JP2017150089A - Sputtering target and production method thereof - Google Patents

Sputtering target and production method thereof Download PDF

Info

Publication number
JP2017150089A
JP2017150089A JP2017110321A JP2017110321A JP2017150089A JP 2017150089 A JP2017150089 A JP 2017150089A JP 2017110321 A JP2017110321 A JP 2017110321A JP 2017110321 A JP2017110321 A JP 2017110321A JP 2017150089 A JP2017150089 A JP 2017150089A
Authority
JP
Japan
Prior art keywords
target
target members
sputtering
members
sputtering target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017110321A
Other languages
Japanese (ja)
Inventor
幸三 長田
Kozo Osada
幸三 長田
純 梶山
Jun KAJIYAMA
純 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2017110321A priority Critical patent/JP2017150089A/en
Publication of JP2017150089A publication Critical patent/JP2017150089A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve yield of a production process by reducing generation of arcing during the production process.SOLUTION: In a sputtering target including a plurality of target members bonded to a substrate, the plurality of target members have a circular surface facing to each adjacent target member at an interval of 0.1 mm or more and 1.0 mm or less, when being bonded to the substrate, and a surface roughness (Ra) of the circular surface is 2.0 μm or more and 8.0 μm or less. The plurality of target members may have a hollow cylindrical shape.SELECTED DRAWING: Figure 1

Description

本発明は、スパッタリングターゲット及びその製造方法に関する。特に、ターゲット部材を構成する焼結体の表面粗さに関する。   The present invention relates to a sputtering target and a manufacturing method thereof. In particular, it relates to the surface roughness of the sintered body constituting the target member.

近年、大型のガラス基板に金属薄膜や酸化金属薄膜を形成するためのスパッタリング装置として、円筒型スパッタリングターゲットを用いたスパッタリング装置の開発が進んでいる。円筒型スパッタリングターゲットとは、ターゲット部材料で構成される焼結体を中空の円筒形状に加工し、バッキングプレート又はバッキングチューブと呼ばれる基材に接合して得たスパッタリング用のターゲットをいう。   In recent years, a sputtering apparatus using a cylindrical sputtering target has been developed as a sputtering apparatus for forming a metal thin film or a metal oxide thin film on a large glass substrate. The cylindrical sputtering target refers to a sputtering target obtained by processing a sintered body made of a target material into a hollow cylindrical shape and joining it to a substrate called a backing plate or a backing tube.

このような円筒型スパッタリングターゲットは、平板型スパッタリングターゲットに比べて、ターゲットの使用効率が高い、エロージョンの発生が少ない、堆積物の剥離によるパーティクルの発生が少ないという利点がある。特に、パーティクルの発生が少ないという利点は、パーティクルのターゲット上への再堆積によるアーキングの発生を低減する上で非常に有利である。   Such a cylindrical sputtering target has advantages in that the use efficiency of the target is high, the generation of erosion is small, and the generation of particles due to the peeling of the deposit is small compared to the flat plate type sputtering target. In particular, the advantage of low generation of particles is very advantageous in reducing the occurrence of arcing due to redeposition of particles on the target.

例えばITO(酸化インジウム・スズ)を成膜するための円筒型スパッタリングターゲットを製造する場合、酸化インジウムの粉末と酸化スズの粉末とを混合して焼結させた焼結体(セラミックス)を中空の円筒形状に加工し、円筒形状の基材(バッキングチューブ)に対して接合する。   For example, when manufacturing a cylindrical sputtering target for depositing ITO (indium tin oxide), a sintered body (ceramics) obtained by mixing and sintering indium oxide powder and tin oxide powder is hollow. It is processed into a cylindrical shape and bonded to a cylindrical substrate (backing tube).

しかしながら、セラミックスで構成されるターゲット部材を長尺状に製造することは困難である。そのため、円筒型スパッタリングターゲットの長尺化(大面積化)を図るために、円筒形状の焼結体を複数形成し、それらを連続的に基材に並べて接合することにより、長尺状の円筒型スパッタリングターゲットを実現する技術が開発されている(特許文献1)。   However, it is difficult to manufacture a target member made of ceramics in a long shape. Therefore, in order to increase the length (enlarge the area) of the cylindrical sputtering target, a plurality of cylindrical sintered bodies are formed, and these are continuously aligned and bonded to the base material, thereby forming a long cylindrical shape. A technique for realizing a type sputtering target has been developed (Patent Document 1).

複数のターゲット部材を基材に対して隙間なく配置した場合、スパッタ中の熱によりターゲット部材が伸縮し、ターゲット部材同士がぶつかるなどして割れや欠けが生じてしまうおそれがある。そこで、一般的には、複数のターゲット部材を基材に接合させる際に、ターゲット部材同士の間に一定の間隔をあけて配置することが行われている。   When a plurality of target members are arranged with no gap with respect to the base material, the target members may expand and contract due to heat during sputtering, and the target members may collide with each other, which may cause cracking or chipping. Therefore, in general, when joining a plurality of target members to a base material, it is carried out with a certain interval between the target members.

特開平7−228967号公報JP 7-228967 A

しかしながら、本発明者らが鋭意研究した結果、ターゲット部材同士の間に隙間を設けた場合、その隙間にスパッタリングによる薄膜の再堆積(スパッタされたターゲット成分が基板に到達せずにターゲット部材に再付着する現象)が発生し、それが一定量に達すると、安定な状態で放電が行われているプラズマ中に入り込む場合があることが分かった。そして、その結果、プラズマ中の電位バランスが崩れ、局所的な電荷集中が起きて偶発的なアーキングの発生につながることが分かった。   However, as a result of intensive studies by the present inventors, when a gap is provided between the target members, redeposition of a thin film by sputtering in the gap (the sputtered target component does not reach the substrate and is re-applied to the target member). It has been found that when a certain phenomenon occurs, it may enter a plasma in which discharge is performed in a stable state. As a result, it was found that the potential balance in the plasma was disrupted and local charge concentration occurred, leading to accidental arcing.

本発明の課題は、上述したスパッタリング中のアーキングの発生を抑制し、スパッタリングプロセスを用いたデバイス製造プロセスの歩留りを向上させることが可能なスパッタリングターゲットを提供することにある。   The subject of this invention is providing the sputtering target which can suppress generation | occurrence | production of the arcing in sputtering mentioned above and can improve the yield of the device manufacturing process using a sputtering process.

本発明の一実施形態によるスパッタリングターゲットは、基材に接合された複数のターゲット部材を含み、前記複数のターゲット部材は、前記基材に接合された際にそれぞれ隣接するターゲット部材と所定の間隔を置いて対向する円形面を有し、前記円形面における表面粗さ(Ra)が2.0μm以上8.0μm以下であることを特徴とする。   A sputtering target according to an embodiment of the present invention includes a plurality of target members bonded to a base material, and the plurality of target members have a predetermined distance from each adjacent target member when bonded to the base material. It has a circular surface which is placed opposite to each other, and the surface roughness (Ra) in the circular surface is 2.0 μm or more and 8.0 μm or less.

