JP2015070065A - 紫外光発光装置、流体濃度測定装置、透析装置及びオゾン濃度測定装置 - Google Patents

紫外光発光装置、流体濃度測定装置、透析装置及びオゾン濃度測定装置 Download PDF

Info

Publication number
JP2015070065A
JP2015070065A JP2013202032A JP2013202032A JP2015070065A JP 2015070065 A JP2015070065 A JP 2015070065A JP 2013202032 A JP2013202032 A JP 2013202032A JP 2013202032 A JP2013202032 A JP 2013202032A JP 2015070065 A JP2015070065 A JP 2015070065A
Authority
JP
Japan
Prior art keywords
light emitting
light
ultraviolet light
substrate
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013202032A
Other languages
English (en)
Other versions
JP6174438B2 (ja
Inventor
聖 杉山
Sei Sugiyama
聖 杉山
和宏 永瀬
Kazuhiro Nagase
和宏 永瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2013202032A priority Critical patent/JP6174438B2/ja
Publication of JP2015070065A publication Critical patent/JP2015070065A/ja
Application granted granted Critical
Publication of JP6174438B2 publication Critical patent/JP6174438B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • External Artificial Organs (AREA)
  • Led Devices (AREA)

Abstract

【課題】簡易且つ小型で、紫外光の発光出力を容易に安定化することができる紫外光発光装置、流体濃度測定装置、透析装置及びオゾン濃度測定装置を提供する。
【解決手段】第1主面10と、該第1主面10と対向する第2主面11とを有する基板1と、基板1の第1主面10上に配置されて、波長が10nm以上、400nm以下の紫外光を発光する発光部2と、基板1の第1主面10上であって、発光部2とは異なる位置に配置された受光部3とを備え、発光部2が発光する紫外光の一部は、基板1の内部を透過し第2主面11から外部へ出射し、発光部2が発光する紫外光の他の一部は、基板1の内部を透過し第2主面11で反射して受光部3に入射し、受光部3は、受光した紫外光を光電変換して電気信号を出力する。
【選択図】図1

