation of radiation-sensitive resin composition>
[B] The radiation-sensitive acid generator, [C] antioxidant, [D] compound having a cyclic ether group and [E] acid diffusion controller used for the preparation of the radiation-sensitive resin composition are shown below.

([B]感放射性酸発生剤)
B−1:5−プロピルスルフォニルオキシイミノ−5H−チオフェン−2−イリデン)−(2−メチルフェニル)アセトニトリル(BASF社の「IRGACURE PAG 103」)
B−2:(5−p−トルエンスルフォニルオキシイミノ−5H−チオフェン−2−イリデン)−(2−メチルフェニル)アセトニトリル(BASF社の「IRGACURE PAG 121」)
B−3:(5−オクチルスルフォニルオキシイミノ)−(4−メトキシフェニル)アセトニトリル(BASF社の「CGI−725」)
B−4:下記式(6)で示されるオキシムスルホネート化合物(BASF社の「IRGACURE PAG 203」)
([B] Radioactive acid generator)
B-1: 5-propylsulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile (“IRGACURE PAG 103” from BASF)
B-2: (5-p-toluenesulfonyloxyimino-5H-thiophen-2-ylidene)-(2-methylphenyl) acetonitrile (“IRGACURE PAG 121” from BASF)
B-3: (5-octylsulfonyloxyimino)-(4-methoxyphenyl) acetonitrile (“CGI-725” from BASF)
B-4: An oxime sulfonate compound represented by the following formula (6) ("IRGACURE PAG 203" manufactured by BASF)

Figure 2015072455
Figure 2015072455

B−5:N−ヒドロキシナフタルイミド−トリフルオロメタンスルホン酸エステル   B-5: N-hydroxynaphthalimide-trifluoromethanesulfonic acid ester

([C]酸化防止剤)
C−1:ペンタエリスリトールテトラキス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート](アデカ社の「アデカスタブAO−60」)
C−2:トリス−(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)−イソシアヌレイト(アデカ社の「アデカスタブAO−20」)
C−3:3,9−ビス{2−[3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1−ジメチルエチル}2,4,8,10−テトラオキサスピロ[5,5]−ウンデカン(アデカ社の「アデカスタブAO−80」)
C−4:1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼン(アデカ社の「アデカスタブAO−330」)
([C] antioxidant)
C-1: Pentaerythritol tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] (“Adeka Stub AO-60” manufactured by Adeka)
C-2: Tris- (3,5-di-tert-butyl-4-hydroxybenzyl) -isocyanurate (“ADEKA STAB AO-20” from Adeka)
C-3: 3,9-bis {2- [3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy] -1,1-dimethylethyl} 2,4,8,10- Tetraoxaspiro [5,5] -undecane (“Adeka Stub AO-80” from Adeka)
C-4: 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene (“Adeka Stub AO-330” from Adeka)

([D]環状エーテル基を有する化合物)
D−1:下記式(D−1)で表されるイソフタル酸ビス[(3−エチルオキセタン−3−イル)メチル]
D−2:下記式(D−2)で表される1,4−ビス[(3−エチルオキセタン−3−イル)メトキシメチル]ベンゼン
([D] Compound having cyclic ether group)
D-1: bis [(3-ethyloxetane-3-yl) methyl] isophthalate represented by the following formula (D-1)
D-2: 1,4-bis [(3-ethyloxetane-3-yl) methoxymethyl] benzene represented by the following formula (D-2)

Figure 2015072455
Figure 2015072455

([E]酸拡散制御剤)
E−1:4−ジメチルアミノピリジン
([E] acid diffusion controller)
E-1: 4-Dimethylaminopyridine

[実施例1]
[A]重合体成分としての(A−1)を含む重合体溶液((A−1)100質量部(固形分)に相当する量)に、[B]感放射性酸発生体としての(B−1)3質量部を混合し、孔径0.2μmのメンブランフィルタで濾過することにより、感放射線性樹脂組成物を調製した。
[Example 1]
[A] To a polymer solution containing (A-1) as a polymer component (amount corresponding to 100 parts by mass (solid content) of (A-1)), [B] (B as a radioactive acid generator) -1) A radiation-sensitive resin composition was prepared by mixing 3 parts by mass and filtering with a membrane filter having a pore size of 0.2 μm.

[実施例2〜5及び比較例1]
下記表1に示す種類及び配合量の成分を用いた以外は実施例1と同様に操作し、感放射線性樹脂組成物を調製した。なお、表1中の「−」は、該当する成分を配合しなかったことを示す。
[Examples 2 to 5 and Comparative Example 1]
A radiation-sensitive resin composition was prepared in the same manner as in Example 1 except that components of the types and blending amounts shown in Table 1 below were used. In addition, "-" in Table 1 indicates that the corresponding component was not blended.

[実施例6]
(A−4)を含む重合体溶液((A−4)50質量部(固形分)に相当する量)と、(A−5)を含む重合体溶液((A−5)50質量部(固形分)に相当する量)とを混合して[A]重合体成分とし、これに[B]感放射性酸発生体としての(B−4)3質量部を混合し、次いで、孔径0.2μmのメンブランフィルタで濾過することにより、感放射線性樹脂組成物を調製した。
[Example 6]
A polymer solution containing (A-4) (an amount corresponding to 50 parts by mass (solid content) of (A-4)) and a polymer solution containing (A-5) (50 parts by mass of (A-5) ( The amount corresponding to the solid content) is mixed to obtain the [A] polymer component, to which 3 parts by weight of (B-4) as the [B] radioactive acid generator is mixed, A radiation sensitive resin composition was prepared by filtering through a 2 μm membrane filter.