本発明の一実施形態によるスパッタリングターゲットの製造方法は、基材に接合された複数のターゲット部材を含み、前記複数のターゲット部材の円形面を表面粗さ(Ra)が2.0μm以上8.0μm以下となるように研磨し、それぞれ隣接するターゲット部材と所定の間隔を置いて前記円形面が対向するように、前記複数のターゲット部材を前記基材に接合することを特徴とする。   A sputtering target manufacturing method according to an embodiment of the present invention includes a plurality of target members bonded to a base material, and the surface roughness (Ra) of the circular surfaces of the plurality of target members is 2.0 μm or more and 8.0 μm. The plurality of target members are bonded to the base material so that the circular surfaces face each other with a predetermined distance from the adjacent target members.

前記ターゲット部材は、ITO(Indium−Tin−Oxide)、IZO(Indium−Zinc−Oxide)又はIGZO(Indium−Gallium−Zinc−Oxide)で構成してもよい。   The target member may be made of ITO (Indium-Tin-Oxide), IZO (Indium-Zinc-Oxide), or IGZO (Indium-Gallium-Zinc-Oxide).

なお、表面粗さ(Ra)の測定は、非接触式の表面粗さ測定機を用いてANSI規格に準じて行うこととする。表面粗さの測定箇所は、ターゲット部材の各端面を60°間隔で6か所ずつ行い(1ターゲット部材につき12か所)、全測定値の加重平均値をターゲット部材の表面粗さとする。   The surface roughness (Ra) is measured according to ANSI standards using a non-contact type surface roughness measuring machine. The surface roughness is measured at each of the end surfaces of the target member at six locations at 60 ° intervals (12 locations per target member), and the weighted average value of all measured values is defined as the surface roughness of the target member.

本発明の一実施形態に係るスパッタリングターゲットの構成を示す斜視図である。It is a perspective view which shows the structure of the sputtering target which concerns on one Embodiment of this invention. 本発明の一実施形態に係るスパッタリングターゲットの構成を示す断面図である。It is sectional drawing which shows the structure of the sputtering target which concerns on one Embodiment of this invention. 本発明の一実施形態に係るスパッタリングターゲットにおけるターゲット部材間の間隙付近を示す断面図である。It is sectional drawing which shows the gap vicinity between the target members in the sputtering target which concerns on one Embodiment of this invention. 本発明の一実施形態に係るスパッタリングターゲットの製造方法を示すプロセスフロー図である。It is a process flow figure showing a manufacturing method of a sputtering target concerning one embodiment of the present invention.

以下、本発明の実施の形態について、図面等を参照しつつ説明する。但し、本発明は、その要旨を逸脱しない範囲において様々な態様で実施することができ、以下に例示する実施の形態の記載内容に限定して解釈されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the present invention can be implemented in various modes without departing from the gist thereof, and is not construed as being limited to the description of the embodiments exemplified below.

また、図面は、説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。また、本明細書と各図において、既出の図に関して説明したものと同様の機能を備えた要素には、同一の符号を付して、重複する説明を省略することがある。   Further, in order to make the explanation clearer, the drawings may be schematically represented with respect to the width, thickness, shape, and the like of each part as compared with the actual embodiment, but are merely examples, and the interpretation of the present invention. It is not intended to limit. In addition, in the present specification and each drawing, elements having the same functions as those described with reference to the previous drawings may be denoted by the same reference numerals and redundant description may be omitted.

<スパッタリングターゲットの構成>
図1は、本発明の一実施形態に係るスパッタリングターゲットの構成を示す斜視図である。また、図2は、本発明の一実施形態に係るスパッタリングターゲットの構成を示す断面図である。
<Configuration of sputtering target>
FIG. 1 is a perspective view showing a configuration of a sputtering target according to an embodiment of the present invention. Moreover, FIG. 2 is sectional drawing which shows the structure of the sputtering target which concerns on one Embodiment of this invention.

本実施形態では、円筒型スパッタリングターゲットを例示する。本実施形態に係る円筒型スパッタリングターゲット100は、基材101と、複数のターゲット部材102a、102bとを含んで構成される。各ターゲット部材102a、102bは、それぞれ基材101に対して接合材103を介して接合される。このとき、接合材103は、基材101とターゲット部材102a、102bとの間に設けられた間隙を充填するように設けられている。   In this embodiment, a cylindrical sputtering target is illustrated. The cylindrical sputtering target 100 according to this embodiment includes a base material 101 and a plurality of target members 102a and 102b. The target members 102a and 102b are bonded to the base material 101 via the bonding material 103, respectively. At this time, the bonding material 103 is provided so as to fill a gap provided between the base material 101 and the target members 102a and 102b.

本実施形態に係るスパッタリングターゲット100は、複数のターゲット部材102a、102bを構成する焼結体に特長がある。具体的には、ターゲット部材102a、102bが、それぞれ隣接するターゲット部材と所定の間隔を置いて対向する円形面104を有し、その円形面104における表面粗さRaは2.0μm以上である。この点については、後述する。   The sputtering target 100 according to the present embodiment is characterized by a sintered body constituting the plurality of target members 102a and 102b. Specifically, each of the target members 102a and 102b has a circular surface 104 facing the adjacent target member at a predetermined interval, and the surface roughness Ra of the circular surface 104 is 2.0 μm or more. This point will be described later.

複数のターゲット部材102a、102bは、基材101の外周面を囲むように設けられている。複数のターゲット部材102a、102bは、基材101の中心軸に対して同軸または略同軸に設けられていることが好ましい。このような構成により、円筒型スパッタリングターゲット100をスパッタリング装置に装着して、基材101を中心に回転させたとき、各ターゲット部材102a、102bと被成膜面(試料基板)との間隔を一定に保つことができる。   The plurality of target members 102 a and 102 b are provided so as to surround the outer peripheral surface of the base material 101. The plurality of target members 102 a and 102 b are preferably provided coaxially or substantially coaxially with the central axis of the substrate 101. With such a configuration, when the cylindrical sputtering target 100 is mounted on the sputtering apparatus and rotated around the base material 101, the distance between each target member 102a, 102b and the film formation surface (sample substrate) is constant. Can be kept in.

円筒型スパッタリングターゲット100は、基材101に対して複数の円筒型スパッタリングターゲット部材102a、102bを装着する際に、各ターゲット部材102a、102bはそれぞれ所定の間隔において配置されている。間隙は1mm以下であればよく、例えば、0.1〜0.5mmであればよい。このように複数のターゲット部材102a、102bを所定の間隔をおいて配置することにより、ターゲット部材同士がぶつかることによる破損を防止することができる。   In the cylindrical sputtering target 100, when the plurality of cylindrical sputtering target members 102a and 102b are mounted on the substrate 101, the target members 102a and 102b are arranged at predetermined intervals. The gap may be 1 mm or less, for example, 0.1 to 0.5 mm. As described above, by disposing the plurality of target members 102a and 102b at a predetermined interval, it is possible to prevent damage due to collision between the target members.

