JP2015059251A - Aluminum alloy sheet for negative-pressure can lid - Google Patents

Aluminum alloy sheet for negative-pressure can lid Download PDF

Info

Publication number
JP2015059251A
JP2015059251A JP2013194734A JP2013194734A JP2015059251A JP 2015059251 A JP2015059251 A JP 2015059251A JP 2013194734 A JP2013194734 A JP 2013194734A JP 2013194734 A JP2013194734 A JP 2013194734A JP 2015059251 A JP2015059251 A JP 2015059251A
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
lid
less
alloy plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013194734A
Other languages
Japanese (ja)
Other versions
JP5699192B2 (en
Inventor
正浩 山口
Masahiro Yamaguchi
正浩 山口
昌行 高田
Masayuki Takada
昌行 高田
淳人 鶴田
Atsuto Tsuruta
淳人 鶴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2013194734A priority Critical patent/JP5699192B2/en
Priority to PCT/JP2014/072591 priority patent/WO2015041021A1/en
Priority to CN201480051267.1A priority patent/CN105555979A/en
Publication of JP2015059251A publication Critical patent/JP2015059251A/en
Application granted granted Critical
Publication of JP5699192B2 publication Critical patent/JP5699192B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Containers Opened By Tearing Frangible Portions (AREA)
  • Insertion Pins And Rivets (AREA)
  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an Al-Mg-Mn-system aluminum alloy sheet for a negative-pressure can lid having excellent rivet formability even if being made thinner than 0.220 mm.SOLUTION: An aluminum alloy sheet for a negative-pressure can lid includes 0.10-0.40 mass% Si, 0.20-0.40 mass% Fe, 0.10-0.30 mass% Cu, 0.30-1.00 mass% Mn, 1.00-2.00 mass% Mg, and further, 0.05-0.25 mass% Zn as needed, and the balance Al with inevitable impurities. If the mass% of Fe is [Fe], the mass% of Mn is [Mn], and the mass% of Mg is [Mg], the aluminum alloy sheet for negative-pressure can lid satisfies the following inequality (1): 1.05≤[Fe]+1.07[Mn]+0.27[Mg]≤1.65...(1).

Description

本発明は、負圧缶蓋用アルミニウム合金板に係り、缶蓋としての必要強度を確保した上で、特にリベット成形性に優れ、薄肉化に適した負圧缶蓋用アルミニウム合金板に関するものである。   The present invention relates to an aluminum alloy plate for a negative pressure can lid, and particularly to an aluminum alloy plate for a negative pressure can lid that is excellent in rivet formability and suitable for thinning, while ensuring the necessary strength as a can lid. is there.

従来、特に飲料用の包装容器として、有底円筒状の胴部と蓋部からなる2ピースタイプのアルミニウム缶が広く使用されている。
<缶蓋の一般的な製造工程について>
このようなアルミニウム缶を構成する缶蓋は、次のような工程で製造される。まず、素材となる缶蓋用アルミニウム合金板に、耐食性を確保するためのクロメート処理等の化成処理を施した後、前記化成処理を施した缶蓋用アルミニウム合金板の片面、あるいは両面に塗装及び焼き付けを行う。
2. Description of the Related Art Conventionally, as a packaging container for beverages, a two-piece type aluminum can having a cylindrical body with a bottom and a lid has been widely used.
<General manufacturing process for can lids>
A can lid constituting such an aluminum can is manufactured by the following process. First, after applying chemical conversion treatment such as chromate treatment to ensure corrosion resistance to the aluminum alloy plate for can lid as a raw material, coating and coating on one side or both sides of the aluminum alloy plate for can lid subjected to the chemical conversion treatment Bake.

次に、塗装、焼付された前記缶蓋用アルミニウム合金板を所定の形状にブランキングした後、シェル成形を行う。続いて、前記シェル成形された缶蓋用アルミニウム合金板に、缶胴と巻締めするための巻締め部(カール部)を成形して缶蓋とし、この缶蓋の巻締め部にラバーを注入するコンパウンドライニングを行う。その後、バブル成形及びボタン成形を施すリベット成形工程、開口部の溝加工を施すスコア加工、凹凸及び文字等の加工を施すビード・エンボス成形工程、及びタブ付けを施すステイク成形工程を含めたコンバージョン成形を行う。最後に、缶胴に内容物を充填した後、前記缶胴と前記成形加工が施された缶蓋の巻締めを行い、洗浄及び殺菌を行う。   Next, the painted and baked aluminum alloy plate for can lids is blanked into a predetermined shape, and then shell molding is performed. Subsequently, a winding part (curl part) for fastening the can body and the can body is formed on the shell-formed aluminum alloy plate for the can lid to form a can lid, and rubber is injected into the winding part of the can lid. Perform compound drying. After that, conversion molding including rivet molding process for bubble molding and button molding, score processing for groove processing of openings, bead / emboss molding process for processing irregularities and letters, and stake molding process for tabbing I do. Finally, after filling the contents of the can body, the can body and the can lid subjected to the molding process are wound and cleaned and sterilized.

<缶蓋の要求特性について>
缶蓋は、缶胴と巻き締めされる際、カール部の寸法にバラツキがあると巻き締め不良が発生することがあり、缶蓋には厳しい寸法精度が求められる。さらに、巻き締め後、殺菌工程の加熱によって内圧が上昇しても反転(バックリング)しないだけの耐圧強度や、消費者の手に渡った後、タブを起こし(或は引っ張り)開缶する際、不具合なく飲み口が開口することが求められる。
<材料の要求特性について>
このような缶蓋を得るため、材料となるアルミニウム合金板には缶蓋への成形性、巻き締め不良抑制のための低い変形異方性、耐圧強度を得るための材料強度、開缶不良を起こさないためのリベット成形性や引き裂き性(開缶性)などが求められる。
<About required characteristics of can lid>
When the can lid and the can body are tightened, if the curled portion has a variation in dimensions, winding failure may occur, and the can lid is required to have strict dimensional accuracy. Furthermore, after winding, when the inner pressure rises due to heating during the sterilization process, the pressure strength is such that it does not reverse (buckling), and after reaching the consumer's hand, the tab is raised (or pulled) to open the can It is required that the mouth open without any trouble.
<Required properties of materials>
In order to obtain such a can lid, the aluminum alloy plate used as a material has a moldability to the can lid, a low deformation anisotropy for suppressing poor winding, a material strength for obtaining a pressure resistance, and a can open failure. Rivet formability and tearability (can openability) to prevent it from occurring are required.