Description

本発明は、紫外光発光装置、流体濃度測定装置、透析装置及びオゾン濃度測定装置に関する。
発光ダイオード(以下、LED:Light Emitting Diode)は、低消費電力で長寿命の発光が可能なことから、照明用や表示用をはじめとして幅広い応用がなされている。可視光のLEDに加えて、最近では、新たな材料系を用いることによって、波長が極めて短い、いわゆるUV−C(280nmより短波長の紫外光)帯や、波長が極めて長い、中赤外線(2μmより長波長の赤外光)帯の領域でもLEDの開発や実用化も進んでいる。
特に、非可視光のLEDは、主として産業機器や医療機器の測定系や通信系などの特殊な用途に用いられるため、フォトダイオードなどのセンサで発光強度をモニターしながら使用することが多く、LEDとは別にそれぞれの発光波長に応じた特殊なセンサが必要であった。
また、短波長の紫外線は殺菌の用途に用いられることがあるが、紫外線照射の定量的効果を確認するためには、LEDの発光強度を測定することが重要となる。これは、光源の経時劣化や故障、駆動装置の不良などにより、発光強度が変化もしくは消灯する可能性があるためである。
さらに、発光素子(代表的なものとしては短波長の紫外線)を光学的な分析などに用いる場合には、定量値の正確さを確保するため、発光素子の発光強度が一定であることが望ましく、それを実現するためには発光強度を正確にモニタリングすることが非常に重要である。
特開2011−120821号公報 特開2011−120822号公報
Applied Physics Letter,Vol.74,No.17,(1999),pp.2456−2458 Clinical Engineering,Vol.17,No.1,(2006), p.14−17
紫外光光源として水銀ランプは従来から広く用いられ、近年では発光ダイオード(LED)も広く用いられるようになってきたが、ともに出力の安定性に乏しいため、単独では測定用光源として用いることはできない。このため、特許文献1のように、光源501の出力変動を補正するためにビームスプリッター503を用いた構造が考えられる(図6参照)。この構造により、光源501からの光強度が変動することがあっても、参照光由来の第1センサ504の出力信号と透過光由来の第2センサ505の出力信号の比を検出することで、管502内を流れる流体の一定濃度に対して一定の信号を検出することが可能になる。しかし、図6に示す濃度測定装置500は、ビームスプリッター503が必要であるため、装置全体で一定以上の大きさが必要になり、小型化が困難である。また、ビームスプリッター503と、第1センサ504及び第2センサ505の互いの位置関係も限定されるため、設計の自由度は低いものになる。
これを解決するために、特許文献2のように測定前に受光強度を所定値とすることで、光源を校正する方法も提案されている。
即ち、図7に示す濃度測定装置550では、管552を挟んで光源551とセンサ555とを対向して配置しておき、管552内を流れる流体の濃度を測定する前に予め、光源551の強度をセンサ555の出力信号で校正する方法である。しかし、この方法では、測定中の光強度の変動が、測定対象である流体の濃度変化によるものなのか、それとも光源の出力変動によるものなのかを区別することができない。
このように、測定用光源として、小型で安定した光源が望まれているものの、精密な分析測定の光源として用いることが可能な、発光出力が十分に安定した紫外光発光装置は未だ得られていないのが現状である。
そこで、本発明はこのような事情に鑑みてなされたものであって、簡易且つ小型で、紫外光の発光出力を容易に安定化することができる紫外光発光装置、流体濃度測定装置、透析装置及びオゾン濃度測定装置の提供を目的とする。
本発明者は上記課題を解決するために鋭意検討した結果、以下に示す紫外光発光装置、流体濃度測定装置、透析装置及びオゾン濃度測定装置を想到するに至った。
即ち、本発明の一態様に係る紫外光発光装置は、第1主面と、該第1主面と対向する第2主面とを有する基板と、前記基板の第1主面上に配置されて、波長が10nm以上、400nm以下の紫外光を発光する発光部と、前記基板の第1主面上であって、前記発光部とは異なる位置に配置された受光部とを備え、前記発光部が発光する紫外光の一部は、前記基板の内部を透過し第2主面から外部へ出射し、前記発光部が発光する紫外光の他の一部は、前記基板の内部を透過し第2主面で反射して前記受光部に入射し、前記受光部は、受光した紫外光を光電変換して電気信号を出力することを特徴とする。
また、上記の紫外光発光装置において、前記発光部及び前記受光部がそれぞれ、同一の材料で同一の積層構造からなることを特徴としてもよい。
また、上記の紫外光発光装置において、波長360nmの紫外光に対する前記基板の屈折率が1.7以上、2.6以下であることを特徴としてもよい。
また、上記の紫外光発光装置において、波長360nmの紫外光に対する前記基板の屈折率が2.0以上、2.6以下であることを特徴としてもよい。
また、上記の紫外光発光装置において、前記発光部が発光する紫外光のピーク波長における、前記基板の吸収係数が120cm−1以下であることを特徴としてもよい。
また、上記の紫外光発光装置において、前記発光部の中心部と前記受光部の中心部との間の熱抵抗が、0.1W/K以上、15K/W以下であることを特徴としてもよい。
また、上記の紫外光発光装置において、前記基板の熱伝導率が200W/m・K以上、600W/m・K以下であることを特徴としてもよい。
また、上記の紫外光発光装置において、前記受光部が出力する前記電気信号に基づいて前記発光部の発光出力を制御する制御部、をさらに備えることを特徴としてもよい。
また、上記の紫外光発光装置において、前記制御部は、前記発光部による発光パターンをパルス状に制御して光パルスを発光させ、且つ、 前記受光部が前記光パルスを受光することにより出力したパルス状の前記電気信号について、該電気信号の強度を目標値に一致させるように前記発光部の発光出力を制御することを特徴としてもよい。
また、上記の紫外光発光装置において、前記制御部は、前記発光部に前記光パルスとは別に温度制御用光パルスを発光させ、且つ、前記温度制御用光パルスを発光しているときの前記発光部の電圧特性に基づいて、該発光部の温度を制御することを特徴としてもよい。
本発明の一態様に係る流体濃度測定装置は、上記の紫外光発光装置を備えることを特徴とする。
本発明の一態様に係る透析装置は、上記の流体濃度測定装置を備えることを特徴とする。