本実施形態の円筒型スパッタリングターゲット100は、複数のターゲット部材102を接合材103によって基材101に接合させることにより、長さ100mm以上の長尺状のスパッタリングターゲットとすることができる。   The cylindrical sputtering target 100 of this embodiment can be made into a long-sized sputtering target having a length of 100 mm or more by bonding a plurality of target members 102 to the base material 101 by the bonding material 103.

<基材>
基材101は、中空の円筒形状を有するターゲット部材102a、102bの内側表面に沿うような外面形状を有していることが好ましい。前述のように、基材101の外径は、各ターゲット部材102a、102bの内径よりも僅かに小さく、両者を同軸に重ねたときに間隙ができるように調整されている。この間隙には、接合材103が設けられる。
<Base material>
It is preferable that the base material 101 has an outer surface shape along the inner surface of the target members 102a and 102b having a hollow cylindrical shape. As described above, the outer diameter of the base material 101 is slightly smaller than the inner diameters of the target members 102a and 102b, and is adjusted so that a gap is formed when the two are stacked coaxially. A bonding material 103 is provided in the gap.

各ターゲット部材102a、102bは、スパッタリングによる成膜時のイオン照射により加熱されて温度が上昇する。スパッタリングによる成膜時に各ターゲット部材102a、102bの温度上昇を抑制するためには、基材101を各ターゲット部材102a、102bの冷却材(ヒートシンク)として機能させることが好ましい。例えば、基材101を中空構造として、その内部に冷媒が流れるように構成することが可能である。したがって、基材101としては、良好な導電性と熱伝導性を有している材料を用いることが好ましい。   Each target member 102a, 102b is heated by the ion irradiation at the time of film-forming by sputtering, and temperature rises. In order to suppress the temperature rise of each target member 102a, 102b at the time of film formation by sputtering, it is preferable to make the base material 101 function as a coolant (heat sink) for each target member 102a, 102b. For example, it is possible to configure the base material 101 to have a hollow structure so that the coolant flows through the base material 101. Therefore, it is preferable to use a material having good conductivity and thermal conductivity as the substrate 101.

また、同時に、基材101は、接合材103とぬれ性がよく、高い接合強度が得られる金属が好ましい。以上のことから、基材101を構成する材料としては、例えば、銅(Cu)又はチタン(Ti)、もしくは銅合金又はチタン合金又はステンレス(SUS)を用いることが好ましい。銅合金としては、クロム銅などの銅(Cu)を主成分とする合金を適用することができる。また、基材101としてチタン(Ti)を用いれば、軽量で剛性のある基材とすることができる。   At the same time, the base material 101 is preferably a metal that has good wettability with the bonding material 103 and can provide high bonding strength. From the above, it is preferable to use, for example, copper (Cu) or titanium (Ti), or a copper alloy, titanium alloy, or stainless steel (SUS) as a material constituting the substrate 101. As the copper alloy, an alloy mainly composed of copper (Cu) such as chromium copper can be applied. Further, if titanium (Ti) is used as the base material 101, a light and rigid base material can be obtained.

基材101は単体金属又は金属合金で形成されるのみならず、金属基材の表面に他の金属による被膜が設けられたものであってもよい。例えば、チタン(Ti)、銅(Cu)、銀(Ag)、ニッケル(Ni)などを含む金属被膜が形成されていてもよい。   The substrate 101 is not only formed of a single metal or a metal alloy, but may be one in which a coating of another metal is provided on the surface of the metal substrate. For example, a metal film containing titanium (Ti), copper (Cu), silver (Ag), nickel (Ni), or the like may be formed.

円筒型スパッタリングターゲット100は、スパッタリング時にターゲット部材102a、102bの全面にイオンが照射されるのではなく、一部の面にのみイオンが照射されつつ回転するので、同じターゲット部材であってもイオンの照射面とその裏側面では温度差が生じることとなる。しかし、基材101が冷却機能を有していることにより、ターゲット部材102a、102bの温度上昇を抑制できるとともに、上述した温度差による熱歪みの影響をも抑制することができる。   The cylindrical sputtering target 100 does not irradiate ions on the entire surface of the target members 102a and 102b at the time of sputtering, but rotates while irradiating ions only on a part of the surfaces. There will be a temperature difference between the irradiated surface and its back surface. However, since the base material 101 has a cooling function, an increase in the temperature of the target members 102a and 102b can be suppressed, and the influence of thermal distortion due to the above-described temperature difference can also be suppressed.

基材101は、接合材103と接する表面側が粗面化されていてもよい。基材101の表面が粗面化されることで、接合材103と接する表面積を大きくすることができる。例えば、基材101の表面はサンドブラスト処理などにより粗面化され、表面粗さ(Ra)の値が1.8μm以上の値を有していてもよい。   The base material 101 may be roughened on the surface side in contact with the bonding material 103. By roughening the surface of the base material 101, the surface area in contact with the bonding material 103 can be increased. For example, the surface of the substrate 101 may be roughened by sandblasting or the like, and the surface roughness (Ra) may have a value of 1.8 μm or more.

<接合材>
接合材103は、基材101と各ターゲット部材102a、102bとの間に設けられている。接合材103は、基材101と各ターゲット部材102a、102bとを接合するとともに、耐熱性と熱伝導性が良好であることが好ましい。また、スパッタリング中は真空下に置かれるため、真空中でガス放出が少ない特性を有していることが好ましい。
<Bonding material>
The bonding material 103 is provided between the base material 101 and the target members 102a and 102b. The bonding material 103 preferably bonds the base material 101 and the target members 102a and 102b and has good heat resistance and thermal conductivity. Further, since it is placed under vacuum during sputtering, it is preferable that it has a characteristic that gas emission is small in vacuum.

さらに、製造上の観点から、接合材103は、基材101と各ターゲット部材102a、102bとを接合するときに流動性を有していることが好ましい。これらの特性を満足するために、接合材103としては、融点が300℃以下の低融点金属材料を用いることができる。例えば、接合材103として、インジウム、スズなどの金属、またはこれらのうちいずれか一種の元素を含む金属合金材料を用いてもよい。具体的には、インジウム又はスズの単体、インジウムとスズの合金、スズを主成分とするはんだ合金などを用いてもよい。   Furthermore, from the viewpoint of manufacturing, it is preferable that the bonding material 103 has fluidity when the base material 101 and the target members 102a and 102b are bonded. In order to satisfy these characteristics, a low melting point metal material having a melting point of 300 ° C. or lower can be used as the bonding material 103. For example, as the bonding material 103, a metal such as indium or tin, or a metal alloy material containing any one of these elements may be used. Specifically, indium or tin alone, an alloy of indium and tin, a solder alloy containing tin as a main component, or the like may be used.

