JP2015059268A - Plate-shaped sputtering target, and production method thereof - Google Patents

Plate-shaped sputtering target, and production method thereof Download PDF

Info

Publication number
JP2015059268A
JP2015059268A JP2013195903A JP2013195903A JP2015059268A JP 2015059268 A JP2015059268 A JP 2015059268A JP 2013195903 A JP2013195903 A JP 2013195903A JP 2013195903 A JP2013195903 A JP 2013195903A JP 2015059268 A JP2015059268 A JP 2015059268A
Authority
JP
Japan
Prior art keywords
sintered body
face
sputtering target
flat plate
solder material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013195903A
Other languages
Japanese (ja)
Other versions
JP6273734B2 (en
Inventor
健治 尾身
Kenji Onomi
健治 尾身
謙一 伊藤
Kenichi Ito
謙一 伊藤
哲夫 渋田見
Tetsuo Shibutami
哲夫 渋田見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2013195903A priority Critical patent/JP6273734B2/en
Publication of JP2015059268A publication Critical patent/JP2015059268A/en
Application granted granted Critical
Publication of JP6273734B2 publication Critical patent/JP6273734B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a plate-shaped sputtering target made of a ceramic less likely to generate abnormal discharge, and having high productivity, and to provide a production method thereof.SOLUTION: A plate-shaped sputtering target is formed by bonding rear faces 3 of at least two plate-shaped sintered bodies 1 made of a ceramic and a backing plate 4 with a soldering material 6 for the rear face. In the sputtering target, the end faces 2 of the sintered bodies are bonded with a soldering material 5 for the end face having a higher melting point than the soldering material for the rear face, and the interval of a division part is below 0.1 mm, and the arithmetic average roughness of each end face 2 of bonding parts of the plate-shaped sintered bodies 1 is 1 μm or less, and the maximum height is 10 μm or lower.

Description

本発明はセラミックス製の平板形スパッタリングターゲットに関するものである。   The present invention relates to a flat plate sputtering target made of ceramics.

セラミックス製のスパッタリングターゲットは、金属製のターゲットと比較して強度が低いために大型の焼結体を製造することが難しく、大型のターゲットを作製する場合には、複数個のセラミックス焼結体(以下、焼結体ということがある)を金属製のバッキングプレートに張り合わせ一つの大型ターゲットを製造する方法が一般的である。   The sputtering target made of ceramics is difficult to produce a large sintered body because of its low strength compared to a metal target. When producing a large target, a plurality of ceramic sintered bodies ( Hereinafter, a method of manufacturing a single large target by bonding a sintered body) to a metal backing plate is common.

このような複数の焼結体をバッキングチューブに接合したスパッタリングターゲットは、隣接する焼結体の間に通常0.2〜0.8mm程度の間隔が設けられている。これはスパッタリング中に焼結体表面が加熱され膨張し、隣接する焼結体がお互いにぶつかることにより割れや欠けが生じないようするためである。この一定の間隔をあけた部分を分割部と言う。   In a sputtering target in which such a plurality of sintered bodies are bonded to a backing tube, an interval of about 0.2 to 0.8 mm is usually provided between adjacent sintered bodies. This is because the surface of the sintered body is heated and expanded during sputtering, so that adjacent sintered bodies do not collide with each other to cause cracks or chips. This part having a certain interval is called a divided part.

しかし、この分割部の段差形状は、スパッタリング中の異常放電を誘発しパーティクルが発生しやすくなるため、作製された膜にはピンホール等の膜欠陥が発生し歩留り低下の原因となっていた。そのため、分割部が膜に影響を与えないスパッタリングターゲットの開発が強く望まれていた。   However, the stepped shape of the divided portion induces abnormal discharge during sputtering and easily generates particles. Therefore, film defects such as pinholes are generated in the manufactured film, causing a decrease in yield. Therefore, it has been strongly desired to develop a sputtering target in which the divided portion does not affect the film.

また、特許文献1には分割部からの不純物の混入が少ないターゲットとして、複数からなる焼結体の間に焼結体と同じ組成からなるセラミックス材を介在させ、そのセラミックス材を焼結することにより焼結体を接合する方法が示されている。しかし、この方法では一度1000℃以上で焼成した焼結体を、分割部にセラミックスを介在させた後に再度1000℃以上で熱処理しなければならず、プロセスが複雑でコストが高くなる欠点があった。   Further, in Patent Document 1, a ceramic material having the same composition as the sintered body is interposed between a plurality of sintered bodies as a target with a small amount of impurities from the divided portion, and the ceramic material is sintered. Shows a method of joining sintered bodies. However, in this method, the sintered body once fired at 1000 ° C. or more must be heat-treated again at 1000 ° C. or more after interposing ceramics in the divided portion, which has a drawback that the process is complicated and the cost is increased. .

分割部付近での異常放電が発生しにくい方法として特許文献2では、分割部に焼結体とバッキングプレートの接合材よりも高い融点を有する合金を存在させる方法が示されている。しかしながら、焼結体はスパッタリング中に加熱と冷却が繰り返されるため、分割部の間隔も増加と減少を繰り返すこととなり、単に合金を分割部に充填しただけでは、長時間使用すると焼結体と合金の間に隙間が生じ異常放電の原因となっていた。   Patent Document 2 discloses a method in which an alloy having a higher melting point than the bonding material of the sintered body and the backing plate is present in the divided portion as a method in which abnormal discharge is unlikely to occur in the vicinity of the divided portion. However, since the sintered body is repeatedly heated and cooled during sputtering, the interval between the divided portions also repeatedly increases and decreases. If the alloy is simply filled in the divided portions, the sintered body and the alloy are used after a long period of use. A gap was generated between them, causing abnormal discharge.