本発明の一態様に係るオゾン濃度測定装置は、上記の流体濃度測定装置を備えることを特徴とする。
本発明の一態様によれば、簡易且つ小型で、紫外光の発光出力を容易に安定化することができる紫外光発光装置、流体濃度測定装置、透析装置又はオゾン濃度測定装置を提供することができる。
、本実施形態に係る紫外光発光装置100の構成例と、発光部2が発する紫外光の透過、反射の方向を示す概念図である。 発光部2及び受光部3の積層構造の一例を示す断面図である。 発光部2の発光出力の制御方法の一例を示す概念図である。 本発明の第1実施例に係る血液透析装置200の構成例を示す概念図である。 本発明の第2実施例に係るオゾン含有流体供給装置300の構成例を示す概念図である。 第1の従来例を示す図である。 第2の従来例を示す図である。
以下、本発明を実施するための形態について説明する。
<実施形態>
(全体構成)
本発明の実施形態(以下、本実施形態という)に係る紫外光発光装置は、第1主面と、該第1主面と対向する第2主面とを有する基板と、基板の第1主面上に配置されて、波長が10nm以上、400nm以下の紫外光を発する発光部と、基板の第1主面上であって、発光部とは異なる位置に配置された受光部とを備える。この紫外光発光装置では、発光部が発する紫外光の一部は、基板の内部を透過し第2主面から外部へ出射する。また、発光部が発する紫外光の他の一部は、基板の内部を透過し第2主面で反射して受光部に入射する。そして、受光部は、入射した紫外光を電気信号に変換して出力する。この受光部から出力された電気信号は、例えば、紫外光発光装置が備える制御部に入力される。制御部は、この入力された電気信号に基づいて、発光部の発光出力を制御することが可能である。
本実施形態に係る紫外光発光装置は、受光部と発光部の両方が基板の同じ面(第1主面)上に配置されており、発光部から放射された光の一部が、基板内部を透過し、基板の第2主面と基板外部の空間との界面で反射し、受光部に入光するように受光部と発光部が備わっている。これにより、小型で簡易な構成でありながら、光源である発光部の出力変動に対する補正が可能となる。次に、本実施形態に係る紫外光発光装置の各構成要素について説明する。
(基板)
本実施形態の紫外光発光装置における基板は、互いに対向する第1主面と第2主面を有し、該第1主面上に受光部と発光部を有する。発光部から放射された光の一部は基板内部を透過し、第2主面から取り出すことが可能であり、且つ、発光部から放射された他の一部は基板の第2主面と基板外部の空間との界面で反射し、受光部に入光する。
製造プロセス容易性の観点から、該基板は、受光部と発光部をエピタキシャル成長で形成することが可能な部材であることが好ましい。基板の具体的な材料としては、サファイア、スピネル、イットリウム安定化ジルコニア、ダイヤモンド、SiC、GaN、AlN、ZnO、Ga、LiGaO、LiAlO、ScAlMgOが挙げられる。好適な材料は、発光部を構成する発光素子や受光部を構成する受光素子の構造によって好適なものが変わるが、例えば発光素子及び受光素子の活性層がAlGaNである場合、サファイア基板(Al)やSiC、GaN、AlNが好ましく、AlNであることがより好ましい。深紫外光を発光する発光素子を形成する観点から、バンドギャップが広く、高融点で化学的にも安定で、屈折率が高く、熱伝導率が高いAlN単結晶が好ましい。特に、紫外光に対する吸収係数(即ち、吸光係数)が低い、高品位なAlN単結晶がより好ましい。
基板の上記界面での反射強度の観点から、波長360nmの光に対する基板の屈折率が1.7以上2.6以下であることが好ましく、2.0以上2.6以下であることがより好ましい。基板の屈折率が1.7以上2.6以下となる具体的な材料としては、AlNやダイヤモンド、サファイア等が挙げられる。
発光部から受光部までの基板内部の光透過量の観点から、発光部が発する紫外光のピーク波長(即ち、発光強度が最大になる波長)における、基板の吸収係数が120cm−1であることが好ましい。基板の吸収係数が120cm−1となる具体的な材料としては、AlNやサファイアが挙げられる。
基板の屈折率は数mm角以上の大きさのある試料の場合には、市販の紫外可視分光器にて透過率を測定し、これと文献に述べられている屈折率から求めた反射率から吸収係数を求めることができる。また、分光エリプソメトリー法を用いて、屈折率と吸収係数を同時に求める、即ち屈折率の実部nと虚部kを同時に求めることもできる。これは、偏光した斜入射光を試料に当て、ブリュースター角付近のs偏光とp偏光の反射率RpとRsの強度比及び位相差を測定し、この値と解析モデルを介してnとk等を求める方法である。サンプルが1mm四方以下のように微小で有る場合には、集光系を備えた分光エリプソメトリーを用いることで、同様に屈折率の実部nと虚部kを求めることができる。
発光部からの発熱による受光部の特性の変化を安定させるという観点から、基板の熱伝導率は200W/m・K以上、600W/m・K以下であることが好ましい。基板の熱伝導率は200W/m・K以上、600W/m・K以下となる具体的な材料としてはAlNやシリコンカーバイド、ダイヤモンドが挙げられる。
基板の熱伝導率は、数mm角以上の大きさのある試料であれば、温度差のある既知材料に挟みこんで、一定時間経過後の両端の温度差から熱伝導率を求める定常法を用いることができる。試料が定常法を用いるのに十分な大きさが無い場合には、レーザーフラッシュ法を用いて測定することができる。これは、レーザーを集光したスポットを試料表面に当て、このレーザーの出力を周期的に変調させたときの周囲への伝播の様子を、試料からの放射測温を顕微鏡で観察することで熱伝導率を計算する方法である。
(発光部)
本実施形態の紫外光発光装置における発光部は、基板の第1主面上に配置されて、波長が10nm以上、400nm以下の紫外光を発光するものであればよい。波長が10nm以上、400nm以下の紫外光を発光するには、発光部を構成する発光素子(例えば、LED)の発光層のバンドギャップが例えば3.44eV以上であるものを採用すればよい。具体的にはGaNもしくはAlGaNを発光層としてもつpn接合、p−i−n接合、シングルヘテロ及びダブルヘテロ接合を用いた構造、もしくはそれらに多重量子井戸構造を導入した構造とすればよい。
(受光部)