<ターゲット部材>
図1及び図2で示すように、各ターゲット部材102a、102bは中空の円筒形状に成形されている。各ターゲット部材102a、102bは、少なくとも数ミリメートルから数十ミリメートルの厚みを有し、この厚み部分全体をターゲット部材として利用することが可能である。
<Target member>
As shown in FIGS. 1 and 2, each target member 102a, 102b is formed into a hollow cylindrical shape. Each target member 102a, 102b has a thickness of at least several millimeters to several tens of millimeters, and the entire thickness portion can be used as a target member.

基材101に対してターゲット部材102a、102bを装着する際、ターゲット部材102a、102bの中空部分に基材101が挿入され、その後、接合材103によって両者は接合される。すなわち、各ターゲット部材102a、102bの内径(中空部分の径)よりも基材101の外径の方が小さく、両者は所定の間隔をおいて配置され、この間隙を充填するように接合材103が設けられている。各ターゲット部材102a、102bと基材101とを安定的に保持するために、その間隙において接合材103に隙間がないように設けられている。   When the target members 102 a and 102 b are attached to the base material 101, the base material 101 is inserted into the hollow portions of the target members 102 a and 102 b, and then both are joined by the joining material 103. That is, the outer diameter of the base material 101 is smaller than the inner diameter (the diameter of the hollow portion) of each of the target members 102a and 102b, both are arranged at a predetermined interval, and the bonding material 103 is filled so as to fill this gap. Is provided. In order to stably hold the target members 102a and 102b and the base material 101, the bonding material 103 is provided with no gap in the gap.

各ターゲット部材102a、102bは、円筒形状の外側表面がターゲット表面となり、円筒形状の内側表面が基材101に面して接合材103に接する面となる。このため製造時においては、各ターゲット部材102a、102bの外側表面が平滑に成形加工され、円筒の内側表面は接着性を高めるために粗面化されていてもよい。   Each of the target members 102 a and 102 b has a cylindrical outer surface as a target surface, and a cylindrical inner surface that faces the base material 101 and comes into contact with the bonding material 103. For this reason, at the time of manufacture, the outer surface of each target member 102a, 102b may be formed into a smooth surface, and the inner surface of the cylinder may be roughened to enhance the adhesion.

各ターゲット部材102a、102bは、スパッタリング成膜が可能な各種材料を用いて形成される。例えば、ターゲット部材102a、102bは、セラミックスであってもよい。セラミックスとしては、金属酸化物、金属窒化物、金属酸窒化物の焼結体などを用いることができる。金属酸化物としては、酸化インジウム、酸化スズ、酸化亜鉛、酸化ガリウムなど典型元素に属する金属の酸化物を用いることができる。   Each target member 102a, 102b is formed using various materials that can be formed by sputtering. For example, the target members 102a and 102b may be ceramics. As the ceramic, a metal oxide, a metal nitride, a sintered body of metal oxynitride, or the like can be used. As the metal oxide, an oxide of a metal belonging to a typical element such as indium oxide, tin oxide, zinc oxide, or gallium oxide can be used.

具体的には、酸化スズと酸化インジウムの化合物(Indium Tin Oxide:ITO)、酸化亜鉛(Zinc Oxide:ZnO)、酸化インジウムと酸化亜鉛の化合物(Indium Zinc Oxide:IZO)、酸化インジウム、酸化亜鉛及び酸化ガリウムの化合物(Indium Gallium Zinc Oxide:IGZO)から選ばれた化合物の焼結体などをターゲット部材102a、102bとして用いることができる。   Specifically, a compound of tin oxide and indium oxide (Indium Tin Oxide: ITO), zinc oxide (Zinc Oxide: ZnO), a compound of indium oxide and zinc oxide (Indium Zinc Oxide: IZO), indium oxide, zinc oxide, and A sintered body of a compound selected from a compound of gallium oxide (Indium Gallium Zinc Oxide: IGZO) can be used as the target members 102a and 102b.

なお、上記の具体例は一例であり、本実施形態に係るスパッタリングターゲットは、ターゲット部材として各種スパッタリング材料を用いることができる。   In addition, said specific example is an example and the sputtering target which concerns on this embodiment can use various sputtering materials as a target member.

ここで、ターゲット部材102aとターゲット部材102bとの間には、所定の間隔(好ましくは1mm以下、例えば0.1〜0.5mm)の間隙が設けられている。この間隙は、ターゲット部材同士がぶつかって破損しないようにするための安全措置であるが、前述のとおり、本発明者らは、この間隙に再堆積した薄膜がアーキングの発生につながることを突き止めた。   Here, a gap of a predetermined interval (preferably 1 mm or less, for example, 0.1 to 0.5 mm) is provided between the target member 102a and the target member 102b. This gap is a safety measure for preventing the target members from colliding with each other, and as described above, the present inventors have found that the thin film re-deposited in this gap leads to the occurrence of arcing. .

そこで、本発明者らは、鋭意研究を重ねた結果、ターゲット部材102aとターゲット部材102bとが対向する面(つまり、図1及び図2に示す円形面104)の表面粗さを2.0μm以上8.0μm以下とすることにより、アーキングの発生を抑制できることを見出した。つまり、本実施形態に係るスパッタリングターゲット100では、ターゲット部材102aとターゲット部材102bとが対向する面の表面粗さを2.0μm以上8.0μm以下としている。   Accordingly, as a result of intensive studies, the present inventors have determined that the surface roughness of the surface where the target member 102a and the target member 102b face each other (that is, the circular surface 104 shown in FIGS. 1 and 2) is 2.0 μm or more. It was found that the occurrence of arcing can be suppressed by adjusting the thickness to 8.0 μm or less. That is, in the sputtering target 100 according to the present embodiment, the surface roughness of the surface where the target member 102a and the target member 102b face each other is set to 2.0 μm or more and 8.0 μm or less.

図3は、隣接するターゲット部材間の間隙付近を示す断面図である。具体的には、図2において、符号105で示される枠線内を拡大した模式的な図を示している。図3に示されるように、ターゲット部材102aとターゲット部材102bとの間には、0.2〜0.5mmの間隙が設けられ、各ターゲット部材が対向する面104は、意図的に表面が粗くなるように加工されている。すなわち、各ターゲット部材102a、102bは、基材101に接合された際にそれぞれ隣接するターゲット部材と所定の間隔を置いて対向する円形面104を有し、その円形面104における表面粗さ(Ra)が2.0μm以上8.0μm以下となっている。   FIG. 3 is a cross-sectional view showing the vicinity of a gap between adjacent target members. Specifically, in FIG. 2, a schematic diagram in which the inside of the frame indicated by reference numeral 105 is enlarged is shown. As shown in FIG. 3, a gap of 0.2 to 0.5 mm is provided between the target member 102a and the target member 102b, and the surface 104 on which each target member faces is intentionally rough. It is processed to become. That is, each of the target members 102a and 102b has a circular surface 104 facing the adjacent target member at a predetermined interval when bonded to the base material 101, and the surface roughness (Ra ) Is 2.0 μm or more and 8.0 μm or less.