[実施例7]
(A−4)を含む重合体溶液((A−4)70質量部(固形分)に相当する量)と、(A−5)を含む重合体溶液((A−5)30質量部(固形分)に相当する量)とを混合して[A]重合体成分とし、これに[B]感放射性酸発生体としての(B−5)3質量部、[C]酸化防止剤としての(C−2)1質量部、[D]酸化防止剤としての(D−1)10質量部及び[E]酸拡散制御剤としての(E−1)0.1質量部を混合し、次いで、孔径0.2μmのメンブランフィルタで濾過することにより、感放射線性樹脂組成物を調製した。
[Example 7]
A polymer solution containing (A-4) (amount corresponding to 70 parts by mass (solid content) of (A-4)) and a polymer solution containing (A-5) (30 parts by mass of (A-5) ( The amount corresponding to the solid content) is mixed to obtain [A] a polymer component, and [B] (B-5) 3 parts by mass as a radioactive acid generator, and [C] an antioxidant as an antioxidant. (C-2) 1 part by mass, (D-1) 10 parts by mass as an antioxidant and (E) 0.1 part by mass of (E-1) as an acid diffusion controller were mixed, A radiation sensitive resin composition was prepared by filtering through a membrane filter having a pore size of 0.2 μm.

<評価>
実施例1〜7及び比較例1の感放射線性樹脂組成物を用いて、放射線感度、塗膜の外観、膜厚均一性、耐光性、透過率及び撥水性の評価を実施した。評価結果を表1に併せて示す。
<Evaluation>
Using the radiation-sensitive resin compositions of Examples 1 to 7 and Comparative Example 1, evaluation of radiation sensitivity, coating film appearance, film thickness uniformity, light resistance, transmittance and water repellency was carried out. The evaluation results are also shown in Table 1.

[放射線感度の評価]
ガラス基板上に、感放射線性樹脂組成物をスピンナを用いて塗布した後、90℃にて2分間ホットプレート上でプレベークして膜厚3.0μmの塗膜を形成した。続いて、露光機(キヤノン社の「MPA−600FA」(ghi線混合))を用い、60μmのライン・アンド・スペース(10対1)のパターンを有するマスクを介して、塗膜に対し露光量を変量として放射線を照射した。その後、0.5質量%のテトラメチルアンモニウムヒドロキシド水溶液にて25℃において80秒間液盛り法で現像した。次いで、超純水で1分間流水洗浄を行い、その後乾燥することにより、HMDS処理後のクロム成膜ガラス基板上にパターンを形成した。このとき、6μmのスペース・パターンが完全に溶解するために必要な露光量を調べた。この露光量の値が500J/m以下の場合、放射線感度は良好と判断できる。
[Evaluation of radiation sensitivity]
A radiation sensitive resin composition was applied onto a glass substrate using a spinner, and then prebaked on a hot plate at 90 ° C. for 2 minutes to form a coating film having a thickness of 3.0 μm. Subsequently, using an exposure machine (Canon's “MPA-600FA” (ghi line mixing)), the exposure amount to the coating film through a mask having a 60 μm line and space (10 to 1) pattern. Was irradiated as a variable. Then, it developed by the piling method for 80 seconds at 25 degreeC with 0.5 mass% tetramethylammonium hydroxide aqueous solution. Next, washing with running ultrapure water for 1 minute was performed, followed by drying to form a pattern on the chromium-deposited glass substrate after the HMDS treatment. At this time, the amount of exposure necessary to completely dissolve the 6 μm space pattern was examined. When the exposure value is 500 J / m 2 or less, it can be determined that the radiation sensitivity is good.

[塗膜の外観の評価]
550×650mmのクロム成膜ガラス上に、感放射線性組成物をスリットダイコーター(東京応化工業社の「R632105−CL」)を用いて塗布し、到達圧力を100Paに設定して真空下で溶媒を除去した後、さらに90℃において2分間プレベークすることにより、膜厚3.0μmの塗膜を形成した。この塗膜について、ナトリウムランプ下において肉眼により外観の観察を行った。このとき、塗膜の全体に発生しているモヤ状のムラを「モヤムラ」、プレベーク炉のプロキシピンに由来するムラを「ピンムラ」として、その出現状況を調べた。これらのムラのいずれもほとんど見えない場合を「○」(優良)、これらのムラのいずれかが少し見える場合を「△」(良好)、はっきりと見える場合を「×」(不良)として評価した。
[Evaluation of appearance of coating film]
A radiation sensitive composition is applied onto a 550 × 650 mm chromium film using a slit die coater (“R6322105-CL” from Tokyo Ohka Kogyo Co., Ltd.), the ultimate pressure is set to 100 Pa, and the solvent is removed under vacuum. Then, the film was further pre-baked at 90 ° C. for 2 minutes to form a coating film having a thickness of 3.0 μm. The appearance of this coating film was observed with the naked eye under a sodium lamp. At this time, the appearance state was investigated, assuming that the haze-like unevenness generated in the entire coating film was “moy unevenness” and the unevenness derived from the proxy pin of the pre-baking furnace was “pin unevenness”. The case where almost none of these unevennesses were visible was evaluated as “◯” (excellent), the case where any of these unevennesses was slightly visible was “△” (good), and the case where they were clearly visible was evaluated as “x” (bad). .