本実施形態の紫外光発光装置における受光部は、発光部が発光した紫外光を受光し、光電変換して電気信号を出力するものであればよい。この電気信号は、例えば、発光部を制御する制御部に入力することが可能である。該受光部は、基板の第1主面上であって、第2主面での反射光が入射する位置(即ち、発光部から放射され、基板内部を透過し、第2主面の上記界面で反射した紫外光が入射する位置)に配置される。
また、受光部について、発光部が発光する紫外光に応じた信号を出力することが可能なものとするには、受光部を構成する受光素子(例えば、フォトダイオード)の受光層を、発光素子の発光層のバンドギャップと同じかそれより小さい半導体とすればよい。具体的には、受光部を、発光層と同様の構造を持つフォトダイオードや、pもしくはnの片方のみの電導性の層を利用したショットキー型フォトダイオード、MSM型フォトダイオード、フォトトランジスター、フォトコンダクターとした構造とすればよい。製造プロセスの容易性及び受光効率の観点から、発光素子及び受光素子がそれぞれ、同一の材料(例えば、同一の半導体材料)で、同一の積層構造からなることが好ましい。
また、発光部からの発熱による受光部の特性の変化を安定させるという観点から、発光部の中心部(例えば、LED等の発光素子中心部)と、受光部の中心部(例えば、フォトダイオード等の受光素子中心部)の間の熱抵抗が、0.1K/W以上、15K/W以下であることが好ましい。該熱抵抗はレーザーフラッシュ法により求めることができる。
(制御部)
本実施形態の紫外光発光装置は、受光部が出力する電気信号に基づいて発光部の発光出力を制御する制御部を備えることが好ましい。例えば、制御部は、発光部による紫外光の発光パターンをパルス状に制御して光パルスを発光させ、且つ、受光部が光パルスを受光して出力するパルス状の電気信号について、該電気信号の強度を目標値に一致させるように、発光部の発光出力をフィードバック制御することが好ましい。目標値は、受光部が繰り返し出力するパルス状の電気信号のピーク強度の平均値でもよいし、予め設定した設定値でもよい。これにより、制御部は発光部の発光出力を一定に制御することができ、発光部の定光出力動作が可能となる。
また、発光波長は発光部の温度により変動し得る(非特許文献1参照)。そこで、制御部は、発光部に上記の光パルスとは別に温度制御用光パルスを発光させ、且つ、温度制御用光パルスを発光しているときの発光部の電圧特性(例えば、LEDの順電圧)に基づいて、該発光部の温度を制御することが好ましい。例えば、発光部が発光する光パルスのうち、一の光パルスを発し、次に一の光パルスを発する間に、温度制御用光パルスを挿入し、温度制御用光パルスにより、受光部の温度を一定に制御することも好ましい。このような制御部を備えることにより、一定の発光波長での連続使用が可能となる。
<実施形態の具体例>
以下、図面を参照して本実施形態の具体例を説明する。なお、以下に説明する各図において、同一の構成及び機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
図1は、本実施形態に係る紫外光発光装置100の構成例と、発光部2が発する紫外光の透過、反射の方向を示す概念図である。図1に示す紫外光発光装置100において、発光部2は、基板1の第1主面10上に形成されている。また、受光部3は、同一の基板1の第1主面10上であって、発光部2とは異なる位置に形成されている。
この紫外光発光装置100において、発光部2から放射された紫外光は、基板1の内部を透過して該基板1の第2主面11を透過する。第2主面11を透過した紫外光は、取り出し光41として、基板1から取り出される。また、発光部2から放射された紫外光は、基板1の第1主面に対して垂直方向だけでなく、第1主面に対して斜めに交差する方向にも放射される。このため、発光部2から放射された紫外光は、基板1の内部を透過して該基板1の第2主面11に至ることになるが、基板1の第2主面11と基板外部の空間との屈折率の差から、第2主面11と基板外部の空間との界面で、紫外光の一部が反射する。
基板1と上記空間との間に十分な屈折率の差があり、且つ、発光部2から放射される紫外光のピーク波長における、基板の吸収係数が十分に低い場合には、発光部2から放射された紫外光のうち、受光部3で強度を検出するのに十分な強さの光が受光部3に到達する。その結果、到達した紫外光の光量(=到達した紫外光の強度×受光時間)を定量的に測定することができる。また、基板1と基板外部の空間との間に十分な屈折率の差がある場合には、基板外部の空間からの光も第2主面11でよく反射するため、外部からの迷光が受光部3に到達しづらくなり、よりノイズの少ない状況で、発光部2から放射された紫外光の光量を測定することができるという利点も備える。
発光部2と受光部3は同一構成の半導体積層膜から作製することもできる。この際には、発光部2と受光部3は同じ波長特性を有することになるため、この半導体積層膜の組成や構造が製造時にばらつくことがあっても、発光強度モニタリング性能に影響しない素子を作製することができる。
次に、紫外光発光装置100の各構成要素について説明する。まず、基板1は、発光部2及び受光部3を作製するために必要な半導体薄膜層が形成でき、且つ所望の波長帯の光が効率的に透過できるものであれば良い。前述のとおり、紫外光を発光する発光部(例えば、LED)2を作製する場合には、サファイア、スピネル、イットリウム安定化ジルコニア、ダイヤモンド、SiC、GaN、AlN、ZnO、Ga、LiGaO、LiAlO、ScAlMgOなどが好適であるが、特に深紫外光LEDを作製する場合には、バンドギャップが広く、高融点で化学的にも安定で、屈折率が高く、熱伝導率が高く、AlN単結晶が好ましい。特に、発光部2からの発光波長に対する吸収係数が低い、高品位なAlN単結晶がより好ましい。
図2は、発光部2及び受光部3の積層構造の一例を示す断面図である。始めに、発光部2について説明する。図2に示すように、発光部2は、p型半導体層21と、発光層22と、n型半導体層23と、p電極24及びn電極25とを有するLEDからなる。発光部2は、目的とする波長帯の光が発光できる構成であれば良く、特に膜の材料、構成は限定されない。発光部2には、必要に応じてバンドギャップの異なる半導体を用いるか、キャリアのバリア層や、電極のコンタクト抵抗を低減するための半導体層などを加えてもよく、その膜構造、組成等は数多くの組み合わせが可能である。
なお、紫外光発光装置100では、基板1の第2主面11側から光放射を行うため、発光層22で発光した光の吸収を少なくすることが好ましい。例えば、n型半導体層23と、基板1を発光波長で吸収の起こらない構成、具体的には発光波長相当の光子エネルギーより大きなバンドギャップをもつ半導体で構成するなどが考えられる。