本発明者らの研究によれば、各ターゲット部材102a、102bの円形面104の表面粗さ(Ra)が2.0μm未満の範囲ではアーキングの発生が確認されたが、2.0μm以上になると確認されなかった。また、表面粗さ(Ra)が8.0μmを超えると、再びアーキングの発生が確認され、さらにターゲット部材の割れも確認されるようになった。   According to the study by the present inventors, the occurrence of arcing was confirmed when the surface roughness (Ra) of the circular surface 104 of each target member 102a, 102b was less than 2.0 μm, but when it became 2.0 μm or more. It was not confirmed. Further, when the surface roughness (Ra) exceeded 8.0 μm, the occurrence of arcing was confirmed again, and cracks in the target member were also confirmed.

表面粗さ(Ra)が2.0μm以上の場合にアーキングの発生が抑制される理由としては、表面が粗くなることで円形面104の表面積が増し、再堆積膜の密着力が強まるため、再堆積膜の剥離に起因するプラズマの異常放電が低減されることによると考えられる。   The reason that the occurrence of arcing is suppressed when the surface roughness (Ra) is 2.0 μm or more is that the surface becomes rough, the surface area of the circular surface 104 increases, and the adhesion of the redeposited film increases. This is considered to be due to the reduction of abnormal plasma discharge caused by peeling of the deposited film.

逆に、表面粗さ(Ra)が8.0μmを超えた場合にアーキングや割れの発生が生じる理由としては、表面粗さを8.0μm以上とするための研削加工時に入るダメージが影響していると考えられる。つまり、表面粗さを8.0μm以上とするには、粗い番手の砥石で研削加工を施したり、強い圧力で砥粒を吹き付ける加工(ビーズブラスト)を施したりして意図的に粗くする必要があり、その結果、加工ダメージ(微細なクラック等)がターゲット部材の端部に残り、そのダメージが伸展して割れにつながると考えられる。   Conversely, when the surface roughness (Ra) exceeds 8.0 μm, the reason for the occurrence of arcing and cracking is that the damage that occurs during grinding to make the surface roughness 8.0 μm or more is affected. It is thought that there is. In other words, in order to achieve a surface roughness of 8.0 μm or more, it is necessary to intentionally roughen the surface by grinding with a coarse count stone or by applying abrasive blasting (bead blasting) with a strong pressure. As a result, it is considered that processing damage (fine cracks or the like) remains at the end of the target member, and that damage extends and leads to cracking.

以上のように、本実施形態に係るスパッタリングターゲット100は、各ターゲット部材102a、102bにおける円形面104の表面粗さ(Ra)を2.0μm以上8.0μm以下とすることにより、スパッタリング中のアーキングの発生を抑制することができる。その結果、スパッタリングプロセスを用いたデバイス製造プロセスの歩留りを向上させることが可能である。   As described above, the sputtering target 100 according to this embodiment has an arcing during sputtering by setting the surface roughness (Ra) of the circular surface 104 of each target member 102a, 102b to 2.0 μm or more and 8.0 μm or less. Can be suppressed. As a result, it is possible to improve the yield of the device manufacturing process using the sputtering process.

<スパッタリングターゲットの製造方法>
次に、本実施形態に係るスパッタリングターゲット100の製造方法について詳細に説明する。図4は、本発明の一実施形態に係るスパッタリングターゲット100の製造方法を示すプロセスフロー図である。
<Manufacturing method of sputtering target>
Next, the manufacturing method of the sputtering target 100 according to the present embodiment will be described in detail. FIG. 4 is a process flow diagram showing a method for manufacturing the sputtering target 100 according to an embodiment of the present invention.

本実施形態では、酸化インジウムスズ(ITO)焼結体をターゲット部材102a、102bとした例を示すが、焼結体の材料はITOに限定されず、IZO、IGZOその他の酸化金属化合物を用いることもできる。   In the present embodiment, an example in which indium tin oxide (ITO) sintered bodies are used as the target members 102a and 102b is shown, but the material of the sintered body is not limited to ITO, and IZO, IGZO or other metal oxide compounds are used. You can also.

まず、ターゲット部材102a、102bを構成する原材料を準備する。本実施形態では、酸化インジウムの粉末と酸化スズの粉末を準備する(S401、S402)。これらの原料の純度は、通常2N(99質量%)以上、好ましくは3N(99.9質量%)以上、さらに好ましくは4N(99.99質量%)以上であるとよい。純度が2Nより低いとターゲット部材102a、102bに不純物が多く含まれてしまうため、所望の物性を得られなくなる(例えば、形成した薄膜の透過率の減少、抵抗値の増加、アーキングに伴うパーティクルの発生)という問題が生じ得る。   First, raw materials constituting the target members 102a and 102b are prepared. In this embodiment, an indium oxide powder and a tin oxide powder are prepared (S401, S402). The purity of these raw materials is usually 2N (99% by mass) or more, preferably 3N (99.9% by mass) or more, more preferably 4N (99.99% by mass) or more. If the purity is lower than 2N, the target members 102a and 102b contain a large amount of impurities, so that desired physical properties cannot be obtained (for example, the transmittance of the formed thin film is increased, the resistance value is increased, the particle size associated with arcing is reduced). Problem).

次に、これら原材料の粉末を粉砕し混合する(S403)。原材料の粉末の粉砕混合処理は、ジルコニア、アルミナ、ナイロン樹脂等のボールやビーズ(いわゆるメディア)を用いた乾式法を使用したり、前記ボールやビーズを用いたメディア撹拌式ミル、メディアレスの容器回転式ミル、機械撹拌式ミル、気流式ミルなどの湿式法を使用したりすることができる。ここで、一般的に湿式法は、乾式法に比べて粉砕及び混合能力に優れているため、湿式法を用いて混合を行うことが好ましい。   Next, these raw material powders are pulverized and mixed (S403). The raw material powder is pulverized and mixed using a dry method using balls and beads (so-called media) of zirconia, alumina, nylon resin, etc., media agitating mills using the balls and beads, and medialess containers Wet methods such as a rotary mill, a mechanical stirring mill, and an airflow mill can be used. Here, since the wet method is generally superior in pulverization and mixing ability compared to the dry method, it is preferable to perform the mixing using the wet method.

原材料の組成については特に制限はないが、目的とするターゲット部材102a、102bの組成比に応じて適宜調整することが望ましい。原材料の粉末の結晶粒径をより小さくしたい場合、各原材料の粉末を混合する前に予め粉砕処理してもよく、また、混合時の粉末処理で同時に粉砕してもよい。   Although there is no restriction | limiting in particular about the composition of a raw material, It is desirable to adjust suitably according to the composition ratio of target target member 102a, 102b. When it is desired to reduce the crystal grain size of the raw material powder, the raw material powders may be pulverized before mixing, or may be simultaneously pulverized by the powder processing during mixing.