[膜厚均一性(ユニフォミティ)の評価]
膜厚均一性は、ユニフォミティとして評価した。ユニフォミティは、9つの測定点における膜厚から計算した。膜厚は、外観評価を行うために作製した塗膜について、針接触式測定機(KLA Tencor社の「AS200」)を用いて測定した。9つの測定点は、基板の短軸方向をX、長軸方向をYとしたとき、(X[mm]、Y[mm])が、(275、20)、(275、30)、(275、60)、(275、100)、(275、325)、(275、550)、(275、590)、(275、620)、及び(275、630)とした。ユニフォミティの計算は、下記数式に基づいて行った。
[Evaluation of film thickness uniformity (uniformity)]
The film thickness uniformity was evaluated as uniformity. The uniformity was calculated from the film thickness at nine measurement points. The film thickness was measured using a needle contact measuring device (“AS200” from KLA Tencor) for the coating film prepared for the appearance evaluation. Nine measurement points are (275, 20), (275, 30), (275) where (X [mm], Y [mm]) is X when the minor axis direction of the substrate is X and the major axis direction is Y. , 60), (275, 100), (275, 325), (275, 550), (275, 590), (275, 620), and (275, 630). The calculation of uniformity was performed based on the following mathematical formula.

ユニフォミティ(%)=
{FT(X、Y)max−FT(X、Y)min}×100/{2×FT(X、Y)avg.}
(上記数式中、FT(X,Y)maxは、9つの測定点における膜厚中の最大値、FT(X,Y)minは9つの測定点における膜厚中の最小値、FT(X,Y)avg.は9つの測定点における膜厚中の平均値である。)
Uniformity (%) =
{FT (X, Y) max-FT (X, Y) min} × 100 / {2 × FT (X, Y) avg. }
(In the above formula, FT (X, Y) max is the maximum value in the film thickness at nine measurement points, FT (X, Y) min is the minimum value in the film thickness at nine measurement points, and FT (X, Y Y) avg. Is an average value in the film thickness at nine measurement points.)

膜厚均一性は、ユニフォミティが5%以下の場合に良好と判断できる。   The film thickness uniformity can be judged good when the uniformity is 5% or less.

[耐光性の評価]
シリコン基板上に、感放射線性樹脂組成物をスピンナを用いて塗布した後、90℃にて2分間ホットプレート上でプレベークして膜厚3.0μmの塗膜を形成した。このシリコン基板をクリーンオーブン内にて220℃で1時間加熱して硬化膜を得た。なお、耐光性の評価においては、硬化膜のパターニングは不要のため、露光工程及び現像工程を省略し、塗膜形成工程及び加熱工程のみで硬化膜を形成した。
[Evaluation of light resistance]
A radiation sensitive resin composition was applied onto a silicon substrate using a spinner, and then prebaked on a hot plate at 90 ° C. for 2 minutes to form a coating film having a thickness of 3.0 μm. This silicon substrate was heated in a clean oven at 220 ° C. for 1 hour to obtain a cured film. In the light resistance evaluation, since the patterning of the cured film is unnecessary, the exposure process and the development process are omitted, and the cured film is formed only by the coating film forming process and the heating process.

この硬化膜に、UV照射装置(ウシオ社の「UVX−02516S1JS01」)を用いて、照度が130mW、露光強度が800000J/m、ピーク波長が365nmであるUV光を照射した。照射前の膜厚に比較して、照射後の膜厚の膜減り量が3%以下であれば硬化膜の耐光性が良好であると言える。 This cured film was irradiated with UV light having an illuminance of 130 mW, an exposure intensity of 800,000 J / m 2 , and a peak wavelength of 365 nm using a UV irradiation apparatus (Ushio Corporation “UVX-02516S1JS01”). It can be said that the light resistance of the cured film is good when the amount of film thickness reduction after irradiation is 3% or less compared to the film thickness before irradiation.

[透過率の評価]
上記耐光性の評価と同様な手法により、感放射線性樹脂組成物を用いてガラス基板上に塗膜を形成した。このガラス基板をクリーンオーブン内にて220℃で1時間加熱して硬化膜を形成した。この硬化膜について、波長400nmにおける透過率を、分光光度計(日立製作所社の「150−20型ダブルビーム」)を用いて測定した。透過率が90%未満の場合に透明性が不良と言える。
[Evaluation of transmittance]
A coating film was formed on a glass substrate using the radiation-sensitive resin composition by the same method as the light resistance evaluation. This glass substrate was heated at 220 ° C. for 1 hour in a clean oven to form a cured film. About this cured film, the transmittance | permeability in wavelength 400nm was measured using the spectrophotometer ("150-20 type double beam" of Hitachi, Ltd.). It can be said that the transparency is poor when the transmittance is less than 90%.