次に、受光部3について説明する。受光部3は、例えば発光部2に隣接する形で基板1の第1主面10上に設けられている。受光部3の薄膜構造は、発光部2のために形成した薄膜構造と可能な限り共通の構造で、共通の材料であることが好ましい。具体的には、受光部3は、p型半導体層31と、発光層32と、n型半導体層33と、p電極34及びn電極35とを有するフォトダイオードからなる。そして、受光部3のp型半導体層31、受光層32、n型半導体層33はそれぞれ、発光部2のp型半導体層21、発光層22、n型半導体層23と同じ組成であることが好ましい。これは、発光層22からの紫外光が、
紫外光を発光する発光層22が製造時の条件変動などによって組成が変動し、発光波長が変化しても、同様の組成となるように形成した受光層32も同じように組成が変動することで、受光特性の変化を抑制することができるからである。ただし、受光層32については、p型半導体層、あるいはn型半導体層のみで光電動型の受光部とすることも可能である。
次に、制御部4について説明する。制御部4は、基板1に設けられていてもよいし、基板1以外の他の基板(図示せず)に設けられていてもよい。制御部4は、受光部3が出力する電気信号を受信することができ、且つ、発光部2に発光出力制御用の電気信号(例えば、電流パルス)を出力することができるように、発光部2及び受光部3と接続されれば、その設置位置は特に制限されない。
図3(a)及び(b)は、発光部2の発光出力の制御方法の一例を示す概念図である。図3(a)の横軸は時間を示し、縦軸は発光部2への印加電流値を示す。また、図3(b)の横軸は時間を示し、縦軸は受光部3が出力する電流値を示す。
図3(a)に示すように、制御部4は、発光部2による紫外光の発光パターンをパルス状に制御して光パルス51を発光させる。すると、受光部3は、この光パルス51のうちの第2主面11と基板外部の空間との界面で反射した光を受光し、光電変換して、パルス状の電気信号を出力する。このパルス状の電気信号が、図3(b)に示す電流パルス61である。制御部4は、この電流パルス61について、その強度を目標値に一致させるように、発光部2の発光出力をフィードバック制御する。
ここで、目標値は、受光部3が繰り返し出力する電流パルスの各々のピーク強度の平均値でもよいし、予め設定した設定値でもよい。ここでは、電流パルス61のピーク強度が目標値よりも低かった場合を想定する。この場合は、図3(a)に示すように、制御部4は、発光部2に次の光パルス52を発光させる際に、発光部2に対する印加電流を高める。これにより、発光部2の発光出力は高められ、図3(b)に示すように、受光部3が出力する電流パルス62のピーク強度(つまり、パルス高)は目標値に近づくこととなる。
また、一般的にダイオードは温度が高くなるにつれて、一定電流での順電圧(即ち、順方向に電流を流したときの電圧降下)Vfの値が小さくなる。このような温度に対する順電圧Vfの特性を利用することで、LEDの温度の変化量を求めることができるし、順電圧Vfが一定となるように温度制御をかけることで、LEDの温度を一定に保つことができる。
そこで、発光部2がLEDからなる場合は、図3(a)に示すように、制御部4は、発光部2に上記の光パルス51、52とは別に、発光部2に微小一定電流を印加して温度制御用光パルス(微小一定パルス)53を発光させると共に、温度制御用光パルス53を発光しているときの発光部2の順電圧Vfを測定する。そして、この測定された順電圧Vfに基づいて、発光部2の温度を制御してもよい。例えば、発光部が光パルス51を発光し、次に光パルス52を発光する間に、温度制御用光パルス53を挿入する。そして、制御部4は、順電圧Vfが一定となるように(つまり、温度が一定となるように)、発光部2をフィードバック制御する。
ここで、発光部2の温度を一定にするための方法としては、光パルスのデューティー比を制御する方法が挙げられる。例えば、発光部2が光パルス51を発光し、続いて、温度制御用光パルス53を発光した後、発光部2で測定された一定電流での順電圧Vfが一定になるように、次に発光する光パルス52のデューティー比(=パルス幅/パルス周期)を制御する。例えば、発光部2が温度制御用光パルス53を発光したときに測定された、一定電流での順電圧Vfが目標値よりも大きかった場合を想定する。この場合、発光部2の温度が低いことを意味するため、次に発光する光パルス52のデューティー比を大きくする。これにより、発光部2に対する電流印加の時間が増えるため、発光部2の温度を高めることができる。これにより、発光部2の温度を目標値に近づける(つまり、一定に保つ)ことが可能となる。
図3(a)において、光パルス51、52はデューティー比と印加電流を任意に定めることができるが、制御範囲を大きくできることからデューティー比を30%以上、50%以下とし、印加電流を40mA/mm以上、0mA/mm以下程度とするのがよい。
また、本実施形態では、制御部4が発光部2の制御を開始する際に、発光部2に事前に一定電流を流しておくことで、発光部2全体を予め温めておくようにしてもよい。これにより、発光部2の発光強度を素早く安定化させることが可能となる。
<本実施形態の効果>
本実施形態は、以下の効果(1)〜(3)を奏する。
(1)受光部が出力する電気信号に基づいて、発光部による紫外光の発光出力(即ち、発光強度)を制御することができ、発光出力を容易に安定化することができる。例えば、制御部4は、発光部2による発光パターンを制御して光パルス51、52を発光させ、且つ、受光部3が光パルス51、52を受光することにより出力した電流パルス61、62について、そのピーク強度を目標値に一致させるように発光部2の発光出力をフィードバック制御する。
ここで、発光部2から受光部3に至る光路は基板1内にあり、該光路中に流体等が流れる空間は存在しない。これにより、該光路中に上記のような空間が存在する場合と比べて、その使用環境によらず、該光路での光パルス51、52の減衰を抑えることができる。従って、発光部2による紫外光の発光出力を容易に安定化することができる。精密な分析測定の光源として供することのできる、高度に安定した紫外光光源となる発光部2を備えた、紫外光発光装置を提供することができる。
(2)また、例えば図6、図7に示したようなビームスプリッターを備えなくても、発光部2の発光出力の変動を補正することができるため、紫外光発光装置の構成を簡易化、小型化することができる。