一方、従来より、果汁、コーヒー、紅茶等の負圧缶の缶蓋用アルミニウム合金として、AA5052やAA5021が用いられているが、前記要求特性に鑑み、従来合金より比較的高い濃度のMnを含有する負圧缶蓋用アルミニウム合金板に関する技術が開発されてきた(特許文献1〜6)。   On the other hand, conventionally, AA5052 and AA5021 are used as aluminum alloys for cans of negative pressure cans such as fruit juice, coffee, tea, etc., but in view of the required characteristics, it contains Mn at a relatively higher concentration than conventional alloys. Techniques relating to aluminum alloy plates for negative pressure can lids have been developed (Patent Documents 1 to 6).

特開2013−23757号JP 2013-23757 A 特開2005−179758号JP-A-2005-179758 特開2001−348638号JP 2001-348638 特開2001−214248号JP 2001-214248 A 特開平7−197176号JP 7-197176 A 特開平6−316739号JP-A-6-316739

ところで、特許文献1〜6の実施例では、0.23〜0.25mmの板厚を有する負圧缶蓋用アルミニウム合金板が製造されている。一方、近年、コストダウンや省資源の観点から飲料容器の更なる薄肉化(板厚:0.220mm未満)が要求されており、負圧缶蓋用アルミニウム合金板も薄肉化に対応していく必要がある。負圧缶蓋用アルミニウム合金板を薄肉化すると、耐圧強度やリベット成形性が低下するが、耐圧強度については、缶蓋形状の工夫によってある程度確保できる。従って、負圧缶蓋用アルミニウム合金板としては、特にリベット成形性の確保が要求される。   By the way, in the Example of patent documents 1-6, the aluminum alloy plate for negative pressure can lids which has plate thickness of 0.23-0.25 mm is manufactured. On the other hand, in recent years, there has been a demand for further thinning of beverage containers (thickness: less than 0.220 mm) from the viewpoint of cost reduction and resource saving, and aluminum alloy plates for negative pressure can lids will also respond to thinning. There is a need. When the aluminum alloy plate for a negative pressure can lid is made thinner, the pressure strength and rivet formability are lowered, but the pressure strength can be secured to some extent by devising the shape of the can lid. Accordingly, as the aluminum alloy plate for the negative pressure can lid, it is particularly required to ensure rivet formability.

特許文献1〜6に記載された缶蓋用アルミニウム合金板は、従来合金(AA5052,AA5021)より高Mn化したことによってAl−Fe−Mn系金属間化合物が増大し、これが前記アルミニウム合金板の引き裂き性の向上や変形異方性(耳率)の低減に寄与している。しかし、その反面、増大したAl−Fe−Mn系金属間化合物は亀裂の起点や伝播経路となって、前記アルミニウム合金板のリベット成形性に悪影響を及ぼす。このため、特許文献1〜6に記載された缶蓋用アルミニウム合金板は、更なる薄肉化に十分対応し得るものとはいえない。   The aluminum alloy plate for can lids described in Patent Documents 1 to 6 has a higher Mn content than the conventional alloys (AA5052, AA5021), so that the Al-Fe-Mn intermetallic compound increases. It contributes to improvement of tearability and reduction of deformation anisotropy (ear ratio). On the other hand, however, the increased Al—Fe—Mn intermetallic compound serves as a starting point and propagation path of cracks, which adversely affects the rivet formability of the aluminum alloy plate. For this reason, it cannot be said that the aluminum alloy plate for can lids described in Patent Documents 1 to 6 can sufficiently cope with further thinning.

本発明は、従来技術の上記問題点に鑑みてなされたもので、従来合金より比較的高い濃度のMnを含有する負圧缶蓋用アルミニウム合金板において、これをさらに薄肉化した場合でも、優れたリベット成形性を備える負圧缶蓋用アルミニウム合金板を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems of the prior art, and in an aluminum alloy plate for negative pressure can lids containing Mn at a relatively higher concentration than conventional alloys, it is excellent even when this is further thinned. Another object of the present invention is to provide an aluminum alloy plate for a negative pressure can lid having rivet formability.

前記課題を解決するため、本発明者らは比較的高い濃度のMnを含有するアルミニウム合金板のリベット成形性について種々検討したところ、アルミニウム合金中の各元素を所定の範囲とした上で、Fe、Mn、Mg量を所定の関係式の範囲内に管理することで、リベット成形性が向上することを見出した。
本発明に係る負圧缶蓋用アルミニウム合金板は、Siを0.10質量%以上、0.40質量%以下、Feを0.20質量%以上、0.40質量%以下、Cuを0.10質量%以上、0.30質量%以下、Mnを0.30質量%以上、1.00質量%以下、Mgを1.00質量%以上、2.00質量%以下の範囲で含有し、残部がAl及び不可避不純物からなり、Feの質量%を[Fe]、Mnの質量%を[Mn]、Mgの質量%を[Mg]としたとき、下記不等式(1)を満たす。
1.05≦[Fe]+1.07[Mn]+0.27[Mg]≦1.65・・・(1)
本発明に係るアルミニウム合金板は、望ましくは、さらにZnを0.05質量%以上、0.25質量%以下の範囲で含有することができる。
In order to solve the above-mentioned problems, the present inventors have made various studies on the rivet formability of an aluminum alloy plate containing a relatively high concentration of Mn. After making each element in the aluminum alloy into a predetermined range, Fe It has been found that rivet formability is improved by managing the amounts of Mn and Mg within the range of the predetermined relational expression.
In the aluminum alloy plate for a negative pressure can lid according to the present invention, Si is 0.10 mass% or more and 0.40 mass% or less, Fe is 0.20 mass% or more and 0.40 mass% or less, and Cu is 0.0. 10% by mass or more, 0.30% by mass or less, Mn 0.30% by mass or more and 1.00% by mass or less, Mg in a range of 1.00% by mass or more and 2.00% by mass or less, and the balance Is composed of Al and inevitable impurities, and when the mass% of Fe is [Fe], the mass% of Mn is [Mn], and the mass% of Mg is [Mg], the following inequality (1) is satisfied.
1.05 ≦ [Fe] +1.07 [Mn] +0.27 [Mg] ≦ 1.65 (1)
The aluminum alloy plate according to the present invention can desirably further contain Zn in a range of 0.05% by mass to 0.25% by mass.