[撥水性の評価]
シリコン基板上に、実施例1〜7又は比較例1で調製した感放射線性組成物をそれぞれスピンナーで塗布した後、90℃のホットプレート上で2分間プレベークすることにより3.0μm厚の塗膜を形成した。次いで、得られた塗膜に石英マスク(コンタクト)を介して高圧水銀ランプを用い露光機(キヤノン社の「MPA−600FA」(ghi線混合))を用い、露光量を500J/mとして放射線照射を行った。その後、0.5質量%のテトラメチルアンモニウムヒドロキシド水溶液にて25℃において80秒間液盛り法で現像した。次いで、超純水で1分間流水洗浄を行い、その後乾燥することにより、パターンを形成した。その後、ホットプレートを用い220℃で30分ベークすることにより、露光部が親液部となり、露光部以外が撥液部となった、親液部と撥液部とによりパターニングされた膜を形成した。形成された親撥パターニング膜において、接触角計(協和界面科学社の「CA−X」)を用い、親液部に相当する露光部の塗膜表面、撥液部に相当する未露光部の塗膜表面それぞれにおける、水の接触角を測定した。
[Evaluation of water repellency]
After coating the radiation-sensitive compositions prepared in Examples 1 to 7 or Comparative Example 1 on a silicon substrate with a spinner, the coating film is 3.0 μm thick by pre-baking on a 90 ° C. hot plate for 2 minutes. Formed. Next, the obtained coating film was irradiated with radiation using a high pressure mercury lamp through a quartz mask (contact) using an exposure machine (Canon “MPA-600FA” (ghi line mixing)) with an exposure dose of 500 J / m 2. Irradiation was performed. Then, it developed by the piling method for 80 seconds at 25 degreeC with 0.5 mass% tetramethylammonium hydroxide aqueous solution. Subsequently, running water was washed with ultrapure water for 1 minute, and then dried to form a pattern. Then, by baking for 30 minutes at 220 ° C. using a hot plate, the exposed part becomes a lyophilic part, and a film other than the exposed part becomes a lyophobic part. A film patterned by the lyophilic part and the lyophobic part is formed. did. In the formed lyophobic patterning film, using a contact angle meter (“CA-X” from Kyowa Interface Science Co., Ltd.), the coating surface of the exposed portion corresponding to the lyophilic portion, the unexposed portion corresponding to the lyophobic portion. The contact angle of water on each coating film surface was measured.


Figure 2015072455
Figure 2015072455

表1の結果から明らかなように、実施例1〜7の感放射線性樹脂組成物は、放射線感度に優れ、これらの感放射線性樹脂組成物から形成された硬化膜は、塗布外観、膜厚均一性、耐光性、透過率、及び接触角(撥水性)に優れていた。   As is clear from the results in Table 1, the radiation sensitive resin compositions of Examples 1 to 7 are excellent in radiation sensitivity, and the cured film formed from these radiation sensitive resin compositions has a coating appearance and a film thickness. It was excellent in uniformity, light resistance, transmittance, and contact angle (water repellency).

これに対して、比較例1の感放射線性樹脂組成物は、放射線感度に優れるものの、この感放射線性樹脂組成物から形成された硬化膜は、外願不良が生じ、実施例1〜7の感放射線性樹脂組成物から形成した硬化膜に比べて、膜厚均一性及び撥水性が悪かった。   On the other hand, although the radiation sensitive resin composition of Comparative Example 1 is excellent in radiation sensitivity, the cured film formed from this radiation sensitive resin composition has a poor external application. Compared with the cured film formed from the radiation-sensitive resin composition, the film thickness uniformity and water repellency were poor.

本発明の感放射線性樹脂組成物は、優れた撥水性を有し、パネルの大型価や量産等に対応できる優れた塗布性(例えば塗膜の外観特性や膜厚の均一性)及び優れた放射線感度を満たす。本発明はさらに、当該感放射線性樹脂組成物から形成される硬化膜及びその形成方法、並びに当該硬化膜を備える電子デバイスを提供することができる。従って、当該感放射線性樹脂組成物、当該硬化膜及びその形成方法、並びに当該電子デバイスは液晶素子、有機EL素子、電子回路、センサー等の製造プロセスに好適に使用することができる。
The radiation-sensitive resin composition of the present invention has excellent water repellency, excellent coating properties (for example, coating film appearance characteristics and film thickness uniformity) and the like that can be used for large panel size and mass production of panels. Satisfies radiation sensitivity. The present invention can further provide a cured film formed from the radiation-sensitive resin composition, a method for forming the cured film, and an electronic device including the cured film. Therefore, the radiation-sensitive resin composition, the cured film and the method for forming the cured film, and the electronic device can be suitably used for manufacturing processes of liquid crystal elements, organic EL elements, electronic circuits, sensors, and the like.

Claims (10)