(3)また、発光部2が発光ダイオードの場合、制御部4は、発光ダイオードに光パルス51、52とは別に温度制御用光パルス53を発光させ、且つ、温度制御用光パルス53を発光しているときの発光ダイオードの順電圧Vfに基づいて、該発光ダイオードの温度を制御してもよい。これにより、発光ダイオードの温度を安定化することができるので、発光出力のさらなる安定化に寄与することができる。
次に、上述した紫外光発光装置100を応用した各種装置について、実施例を挙げて説明するが、本発明は以下の実施例に限定されるものではなく、幅広い応用が可能である。
(第1実施例)
本発明の第1実施例として、上述した紫外光発光装置100を、血液透析廃液中の老廃物濃度測定に応用した場合について説明する。
図4は、本発明の第1実施例に係る血液透析装置200の構成例を示す概念図である。図4に示すように、この血液透析装置200は、透析廃液の紫外光吸収を利用した老廃物濃度測定機能を有する装置であり、高分子多孔質膜からなる中空糸を備えた血液浄化器であるダイアライザ80と、ダイアライザ80に接続された血液回路のうち動脈側血液回路が81と、ダイアライザ80に接続された血液回路のうち静脈側血液回路82と、ダイアライザ80に接続された透析液ラインのうち透析液導入ライン83と、ダイアライザ80に接続された透析液ラインのうち透析液排出ライン84と、透析液排出ライン84に接続された老廃物濃度測定装置150と、を備える。
また、老廃物濃度測定装置150は、排出ラインに分光用光学窓が備えられた測定用石英ガラス管70と、測定用石英ガラス管70の外側に配置された紫外光発光装置100と、測定用石英ガラス管70の外側であって紫外光発光装置100と対向する位置に配置された測定用フォトダイオード72とを備える。
ダイアライザ80内には複数の中空糸が備えられ、中空糸内部と中空糸外部は別の流路となっていて、互いの液体は中空糸高分子膜を隔てて分離されている。一般的には中空糸内部が血液回路に接続され、外部が透析液ラインに接続されている。血液中の老廃物は中空糸膜を経て、透析液側に拡散し、透析液排出ライン84中に排出される。排出液中の老廃物が測定用石英ガラス管70を通る際に、紫外光発光装置100からの出射光を吸収する。
透析治療の際には、その週の初めの透析開始前に行われる血液検査を行い、血清中の尿素窒素濃度を測ることが一般的に行われている。この濃度をC(0)とおくと、非特許文献2などの報告から、300nm付近の吸光度がC(0)に比例することから、測定される血液流通前に透析液のみを透析液ラインに満たす状態での測定用フォトダイオード72の出力をIbl、血液流通開始直後の出力をI(0)、t時間後の出力をI(t)とすると、t時間後の血液中の尿素窒素濃度C(t)は、以下の(1)式で算出される。
C(t)=C(0)×log10(Ibl−I(t))/log10(Ibl−I(0))…(1)
このC(t)を常時記録することで、透析量Kt/Vをリアルタイムで計算できるようになり、医師の判断によって決められた透析終了点、一般的にKt/Vが1.2〜1.8となる点まで透析を続けて、その時点で正確に透析終了することができるようになる。このため、必要以上の透析を行うことでかかる透析患者の負担を減ずることができるようになる。
(第2実施例)
本発明の第2実施例として、上述した紫外光発光装置100を、オゾンの紫外光吸収を利用した、オゾン濃度測定装置に応用した場合について説明する。
図5は、本発明の第2実施例に係るオゾン含有流体供給装置300の構成例を示す概念図である。
図5に示すように、オゾン含有流体供給装置300は、オゾン濃度測定装置250と、オゾン濃度測定装置250の上流側に配置された上流側流体配管94と、オゾン濃度測定装置250の下流側に配置された下流側流体配管95と、オゾン発生装置93と、オゾン発生装置93と上流側流体配管94とを接続するオゾン導入配管96と、を備える。
また、オゾン濃度測定装置250は、オゾン濃度測定用セル90と、オゾン濃度測定用セル90の外側に配置された紫外光発光装置100と、オゾン濃度測定用セル90の外側であって紫外光発光装置100と対向する位置に配置された測定用フォトダイオード92と、を有する。上流側流体配管94と下流側流体配管95の間にオゾン濃度測定用セル90が設置されており、上流側流体配管94内を流れる流体はオゾン濃度測定用セル90内に導入され、その後、下流側流体配管95へ流れるようになっている。
上流側流体配管94からオゾン濃度測定用セル90に導入される流体は、紫外光発光装置100の発光波長において吸収が極めて少ない流体であれば、気体でも液体でも良い。280nmの発光波長を利用してオゾンの測定を行おうとする場合には、水、大気、酸素、窒素、アルゴンなどが好適である。オゾン導入前の測定用フォトダイオード92の出力をIblとし、オゾン導入時の出力Iozとすると、オゾン濃度Cozは、以下の(2)式で算出される。
Coz=α×(−log10(Ioz/Ibl))…(2)
ここでαは事前に検量して求めた、装置によってきまる定数である。下流側流体配管95のさらに下流側に接続された設備によるオゾン消費量に応じて、フィードバックをかけCozを調整することによって、例えば、水を浄化する設備が接続されている場合には、一定の殺菌強度をもつ水を供給することができる。また、Cozの積算値を記録することによって、例えば、室内と室内に置かれた医療器具などを殺菌する用途においては、必要量のオゾン量を的確に供給することができるようになる。
本発明は、安定性が必要とされる光源、特に紫外光光源に好適に用いられる。
1 基板
2 発光部
3 受光部
4 制御部
10 第1主面
11 第2主面
21、31 p型半導体層
22、32 発光層
23、33 n型半導体層
41 紫外光(基板の第2主面を透過した出射光)
42 紫外光(基板の第2主面で反射した反射光)
51、52 光パルス
53 温度制御用光パルス
61、62 電流パルス(光電変換により得られた電気信号)
70 石英ガラス管
71 紫外光発光装置
72 測定用フォトダイオード
81 動脈側血液回路
82 静脈側血液回路
83 透析液導入ライン
84 透析液排出ライン
90 オゾン濃度測定用セル
92 測定用フォトダイオード
93 オゾン発生装置
94 上流側流体配管
95 下流側流体配管
96 オゾン導入経路
100 紫外光発光装置
150 老廃物濃度測定装置(流体濃度測定装置の一例)
200 血液透析装置(透析装置の一例)
250 オゾン濃度測定装置
300 オゾン含有流体供給装置