本発明に係るアルミニウム合金板は、従来の負圧缶蓋用アルミニウム合金板より薄肉化(例えば0.220mm未満)した場合にも、優れたリベット成形性を示す。また、本発明に係るアルミニウム合金板は、耐圧強度を得るための材料強度、缶蓋への成形性、巻き締め不良抑制のための低い変形異方性、引き裂き性などにも優れ、主としてSOT(ステイオンタブ)式の負圧缶蓋として好適に用いることができる。   The aluminum alloy plate according to the present invention exhibits excellent rivet formability even when it is made thinner (for example, less than 0.220 mm) than a conventional aluminum alloy plate for a negative pressure can lid. In addition, the aluminum alloy plate according to the present invention is excellent in material strength for obtaining pressure resistance strength, formability to a can lid, low deformation anisotropy for suppressing poor winding, tearability, and the like. Steion tab) type negative pressure can lid can be suitably used.

リベット成形性を評価するための張出試験を説明する断面図である。It is sectional drawing explaining the overhang test for evaluating rivet formability.

始めに、本発明に係る負圧缶蓋用アルミニウム合金板の成分組成について説明する。
<Si:0.10質量%以上、0.40質量%以下>
Siは、アルミニウム合金中にMg−Si系、Al−Fe−Mn−Si系晶出物を形成し、熱間圧延後の再結晶を促進させる効果がある。Siの含有量が0.10質量%未満の場合、アルミニウム合金板の原材料に使用できるスクラップ量が減少するとともに、アルミニウム地金の必要純度が高くなるため、コストが増大する。一方、Siの含有量が0.40質量%を超える場合、熱間圧延までの工程でアルミニウム合金中に微細なAl−Fe−Mn−Si系析出物が多数生じて熱間圧延後の再結晶を阻害し、リベット成形性を低下させる。従って、Siの含有量は0.10質量%以上、0.40質量%以下とする。
First, the component composition of the aluminum alloy plate for negative pressure can lids according to the present invention will be described.
<Si: 0.10% by mass or more and 0.40% by mass or less>
Si has the effect of forming Mg-Si-based and Al-Fe-Mn-Si-based crystals in the aluminum alloy and promoting recrystallization after hot rolling. When the Si content is less than 0.10% by mass, the amount of scrap that can be used as the raw material for the aluminum alloy sheet is reduced, and the required purity of the aluminum ingot is increased, which increases the cost. On the other hand, when the Si content exceeds 0.40 mass%, many fine Al—Fe—Mn—Si based precipitates are generated in the aluminum alloy in the process up to hot rolling, and recrystallization after hot rolling. Hinders the rivet formability. Accordingly, the Si content is set to 0.10% by mass or more and 0.40% by mass or less.

<Fe:0.20質量%以上、0.40質量%以下>
Feは、アルミニウム合金中にAl−Fe−Mn系、Al−Fe−Mn−Si系晶出物を形成し、熱間圧延後の再結晶を促進させる効果がある。Feの含有量が0.20質量%未満の場合、前記晶出物が不足して熱間圧延後の再結晶が不十分となり、リベット成形性が低下する。一方、Feの含有量が0.40質量%を超える場合、アルミニウム合金板中の晶出物が大きく、また過剰に形成され、リベット成形性が低下する。従って、Feの含有量は0.20質量%以上、0.40質量%以下とする。
<Fe: 0.20 mass% or more and 0.40 mass% or less>
Fe has the effect of forming Al—Fe—Mn and Al—Fe—Mn—Si crystals in an aluminum alloy and promoting recrystallization after hot rolling. When the Fe content is less than 0.20% by mass, the crystallized matter is insufficient, recrystallization after hot rolling becomes insufficient, and rivet formability is deteriorated. On the other hand, when the Fe content exceeds 0.40% by mass, the crystallized material in the aluminum alloy plate is large and excessively formed, and the rivet formability is lowered. Therefore, the Fe content is set to 0.20 mass% or more and 0.40 mass% or less.

<Cu:0.10質量%以上、0.30質量%以下>
Cuは、アルミニウム合金板の強度を向上させる効果がある。Cuの含有量が0.10質量%未満の場合、アルミニウム合金板の強度が不十分であり、缶蓋に成形されたときの耐圧強度が不足する。一方、Cuの含有量が0.30質量%を超える場合、アルミニウム合金板の強度が過剰となり、リベット成形性が低下する。従って、Cuの含有量は0.10質量%以上、0.30質量%以下とする。
<Cu: 0.10% by mass or more and 0.30% by mass or less>
Cu has the effect of improving the strength of the aluminum alloy plate. When the content of Cu is less than 0.10% by mass, the strength of the aluminum alloy plate is insufficient, and the pressure strength when formed into a can lid is insufficient. On the other hand, when the Cu content exceeds 0.30% by mass, the strength of the aluminum alloy plate becomes excessive, and the rivet formability decreases. Therefore, the Cu content is set to 0.10 mass% or more and 0.30 mass% or less.