酸解離性基を含む第1構造単位と、架橋性基を含む第2構造単位と、フルオロアルキル基及びシロキサン結合を有する基の少なくとも一方を含む第3構造単位とを有する重合体成分、並びに
感放射性酸発生体を含有する感放射線性樹脂組成物。
A polymer component having a first structural unit containing an acid dissociable group, a second structural unit containing a crosslinkable group, and a third structural unit containing at least one of a fluoroalkyl group and a group having a siloxane bond, and A radiation-sensitive resin composition containing a radioactive acid generator.
上記第3構造単位が下記式(1)又は下記式(2)で表される請求項1に記載の感放射線性樹脂組成物。
Figure 2015072455
(式(1)中、Rは、水素原子又はメチル基である。R及びRは、それぞれ独立して、水素原子、トリフルオロメチル基、ペンタフルオロエチル基、水酸基、炭素数1〜12の1価の脂肪族炭化水素基、炭素数1〜12のアルコキシ基、又は炭素数6〜15の1価の芳香族炭化水素基である。a及びbは、それぞれ独立して、0〜12の整数である。aが2以上の場合、複数のR、及び複数のRは、それぞれ同一でも異なっていてもよい。)
Figure 2015072455
(式(2)中、Rは、水素原子又はメチル基である。R及びRは、それぞれ独立して、水素原子、炭素数1〜12の1価の脂肪族炭化水素基、炭素数1〜12のアルコキシ基又は炭素数6〜15の1価の芳香族炭化水素基である。R及びRは、それぞれ独立して、水素原子、炭素数1〜12の1価の脂肪族炭化水素基又は下記式(2−1)で表される基である。R〜R11は、それぞれ独立して、水素原子又は炭素数1〜12の1価の炭化水素基である。c及びdは、それぞれ独立して、0〜12の整数である。cが2以上の場合、複数のR、及び複数のRは、それぞれ同一でも異なっていてもよい。dが2以上の場合、複数のR、及び複数のRは、それぞれ同一でも異なっていてもよい。)
Figure 2015072455
(式(2−1)中、R12〜R16は、それぞれ独立して、水素原子、炭素数1〜12の1価の脂肪族炭化水素基又は炭素数6〜12の1価の芳香族炭化水素基である。eは、1〜12の整数である。但し、eが2以上の場合、複数のR12、及び複数のR13は、それぞれ同一でも異なっていてもよい。*は、上記式(2)におけるR及びRが結合するケイ素原子との結合部位を表す。)
The radiation-sensitive resin composition according to claim 1, wherein the third structural unit is represented by the following formula (1) or the following formula (2).
Figure 2015072455
(In Formula (1), R 1 is a hydrogen atom or a methyl group. R 2 and R 3 are each independently a hydrogen atom, a trifluoromethyl group, a pentafluoroethyl group, a hydroxyl group, 12 is a monovalent aliphatic hydrocarbon group, an alkoxy group having 1 to 12 carbon atoms, or a monovalent aromatic hydrocarbon group having 6 to 15 carbon atoms, wherein a and b are each independently 0 to 0; And is an integer of 12. When a is 2 or more, a plurality of R 2 s and a plurality of R 3 s may be the same or different.
Figure 2015072455
(In Formula (2), R 4 is a hydrogen atom or a methyl group. R 5 and R 6 are each independently a hydrogen atom, a monovalent aliphatic hydrocarbon group having 1 to 12 carbon atoms, or carbon. An alkoxy group having 1 to 12 carbon atoms or a monovalent aromatic hydrocarbon group having 6 to 15 carbon atoms, each of R 7 and R 8 independently represents a hydrogen atom or a monovalent fat having 1 to 12 carbon atoms; Or a group represented by the following formula (2-1): R 9 to R 11 are each independently a hydrogen atom or a monovalent hydrocarbon group having 1 to 12 carbon atoms. c and d are each independently an integer of 0 to 12. When c is 2 or more, the plurality of R 5 and the plurality of R 6 may be the same or different, and d is 2 or more. In this case, the plurality of R 7 and the plurality of R 8 may be the same or different.)
Figure 2015072455
(In Formula (2-1), R 12 to R 16 are each independently a hydrogen atom, a monovalent aliphatic hydrocarbon group having 1 to 12 carbon atoms, or a monovalent aromatic group having 6 to 12 carbon atoms. E is an integer of 1 to 12. However, when e is 2 or more, a plurality of R 12 s and a plurality of R 13 s may be the same or different. (It represents a bonding site with the silicon atom to which R 7 and R 8 in the above formula (2) are bonded.)
上記第1構造単位が下記式(3)で表される構造単位及び下記式(4)で表される構造単位からなる群より選択される少なくとも1種である請求項1又は請求項2に記載の感放射線性樹脂組成物。
Figure 2015072455
(式(3)中、R17は、水素原子又はメチル基である。R18及びR19は、それぞれ独立して、水素原子、炭素数1〜12の1価の鎖状炭化水素基、炭素数6〜15の1価の芳香族炭化水素基、炭素数4〜20の1価の脂環式炭化水素基又はこれらの基の有する水素原子の一部若しくは全部がフッ素原子で置換された基である。
式(4)中、R20は、水素原子又はメチル基である。R21〜R27は、それぞれ独立して、水素原子、炭素数1〜12の1価の鎖状炭化水素基又は上記基の有する水素原子の一部若しくは全部がフッ素原子で置換された基である。nは、1又は2である。nが2の場合、複数のR26、及び複数のR27は、それぞれ同一でも異なっていてもよい。)
The said 1st structural unit is at least 1 sort (s) selected from the group which consists of a structural unit represented by following formula (3), and a structural unit represented by following formula (4). Radiation sensitive resin composition.
Figure 2015072455
(In Formula (3), R 17 is a hydrogen atom or a methyl group. R 18 and R 19 are each independently a hydrogen atom, a monovalent chain hydrocarbon group having 1 to 12 carbon atoms, carbon, A monovalent aromatic hydrocarbon group having 6 to 15 carbon atoms, a monovalent alicyclic hydrocarbon group having 4 to 20 carbon atoms, or a group in which some or all of the hydrogen atoms of these groups are substituted with fluorine atoms It is.
In Formula (4), R 20 is a hydrogen atom or a methyl group. R 21 to R 27 are each independently a hydrogen atom, a monovalent chain hydrocarbon group having 1 to 12 carbon atoms, or a group in which some or all of the hydrogen atoms of the above group are substituted with fluorine atoms. is there. n is 1 or 2. When n is 2, the plurality of R 26 and the plurality of R 27 may be the same or different. )
上記第2構造単位の架橋性基が、(メタ)アクリロイル基、オキシラニル基及びオキセタニル基からなる群より選択される少なくとも1種である請求項1、請求項2又は請求項3に記載の感放射線性樹脂組成物。   The radiation-sensitive material according to claim 1, 2 or 3, wherein the crosslinkable group of the second structural unit is at least one selected from the group consisting of a (meth) acryloyl group, an oxiranyl group, and an oxetanyl group. Resin composition. 上記感放射性酸発生体が下記式(5)で表される基を含む請求項1から請求項4のいずれか1項に記載の感放射線性樹脂組成物。
Figure 2015072455
(式(5)中、R28は、アルキル基、1価の脂環式炭化水素基、アリール基、又はこれらの基が有する水素原子の一部若しくは全部を置換基で置換した基である。)
The radiation sensitive resin composition according to any one of claims 1 to 4, wherein the radiation sensitive acid generator includes a group represented by the following formula (5).
Figure 2015072455
(In formula (5), R 28 is an alkyl group, a monovalent alicyclic hydrocarbon group, an aryl group, or a group obtained by substituting a part or all of the hydrogen atoms of these groups with a substituent. )
酸化防止剤をさらに含有する請求項1から請求項5のいずれか1項に記載の感放射線性樹脂組成物。   The radiation sensitive resin composition of any one of Claims 1-5 which further contains antioxidant. 酸解離性基を含む第1構造単位と、架橋性基を含む第2構造単位と、フルオロアルキル基及びシロキサン結合を有する基の少なくとも一方を含む第3構造単位とを有する重合体成分を含有する重合体組成物。   Containing a polymer component having a first structural unit containing an acid-dissociable group, a second structural unit containing a crosslinkable group, and a third structural unit containing at least one of a fluoroalkyl group and a group having a siloxane bond Polymer composition. 請求項1から請求項6のいずれか1項に記載の感放射線性樹脂組成物から形成される硬化膜。   The cured film formed from the radiation sensitive resin composition of any one of Claims 1-6. 請求項8に記載の硬化膜を備える電子デバイス。   An electronic device comprising the cured film according to claim 8. 基板上に塗膜を形成する工程、上記塗膜の少なくとも一部に放射線を照射する工程、上記放射線が照射された塗膜を現像する工程、及び上記現像された塗膜を加熱する工程を備える硬化膜の形成方法であって、
上記塗膜を請求項1から請求項6のいずれか1項に記載の感放射線性樹脂組成物を用いて形成する硬化膜の形成方法。
A step of forming a coating film on the substrate; a step of irradiating at least a part of the coating film; a step of developing the coating film irradiated with the radiation; and a step of heating the developed coating film. A method for forming a cured film, comprising:
The formation method of the cured film which forms the said coating film using the radiation sensitive resin composition of any one of Claims 1-6.
JP2014153350A 2013-09-04 2014-07-28 Radiation-sensitive resin composition, cured film, method for forming the same, and electronic device Active JP6492444B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014153350A JP6492444B2 (en) 2013-09-04 2014-07-28 Radiation-sensitive resin composition, cured film, method for forming the same, and electronic device
KR1020140113245A KR102220675B1 (en) 2013-09-04 2014-08-28 Radiation-sensitive resin composition, cured film and method for forming the same, and electronic device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013183529 2013-09-04
JP2013183529 2013-09-04
JP2014153350A JP6492444B2 (en) 2013-09-04 2014-07-28 Radiation-sensitive resin composition, cured film, method for forming the same, and electronic device