なお、細かい粒子径の粉末を使用するとターゲット部材102a、102bとなる焼結体の高密度化を図ることができる。粉砕条件を強化して細かい粉末を得ることは可能であるが、そうすると粉砕時に使用するメディア(ジルコニアなど)の混入量も増加し、ターゲット部材102a、102b内の不純物濃度が上昇してしまう虞がある。このように焼結体の高密度化とターゲット部材102a、102b内の不純物濃度のバランスを見ながら、粉砕条件の適正化が必要である。   In addition, when the powder of a fine particle diameter is used, the densification of the sintered compact used as the target members 102a and 102b can be achieved. Although it is possible to obtain a fine powder by strengthening the pulverization conditions, the amount of media (zirconia, etc.) used during pulverization also increases, and the impurity concentration in the target members 102a and 102b may increase. is there. Thus, it is necessary to optimize the pulverization conditions while observing the balance between the high density of the sintered body and the impurity concentration in the target members 102a and 102b.

次に、原材料の粉末のスラリーを乾燥、造粒する(S404)。このとき、急速乾燥造粒を用いてスラリーを急速乾燥してもよい。急速乾燥造粒は、スプレードライヤを使用し、熱風の温度や風量を調整して行えばよい。急速乾燥造粒を用いることにより、原材料の粉末の比重差による沈降速度の違いによって酸化インジウム粉末と酸化スズ粉末とが分離することを抑制することができる。このように造粒することで、配合成分の比率が均一化され、原材料の粉末のハンドリング性が向上する。また、造粒する前後に仮焼成を行ってもよい。   Next, the raw material powder slurry is dried and granulated (S404). At this time, the slurry may be rapidly dried using rapid drying granulation. The rapid drying granulation may be performed by using a spray dryer and adjusting the temperature and air volume of hot air. By using quick drying granulation, it is possible to suppress separation of the indium oxide powder and the tin oxide powder due to the difference in sedimentation speed due to the difference in specific gravity of the raw material powder. By granulating in this way, the ratio of the blending components is made uniform, and the handling property of the raw material powder is improved. Moreover, you may perform temporary baking before and after granulation.

次に、上述した混合及び造粒して得られた混合物(仮焼成を設けた場合には仮焼成されたもの)を加圧成形して円筒型の成形体を形成する(S405)。この工程によって、目的とするターゲット部材102a、102bに好適な形状に成形する。成形処理としては、例えば、金型成形、鋳込み成形、射出成形等が挙げられるが、円筒型のように複雑な形状を得るためには、冷間等方圧加工法(Cold Isostatic Pressing:CIP)等で成形することが好ましい。   Next, the mixture obtained by mixing and granulating as described above (or pre-baked when pre-baked is provided) is pressure-formed to form a cylindrical shaped body (S405). Through this step, the target member 102a or 102b is formed into a suitable shape. Examples of the molding process include mold molding, cast molding, injection molding, and the like. In order to obtain a complicated shape such as a cylindrical mold, cold isostatic pressing (CIP) is used. It is preferable to form by, for example.

CIPによる成形は、まず所定の重量に秤量した原料をゴム型に充填する。この際、ゴム型を揺動もしくはタッピングしながら充填することにより、ゴム型内の原料の充填ムラや空隙を無くすことができる。CIPによる成形の圧力は、ターゲット部材102a、102bに必要な密度により適宜設定すればよい。   In molding by CIP, first, a rubber mold is filled with raw materials weighed to a predetermined weight. At this time, by filling the rubber mold while swinging or tapping, filling irregularities and voids of the raw material in the rubber mold can be eliminated. What is necessary is just to set suitably the pressure of shaping | molding by CIP with the density required for target member 102a, 102b.

次に、成形工程で得られた円筒型の成形体を焼結する(S406)。焼結には電気炉を使用する。焼結条件は焼結体の組成によって適宜選択することができる。例えばSnO2を10wt.%含有するITOであれば、酸素ガス雰囲気中において、1500〜1600℃の温度下に10〜26時間置くことにより焼結することができる。焼結温度が1500℃未満の場合、ターゲット部材102a、102bの密度が低下してしまう。一方、1600℃を超えると電気炉や炉材へのダメージが大きく頻繁にメンテナンスが必要となるため、作業効率が著しく低下する。また、焼結時間が10時間未満であるとターゲットの密度が低下してしまい、26時間より長いとタクトタイムが長くなり、製造コストが高くなってしまう。また、焼結時の圧力は大気圧であってもよく、減圧又は加圧雰囲気であってもよい。 Next, the cylindrical molded body obtained in the molding process is sintered (S406). An electric furnace is used for sintering. The sintering conditions can be appropriately selected depending on the composition of the sintered body. For example, SnO 2 is 10 wt. % ITO can be sintered by placing it in an oxygen gas atmosphere at a temperature of 1500 to 1600 ° C. for 10 to 26 hours. When the sintering temperature is less than 1500 ° C., the density of the target members 102a and 102b is reduced. On the other hand, when the temperature exceeds 1600 ° C., the electric furnace and the furnace material are greatly damaged and frequent maintenance is required, so that the work efficiency is remarkably lowered. Further, if the sintering time is less than 10 hours, the density of the target is lowered, and if it is longer than 26 hours, the tact time is increased and the production cost is increased. Further, the pressure during sintering may be atmospheric pressure, or a reduced pressure or pressurized atmosphere.

ここで、電気炉で焼結する場合、焼結の昇温速度及び降温速度を調整することでクラックの発生を抑制することができる。具体的には、焼結時の電気炉の昇温速度は300℃/時間以下、より好ましくは180℃/時間以下であることが望ましい。また、焼結時の電気炉の降温速度は、5℃/時間以下が好ましい。なお、昇温速度又は降温速度は段階的に変化するように調整されてもよい。   Here, when sintering by an electric furnace, generation | occurrence | production of a crack can be suppressed by adjusting the temperature increase rate and temperature decrease rate of sintering. Specifically, the temperature rising rate of the electric furnace during sintering is preferably 300 ° C./hour or less, more preferably 180 ° C./hour or less. Moreover, the temperature lowering rate of the electric furnace during sintering is preferably 5 ° C./hour or less. Note that the rate of temperature increase or the rate of temperature decrease may be adjusted to change stepwise.

焼結によって円筒型の成形体は収縮するが、全ての材料に共通して熱収縮の始まる温度域に入る前に、炉内の温度を均一にするため、昇温の途中で温度保持を行う。これにより、炉内の温度ムラが解消され、炉内に設置したすべての焼結体が均一に収縮する。また到達温度や保持時間は、材料ごとに適正な条件を設定することにより、均質な焼結体を得ることができる。   Cylindrical compacts shrink due to sintering, but before entering the temperature range where heat shrinkage is common to all materials, the temperature inside the furnace is kept constant in order to keep the temperature inside the furnace uniform. . Thereby, the temperature unevenness in the furnace is eliminated, and all the sintered bodies installed in the furnace contract uniformly. In addition, it is possible to obtain a homogeneous sintered body by setting appropriate conditions for the ultimate temperature and holding time for each material.