<Mn:0.30質量%以上、1.00質量%以下>
Mnは、アルミニウム合金板の強度を向上させる効果があるとともに、アルミニウム合金板中にAl−Fe−Mn系、Al−Fe−Mn−Si系晶出物を形成させ、熱間圧延後の再結晶を促進させる効果がある。Mnの含有量が0.30質量%未満の場合、アルミニウム合金板の強度が不十分となるとともに、熱間圧延後の再結晶が不十分となってリベット成形性が低下する。一方、Mnの含有量が1.00質量%以上の場合、アルミニウム合金板中の晶出物が大きく、また過剰に形成され、リベット成形性を低下させる。従って、Mnの含有量は0.30質量%以上、1.00質量%以下とする。望ましい範囲は0.50質量%以上、0.80質量%未満である。
<Mn: 0.30 mass% or more and 1.00 mass% or less>
Mn has the effect of improving the strength of the aluminum alloy sheet, and forms Al-Fe-Mn and Al-Fe-Mn-Si crystals in the aluminum alloy sheet, and recrystallizes after hot rolling. Has the effect of promoting When the content of Mn is less than 0.30% by mass, the strength of the aluminum alloy sheet becomes insufficient, and recrystallization after hot rolling becomes insufficient, thereby reducing the rivet formability. On the other hand, when the Mn content is 1.00% by mass or more, the crystallized material in the aluminum alloy sheet is large and excessively formed, and the rivet formability is lowered. Accordingly, the Mn content is set to 0.30 mass% or more and 1.00 mass% or less. A desirable range is 0.50 mass% or more and less than 0.80 mass%.

<Mg:1.00質量%以上、2.00質量%以下>
Mgは、アルミニウム合金板の強度を向上させる効果がある。Mgの含有量が1.00質量%未満の場合、アルミニウム合金板の強度が不十分であり、缶蓋に成形されたときの耐圧強度が不足する。一方、Mgの含有量が2.00質量%を超える場合、アルミニウム合金板の強度が過剰となり、リベット成形性が低下する。従って、Mgの含有量は1.00質量%以上、2.00質量%以下とする。望ましい範囲は1.00質量%以上、1.80質量%未満、さらに望ましい範囲は、1.2質量%以上、1.50質量%未満である。
<Mg: 1.00 mass% or more and 2.00 mass% or less>
Mg has the effect of improving the strength of the aluminum alloy plate. When the Mg content is less than 1.00% by mass, the strength of the aluminum alloy plate is insufficient, and the pressure strength when formed into a can lid is insufficient. On the other hand, when the Mg content exceeds 2.00% by mass, the strength of the aluminum alloy plate becomes excessive, and the rivet formability decreases. Therefore, the Mg content is set to 1.00% by mass or more and 2.00% by mass or less. A desirable range is 1.00% by mass or more and less than 1.80% by mass, and a further desirable range is 1.2% by mass or more and less than 1.50% by mass.

<Zn:0.05質量%以上、0.25質量%以下>
Znは、アルミニウム合金板の結晶粒を微細化させ、リベット成形性を向上させる効果があるため、必要に応じて添加される。Znの含有量が0.05質量%未満の場合、前記効果が十分得られない。一方、Znの含有量が0.25質量%を超える場合、熱間圧延後の冷却中などに、Al−Cu−Mg−Zn系析出物が粒界偏析し、リベット成形性がかえって低下する。従って、Znを添加する場合、含有量は0.05質量%以上、0.25質量%以下とする。望ましい範囲は0.08質量%以上、さらに望ましい範囲は0.12質量%以上である。
<Zn: 0.05 mass% or more and 0.25 mass% or less>
Zn has the effect of refining the crystal grains of the aluminum alloy plate and improving the rivet formability, so it is added as necessary. When the Zn content is less than 0.05% by mass, the above effect cannot be obtained sufficiently. On the other hand, when the Zn content exceeds 0.25 mass%, during cooling after hot rolling, Al-Cu-Mg-Zn-based precipitates segregate at the grain boundaries, and the rivet formability decreases. Therefore, when Zn is added, the content is set to 0.05% by mass or more and 0.25% by mass or less. A desirable range is 0.08% by mass or more, and a more desirable range is 0.12% by mass or more.

<不可避不純物>
本発明に係るアルミニウム合金板は、ほかに不可避不純物を含有する。不可避不純物として、Cr、Ti、Zrはそれぞれ0.15質量%以下、好ましくはそれぞれ0.05質量%以下、その他の元素としてV、Ni、In、Sn、Gaなどはそれぞれ0.05質量%以下の範囲で含有が許容される。
<Inevitable impurities>
The aluminum alloy plate according to the present invention additionally contains inevitable impurities. As unavoidable impurities, Cr, Ti, Zr are each 0.15% by mass or less, preferably 0.05% by mass or less, and as other elements, V, Ni, In, Sn, Ga, etc. are each 0.05% by mass or less. Inclusion in the range of is acceptable.

<前記不等式(1)>
Fe、Mnは、アルミニウム合金中にAl−Fe−Mn系、Al−Fe−Mn−Si系の晶出物を形成する。熱間圧延中、この晶出物の近傍に不均一変形領域が形成されて歪みが集中し、その領域が再結晶核となり、熱間圧延後の再結晶を促進させる。また、Mgは、熱間圧延中の蓄積歪みを増大させ、熱間圧延後の再結晶を促進させる作用を有する。Fe、Mnによる晶出物の量と、Mgによる蓄積歪みの量は、熱間圧延後の再結晶を促進するとの観点からは相互補完的である。熱間圧延後に適正な再結晶組織が得られれば、冷間圧延後の冷間圧延板(製品板)のリベット成形性が向上する。
<Inequality (1)>
Fe and Mn form Al-Fe-Mn-based and Al-Fe-Mn-Si-based crystals in the aluminum alloy. During hot rolling, a non-uniform deformation region is formed in the vicinity of the crystallized product, and strain is concentrated. This region becomes a recrystallization nucleus and promotes recrystallization after hot rolling. Moreover, Mg has the effect | action which increases the accumulation distortion in hot rolling and accelerates recrystallization after hot rolling. The amount of crystallized material due to Fe and Mn and the amount of accumulated strain due to Mg are mutually complementary from the viewpoint of promoting recrystallization after hot rolling. If an appropriate recrystallized structure is obtained after hot rolling, the rivet formability of the cold rolled sheet (product sheet) after cold rolling is improved.