Claims (13)

  1. 第1主面と、該第1主面と対向する第2主面とを有する基板と、
    前記基板の第1主面上に配置されて、波長が10nm以上、400nm以下の紫外光を発光する発光部と、
    前記基板の第1主面上であって、前記発光部とは異なる位置に配置された受光部とを備え、
    前記発光部が発光する紫外光の一部は、前記基板の内部を透過し第2主面から外部へ出射し、
    前記発光部が発光する紫外光の他の一部は、前記基板の内部を透過し第2主面で反射して前記受光部に入射し、
    前記受光部は、受光した紫外光を光電変換して電気信号を出力することを特徴とする紫外光発光装置。
  2. 前記発光部及び前記受光部がそれぞれ、同一の材料で同一の積層構造からなることを特徴とする請求項1に記載の紫外光発光装置。
  3. 波長360nmの紫外光に対する前記基板の屈折率が1.7以上、2.6以下であることを特徴とする請求項1又は請求項2の何れか一項に記載の紫外光発光装置。
  4. 波長360nmの紫外光に対する前記基板の屈折率が2.0以上、2.6以下であることを特徴とする請求項1から請求項3の何れか一項に記載の紫外光発光装置。
  5. 前記発光部が発光する紫外光のピーク波長における、前記基板の吸収係数が120cm−1以下であることを特徴とする請求項1から請求項4の何れか一項に記載の紫外光発光装置。
  6. 前記発光部の中心部と前記受光部の中心部との間の熱抵抗が、0.1W/K以上、15K/W以下であることを特徴とする請求項1から請求項5の何れか一項に記載の紫外光発光装置。
  7. 前記基板の熱伝導率が200W/m・K以上、600W/m・K以下であることを特徴とする請求項1から請求項6の何れか一項に記載の紫外光発光装置。
  8. 前記受光部が出力する前記電気信号に基づいて前記発光部の発光出力を制御する制御部、をさらに備えることを特徴とする請求項1から請求項7の何れか一項に記載の紫外光発光装置。
  9. 前記制御部は、
    前記発光部による発光パターンをパルス状に制御して光パルスを発光させ、且つ、
    前記受光部が前記光パルスを受光することにより出力したパルス状の前記電気信号について、該電気信号の強度を目標値に一致させるように前記発光部の発光出力を制御することを特徴とする請求項8に記載の紫外光発光装置。
  10. 前記制御部は、
    前記発光部に温度制御用光パルスを発光させ、且つ、
    前記温度制御用光パルスを発光しているときの前記発光部の電圧特性に基づいて、該発光部の温度を制御することを特徴とする請求項8又は請求項9に記載の紫外光発光装置。
  11. 請求項1から請求項10の何れか一項に記載の紫外光発光装置を備えることを特徴とする流体濃度測定装置。
  12. 請求項11に記載の流体濃度測定装置を備えることを特徴とする透析装置。
  13. 請求項11に記載の流体濃度測定装置を備えることを特徴とするオゾン濃度測定装置。
JP2013202032A 2013-09-27 2013-09-27 紫外光発光装置、流体濃度測定装置、透析装置及びオゾン濃度測定装置 Active JP6174438B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013202032A JP6174438B2 (ja) 2013-09-27 2013-09-27 紫外光発光装置、流体濃度測定装置、透析装置及びオゾン濃度測定装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013202032A JP6174438B2 (ja) 2013-09-27 2013-09-27 紫外光発光装置、流体濃度測定装置、透析装置及びオゾン濃度測定装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017132255A Division JP2017212452A (ja) 2017-07-05 2017-07-05 紫外光発光装置、流体濃度測定装置、透析装置及びオゾン濃度測定装置