Publications (2)

Publication Number Publication Date
JP2015072455A true JP2015072455A (en) 2015-04-16
JP6492444B2 JP6492444B2 (en) 2019-04-03

Family

ID=53014832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014153350A Active JP6492444B2 (en) 2013-09-04 2014-07-28 Radiation-sensitive resin composition, cured film, method for forming the same, and electronic device

Country Status (2)

Country Link
JP (1) JP6492444B2 (en)
KR (1) KR102220675B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017172A (en) * 2014-07-11 2016-02-01 Dic株式会社 Fluorine-containing pyrolytic resin, resist composition, composition for color filter protective film, resist film, and color filter protective film
WO2017002430A1 (en) * 2015-07-01 2017-01-05 富士フイルム株式会社 Actinic ray-sensitive or radiation-sensitive resin composition, actinic ray-sensitive or radiation-sensitive film, pattern molding method, and electronic device production method
KR20170026275A (en) 2015-08-31 2017-03-08 후지필름 가부시키가이샤 Photosensitive composition, method for manufacturing cured film, method for manufacturing liquid crystal display device, method for manufacturing organic electroluminescent display device, and method for manufacturing touch panel
JP2017167277A (en) * 2016-03-15 2017-09-21 Jsr株式会社 Pattern forming method using liquid-philic and liquid-phobic material
JP2017198840A (en) * 2016-04-27 2017-11-02 株式会社カネカ Positive photosensitive composition for forming partition wall
JPWO2020031524A1 (en) * 2018-08-08 2021-09-02 Agc株式会社 Optical members, their manufacturing methods, and curable compositions for optical members

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6658167B2 (en) * 2016-03-18 2020-03-04 Jsr株式会社 Radiation-sensitive resin composition, cured film, method for forming cured film, and electronic device