一方、Fe、Mnの含有量が過剰になると粗大な晶出物が形成され、また、Mgは鋳造の際にアルミニウム合金の固相線温度を低下させ、晶出物を成長させる。粗大な晶出物が形成されると、該晶出物が割れの起点及び伝播経路となり、リベット成形性が低下する。
従って、粗大な晶出物の形成を抑制し、かつ熱間圧延後に適正な再結晶組織を得て、冷間圧延後の冷間圧延板(製品板)のリベット成形性を向上させるには、Fe、Mn、Mgの含有量を適切な関係で管理する必要がある。
Al−Mg−Mn系アルミニウム合金において、粗大晶出物の形成は、[Fe]、[Mn]、[Mg]をパラメーターとして、[Fe]+1.07[Mn]+0.27[Mg]の大きさに依存し、この値が1.65を超える場合、粗大な晶出物が生じる。一方、[Fe]+1.07[Mn]+0.27[Mg]の値が1.05未満の場合、Fe、Mn及びMgの作用が不足し、熱間圧延後に適正な再結晶組織を得ることができない。すなわち、[Fe]+1.07[Mn]+0.27[Mg]が1.05〜1.65の範囲内において、粗大な晶出物の形成を抑制し、かつ熱間圧延後に適正な再結晶組織を得て、冷間圧延後の冷間圧延板(製品板)のリベット成形性を向上させることができる。
On the other hand, if the contents of Fe and Mn are excessive, coarse crystallized substances are formed, and Mg lowers the solidus temperature of the aluminum alloy during casting to grow the crystallized substances. When a coarse crystallized product is formed, the crystallized product becomes a starting point and a propagation path of cracking, and the rivet formability decreases.
Therefore, in order to suppress the formation of coarse crystallized material, obtain an appropriate recrystallized structure after hot rolling, and improve the rivet formability of the cold rolled plate (product plate) after cold rolling, It is necessary to manage the contents of Fe, Mn, and Mg in an appropriate relationship.
In an Al—Mg—Mn-based aluminum alloy, the formation of coarse crystals is as large as [Fe] +1.07 [Mn] +0.27 [Mg] with [Fe], [Mn], and [Mg] as parameters. Depending on the thickness, if this value exceeds 1.65, coarse crystallisation occurs. On the other hand, when the value of [Fe] +1.07 [Mn] +0.27 [Mg] is less than 1.05, the action of Fe, Mn and Mg is insufficient, and an appropriate recrystallized structure is obtained after hot rolling. I can't. That is, when [Fe] + 1.07 [Mn] + 0.27 [Mg] is within the range of 1.05 to 1.65, the formation of coarse crystals is suppressed, and proper recrystallization is performed after hot rolling. A structure can be obtained and the rivet formability of the cold rolled sheet (product sheet) after cold rolling can be improved.

本発明に係るアルミニウム合金板は、鋳造、均質化熱処理、熱間圧延、及び冷間圧延の工程で製造することができる。
鋳造は、半連続鋳造法(DC鋳造)が用いられる。
均質化熱処理は、DC鋳造で得られた鋳塊を480〜620℃に2〜10時間保持する条件で、1回又は2回行う。処理温度が480℃未満では溶質元素の均質化が不十分となり、処理温度が620℃を超えると鋳塊の表面で局部的な溶融(バーニング)が生じるおそれがある。保持時間は2時間以上であれば均質化が可能で、10時間を超えるとエネルギーコストが無駄になる。この均質化熱処理は、後続の熱間圧延の予備加熱を兼ねる。
The aluminum alloy plate according to the present invention can be produced by the steps of casting, homogenizing heat treatment, hot rolling, and cold rolling.
For casting, a semi-continuous casting method (DC casting) is used.
Homogenization heat processing is performed once or twice on the conditions which hold | maintain the ingot obtained by DC casting at 480-620 degreeC for 2 to 10 hours. If the treatment temperature is less than 480 ° C., the solute elements are not sufficiently homogenized. If the treatment temperature exceeds 620 ° C., local melting (burning) may occur on the surface of the ingot. If the holding time is 2 hours or more, homogenization is possible, and if it exceeds 10 hours, energy costs are wasted. This homogenization heat treatment also serves as preheating for subsequent hot rolling.

熱間圧延は、粗圧延(リバース圧延)と仕上げ圧延(タンデム圧延)の組合せで行うことが望ましい。熱間圧延の終了温度(巻き取り温度)は300〜370℃とする。この温度で巻き取ることにより、熱間圧延板は再結晶組織となる。冷間圧延後のアルミニウム合金板において優れたリベット成形性を得るには、熱間圧延板の再結晶率は90%以上(未再結晶部が10%未満)が必要である。巻き取り温度が300℃以下の場合、熱間圧延板の再結晶率が低下し、冷間圧延後の冷間圧延板(製品板)のリベット成形性が低下する。
冷間圧延は、80〜93%の圧延率で行い、冷間圧延の前又は途中で中間焼鈍を行わない。冷間圧延の圧延率が80%未満では缶蓋としての強度が不足し、93%を超えると耐力が上がりすぎて成形性が低下し、また変形異方性(耳率)が大きくなる。
なお、以上説明した製造工程及び条件は、従来の負圧缶蓋用アルミニウム合金板の製造工程及び条件と特に変わるものではない。
Hot rolling is preferably performed by a combination of rough rolling (reverse rolling) and finish rolling (tandem rolling). The end temperature (winding temperature) of hot rolling is 300 to 370 ° C. By winding at this temperature, the hot-rolled sheet becomes a recrystallized structure. In order to obtain excellent rivet formability in an aluminum alloy sheet after cold rolling, the recrystallization rate of the hot rolled sheet needs to be 90% or more (the unrecrystallized portion is less than 10%). When the coiling temperature is 300 ° C. or less, the recrystallization rate of the hot rolled sheet is lowered, and the rivet formability of the cold rolled sheet (product sheet) after cold rolling is lowered.
Cold rolling is performed at a rolling rate of 80 to 93%, and intermediate annealing is not performed before or during the cold rolling. When the rolling rate of cold rolling is less than 80%, the strength as a can lid is insufficient, and when it exceeds 93%, the yield strength is excessively increased, the formability is lowered, and the deformation anisotropy (ear ratio) is increased.
The manufacturing process and conditions described above are not particularly different from the manufacturing process and conditions of a conventional aluminum alloy plate for negative pressure can lid.