特開昭59−20470号公報JP 59-20470 A 特開2000−144400号公報JP 2000-144400 A

本発明の目的は、分割部からの異常放電の発生が少なく、高い生産性を有するセラミックス製の平板形スパッタリングターゲットおよびその製造方法を提供することにある。   An object of the present invention is to provide a flat plate sputtering target made of ceramics and a method of manufacturing the same, which is less likely to cause abnormal discharge from a divided portion and has high productivity.

本発明者らは、上記課題を解決するために、セラミックス製の平板形スパッタリングターゲットの詳細な解析を行い、焼結体の割れ、異常放電および膜の組成変化の原因について考察した。その結果、図1に示すように隣接する平板型焼結体1の端面2を端面用ハンダ材5により接合することにより、高パワーで使用される平板形ターゲットにおいてもスパッタリング中に焼結体の割れが発生しないことを見出した。また、その端面用ハンダ材5で接合した後の端面2同士の距離(以下、分割部の間隔ということがある)が0.1mm未満になると急激に異常放電の発生が低下し、スパッタシングにより作製した膜の組成変化が少ないことを見出した。更に、前記端面用ハンダ材5を、平板形焼結体の裏面3とバッキングチューブ4の接合に用いる裏面用ハンダ材6よりも融点の高い材質にすることにより極めて簡便にセラミックス製の平板形スパッタリングターゲットが製造できることを見出し、本発明を完成させるに至った。   In order to solve the above-mentioned problems, the present inventors have conducted a detailed analysis of a ceramic flat plate sputtering target, and have considered the causes of cracks in the sintered body, abnormal discharge, and film composition changes. As a result, as shown in FIG. 1, by joining the end face 2 of the adjacent flat plate-type sintered body 1 with the end face solder material 5, even in the flat plate target used at high power, It was found that no cracking occurred. In addition, when the distance between the end faces 2 after joining with the end face solder material 5 (hereinafter sometimes referred to as the interval between the divided portions) becomes less than 0.1 mm, the occurrence of abnormal discharge rapidly decreases, and sputtering causes It was found that the composition change of the produced film was small. Further, the end face solder material 5 is made of a material having a higher melting point than that of the back surface solder material 6 used for joining the back surface 3 of the flat plate sintered body and the backing tube 4, thereby making the flat plate sputtering made of ceramics extremely simple. The present inventors have found that a target can be manufactured and have completed the present invention.

本発明の態様は以下の通りである。
(1)平板形焼結体の裏面とバッキングプレートを裏面用ハンダ材により接合してなる平板形スパッタリングターゲットにおいて、少なくとも2個以上の平板形焼結体の端面が、前記裏面用ハンダ材よりも高い融点を持つ端面用ハンダ材で接合されており、かつ、分割部の間隔が0.1mm未満であることを特徴とするセラミックス製平板形スパッタリングターゲット。
(2)平板形焼結体の接合部の各端面の、算術平均粗さ(Ra)が1μm以下であり、最大高さ(Ry)が10μm以下であることを特徴とする(1)に記載のスパッタリングターゲット。
(3)平板形焼結体の接合部の各端面が鏡面仕上げとなっていることを特徴とする(1)又は(2)に記載のスパッタリングターゲット。
(4)端面で接合された焼結体同士の接合強度が1MPa以上であることを特徴とする(1)〜(3)のいずれかに記載のスパッタリングターゲット。
(5)少なくとも2個以上の平板形焼結体を端面用ハンダ材で接着固化させた後に、裏面用ハンダ材を用いて焼結体とバッキングプレートを接合することを特徴とする(1)〜(4)のいずれかに記載のスパッタリングターゲットの製造方法。
Aspects of the present invention are as follows.
(1) In the flat-plate-type sputtering target formed by joining the back surface of the flat plate-shaped sintered body and the backing plate with the back-surface solder material, the end surfaces of at least two flat-plate-shaped sintered bodies are more than the back-surface solder material. A ceramic flat plate sputtering target, which is joined with a solder for an end face having a high melting point, and the interval between the divided portions is less than 0.1 mm.
(2) The arithmetic mean roughness (Ra) of each end face of the joint portion of the flat plate-shaped sintered body is 1 μm or less, and the maximum height (Ry) is 10 μm or less. Sputtering target.
(3) The sputtering target according to (1) or (2), wherein each end face of the joined portion of the flat plate-like sintered body has a mirror finish.
(4) The sputtering target according to any one of (1) to (3), wherein the bonding strength between the sintered bodies bonded at the end faces is 1 MPa or more.
(5) At least two or more flat plate-shaped sintered bodies are bonded and solidified with an end face solder material, and then the sintered body and a backing plate are joined using a back surface solder material. (4) The manufacturing method of the sputtering target in any one of.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は、少なくとも2個以上の平板形焼結体の端面が、前記ハンダ材よりも高い融点を持つ端面用ハンダ材で接合されており、かつ、分割部の間隔が0.1mm未満であることを特徴とするセラミックス製平板形スパッタリングターゲットに関するものである。   In the present invention, the end faces of at least two or more flat plate-shaped sintered bodies are joined with an end face solder material having a melting point higher than that of the solder material, and the interval between the divided portions is less than 0.1 mm. The present invention relates to a ceramic flat plate sputtering target.

本発明で用いる平板形焼結体は、セラミックスであれば特に限定されないが、例えば透明導電膜材料としてITO(インジウム、錫酸化物)、AZO(アルミニウム、亜鉛酸化物)、IZO(インジウム、亜鉛酸化物)などの材料があげられる。また、IGZO(インジウム、ガリウム、亜鉛酸化物)のような半導体材料は分割部の異常放電が膜質に与える影響が大きく特に本発明が極めて有効である。更に、TiO(チタン酸化物)、Nb(ニオブ酸化物)、SiO(珪素酸化物)などの光学材料にも適している。 The flat sintered body used in the present invention is not particularly limited as long as it is a ceramic, but for example, as a transparent conductive film material, ITO (indium, tin oxide), AZO (aluminum, zinc oxide), IZO (indium, zinc oxide) Material). In addition, a semiconductor material such as IGZO (indium, gallium, zinc oxide) has a great influence on the film quality due to abnormal discharge at the divided portion, and the present invention is particularly effective. Furthermore, it is also suitable for optical materials such as TiO 2 (titanium oxide), Nb 2 O 5 (niobium oxide), and SiO 2 (silicon oxide).