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008090827A1 (en) * 2007-01-22 2008-07-31 Nissan Chemical Industries, Ltd. Positive photosensitive resin composition
JP2008535950A (en) * 2005-03-11 2008-09-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Photocurable thermosetting fluorinated resist
JP2008297344A (en) * 2007-05-29 2008-12-11 Nippon Paint Co Ltd Photosensitive resin composition, and removable liquid-repellant layer formation method
WO2011065207A1 (en) * 2009-11-30 2011-06-03 Jsr株式会社 Radiation-sensitive composition and method for forming resist pattern
WO2011096400A1 (en) * 2010-02-02 2011-08-11 日産化学工業株式会社 Positive photosensitive resin composition and liquid-repellent film
JP2011209681A (en) * 2009-10-16 2011-10-20 Fujifilm Corp Photosensitive resin composition, method of forming cured film, cured film, organic el display device and liquid crystal display device
JP2011215580A (en) * 2009-10-16 2011-10-27 Fujifilm Corp Photosensitive resin composition, method for forming cured film, cured film, organic electroluminescent (el) display device and liquid crystal display device
JP2011215503A (en) * 2010-04-01 2011-10-27 Jsr Corp Positive radiation-sensitive composition, interlayer insulating film and method for forming the same
JP2011215596A (en) * 2010-03-15 2011-10-27 Fujifilm Corp Positive type photosensitive resin composition, method for forming cured film, cured film, organic el display device, and liquid crystal display device
JP2011221496A (en) * 2010-01-22 2011-11-04 Fujifilm Corp Positive photosensitive resin composition, cured film forming method, cured film, organic el display device, and liquid crystal display device
JP2012159830A (en) * 2011-01-12 2012-08-23 Fujifilm Corp Positive photosensitive resin composition, method for forming cured film, cured film, organic el display device and liquid crystal display device
JP2012220860A (en) * 2011-04-13 2012-11-12 Daikin Ind Ltd Positive liquid-repellent resist composition
WO2012169620A1 (en) * 2011-06-10 2012-12-13 東京応化工業株式会社 Solvent-developable negative resist composition, resist pattern formation method, and method for forming pattern of layer including block copolymer
JP2013011866A (en) * 2011-05-30 2013-01-17 Shin Etsu Chem Co Ltd Pattern forming method and resist composition
JP2013092590A (en) * 2011-10-25 2013-05-16 Shin Etsu Chem Co Ltd Positive resist composition and method for forming pattern
JP2013186450A (en) * 2012-03-12 2013-09-19 Fujifilm Corp Positive photosensitive resin composition, production method of cured film, cured film, organic el display device, and liquid crystal display device
JP2013210558A (en) * 2012-03-30 2013-10-10 Fujifilm Corp Chemically amplified positive photosensitive resin composition, method for producing cured film, cured film, organic el display device, and liquid crystal display device
WO2014080838A1 (en) * 2012-11-21 2014-05-30 富士フイルム株式会社 Photosensitive resin composition, method for producing cured film, cured film, organic el display device, and liquid crystal display device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3911775B2 (en) 1997-07-30 2007-05-09 セイコーエプソン株式会社 Manufacturing method of organic EL element
JP3965868B2 (en) 2000-06-12 2007-08-29 Jsr株式会社 Interlayer insulation film and microlens
JP4269740B2 (en) 2002-03-28 2009-05-27 住友化学株式会社 Positive chemically amplified resist composition
JP4207604B2 (en) 2003-03-03 2009-01-14 Jsr株式会社 Radiation-sensitive resin composition, interlayer insulating film and microlens, and method for forming them
JP5075706B2 (en) 2007-03-27 2012-11-21 富士フイルム株式会社 Positive photosensitive resin composition and cured film forming method using the same
KR20120081949A (en) * 2011-01-12 2012-07-20 후지필름 가부시키가이샤 Positive photosensitive resin composition, method for forming cured film, cured film, organic el display device, and liquid crystal display device

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008535950A (en) * 2005-03-11 2008-09-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Photocurable thermosetting fluorinated resist
WO2008090827A1 (en) * 2007-01-22 2008-07-31 Nissan Chemical Industries, Ltd. Positive photosensitive resin composition
JP2008297344A (en) * 2007-05-29 2008-12-11 Nippon Paint Co Ltd Photosensitive resin composition, and removable liquid-repellant layer formation method
JP2011209681A (en) * 2009-10-16 2011-10-20 Fujifilm Corp Photosensitive resin composition, method of forming cured film, cured film, organic el display device and liquid crystal display device
JP2011215580A (en) * 2009-10-16 2011-10-27 Fujifilm Corp Photosensitive resin composition, method for forming cured film, cured film, organic electroluminescent (el) display device and liquid crystal display device
WO2011065207A1 (en) * 2009-11-30 2011-06-03 Jsr株式会社 Radiation-sensitive composition and method for forming resist pattern
JP2011221496A (en) * 2010-01-22 2011-11-04 Fujifilm Corp Positive photosensitive resin composition, cured film forming method, cured film, organic el display device, and liquid crystal display device
WO2011096400A1 (en) * 2010-02-02 2011-08-11 日産化学工業株式会社 Positive photosensitive resin composition and liquid-repellent film
JP2011215596A (en) * 2010-03-15 2011-10-27 Fujifilm Corp Positive type photosensitive resin composition, method for forming cured film, cured film, organic el display device, and liquid crystal display device
JP2011215503A (en) * 2010-04-01 2011-10-27 Jsr Corp Positive radiation-sensitive composition, interlayer insulating film and method for forming the same
JP2012159830A (en) * 2011-01-12 2012-08-23 Fujifilm Corp Positive photosensitive resin composition, method for forming cured film, cured film, organic el display device and liquid crystal display device
JP2012220860A (en) * 2011-04-13 2012-11-12 Daikin Ind Ltd Positive liquid-repellent resist composition
JP2013011866A (en) * 2011-05-30 2013-01-17 Shin Etsu Chem Co Ltd Pattern forming method and resist composition
WO2012169620A1 (en) * 2011-06-10 2012-12-13 東京応化工業株式会社 Solvent-developable negative resist composition, resist pattern formation method, and method for forming pattern of layer including block copolymer
JP2013092590A (en) * 2011-10-25 2013-05-16 Shin Etsu Chem Co Ltd Positive resist composition and method for forming pattern
JP2013186450A (en) * 2012-03-12 2013-09-19 Fujifilm Corp Positive photosensitive resin composition, production method of cured film, cured film, organic el display device, and liquid crystal display device
JP2013210558A (en) * 2012-03-30 2013-10-10 Fujifilm Corp Chemically amplified positive photosensitive resin composition, method for producing cured film, cured film, organic el display device, and liquid crystal display device
WO2014080838A1 (en) * 2012-11-21 2014-05-30 富士フイルム株式会社 Photosensitive resin composition, method for producing cured film, cured film, organic el display device, and liquid crystal display device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016017172A (en) * 2014-07-11 2016-02-01 Dic株式会社 Fluorine-containing pyrolytic resin, resist composition, composition for color filter protective film, resist film, and color filter protective film
WO2017002430A1 (en) * 2015-07-01 2017-01-05 富士フイルム株式会社 Actinic ray-sensitive or radiation-sensitive resin composition, actinic ray-sensitive or radiation-sensitive film, pattern molding method, and electronic device production method
JPWO2017002430A1 (en) * 2015-07-01 2018-04-05 富士フイルム株式会社 Actinic ray-sensitive or radiation-sensitive resin composition, actinic ray-sensitive or radiation-sensitive film, pattern formation method, and electronic device manufacturing method
KR20170026275A (en) 2015-08-31 2017-03-08 후지필름 가부시키가이샤 Photosensitive composition, method for manufacturing cured film, method for manufacturing liquid crystal display device, method for manufacturing organic electroluminescent display device, and method for manufacturing touch panel
JP2017167277A (en) * 2016-03-15 2017-09-21 Jsr株式会社 Pattern forming method using liquid-philic and liquid-phobic material
CN107193186A (en) * 2016-03-15 2017-09-22 Jsr株式会社 Pattern formation method and radiation-sensitive resin composition
KR20170107376A (en) * 2016-03-15 2017-09-25 제이에스알 가부시끼가이샤 Method of forming pattern and radiation-sensitive resin composition
TWI728067B (en) * 2016-03-15 2021-05-21 日商Jsr股份有限公司 Pattern forming method and radiation-sensitive resin composition
KR102278837B1 (en) * 2016-03-15 2021-07-16 제이에스알 가부시끼가이샤 Method of forming pattern
JP2017198840A (en) * 2016-04-27 2017-11-02 株式会社カネカ Positive photosensitive composition for forming partition wall
JPWO2020031524A1 (en) * 2018-08-08 2021-09-02 Agc株式会社 Optical members, their manufacturing methods, and curable compositions for optical members
JP7463963B2 (en) 2018-08-08 2024-04-09 Agc株式会社 Optical member, its manufacturing method, and curable composition for optical member