表1に示すアルミニウム合金を、半連続鋳造法(DC)にて厚さ600mmの鋳塊とし、鋳塊表層を15mm面削してスラブを作製した。このスラブに均質化熱処理、熱間圧延、及び冷間圧延を施し、板厚0.210mmの負圧缶蓋用アルミニウム合金板に仕上げた。均質化処理の条件、熱間圧延の巻き取り温度、及び冷間圧延の圧延率を表1に示す。
熱間圧延後のアルミニウム合金板(熱間圧延材)を供試材として、以下の要領で再結晶率を求めた。また、冷間圧延後のアルミニウム合金板(冷間圧延板)を供試材として、以下の要領で0.2%耐力とリベット成形性を測定した。
The aluminum alloy shown in Table 1 was made into an ingot having a thickness of 600 mm by a semi-continuous casting method (DC), and the surface layer of the ingot was chamfered by 15 mm to produce a slab. The slab was subjected to homogenization heat treatment, hot rolling, and cold rolling to finish an aluminum alloy plate for a negative pressure can lid having a plate thickness of 0.210 mm. Table 1 shows the conditions for the homogenization treatment, the coiling temperature for hot rolling, and the rolling rate for cold rolling.
Using the aluminum alloy sheet (hot rolled material) after hot rolling as a test material, the recrystallization rate was determined in the following manner. Moreover, 0.2% yield strength and rivet formability were measured in the following manner using an aluminum alloy plate (cold rolled plate) after cold rolling as a test material.

<再結晶率の測定>
各供試材から試験片を切り出し、圧延方向及び板厚方向に平行となる断面が観察できるように研磨用樹脂に埋め込み、同断面を研磨して鏡面とし、次いでエッチングした後、倍率が100倍の光学顕微鏡により結晶組織を観察し、再結晶率を測定した。供試材の板厚をt、板厚方向に測定した再結晶組織の厚みをt、同じく未再結晶部の厚みをtとしたとき、t=t+tであり、再結晶率は(t/t)×100で算出した。なお、再結晶組織は等軸粒からなり、未再結晶部は圧延方向に伸びた加工組織である。再結晶率の適正範囲は90%以上とした。再結晶率が90%以上であれば、冷間圧延後の冷間圧延板(アルミニウム合金板)のリベット成形性に問題が生じない。表1において、再結晶率の欄の○印は再結晶率が90%以上、×印は90%未満を意味する。
<0.2%耐力>
各供試材について、塗装・焼付け工程を模擬したオイルバスによる250℃×20秒の熱処理を施した後、引張方向が圧延方向と平行になるJIS−5号引張試験片を作製し、JISZ2241の規定に準じて引張試験を行い、0.2%耐力を求めた。0.2%耐力の適性範囲は240MPa以上とした。0.2%耐力が240MPa以上であれば、薄肉化された缶蓋であっても耐圧強度を満足する。
<Measurement of recrystallization rate>
A specimen is cut out from each specimen, embedded in a polishing resin so that a cross section parallel to the rolling direction and the plate thickness direction can be observed, the cross section is polished to a mirror surface, and then etched, and then the magnification is 100 times. The crystal structure was observed with an optical microscope and the recrystallization rate was measured. The thickness of the test specimen t, when the thickness of the recrystallized structure was measured in the thickness direction t r, also the thickness of the non-recrystallized portion has a t n, a t = t r + t n, recrystallization ratio Was calculated by (t r / t) × 100. The recrystallized structure is composed of equiaxed grains, and the non-recrystallized part is a processed structure extending in the rolling direction. The appropriate range for the recrystallization rate was 90% or more. If the recrystallization rate is 90% or more, there is no problem in the rivet formability of the cold rolled sheet (aluminum alloy sheet) after cold rolling. In Table 1, “O” in the column of recrystallization rate means that the recrystallization rate is 90% or more, and “x” means less than 90%.
<0.2% yield strength>
About each test material, after performing the heat processing of 250 degreeC * 20 second by the oil bath which simulated the painting and baking process, the tension direction becomes parallel with a rolling direction, and the JIS-5 tension test piece is produced, JISZ2241 A tensile test was performed in accordance with the regulations to obtain a 0.2% yield strength. The suitable range of 0.2% proof stress was 240 MPa or more. When the 0.2% proof stress is 240 MPa or more, even a thin can lid satisfies the pressure strength.