次に、形成された円筒型の焼結体を、平面研削盤、円筒研削盤、旋盤、切断機、マシニングセンタ等の機械加工機を用いて、円筒型の所望の形状に機械加工する(S407)。ここで行う機械加工は、円筒型の焼結体を所望の形状、表面粗さとなるように加工する工程であり、最終的にこの工程を経てターゲット部材102a、102bが形成される。   Next, the formed cylindrical sintered body is machined into a desired cylindrical shape using a machining machine such as a surface grinding machine, a cylindrical grinding machine, a lathe, a cutting machine, or a machining center (S407). . The machining performed here is a step of processing a cylindrical sintered body to have a desired shape and surface roughness, and finally, the target members 102a and 102b are formed through this step.

ターゲット部材102a、102bの外側表面(スパッタリングされる面)に関しては、表面粗さ(Ra)を0.5μm以下とすることが好ましい。これにより、スパッタリング中に突起部に対して電界が集中し、異常放電が発生するリスクを低減することができる。   Regarding the outer surfaces (surfaces to be sputtered) of the target members 102a and 102b, the surface roughness (Ra) is preferably 0.5 μm or less. Thereby, an electric field concentrates with respect to a projection part during sputtering, and the risk that abnormal discharge will occur can be reduced.

また、本実施形態では、ターゲット部材102a、102bの円形面104に対し、砥石を用いた研削加工を施したり、ビーズブラストを用いた加工を施したりして、円形面104の表面粗さ(Ra)を2.0μm以上8.0μm以下とする。例えば、#40番手や#20番手といった粗い番手の砥石で研削したり、ビーズブラストで処理したりすることにより、表面粗さを2.0μm以上8.0μmの範囲内に収めることが可能である。   Further, in the present embodiment, the circular surface 104 of the target members 102a and 102b is subjected to grinding using a grindstone or processing using bead blasting, so that the surface roughness (Ra ) Between 2.0 μm and 8.0 μm. For example, it is possible to keep the surface roughness within the range of 2.0 μm or more and 8.0 μm by grinding with a coarse grindstone such as # 40 or # 20 or by bead blasting. .

次に、機械加工された円筒型の焼結体(すなわち、ターゲット部材102a、102b)を基材101にボンディングする(S408)。特に、円筒型スパッタリングターゲット100の場合、ターゲット部材102a、102bは、図1及び2に示したように、バッキングチューブと呼ばれる円筒型の基材101に接合材103を接着剤としてボンディングされる。以上の工程によって、本実施形態に係る円筒型スパッタリングターゲット100を得ることができる。   Next, the machined cylindrical sintered body (that is, the target members 102a and 102b) is bonded to the substrate 101 (S408). In particular, in the case of the cylindrical sputtering target 100, the target members 102a and 102b are bonded to a cylindrical base material 101 called a backing tube using the bonding material 103 as an adhesive, as shown in FIGS. The cylindrical sputtering target 100 according to this embodiment can be obtained through the above steps.

[実施例]
本発明者らは、3種類の異なる材料(ITO、IZO、及びIGZO)を用いたターゲット部材を作製し、それぞれについて表面粗さとアーキング及び割れの発生との関係を調べた。その結果を表1〜3に示す。なお、各実験条件は、ターゲット厚み:9mm、スパッタ圧:0.6Pa、Ar(アルゴン)流量:300sccm、投入電力:4kW/m、スパッタ時間:24時間とした。また、連続放電を行った際のターゲット耐久性評価であるため、基板等はセットせずに放電を行った。なお、表面粗さ(Ra)の測定は、小型表面粗さ測定機(サーフテスト SJ-301:ミツトヨ製)を用いてANSI規格に準じて行った。表面粗さの測定箇所はターゲット部材の各端面を60°間隔で6か所ずつ行い(1ターゲット部材につき12か所)、全測定値の加重平均値をターゲット部材の表面粗さとした。
[Example]
The inventors prepared target members using three different materials (ITO, IZO, and IGZO), and investigated the relationship between the surface roughness and the occurrence of arcing and cracking for each. The results are shown in Tables 1-3. Each experimental condition was as follows: target thickness: 9 mm, sputtering pressure: 0.6 Pa, Ar (argon) flow rate: 300 sccm, input power: 4 kW / m, sputtering time: 24 hours. Moreover, since it was target durability evaluation at the time of performing continuous discharge, discharge was performed without setting the substrate or the like. The surface roughness (Ra) was measured according to ANSI standards using a small surface roughness measuring machine (Surf Test SJ-301: manufactured by Mitutoyo Corporation). The surface roughness was measured at six locations on the end surface of the target member at 60 ° intervals (12 locations per target member), and the weighted average value of all measured values was the surface roughness of the target member.

Figure 2017150089
Figure 2017150089

Figure 2017150089
Figure 2017150089

Figure 2017150089
Figure 2017150089

以上のように、本発明らによる実験によれば、円筒型スパッタリングターゲットを構成する複数のターゲット部材において、各ターゲット部材の円形面の表面粗さ(Ra)を2.0μm以上8.0μm以下とすることにより、スパッタリング中のアーキングの発生を低減させつつ、ターゲットの割れも抑制できることが分かった。   As described above, according to the experiment by the present invention, the surface roughness (Ra) of the circular surface of each target member in the plurality of target members constituting the cylindrical sputtering target is 2.0 μm or more and 8.0 μm or less. By doing this, it was found that cracking of the target can be suppressed while reducing the occurrence of arcing during sputtering.

本発明の実施形態として上述した各実施形態は、相互に矛盾しない限りにおいて、適宜組み合わせて実施することができる。また、各実施形態の表示装置を基にして、当業者が適宜構成要素の追加、削除もしくは設計変更を行ったもの、又は、工程の追加、省略もしくは条件変更を行ったものも、本発明の要旨を備えている限り、本発明の範囲に含まれる。   The embodiments described above as the embodiments of the present invention can be implemented in appropriate combination as long as they do not contradict each other. Also, those in which those skilled in the art appropriately added, deleted, or changed the design based on the display device of each embodiment, or those in which the process was added, omitted, or changed in conditions are also included in the present invention. As long as the gist is provided, it is included in the scope of the present invention.

また、上述した各実施形態の態様によりもたらされる作用効果とは異なる他の作用効果であっても、本明細書の記載から明らかなもの、又は、当業者において容易に予測し得るものについては、当然に本発明によりもたらされるものと解される。   In addition, even for other operational effects different from the operational effects brought about by the aspects of the above-described embodiments, those that are apparent from the description of the present specification, or that can be easily predicted by those skilled in the art, Of course, it is understood that the present invention provides.