Also Published As

Publication number Publication date
KR20150027700A (en) 2015-03-12
KR102220675B1 (en) 2021-02-26
JP6492444B2 (en) 2019-04-03

Similar Documents

Publication Publication Date Title
JP6492444B2 (en) Radiation-sensitive resin composition, cured film, method for forming the same, and electronic device
JP6318957B2 (en) Radiation sensitive resin composition, cured film, method for forming the same, and display element
JP5929496B2 (en) Radiation-sensitive resin composition, cured film for display element, method for forming cured film for display element, and display element
JP5962546B2 (en) Radiation sensitive resin composition, cured film, method for forming the same, and display element
JP2014134763A (en) Radiation-sensitive resin composition, cured film for display element, method for forming cured film for display element, and display element
JP6303549B2 (en) Negative radiation sensitive resin composition, cured film for display element, method for forming cured film for display element, and display element
JP6136727B2 (en) Radiation sensitive resin composition, cured film, method for forming the same, and display element
JP6221862B2 (en) Radiation-sensitive composition, display element spacer or interlayer insulating film, and method for forming them
JP2010224067A (en) Radiation-sensitive resin composition, interlayer insulating film, protective film and spacer of liquid crystal display element, and method for forming the same
JP2017116834A (en) Radiation sensitive resin composition, cured film, formation method therefor and display element
JP2015069179A (en) Radiation-sensitive resin composition, cured film, method for producing the same, and display element
JP2018090773A (en) Curable resin composition for interlayer insulation film, interlayer insulation film, display element, and method for forming interlayer insulation film
JP5187492B2 (en) Curable resin composition, protective film and method for forming protective film
JP2017181928A (en) Positive type radiation-sensitive resin composition, interlayer insulation film, method for forming interlayer insulation film, semiconductor element and display element
JP2018151621A (en) Method for producing cured film for display elements, radiation-sensitive resin composition, cured film for display elements and display element
KR102006751B1 (en) Radiation-sensitive resin composition, cured film for display device, method for forming the cured film for display device, and display device
KR20110134306A (en) Radiation-sensitive resin composition, cured film, method for forming the cured film, and display device
JP2007126647A (en) Curable resin composition, method for forming protective film and protective film
JP6079289B2 (en) Radiation sensitive resin composition, cured film, method for forming the same, and display element
JP7000716B2 (en) Composition, cured film and organic EL / liquid crystal display element
JP6658167B2 (en) Radiation-sensitive resin composition, cured film, method for forming cured film, and electronic device
JP6136787B2 (en) Radiation sensitive resin composition for forming insulating film of display element, method for preparing the composition, insulating film for display element, method for forming the insulating film, and display element
JP6750233B2 (en) Radiation-sensitive resin composition for forming cured film, cured film, method for forming the same, and electronic device
JP2015194583A (en) Resin composition for forming cured film, cured film and method for forming the same, and display element
JP5741331B2 (en) Array substrate, liquid crystal display element, and method of manufacturing array substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190218

R150 Certificate of patent or registration of utility model

Ref document number: 6492444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250