Publications (2)

Publication Number Publication Date
JP2015070065A true JP2015070065A (ja) 2015-04-13
JP6174438B2 JP6174438B2 (ja) 2017-08-02

Family

ID=52836482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013202032A Active JP6174438B2 (ja) 2013-09-27 2013-09-27 紫外光発光装置、流体濃度測定装置、透析装置及びオゾン濃度測定装置

Country Status (1)

Country Link
JP (1) JP6174438B2 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016117030A1 (ja) * 2015-01-20 2017-06-22 三菱電機株式会社 半導体装置
JP2017185218A (ja) * 2016-03-31 2017-10-12 旭化成メディカル株式会社 血液浄化装置及び滅菌方法
JPWO2016170670A1 (ja) * 2015-04-24 2017-10-19 株式会社島津製作所 光学分析装置
CN109001758A (zh) * 2018-06-22 2018-12-14 安徽科创中光科技有限公司 一种车载走航臭氧廓线立体监测激光雷达
JP2019009390A (ja) * 2017-06-28 2019-01-17 パナソニックIpマネジメント株式会社 発光装置及びそれを備える光学分析システム
JP2019009388A (ja) * 2017-06-28 2019-01-17 パナソニックIpマネジメント株式会社 紫外線発光素子
CN110419108A (zh) * 2016-12-22 2019-11-05 亮锐有限责任公司 具有用于操作反馈的传感器节段的发光二极管
JP2020057761A (ja) * 2018-10-02 2020-04-09 日亜化学工業株式会社 紫外線照射装置及び紫外線硬化樹脂の硬化方法
JP2020068283A (ja) * 2018-10-24 2020-04-30 旭化成株式会社 受発光装置
WO2020241182A1 (ja) * 2019-05-28 2020-12-03 アズビル株式会社 測定装置、測定システムおよび測定方法
CN114062260A (zh) * 2020-08-04 2022-02-18 恩德莱斯和豪瑟尔分析仪表两合公司 光学传感器、传感器的方法和用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848481A (ja) * 1981-09-17 1983-03-22 Nec Corp モニタ−用光検出器内蔵面発光型発光ダイオ−ド
JPH10200154A (ja) * 1997-01-10 1998-07-31 Toshiba Corp 光半導体素子及びその製造方法
JP2003023179A (ja) * 2001-07-06 2003-01-24 Ricoh Co Ltd p型III族窒化物半導体およびその作製方法および半導体装置およびその作製方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5848481A (ja) * 1981-09-17 1983-03-22 Nec Corp モニタ−用光検出器内蔵面発光型発光ダイオ−ド
JPH10200154A (ja) * 1997-01-10 1998-07-31 Toshiba Corp 光半導体素子及びその製造方法
JP2003023179A (ja) * 2001-07-06 2003-01-24 Ricoh Co Ltd p型III族窒化物半導体およびその作製方法および半導体装置およびその作製方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016117030A1 (ja) * 2015-01-20 2017-06-22 三菱電機株式会社 半導体装置
JPWO2016170670A1 (ja) * 2015-04-24 2017-10-19 株式会社島津製作所 光学分析装置
JP2017185218A (ja) * 2016-03-31 2017-10-12 旭化成メディカル株式会社 血液浄化装置及び滅菌方法
CN110419108B (zh) * 2016-12-22 2023-10-27 亮锐有限责任公司 具有用于操作反馈的传感器节段的发光二极管
CN110419108A (zh) * 2016-12-22 2019-11-05 亮锐有限责任公司 具有用于操作反馈的传感器节段的发光二极管
JP2020503679A (ja) * 2016-12-22 2020-01-30 ルミレッズ リミテッド ライアビリティ カンパニー 動作フィードバックのためのセンサセグメントを備えた発光ダイオード
JP2019009390A (ja) * 2017-06-28 2019-01-17 パナソニックIpマネジメント株式会社 発光装置及びそれを備える光学分析システム
JP2019009388A (ja) * 2017-06-28 2019-01-17 パナソニックIpマネジメント株式会社 紫外線発光素子
CN109001758A (zh) * 2018-06-22 2018-12-14 安徽科创中光科技有限公司 一种车载走航臭氧廓线立体监测激光雷达
JP7228111B2 (ja) 2018-10-02 2023-02-24 日亜化学工業株式会社 紫外線照射装置及び紫外線硬化樹脂の硬化方法
JP2020057761A (ja) * 2018-10-02 2020-04-09 日亜化学工業株式会社 紫外線照射装置及び紫外線硬化樹脂の硬化方法
JP2020068283A (ja) * 2018-10-24 2020-04-30 旭化成株式会社 受発光装置
JP7335065B2 (ja) 2018-10-24 2023-08-29 旭化成株式会社 受発光装置
WO2020241182A1 (ja) * 2019-05-28 2020-12-03 アズビル株式会社 測定装置、測定システムおよび測定方法
CN114062260A (zh) * 2020-08-04 2022-02-18 恩德莱斯和豪瑟尔分析仪表两合公司 光学传感器、传感器的方法和用途

Also Published As

Publication number Publication date
JP6174438B2 (ja) 2017-08-02

Similar Documents

Publication Publication Date Title
JP6174438B2 (ja) 紫外光発光装置、流体濃度測定装置、透析装置及びオゾン濃度測定装置
US10551314B2 (en) Gas sensor
US10113954B2 (en) Gas sensor by light absorption
JP2019109054A (ja) 硝酸イオンおよび亜硝酸イオンの濃度検出方法および濃度検出装置ならびに植物生長・延命剤製造装置
US20210038750A1 (en) Disinfection device having disinfection light source
CN102575983A (zh) 红外线式气体检测器以及红外线式气体测量装置
JP2008229239A5 (ja)
JP2004317512A (ja) 殺菌波長内のエネルギーをモニタするための紫外線センサ
JP6365770B2 (ja) 光学分析装置及びその製造方法
US5903006A (en) Liquid concentration detecting apparatus
JP2013168587A (ja) 発光装置、半導体レーザ素子、および照明装置
JP5833988B2 (ja) 窒化アルミニウム部分の除去
JP2017212452A (ja) 紫外光発光装置、流体濃度測定装置、透析装置及びオゾン濃度測定装置
JPH09304272A (ja) 液体の吸光度測定装置
KR101918602B1 (ko) 적외선 발광 다이오드 및 적외선 가스 센서
JP2015068697A (ja) 受発光装置
JP6069617B2 (ja) 窒化アルミニウム部分を除去した素子
JPH1137936A (ja) 液濃度検出装置
JP2019115890A (ja) 紫外線照射装置
CN113314561B (zh) 一种深紫外波段发光单片集成器件及制备方法
JP2014136119A (ja) 光半導体デバイス
JP6294150B2 (ja) 受発光装置
WO2008055409A1 (fr) Del à surface verticale et à plusieurs couches actives
JP3876787B2 (ja) 膜成長方法、膜厚測定方法及びエピタキシャル基板
FR3066322A1 (fr) Dispositif d'emission lumineuse a leds emettant dans le domaine des uvc

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170706

R150 Certificate of patent or registration of utility model

Ref document number: 6174438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350