<リベット成形性の測定>
各供試材について、塗装・焼付け工程を模擬したオイルバスによる250℃×20秒の熱処理を施した後、各供試材から50mm×50mmの試験片を作製し、バブル工程を模擬した張出試験を実施し、限界張出し高さを求めた。張出試験は、図1に示すように、試験片1を上下のダイス2,3の間に挟み、一定のしわ押さえ力で固定し、ポンチ4を試験片1の中央部に対し垂直に押し込んで張出加工を行った。ダイス2,3は穴の内径が6.60mm、肩部半径が0.40mm、ポンチ4は外径が6.00mm、頭部の中央平坦部の直径が1mm、頭部の肩部半径が2.50mmである。
この張出試験により、試験片1に割れやくびれの発生なしに張出加工が行える張出高さの限界値(限界張出高さ)を測定した。限界張出高さの適正範囲は1.45mm以上とした。限界張出高さが1.45mm以上であれば、実成形時に十分な高さのボタンを成形することができ、リベット成形性に優れ、ステイク工程によってタブをしっかりと固定することができる。なお、タブの固定が不十分だと、開缶時にタブが取れて飲み口が開口しない不具合が発生する。
<Measurement of rivet formability>
For each sample material, heat treatment was performed at 250 ° C. for 20 seconds using an oil bath simulating the painting / baking process, and then a 50 mm × 50 mm test piece was prepared from each sample material to simulate the bubble process. A test was conducted to determine the limit overhang height. In the overhang test, as shown in FIG. 1, the test piece 1 is sandwiched between upper and lower dies 2 and 3, fixed with a certain wrinkle pressing force, and the punch 4 is pushed vertically into the center of the test piece 1. The overhanging process was performed. The dies 2 and 3 have an inner diameter of 6.60 mm and a shoulder radius of 0.40 mm, the punch 4 has an outer diameter of 6.00 mm, a diameter of the central flat portion of the head of 1 mm, and a shoulder radius of the head of 2 .50 mm.
By this overhang test, the limit value (limit overhang height) of the overhang height at which the overhanging process can be performed without causing cracks and constriction on the test piece 1 was measured. The appropriate range of the limit overhang height was 1.45 mm or more. If the limit overhang height is 1.45 mm or more, a button having a sufficient height can be formed at the time of actual forming, the rivet formability is excellent, and the tab can be firmly fixed by a stake process. In addition, if the tab is not fixed enough, the tab may be removed when the can is opened, and the drinking mouth does not open.

Figure 2015059251
Figure 2015059251

表1に示すように、各成分の含有量が本発明の規定範囲内で、かつFe、Mn及びMg含有量が前記不等式(1)を満たすNo.1〜8は、熱間圧延材の再結晶率が90%以上と高く、冷間圧延材の耐力が高くリベット成形性に優れる。
一方、いずれかの成分の含有量が本発明の規定範囲外か、又はFe、Mn及びMg含有量が前記不等式(1)を満たさないNo.9〜23は、耐力又はリベット成形性のいずれかがNo.1〜8に比べて劣る。このうち、No.9はSi含有量が過剰で、No.10はFe含有量が不足し、No.13はMn含有量が不足し、No.23はFe、Mn及びMg含有量が前記不等式(1)を満たさない(不等式(1)の中辺の値が1.05未満)ため、いずれも再結晶率が低く、リベット成形性が劣っていた。No.11はCu含有量が不足し、No.15はMg含有量が不足していたため、いずれも耐力が低かった。No.12,14,16,17,19は、Cu、Mn、Mg、Zn、Feのいずれか1種以上が過剰なため、リベット成形性が劣っていた。No.18,20,21,22は、Fe、Mn及びMg含有量が前記不等式(1)を満たさず(不等式(1)の中辺の値が1.65を超える)、No.18,20はさらにFe又はMnが過剰なため、リベット成形性が劣っていた。
なお、No.18は特許文献1の実施例の合金C、No.19は特許文献1の実施例の合金G、No.20は特許文献3の実施例の合金No.2、No.21は特許文献4の合金No.4に相当する。
As shown in Table 1, the content of each component is within the specified range of the present invention, and the content of Fe, Mn and Mg satisfies the inequality (1). Nos. 1 to 8 have a high recrystallization rate of 90% or more for the hot-rolled material, high proof stress for the cold-rolled material, and excellent rivet formability.
On the other hand, the content of any component is out of the specified range of the present invention, or the content of Fe, Mn and Mg does not satisfy the inequality (1). Nos. 9 to 23 are No. of either proof stress or rivet formability. It is inferior to 1-8. Of these, No. No. 9 has an excessive Si content. No. 10 lacks Fe content. No. 13 lacks the Mn content. In No. 23, the Fe, Mn and Mg contents do not satisfy the inequality (1) (the value of the middle side of the inequality (1) is less than 1.05). It was. No. No. 11 lacks Cu content. No. 15 had a low proof stress because the Mg content was insufficient. No. 12, 14, 16, 17, and 19 were inferior in rivet formability because one or more of Cu, Mn, Mg, Zn, and Fe was excessive. No. Nos. 18, 20, 21, and 22 have Fe, Mn, and Mg contents not satisfying the inequality (1) (the value of the middle side of the inequality (1) exceeds 1.65). 18 and 20 were inferior in rivet formability due to excessive Fe or Mn.
In addition, No. No. 18 is an alloy C, No. 1 in the example of Patent Document 1. No. 19 is an alloy G, No. 1 in the example of Patent Document 1. No. 20 is an alloy no. 2, no. No. 21 is an alloy no. Corresponds to 4.

1 アルミニウム合金板
2,3 ダイス
4 パンチ
1 Aluminum alloy plate 2, 3 Dice 4 Punch

Claims (2)