100:円筒型スパッタリングターゲット
101:基材
102a、102b:ターゲット部材
103:接合材
104:円形面
105:枠線
S401:酸化インジウム粉末を準備する工程
S402:酸化スズ粉末を準備する工程
S403:原材料の粉末を粉砕し混合する工程
S404:原材料の粉末のスラリーを乾燥、造粒する工程
S405:円筒型の成形体を形成する工程
S406:円筒型の成形体を焼結する工程
S407:円筒型の所望の形状に機械加工する工程
S408:円筒型の焼結体を基材にボンディングする工程
DESCRIPTION OF SYMBOLS 100: Cylindrical type sputtering target 101: Base material 102a, 102b: Target member 103: Joining material 104: Circular surface 105: Frame line S401: The process of preparing an indium oxide powder S402: The process of preparing a tin oxide powder S403: Raw material Step of crushing and mixing powder S404: Step of drying and granulating raw material powder slurry S405: Step of forming cylindrical shaped body S406: Step of sintering cylindrical shaped body S407: Desired cylindrical shape Step S408: Step of bonding cylindrical sintered body to base material

Claims (10)

基材に接合された複数のターゲット部材を含み、
前記複数のターゲット部材は、前記基材に接合された際にそれぞれ隣接するターゲット部材と0.1mm以上1.0mm以下の間隔を置いて対向する円形面を有し、
前記円形面における表面粗さ(Ra)が2.0μm以上8.0μm以下であることを特徴とするスパッタリングターゲット。
Including a plurality of target members bonded to a substrate;
The plurality of target members have circular surfaces that face each other with an interval of 0.1 mm or more and 1.0 mm or less when adjacent to the target member when bonded to the base material,
The sputtering target, wherein the surface roughness (Ra) on the circular surface is 2.0 μm or more and 8.0 μm or less.
前記複数のターゲット部材は、中空の円筒形状であることを特徴とする請求項1に記載のスパッタリングターゲット。   The sputtering target according to claim 1, wherein the plurality of target members have a hollow cylindrical shape. 前記複数のターゲット部材は、ITO(Indium−Tin−Oxide)で構成されることを特徴とする請求項1又は2に記載のスパッタリングターゲット。   The sputtering target according to claim 1, wherein the plurality of target members are made of ITO (Indium-Tin-Oxide). 前記複数のターゲット部材は、IZO(Indium−Zinc−Oxide)で構成されることを特徴とする請求項1又は2に記載のスパッタリングターゲット。   The sputtering target according to claim 1, wherein the plurality of target members are made of IZO (Indium-Zinc-Oxide). 前記複数のターゲット部材は、IGZO(Indium−Gallium−Zinc−Oxide)で構成されることを特徴とする請求項1又は2に記載のスパッタリングターゲット。   The sputtering target according to claim 1, wherein the plurality of target members are made of IGZO (Indium-Gallium-Zinc-Oxide). 複数のターゲット部材の円形面を表面粗さ(Ra)が2.0μm以上8.0μm以下となるように研磨し、
それぞれ隣接するターゲット部材と0.1mm以上1.0mm以下の間隔を置いて前記円形面が対向するように、前記複数のターゲット部材を前記基材に接合することを特徴とするスパッタリングターゲットの製造方法。
Polishing the circular surfaces of the plurality of target members so that the surface roughness (Ra) is 2.0 μm or more and 8.0 μm or less,
A method of manufacturing a sputtering target, comprising bonding the plurality of target members to the base material so that the circular surfaces face each other with a distance of 0.1 mm to 1.0 mm between adjacent target members. .
前記複数のターゲット部材は、中空の円筒形状であることを特徴とする請求項6に記載のスパッタリングターゲットの製造方法。   The method of manufacturing a sputtering target according to claim 6, wherein the plurality of target members have a hollow cylindrical shape. 前記複数のターゲット部材は、ITO(Indium−Tin−Oxide)で構成されることを特徴とする請求項6又は7に記載のスパッタリングターゲットの製造方法。   The method for manufacturing a sputtering target according to claim 6, wherein the plurality of target members are made of ITO (Indium-Tin-Oxide). 前記複数のターゲット部材は、IZO(Indium−Zinc−Oxide)で構成されることを特徴とする請求項6又は7に記載のスパッタリングターゲットの製造方法。   The method of manufacturing a sputtering target according to claim 6, wherein the plurality of target members are made of IZO (Indium-Zinc-Oxide). 前記複数のターゲット部材は、IGZO(Indium−Gallium−Zinc−Oxide)で構成されることを特徴とする請求項6又は7に記載のスパッタリングターゲットの製造方法。   The method of manufacturing a sputtering target according to claim 6, wherein the plurality of target members are made of IGZO (Indium-Gallium-Zinc-Oxide).
JP2017110321A 2017-06-02 2017-06-02 Sputtering target and production method thereof Pending JP2017150089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017110321A JP2017150089A (en) 2017-06-02 2017-06-02 Sputtering target and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017110321A JP2017150089A (en) 2017-06-02 2017-06-02 Sputtering target and production method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016110789A Division JP6297620B2 (en) 2016-06-02 2016-06-02 Sputtering target and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2017150089A true JP2017150089A (en) 2017-08-31

Family

ID=59738738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017110321A Pending JP2017150089A (en) 2017-06-02 2017-06-02 Sputtering target and production method thereof

Country Status (1)

Country Link
JP (1) JP2017150089A (en)

Similar Documents

Publication Publication Date Title
TWI568704B (en) Cylindrical sputtering target, cylindrical shaped body, manufacturing method of cylindrical sputtering target, manufacturing method of cylindrical sintered body, and manufacturing method of cylindrical shaped body
JP7101717B2 (en) Sputtering target and its manufacturing method
JP5299415B2 (en) Oxide sintered body for cylindrical sputtering target and method for producing the same
JPWO2016072441A1 (en) ITO sputtering target, method for producing the same, ITO transparent conductive film, and method for producing ITO transparent conductive film
JP6273735B2 (en) Cylindrical sputtering target and manufacturing method thereof
JP5969493B2 (en) Sputtering target and manufacturing method thereof
TWI635194B (en) Cylindrical sputtering target and manufacturing method thereof
JP5947413B1 (en) Sputtering target and manufacturing method thereof
JP6297620B2 (en) Sputtering target and manufacturing method thereof
JP2017150089A (en) Sputtering target and production method thereof
JP6520523B2 (en) Oxide sintered body, method for producing the same, and sputtering target
JP4000813B2 (en) Sputtering target
TWI564420B (en) Sputtering target and manufacturing method of sputtering target
JP4843883B2 (en) Sputtering target
WO2016140021A1 (en) Hollow cylindrical ceramic target material, and hollow cylindrical sputtering target
JP2016188425A (en) Method for manufacturing cylindrical type sputtering target, and method for manufacturing cylindrical type compact