焼結体の密度は特に限定されるものではないが、密度が低い場合には平板形焼結体の端面の加工によりチッピングや割れが発生しやすく、本発明における端面用ハンダ材による分割部の封止が不十分になりやすい。また、密度が低いと焼結体端面の平坦性が悪くなるため、やはり封止が不十分になる。そのため、密度は90%以上が好ましく、更に好ましくは95%以上である。   The density of the sintered body is not particularly limited, but when the density is low, chipping and cracking are likely to occur due to the processing of the end face of the flat plate-like sintered body, and the split portion of the end face solder material in the present invention Sealing tends to be insufficient. Further, if the density is low, the flatness of the end face of the sintered body is deteriorated, so that sealing is still insufficient. Therefore, the density is preferably 90% or more, and more preferably 95% or more.

本発明で用いる平板形焼結体の厚みは特に限定されないが、3mm以上15mm以下が好ましい。3mmより薄い場合は、ターゲット利用率が低く経済的でない。また、焼結体端面の面積が少なく、端面における封止が不十分となりやすい。15mmより厚い場合には焼結体の密度むらが発生しやすく、中心部分まで均一な品質のターゲットが得られにくい。   The thickness of the flat sintered body used in the present invention is not particularly limited, but is preferably 3 mm or more and 15 mm or less. If it is thinner than 3 mm, the target utilization rate is low and not economical. Further, the area of the end face of the sintered body is small, and sealing at the end face tends to be insufficient. If the thickness is greater than 15 mm, uneven density of the sintered body is likely to occur, and it is difficult to obtain a target having uniform quality up to the central portion.

本発明で用いる平板形焼結体の端面は、算術平均粗さ(Ra)、最大高さ(Ry)が小さいほど、端面用ハンダ材との接合強度が強くなるため好ましい。Raは1μm以下が好ましく、0.5μm以下がより好ましい。さらに鏡面仕上げとなっていることが望ましい。また、Ryは10μm以下が好ましく、5μm以下がより好ましく、0.5μm以下が特に好ましい。   As for the end face of the flat sintered body used in the present invention, the smaller the arithmetic average roughness (Ra) and the maximum height (Ry), the stronger the bonding strength with the end face solder material, which is preferable. Ra is preferably 1 μm or less, and more preferably 0.5 μm or less. Further, it is desirable to have a mirror finish. Ry is preferably 10 μm or less, more preferably 5 μm or less, and particularly preferably 0.5 μm or less.

焼結体の内面および外面の表面粗さは特に限定されないが、表面粗さを小さくするのは研削時間がかかり経済的で無いため、Raは1μm以上であっても問題ない。   The surface roughness of the inner and outer surfaces of the sintered body is not particularly limited, but it is not economical to reduce the surface roughness because it takes a long time to grind, and there is no problem even if Ra is 1 μm or more.

焼結体の長さは、取扱いできる長さであれば特に限定されないが、分割部の数を減らすために極力長い方が好ましく、焼結体の長辺の長さが100mm以上が好ましく、200mm以上がより好ましい。   The length of the sintered body is not particularly limited as long as it can be handled, but it is preferably as long as possible to reduce the number of divided parts, and the length of the long side of the sintered body is preferably 100 mm or more, 200 mm The above is more preferable.

また、本発明では分割部の間隔が0.1mm未満であることを特徴とする。より好ましくは0.01mm未満である。分割部の間隔とは、端面用ハンダ材で接合した後の平板形焼結体の端面同士の距離のことを指す。   In the present invention, the interval between the divided portions is less than 0.1 mm. More preferably, it is less than 0.01 mm. The space | interval of a division part refers to the distance of the end surfaces of the flat plate-shaped sintered compact after joining with the solder material for end surfaces.

次に本発明のスパッタリングターゲットの製造方法について、工程毎に説明する。   Next, the manufacturing method of the sputtering target of this invention is demonstrated for every process.

(1)平板形焼結体製造工程
平板形焼結体の製造方法は、原料粉末の焼結挙動に適した成形方法および焼成方法を適宜選択することが可能であり、特に限定されるものではない。成形方法は、原料粉末を目的とした形状に成形できる成形方法を適宜選択することが可能であり、特に限定されるものではない。成形方法としてはプレス成形法、鋳込み成形法、射出成形法等が例示できる。成形体の密度は特に限定されるものではないが、密度が高いほど取扱いによる成形体の割れが少なくなり、かつ、焼成した後の焼結体密度も上昇しやすいので可能な限り高めた方が好ましい。そのために冷間静水圧プレス(CIP)成形等の方法を用いることも可能である。また、焼成方法としては、電気炉、ガス炉、HIP(等方熱間プレス)、HP(ホットプレス)およびマイクロ波炉等が例示できる。
(1) Flat-plate-shaped sintered body manufacturing process The flat-plate-shaped sintered body manufacturing method can be appropriately selected from a molding method and a firing method suitable for the sintering behavior of the raw material powder, and is not particularly limited. Absent. The molding method is not particularly limited, and a molding method capable of molding the raw material powder into a desired shape can be appropriately selected. Examples of the molding method include a press molding method, a casting molding method, and an injection molding method. The density of the molded body is not particularly limited, but the higher the density, the fewer the cracks of the molded body due to handling, and the higher the density of the sintered body after firing, the higher the density possible. preferable. Therefore, it is also possible to use a method such as cold isostatic pressing (CIP) molding. Examples of the firing method include an electric furnace, a gas furnace, HIP (isotropic hot press), HP (hot press), and a microwave furnace.

得られた焼結体は、平面研削盤、円筒研削盤、旋盤、切断機、マシニングセンター等の機械加工機を用いて、平板形状に研削加工する。   The obtained sintered body is ground into a flat plate shape using a machining machine such as a surface grinder, a cylindrical grinder, a lathe, a cutting machine, or a machining center.

また、本発明に用いる平板形焼結体は外周端面を面取り加工することが好ましい。これは、セラミックスは脆性が高いために鋭角な部分は割れやすく、ターゲット表面がスパッタリング中に加熱され膨張した時に鋭角な端面は割れが生じやすいためである。面取りは大きいとターゲットの寿命が低下するためにR1以下、C1以下が好ましい。更に好ましくはR0.5以下C0.5以下が好ましい。更に好ましくは糸面取りが好ましい。   Moreover, it is preferable to chamfer the outer peripheral end surface of the flat plate-shaped sintered body used in the present invention. This is because ceramics are highly brittle, so that sharp portions are easily cracked, and sharp end surfaces are likely to be cracked when the target surface is heated and expanded during sputtering. If the chamfering is large, the life of the target is reduced, so R1 or less and C1 or less are preferable. More preferably, R0.5 or less and C0.5 or less are preferable. More preferably, thread chamfering is preferable.

(2)平板形焼結体端面の接合工程
次に、平板形焼結体の端面に端面用ハンダ材を塗布する。ここで用いる端面用ハンダ材は、裏面用ハンダ材の融点よりも高いものを用いる必要がある。裏面用ハンダ材の融点よりも低いハンダ材を用いると、焼結体とバッキングプレートを裏面用ハンダ材を用いて接合する工程において端面用ハンダの融点以上の温度に加熱されるため、お互いの端面で接合した焼結体が剥がれてしまうからである。
(2) Joining process of end face of flat plate-shaped sintered body Next, an end face solder material is applied to the end face of the flat plate-shaped sintered body. The end face solder material used here must be higher than the melting point of the back face solder material. If a solder material lower than the melting point of the back surface solder material is used, each end surface is heated to a temperature equal to or higher than the melting point of the end surface solder in the process of joining the sintered body and the backing plate using the back surface solder material. This is because the sintered body joined in step 1 is peeled off.

また、分割部の接合に用いるハンダ材は、焼結体よりも熱伝導性および電気伝導性が高い材料であることが好ましい。スパッタリングにおいて発生した熱および電気が、隣接する焼結体に伝導して接合された複数の焼結体が一つの焼結体のような特性を示すため、焼結体の割れ防止効果が高まるためである。   Moreover, it is preferable that the solder material used for joining of a division part is a material with higher heat conductivity and electrical conductivity than a sintered compact. Because the heat and electricity generated during sputtering are conducted and joined to the adjacent sintered bodies, the sintered bodies exhibit the same characteristics as a single sintered body, so the crack prevention effect of the sintered body is enhanced. It is.

端面用ハンダ材および裏面用ハンダ材の材質は融点が上記条件を満たしていれば特に限定されるものではないが、例えば、端面用ハンダ材として錫、錫/銀系および錫/銅系のハンダ材を、また、裏面用ハンダ材としてインジウム、インジウム系および錫/ビスマス系のハンダ材を用いることができる。また、端面用のハンダ材は膜に与える不純物の影響を少なくするために、膜に含まれる材質を選定することが望ましい。   The material of the end face solder material and the back face solder material is not particularly limited as long as the melting point satisfies the above conditions. For example, tin, tin / silver and tin / copper solders are used as the end face solder material. In addition, indium, indium-based and tin / bismuth-based solder materials can be used as the backside solder material. Further, it is desirable to select a material contained in the film for the end face solder material in order to reduce the influence of impurities on the film.

端面用ハンダ材を焼結体端面へ塗布する方法は特に限定されるものではないが、例えばハンダゴテ、超音波ハンダゴテ、メッキ法、スパッタリング法、蒸着法などを用いることができる。ハンダ材と焼結体端面の濡れ性が悪い場合は、ハンダ材を塗布する前に、端面を洗浄することが好ましい。洗浄方法としては、酸洗浄、アルコール洗浄、UV洗浄などが例示される。また、焼結体端面に濡れ性改善、密着力改善のための薄い下地層を形成しても良い。   A method of applying the end face solder material to the end face of the sintered body is not particularly limited, and for example, a soldering iron, an ultrasonic soldering iron, a plating method, a sputtering method, a vapor deposition method, or the like can be used. When the wettability between the solder material and the end face of the sintered body is poor, it is preferable to clean the end face before applying the solder material. Examples of the cleaning method include acid cleaning, alcohol cleaning, and UV cleaning. Moreover, you may form the thin base layer for wettability improvement and adhesive force improvement in a sintered compact end surface.

端面用ハンダの厚みは80μm以下が好ましく、50μm以下がより好ましく、10μm以下であることが特に好ましい。80μm以下であれば実質的に膜へ混入するハンダ材は無視できるほど減少する。但し、端面用ハンダの厚みが焼結体端面の最大高さ(Ry)の2倍より小さいと十分な接着強度が得られない場合があるため、Ryの2倍以上の厚みとすることが望ましい。   The thickness of the end face solder is preferably 80 μm or less, more preferably 50 μm or less, and particularly preferably 10 μm or less. If the thickness is 80 μm or less, the solder material mixed into the film substantially decreases to a negligible level. However, if the thickness of the end face solder is smaller than twice the maximum height (Ry) of the sintered body end face, sufficient adhesive strength may not be obtained. .

次に、図1に示す様に端面用ハンダ材が塗布された複数の焼結体を、端部が接触するように設置し、治具などを用いて互いに強く密着させる。この状態で端面用ハンダの融点以上に加熱して一端ハンダを溶融した後に、冷却して、焼結体同士を完全に接着する。本発明においては、ハンダを存在させるだけでは不十分であり、完全に接着させる必要がある。接合強度は、特に限定しないが、スパッタリング中に剥離しないように1MPa以上であることが好ましい。   Next, as shown in FIG. 1, the plurality of sintered bodies coated with the end face solder material are placed so that the end portions are in contact with each other, and are firmly adhered to each other using a jig or the like. In this state, the solder is heated to the melting point of the solder for the end face to melt the solder at one end, and then cooled to completely bond the sintered bodies together. In the present invention, the presence of solder is not sufficient, and it is necessary to bond completely. The bonding strength is not particularly limited, but is preferably 1 MPa or more so as not to be peeled off during sputtering.

(3)平板形焼結体裏面の接合工程
次に、バッキングプレートと複数の焼結体を接合した焼結体の集合体を裏面用ハンダ材により接合する。接合方法は、裏面用ハンダ材の融点以上、端面用ハンダ材の融点以下の温度になるよう、バッキングプレート、裏面用ハンダ材および互い端面で接合された焼結体を加熱する。その後、焼結体とバキングプレートの間に裏面用ハンダ材を配置し冷却固化して焼結体とバッキングプレートを接合する。
(3) Joining process of flat plate-shaped sintered body back surface Next, an assembly of sintered bodies obtained by joining the backing plate and the plurality of sintered bodies is joined by a solder material for the back surface. In the bonding method, the backing plate, the back surface solder material, and the sintered body bonded to each other end surface are heated so that the temperature is not lower than the melting point of the back surface solder material and not higher than the end surface solder material. Thereafter, a solder material for the back surface is arranged between the sintered body and the backing plate, and is cooled and solidified to join the sintered body and the backing plate.

バッキングプレートの材質は特に限定されるものではないが、チタンやSUS等の材料が例示される。チタンは熱膨張率がセラミックス材料に近いため好ましい。   Although the material of a backing plate is not specifically limited, Materials, such as titanium and SUS, are illustrated. Titanium is preferable because it has a thermal expansion coefficient close to that of a ceramic material.

焼結体裏面およびバッキングプレート表面は、ハンダの濡れ性を改善するために、あらかじめUV照射洗浄処理や超音波ハンダゴテによる濡れ性改善処理等の前処理を行っておいたものを使用しても良い。   The back surface of the sintered body and the surface of the backing plate may have been subjected to pretreatment such as UV irradiation cleaning treatment or wettability improvement treatment with ultrasonic soldering iron in order to improve solder wettability. .

この方法において図1の(7)で示す部分は、すでに固化した端面用ハンダ材と溶融した裏面用ハンダ材が接触することになる。しかし、端面用ハンダ材は固化した後に表面に薄い酸化被膜が形成されるため、この酸化被膜が端面用ハンダ材と裏面用ハンダ材が直接接触することを防ぐため、両ハンダ材が接触し共晶となることを防止することができる。   In this method, the portion indicated by (7) in FIG. 1 is brought into contact with the already-solidified end face solder material and the molten back surface solder material. However, since the end face solder material is solidified, a thin oxide film is formed on the surface. Therefore, in order to prevent the end face solder material and the back surface solder material from directly contacting each other, both the solder materials are in contact with each other. Crystal formation can be prevented.

本発明により作製された分割部の間隔は0.1mm未満となるため、スパッタリングにおける異常放電が少なく、端面ハンダ材の量も極めて少ないので膜に与える不純物の影響はほとんどない。   Since the interval between the divided parts produced by the present invention is less than 0.1 mm, there is little abnormal discharge in sputtering and the amount of the end face solder material is very small, so there is almost no influence of impurities on the film.

またハンダ材にはインジウムや錫などの簡単な金属を用いることができ、融点を調整するための複雑な合金を使用する必要がない。また、分割部を形成した後に、分割部の隙間に合金を充填する必要もないので作業が極めて簡便であり、低コストでターゲットを製造することができる。   Further, a simple metal such as indium or tin can be used for the solder material, and it is not necessary to use a complicated alloy for adjusting the melting point. Moreover, since it is not necessary to fill the gap between the divided portions with an alloy after forming the divided portions, the operation is extremely simple, and the target can be manufactured at low cost.

本発明のセラミックス製平板形スパッタリングターゲットを用いることにより、スパッタリングによる異常放電が低減し、かつ、スパッタリングにより得られる膜への不純物の混入を低減することが期待できる。   By using the ceramic flat plate sputtering target of the present invention, it is expected that abnormal discharge due to sputtering is reduced and that impurities are mixed into a film obtained by sputtering.

セラミックス製平板形ターゲットの断面を示す図である。It is a figure which shows the cross section of the flat plate target made from ceramics.

以下、実施例により本発明を更に具体的に説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto.

実施例1
平板形IGZO焼結体(密度97%、原子組成比In:Ga:Zn=1:1:1)を作製し、平面研削盤を用いて64mm×254mm、厚さ6mmの焼結体を2個準備した。焼結体端面の算術平均粗さ(Ra)を0.1μm、最大高さ(Ry)を0.7μm、裏面のRaを1.6μm、Ryを10.6μmとした。
Example 1
A flat plate IGZO sintered body (density 97%, atomic composition ratio In: Ga: Zn = 1: 1: 1) was prepared, and two sintered bodies having a size of 64 mm × 254 mm and a thickness of 6 mm were prepared using a surface grinder. Got ready. The arithmetic average roughness (Ra) of the sintered body end face was 0.1 μm, the maximum height (Ry) was 0.7 μm, the rear face Ra was 1.6 μm, and Ry was 10.6 μm.

次に、焼結体を超音波洗浄機にて純水で洗浄し不純物を除去した後、乾燥後、焼結体端面と裏面をUV照射して有機物を分解除去した。お互いの焼結体を接合する短辺の端部以外をマスキングテープにより覆い、スパッタリングにより端部に2μmの錫膜を成膜した。錫の融点は231.9℃、熱伝導率は66.8W/(m・K)、電気抵抗率は150nΩcmであり、IGZOの熱伝導率4W/(m・K)、電気抵抗率0.02Ωcmに比較して熱伝導率は著しく高く、電気抵抗率は著しく低い。   Next, the sintered body was washed with pure water with an ultrasonic cleaner to remove impurities, and after drying, the end surfaces and the back surface of the sintered body were irradiated with UV to decompose and remove organic substances. A portion other than the short-side end where the sintered bodies were joined was covered with a masking tape, and a 2 μm tin film was formed on the end by sputtering. The melting point of tin is 231.9 ° C., the thermal conductivity is 66.8 W / (m · K), the electrical resistivity is 150 nΩcm, the thermal conductivity of IGZO is 4 W / (m · K), and the electrical resistivity is 0.02 Ωcm. In comparison with the above, the thermal conductivity is remarkably high and the electrical resistivity is remarkably low.

次に、焼結体の互いの短辺の端面を突き合わせ、治具によりしっかり固定した。この焼結体組立体を270℃、30分加熱した後に160℃まで冷却して分割部をしっかり接合して組立体とした。   Next, the end surfaces of the short sides of the sintered body were butted together and firmly fixed with a jig. The sintered body assembly was heated at 270 ° C. for 30 minutes, then cooled to 160 ° C., and the divided portions were firmly joined to form an assembly.

次に、無酸素銅製のバッキングプレート上にインジウム(融点157℃)を置き160℃に加熱してバッキングプレート上でインジウムを溶融させた。そこへ前記焼結体の組立体を一定のインジウム厚みになるように徐々にスライドさせながら配置し、冷却固化させて焼結体とバッキングプレートを接合して平板形IGZOスパッタリングターゲットを作製した。分割部の間隔を光学顕微鏡で観察した結果を表1に示す。   Next, indium (melting point 157 ° C.) was placed on a backing plate made of oxygen-free copper and heated to 160 ° C. to melt indium on the backing plate. The assembly of the sintered body was placed while being slid gradually so as to have a constant indium thickness, cooled and solidified, and the sintered body and the backing plate were joined to produce a flat plate type IGZO sputtering target. Table 1 shows the result of observation of the interval between the divided portions with an optical microscope.

この様に作製したターゲットをスパッタリングにより評価した。スパッタリングの条件を以下に示す。アーキング数を表1に示す。スパッタされた膜からは分割部からSn等の不純物成分は認められなかった。
(スパッタリング条件)
電源 :DC電源 MDX(5kW)
磁場 :500G
回転数:6rpm
圧力 :0.35Pa
実施例2〜4
焼結体としてITO焼結体(密度99%、重量組成比In:SnO=90:10)および平板形AZO焼結体(密度99%、重量組成比ZnO:Al=98:2)を用いて、それぞれ平板形ITOスパッタリングターゲットおよび平板形AZOスパッタリングターゲットを作製した。焼結体及び/又は端面用ハンダ材の厚み以外は実施例1と同様の製法でそれぞれのターゲットを作製した。光学顕微鏡で観察した分割部の間隔およびスパッタリング評価の結果を表1に示す。スパッタされた膜からは分割部からSn等の不純物成分は認められず、焼結体の割れも発生していなかった。
The target thus produced was evaluated by sputtering. The sputtering conditions are shown below. Table 1 shows the arcing numbers. From the sputtered film, no impurity components such as Sn were observed from the divided portions.
(Sputtering conditions)
Power supply: DC power supply MDX (5kW)
Magnetic field: 500G
Rotation speed: 6rpm
Pressure: 0.35 Pa
Examples 2-4
As a sintered body, an ITO sintered body (density 99%, weight composition ratio In 2 O 3 : SnO 2 = 90: 10) and a flat plate AZO sintered body (density 99%, weight composition ratio ZnO: Al 2 O 3 = 98: 2) were used to produce flat ITO sputtering targets and flat AZO sputtering targets, respectively. Each target was produced by the same manufacturing method as in Example 1 except for the thickness of the sintered body and / or the end face solder material. Table 1 shows the interval between the divided portions and the results of sputtering evaluation observed with an optical microscope. From the sputtered film, no impurity components such as Sn were observed from the divided portions, and no cracks in the sintered body occurred.

比較例1〜5
実施例と同様のIGZO焼結体、ITO焼結体、AZO焼結体を用い、特許文献1に記載の方法並びに端面用ハンダ材の厚み以外は実施例と同様の方法でターゲットを作製した。光学顕微鏡で観察した分割部の間隔およびスパッタリング評価の結果を表1に示す。スパッタされた膜からは分割部から飛び出したと思われる裏面ハンダ材成分のインジウムパーティクルの発生や、スパッタリング時の熱膨張により焼結体同士が干渉したことによると思われる割れが一部に認められた。
Comparative Examples 1-5
Using the same IGZO sintered body, ITO sintered body, and AZO sintered body as those in the example, a target was prepared in the same manner as in the example except for the method described in Patent Document 1 and the thickness of the end face solder material. Table 1 shows the interval between the divided portions and the results of sputtering evaluation observed with an optical microscope. From the sputtered film, some cracks were observed due to the generation of indium particles of the backside solder material component that seemed to jump out of the split part, and interference between sintered bodies due to thermal expansion during sputtering. .

比較例6
比較例1と同様の平板形IGZO焼結体(密度97%、原子組成比In:Ga:Zn=1:1:1)を作製し、平面研削盤を用いて64mm×254mm、厚さ6mmの焼結体を2個準備した。焼結体端面の算術平均粗さ(Ra)を0.1μm、最大高さ(Ry)を0.7μm、裏面のRaを1.6μm、Ryを10.6μmとし、比較例1と同様の方法で分割部間隔0.3mmのスパッタリングターゲットを作製した。
Comparative Example 6
A flat plate IGZO sintered body (density 97%, atomic composition ratio In: Ga: Zn = 1: 1: 1) similar to that of Comparative Example 1 was prepared, and was 64 mm × 254 mm and 6 mm thick using a surface grinder. Two sintered bodies were prepared. The arithmetic average roughness (Ra) of the sintered body end face is 0.1 μm, the maximum height (Ry) is 0.7 μm, the rear face Ra is 1.6 μm, and Ry is 10.6 μm. Thus, a sputtering target having a spacing of 0.3 mm between the divided parts was produced.

次に、分割部に充填する低融点合金材料の作製を行なった。ガリウム、スズおよびインジウムを共晶点となる62.5Ga:21.5In:16.0Sn(重量比)の割合で120℃で混合し、室温で液体の低融点合金を得た。次に、銅とスズの合金として市販の20wt.%のスズを含有した銅−スズの合金粉末を用い、これをさらに粉砕して微粉末を得た。得られた合金粉末の平均粒径は30μmであった。そして、得られた低融点合金50.0重量部と合金粉末44.5重量部とを室温で混合しペースト状にし、平板ターゲットの分割部に充填することにより平板型IGZOスパッタリングターゲットを作製した。ペーストは、48時間経過後に、完全に固化した。   Next, a low-melting point alloy material to be filled in the divided portion was produced. Gallium, tin, and indium were mixed at a ratio of 62.5Ga: 21.5In: 16.0Sn (weight ratio) as a eutectic point at 120 ° C. to obtain a low-melting-point alloy that was liquid at room temperature. Next, a commercially available 20 wt. A copper-tin alloy powder containing% tin was used and further pulverized to obtain a fine powder. The average particle size of the obtained alloy powder was 30 μm. Then, 50.0 parts by weight of the obtained low melting point alloy and 44.5 parts by weight of the alloy powder were mixed at room temperature to form a paste, and filled into the divided parts of the flat plate target to prepare a flat plate type IGZO sputtering target. The paste solidified completely after 48 hours.

光学顕微鏡で観察した分割部の間隔および、スパッタリングによるアーキング数を表1に示す。本比較例において、スパッタリング中にターゲット表面が加熱されることにより、各平板焼結体が独立して激しい膨張収縮を繰り返し、その結果焼結体同士がクリアランス部分で接触し、クリアランス付近に多数のチッピングが生じ、アーク数の増大が認められた。また、この接触が原因と思われるターゲットに割れが発生していた。また、分割部に介在させた合金組成物の飛び出しと思われるパーティクルの発生も確認された。   Table 1 shows the distance between the divided portions observed with an optical microscope and the number of arcing by sputtering. In this comparative example, by heating the target surface during sputtering, each flat plate sintered body independently repeats severe expansion and contraction, and as a result, the sintered bodies contact each other at the clearance portion, and a large number of the vicinity of the clearance. Chipping occurred and an increase in the number of arcs was observed. In addition, cracks occurred in the target that was thought to be due to this contact. Moreover, generation | occurrence | production of the particle | grains considered to jump out of the alloy composition interposed in the division part was also confirmed.

Figure 2015059268
Figure 2015059268

1 平板形焼結体
2 焼結体端面
3 焼結体裏面
4 バッキングプレート
5 端面用ハンダ材
6 裏面用ハンダ材
7 端面用ハンダ材と裏面用ハンダ材の接触部分
DESCRIPTION OF SYMBOLS 1 Flat plate sintered body 2 End surface of sintered body 3 Back surface of sintered body 4 Backing plate 5 Solder material for end surface 6 Solder material for back surface 7 Contact part of solder material for end surface and solder material for back surface

Claims (5)

平板形焼結体の裏面とバッキングプレートを裏面用ハンダ材により接合してなる平板形スパッタリングターゲットにおいて、少なくとも2個以上の平板形焼結体の端面が、前記裏面用ハンダ材よりも高い融点を持つ端面用ハンダ材で接合されており、かつ、分割部の間隔が0.1mm未満であることを特徴とするセラミックス製平板形スパッタリングターゲット。 In the flat plate sputtering target formed by joining the back surface of the flat plate sintered body and the backing plate with the back surface solder material, the end surfaces of at least two flat plate sintered bodies have a melting point higher than that of the back surface solder material. A ceramic flat plate sputtering target characterized in that it is joined by a soldering material for an end face, and the interval between the divided portions is less than 0.1 mm. 平板形焼結体の接合部の各端面の、算術平均粗さ(Ra)が1μm以下であり、最大高さ(Ry)が10μm以下であることを特徴とする請求項1に記載のスパッタリングターゲット。 2. The sputtering target according to claim 1, wherein the arithmetic average roughness (Ra) of each end face of the joint portion of the flat plate-shaped sintered body is 1 μm or less and the maximum height (Ry) is 10 μm or less. . 平板形焼結体の接合部の各端面が鏡面仕上げとなっていることを特徴とする請求項1又は2に記載のスパッタリングターゲット。 3. The sputtering target according to claim 1, wherein each end face of the joined portion of the flat plate-like sintered body has a mirror finish. 端面で接合された焼結体同士の接合強度が1MPa以上であることを特徴とする請求項1〜3のいずれかに記載のスパッタリングターゲット。 The sputtering target according to any one of claims 1 to 3, wherein the bonding strength between the sintered bodies bonded at the end faces is 1 MPa or more. 少なくとも2個以上の平板形焼結体を端面用ハンダ材で接着固化させた後に、裏面用ハンダ材を用いて焼結体とバッキングプレートを接合することを特徴とする請求項1〜4のいずれかに記載のスパッタリングターゲットの製造方法。 The sintered body and the backing plate are joined using a back surface solder material after at least two or more flat plate sintered bodies are bonded and solidified with an end surface solder material. A method for producing a sputtering target according to claim 1.
JP2013195903A 2013-09-20 2013-09-20 Flat plate sputtering target and manufacturing method thereof Active JP6273734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013195903A JP6273734B2 (en) 2013-09-20 2013-09-20 Flat plate sputtering target and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013195903A JP6273734B2 (en) 2013-09-20 2013-09-20 Flat plate sputtering target and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015059268A true JP2015059268A (en) 2015-03-30
JP6273734B2 JP6273734B2 (en) 2018-02-07

Family

ID=52817042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013195903A Active JP6273734B2 (en) 2013-09-20 2013-09-20 Flat plate sputtering target and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6273734B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5947413B1 (en) * 2015-02-13 2016-07-06 Jx金属株式会社 Sputtering target and manufacturing method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920470A (en) * 1982-07-26 1984-02-02 Murata Mfg Co Ltd Target for sputtering
JPH01230768A (en) * 1988-03-08 1989-09-14 Asahi Glass Co Ltd Production of sputtering target unit and transparent conductive film
JP2000144400A (en) * 1998-06-08 2000-05-26 Tosoh Corp Sputtering target and its manufacture
JP2000239838A (en) * 1999-02-15 2000-09-05 Sony Corp Sputtering target assembled body subjected to solid phase diffusion joining and its production
JP2000345326A (en) * 1999-06-01 2000-12-12 Tosoh Corp Divided ito sputtering target
JP2004315931A (en) * 2003-04-18 2004-11-11 Dainippon Printing Co Ltd Sputtering target
JP2010106330A (en) * 2008-10-31 2010-05-13 Ulvac Material Kk Method for manufacturing sputtering target, sputtering target, and sputtering apparatus
WO2012063523A1 (en) * 2010-11-08 2012-05-18 三井金属鉱業株式会社 Divided sputtering target and method for producing same
WO2012144107A1 (en) * 2011-04-18 2012-10-26 Jx日鉱日石金属株式会社 Sputtering target
JP2013185160A (en) * 2012-03-06 2013-09-19 Jx Nippon Mining & Metals Corp Sputtering target

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5920470A (en) * 1982-07-26 1984-02-02 Murata Mfg Co Ltd Target for sputtering
JPH01230768A (en) * 1988-03-08 1989-09-14 Asahi Glass Co Ltd Production of sputtering target unit and transparent conductive film
JP2000144400A (en) * 1998-06-08 2000-05-26 Tosoh Corp Sputtering target and its manufacture
JP2000239838A (en) * 1999-02-15 2000-09-05 Sony Corp Sputtering target assembled body subjected to solid phase diffusion joining and its production
JP2000345326A (en) * 1999-06-01 2000-12-12 Tosoh Corp Divided ito sputtering target
JP2004315931A (en) * 2003-04-18 2004-11-11 Dainippon Printing Co Ltd Sputtering target
JP2010106330A (en) * 2008-10-31 2010-05-13 Ulvac Material Kk Method for manufacturing sputtering target, sputtering target, and sputtering apparatus
WO2012063523A1 (en) * 2010-11-08 2012-05-18 三井金属鉱業株式会社 Divided sputtering target and method for producing same
WO2012144107A1 (en) * 2011-04-18 2012-10-26 Jx日鉱日石金属株式会社 Sputtering target
JP2013185160A (en) * 2012-03-06 2013-09-19 Jx Nippon Mining & Metals Corp Sputtering target

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5947413B1 (en) * 2015-02-13 2016-07-06 Jx金属株式会社 Sputtering target and manufacturing method thereof
JP2016148093A (en) * 2015-02-13 2016-08-18 Jx金属株式会社 Sputtering target and method for manufacturing the same

Also Published As

Publication number Publication date
JP6273734B2 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
JP6273735B2 (en) Cylindrical sputtering target and manufacturing method thereof
KR101552028B1 (en) Method for producing sintered body, sintered body, sputtering target composed of the sintered body, and sputtering target-backing plate assembly
KR101249566B1 (en) Cu-Ga SINTERED BODY SPUTTERING TARGET AND METHOD FOR PRODUCING THE TARGET
US20150357169A1 (en) Silicon sputtering target with enhanced surface profile and improved performance and methods of making the same
JP6066018B2 (en) Sputtering target material and manufacturing method thereof
JP5799154B2 (en) Sputtering target and manufacturing method thereof
US20130029178A1 (en) Active solder
JP2015183284A (en) Cylindrical sputtering target and method of manufacturing the same
JP2015168832A (en) Cylindrical sputtering target and method for manufacturing the same
JP2010150610A (en) Cylindrical sputtering target
JP7101717B2 (en) Sputtering target and its manufacturing method
JP6273734B2 (en) Flat plate sputtering target and manufacturing method thereof
TWI553140B (en) Sputtering target - backplane assembly
JP6376101B2 (en) Cylindrical sputtering target and manufacturing method thereof
KR101923292B1 (en) BACKING PLATE WITH DIFFUSION BONDING OF ANTICORROSIVE METAL AND Mo OR Mo ALLOY AND SPUTTERING TARGET-BACKING PLATE ASSEMBLY PROVIDED WITH SAID BACKING PLATE
CN105814233B (en) Diffusion bonded copper sputtering target assembly
CN105986228A (en) Sputtering target material for manufacturing aluminum oxide thin film and manufacturing method thereof
JP5947413B1 (en) Sputtering target and manufacturing method thereof
JP6291551B2 (en) Sputtering target-backing plate assembly
JPWO2012144107A1 (en) Sputtering target
WO2014128976A1 (en) Sputtering target and manufacturing method therefor
JP6297620B2 (en) Sputtering target and manufacturing method thereof
JP4985215B2 (en) Manufacturing method of cylindrical sputtering target
JP2015021136A (en) Sputtering target joint body and film deposition method using the same
JP2017150089A (en) Sputtering target and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171024

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171225

R151 Written notification of patent or utility model registration

Ref document number: 6273734

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151