Siを0.10質量%以上、0.40質量%以下、Feを0.20質量%以上、0.40質量%以下、Cuを0.10質量%以上、0.30質量%以下、Mnを0.30質量%以上、1.00質量%以下、Mgを1.00質量%以上、2.00質量%以下の範囲で含有し、残部がAl及び不可避不純物からなり、Feの質量%を[Fe]、Mnの質量%を[Mn]、Mgの質量%を[Mg]としたとき、下記不等式(1)を満たすことを特徴とする負圧缶蓋用アルミニウム合金板。
1.05≦[Fe]+1.07[Mn]+0.27[Mg]≦1.65・・・(1)
Si is 0.10% by mass or more and 0.40% by mass or less, Fe is 0.20% by mass or more and 0.40% by mass or less, Cu is 0.10% by mass or more and 0.30% by mass or less, and Mn is 0.30% by mass or more, 1.00% by mass or less, Mg is contained in the range of 1.00% by mass or more and 2.00% by mass or less, the balance is made of Al and inevitable impurities, and the mass% of Fe is [ Fe], an aluminum alloy plate for a negative pressure can lid that satisfies the following inequality (1) when the mass% of Mn is [Mn] and the mass% of Mg is [Mg].
1.05 ≦ [Fe] +1.07 [Mn] +0.27 [Mg] ≦ 1.65 (1)
さらにZnを0.05質量%以上、0.25質量%以下の範囲で含有することを特徴とする請求項1に記載された負圧缶蓋用アルミニウム合金板。 Furthermore, Zn is contained in 0.05 mass% or more and 0.25 mass% or less, The aluminum alloy plate for negative pressure can lids described in Claim 1 characterized by the above-mentioned.
JP2013194734A 2013-09-20 2013-09-20 Aluminum alloy plate for negative pressure can lid Expired - Fee Related JP5699192B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013194734A JP5699192B2 (en) 2013-09-20 2013-09-20 Aluminum alloy plate for negative pressure can lid
PCT/JP2014/072591 WO2015041021A1 (en) 2013-09-20 2014-08-28 Aluminum alloy sheet for negative-pressure can lid
CN201480051267.1A CN105555979A (en) 2013-09-20 2014-08-28 Aluminum alloy sheet for negative-pressure can lid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013194734A JP5699192B2 (en) 2013-09-20 2013-09-20 Aluminum alloy plate for negative pressure can lid

Publications (2)

Publication Number Publication Date
JP2015059251A true JP2015059251A (en) 2015-03-30
JP5699192B2 JP5699192B2 (en) 2015-04-08

Family

ID=52688676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013194734A Expired - Fee Related JP5699192B2 (en) 2013-09-20 2013-09-20 Aluminum alloy plate for negative pressure can lid

Country Status (3)

Country Link
JP (1) JP5699192B2 (en)
CN (1) CN105555979A (en)
WO (1) WO2015041021A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152549A (en) * 1984-12-19 1986-07-11 東洋製罐株式会社 Can
JPS63227738A (en) * 1987-03-16 1988-09-22 Sumitomo Light Metal Ind Ltd Corrosion resistant aluminum alloy composite plate and its production
JP2000355723A (en) * 1999-06-16 2000-12-26 Kobe Steel Ltd Aluminum alloy sheet and its production
JP2001214248A (en) * 2000-01-28 2001-08-07 Sky Alum Co Ltd Method for producing aluminum alloy hard sheet for can lid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5204517B2 (en) * 2008-03-19 2013-06-05 株式会社神戸製鋼所 Aluminum alloy plate for battery case and manufacturing method thereof
KR101306515B1 (en) * 2010-03-30 2013-09-09 가부시키가이샤 고베 세이코쇼 Aluminum alloy plate for battery case, and battery case
JP2013163835A (en) * 2012-02-09 2013-08-22 Kobe Steel Ltd Aluminum alloy sheet for di can body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152549A (en) * 1984-12-19 1986-07-11 東洋製罐株式会社 Can
JPS63227738A (en) * 1987-03-16 1988-09-22 Sumitomo Light Metal Ind Ltd Corrosion resistant aluminum alloy composite plate and its production
JP2000355723A (en) * 1999-06-16 2000-12-26 Kobe Steel Ltd Aluminum alloy sheet and its production
JP2001214248A (en) * 2000-01-28 2001-08-07 Sky Alum Co Ltd Method for producing aluminum alloy hard sheet for can lid

Also Published As

Publication number Publication date
WO2015041021A1 (en) 2015-03-26
CN105555979A (en) 2016-05-04
JP5699192B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP6210896B2 (en) Aluminum alloy plate for can lid and manufacturing method thereof
JP5898426B2 (en) Aluminum alloy plate for negative pressure can lid and manufacturing method thereof
JP4829988B2 (en) Aluminum alloy plate for packaging container lid
JP5356359B2 (en) Aluminum alloy coated plate for positive pressure can lid and manufacturing method thereof
JP6058050B2 (en) Aluminum alloy plate for negative pressure can lid
JP2016141886A (en) Aluminum alloy sheet for can top
JP2007023340A (en) Aluminum alloy sheet for positive-pressure can top, and method for producing the same
JP5113411B2 (en) Aluminum alloy plate for packaging container and method for producing the same
JP5699192B2 (en) Aluminum alloy plate for negative pressure can lid
JP6033192B2 (en) Aluminum alloy plate for negative pressure can lid
WO2016063876A1 (en) Aluminium alloy sheet for can lid
JP2017166052A (en) Aluminum alloy sheet for packaging container tab
JP4392263B2 (en) Aluminum alloy plate for packaging container end and manufacturing method thereof
TWI588269B (en) Manufacturing method for cap plate, cap plate and cap plate
JP2006097076A (en) Aluminum-alloy sheet for bottle can, and its manufacturing method
JP4335035B2 (en) Aluminum alloy plate for can end having excellent anisotropy and method for producing the same
WO2017065137A1 (en) Aluminum alloy plate for can end
JP4291642B2 (en) Method for manufacturing aluminum alloy plate for packaging container lid
JP2016079501A (en) Aluminum alloy sheet for can-top
JP5091415B2 (en) Manufacturing method of aluminum alloy plate for bottle can
JP2007254874A (en) Aluminum alloy sheet for packaging container and method of manufacturing the same
JP2005179758A (en) Aluminum alloy hard sheet for can end having excellent cold rolling property and anisotropy, and its production method
JP2000160273A (en) Aluminum alloy sheet for can end
JP2017222918A (en) Aluminum alloy sheet for can top
JP2017171953A (en) Aluminum alloy coated sheet for can top

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R150 Certificate of patent or registration of utility model

Ref document number: 5699192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees