JP2001214248A - Method for producing aluminum alloy hard sheet for can lid - Google Patents

Method for producing aluminum alloy hard sheet for can lid

Info

Publication number
JP2001214248A
JP2001214248A JP2000019512A JP2000019512A JP2001214248A JP 2001214248 A JP2001214248 A JP 2001214248A JP 2000019512 A JP2000019512 A JP 2000019512A JP 2000019512 A JP2000019512 A JP 2000019512A JP 2001214248 A JP2001214248 A JP 2001214248A
Authority
JP
Japan
Prior art keywords
rolling
finish rolling
hot
final
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000019512A
Other languages
Japanese (ja)
Other versions
JP3998387B2 (en
Inventor
Naoyuki Sakuma
尚幸 佐久間
Toshio Komatsubara
俊雄 小松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP2000019512A priority Critical patent/JP3998387B2/en
Publication of JP2001214248A publication Critical patent/JP2001214248A/en
Application granted granted Critical
Publication of JP3998387B2 publication Critical patent/JP3998387B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hard sheet low in an earing ratio. also small in the anisotropy of strength and moreover excellent in rivet formability and can openability as a can lid material for a stay-on tab type suction can. SOLUTION: At the time of subjecting an ingot of an Al alloy composed of 0.8 to 3.0% Mg, 0.01 to 1.2% Mn, 0.10 to 0.50% Fe, 0.05 to 0.40% Si and (Fe+Mn)/Si <=20 to hot rolling, as for the conditions of finish rolling, the pass number is controlled to 3 to 5, the ratio between the sheet thickness at the time of the start of the finish rolling and the sheet thickness upon the end of the same to 5 to 25, the draft in the final pass to 20 to 70%, and the rolling rate in the final pass to 200 m/min or more to obtain a hot rolled sheet having a recrystallizing ration of 85% or more, and in which the density in the cube orientation of the surface layer part of the sheet thickness is also 5 times or more than that in the random orientation, and moreover, final cold rolling is performed at a rolling ratio of 40 to 95%. Furthermore, the one, in addition to the above each component, containing a trace amount of Cu or/and Cr, and in which the content of Ti is controlled to 0.03% or less is used. Moreover, after the above process, final annealing of 100 to 240 deg.C×10 hr or more is performed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はアルミニウム缶蓋
材の製造方法に関するものであり、特に果汁やコーヒ
ー、紅茶などの如く炭酸を含まない負圧缶用のステイオ
ンタブ方式の缶蓋に適したアルミニウム缶蓋材として、
強度の異方性が小さくかつ耳率が低く、しかもリベット
成形性および引裂き性(開缶性)に優れたアルミニウム
缶蓋材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an aluminum can lid material, and more particularly, to a stainless steel can type lid for negative pressure cans containing no carbonic acid such as fruit juice, coffee and tea. As aluminum can lid material,
The present invention relates to a method for producing an aluminum can lid material having low strength anisotropy, low ear ratio, and excellent rivet formability and tearability (can openability).

【0002】[0002]

【従来の技術】一般にステイオンタブ方式のアルミニウ
ム缶蓋材には、高強度と良好な成形性を有し、かつ引き
裂き性(開缶性)も良好でまたリベット加工性も優れ、
さらに表面品質も優れていることなどが要求される。従
来この種のアルミニウム缶蓋材としては、5052合金
や5182合金などの5000系合金(Al−Mg系合
金、Al−Mg−Mn系合金)が多用されている。特に
果汁やコーヒー、紅茶の如く炭酸を含まない飲料缶、す
なわち負圧缶用の缶蓋材としては、Al−Mg系である
5052合金が使用されることが多い。
2. Description of the Related Art Generally, a stainless steel tub type aluminum can lid material has high strength and good formability, good tearability (can openability), and excellent rivet workability.
Further, it is required that the surface quality be excellent. Conventionally, 5000-type alloys (Al-Mg-based alloys, Al-Mg-Mn-based alloys) such as 5052 alloy and 5182 alloy have been widely used as this kind of aluminum can lid material. In particular, Al-Mg based 5052 alloy is often used as a can lid material for carbonated beverage cans such as fruit juice, coffee and tea, that is, a negative pressure can.

【0003】[0003]

【発明が解決しようとする課題】ところで缶蓋を缶胴に
取付けるにあたっては、缶胴の縁部に缶蓋を巻き締め加
工する必要があるが、缶蓋材の深絞り耳率が高い場合、
この巻き締め加工において巻き締め不良が生じるおそれ
がある。また缶蓋は、一般に開缶のためにスコア加工が
施されており、特にステイオンタブ方式の缶蓋ではスコ
アの加工率が大きいため、圧延方向に対する各方向の最
大耐力差が大きい場合、すなわち強度の異方性が大きい
場合には、缶を落下させた際の衝撃によってスコア部分
の強度の低い箇所から割れが生じて、内容物が漏れ出し
てしまう危険がある。
In attaching the can lid to the can body, it is necessary to wind the can lid around the edge of the can body. However, when the deep drawing ear ratio of the can lid material is high,
In this winding process, there is a possibility that defective winding may occur. In addition, the can lid is generally subjected to score processing for opening the can, especially in the case of a stainless steel tub type can lid, since the processing rate of the score is large, when the maximum proof stress difference in each direction with respect to the rolling direction is large, that is, When the anisotropy of the strength is large, there is a risk that the impact at the time of dropping the can causes a crack from a low strength portion of the score portion to leak out the contents.

【0004】また缶蓋材には、飲み口部分にタブ(つか
み部)を取付けるためにリベット成形を行なうのが通常
である。すなわち、タブを取付けるべき部分に多段張出
し成形を行なって突起状のリベット部を形成し、タブに
設けられている貫通孔を上記リベット部に嵌め合わせ、
さらにリベット部の先端を潰してその先端を押し拡げ、
タブをリベット部に固定する加工を行なうのが通常であ
り、このような一連の加工をリベット成形と称してお
り、したがって缶蓋材については、リベット成形性が優
れていることが要求される。リベット成形性が悪い場合
には、リベット成形時、すなわち多段張出し成形時やリ
ベット先端圧潰時において材料に割れが生じてしまい、
この割れは、缶の内容物の漏洩を招くばかりでなく、仮
にその割れが板を完全に貫通していない場合でも、割れ
の発生により塗膜と板との間の剥離を招き、その結果缶
の内容物を長時間良好な状態に保持することができなく
なってしまう事態を招く。したがってこのような割れが
生じないようにリベット成形性が優れていることも缶蓋
材にとっては重要である。
[0004] In addition, a rivet is usually formed on a can lid material in order to attach a tab (grab) to a drinking spout. That is, multi-stage overhang forming is performed on a portion where a tab is to be attached to form a projecting rivet portion, and a through hole provided in the tab is fitted to the rivet portion,
In addition, crush the tip of the rivet and push the tip,
Processing for fixing the tab to the rivet portion is usually performed, and such a series of processing is referred to as rivet forming. Therefore, the can lid material is required to have excellent rivet forming properties. If the rivet formability is poor, the material will crack at the time of rivet forming, that is, at the time of multi-stage overhang forming or at the time of rivet tip crushing,
This cracking not only causes the leakage of the contents of the can, but even if the crack does not completely penetrate the plate, the cracking causes peeling between the coating film and the plate, and as a result, the can Of the contents cannot be maintained in a good state for a long time. Therefore, it is also important for the can lid material that the rivet formability is excellent so that such cracks do not occur.

【0005】さらに、飲料缶の缶蓋については飲み口部
分を引裂くことにより開缶されるのが通常であり、近年
多用されているステイオンタブ方式は、リベット成形に
より取付けられたタブの把手部を引上げることによりタ
ブの取付部(リベット部)を支点として梃子の作用によ
りタブの先端部を下げ、これにより飲み口部分を押し下
げて、その飲み口部分を一部を残しスコアーから引裂く
方式である。このようなステイオンタブ方式の缶蓋で
は、手指の力を梃子の作用により間接的に利用している
ため、開缶時において飲み口部分がスムーズにスコアー
から引裂かれるように力の入れ方を微妙に加減すること
が困難であり、そのため力の入れ方によっては飲み口部
分がスコアーから均一に引裂かれず、開缶の失敗が生じ
ることがある。このような問題を解消するためには、開
缶時の引裂き力(引裂き荷重)が小さい材料、すなわち
引裂き性の良好な材料が望まれる。
[0005] Further, the can lid of a beverage can is usually opened by tearing a drinking part, and a stay-on tab system which has been frequently used in recent years has a handle for a tab attached by rivet molding. By pulling up the part, the tip of the tab is lowered by the action of a lever with the attachment part (rivet part) of the tab as a fulcrum, thereby pushing down the drinking part and leaving the part of the drinking part torn from the score It is a method. In such a stay-tab type can lid, since the force of the fingers is indirectly used by the action of the lever, the way to apply the force so that the mouth part is smoothly torn from the score when the can is opened. It is difficult to finely adjust the amount, so that depending on how the force is applied, the drinking part may not be torn evenly from the score, and a failure to open the can may occur. In order to solve such a problem, a material having a small tear force (tear load) when opening the can, that is, a material having a good tear property is desired.

【0006】以上のように、アルミニウム缶蓋材として
は、強度の異方性が少なく、かつ耳率が低く、さらにリ
ベット成形性が良好であって、しかも引裂き性が良好で
あることが望まれるが、従来から缶蓋材として使用され
ている5000系合金、特に負圧缶用に使用されている
5052合金缶蓋材では、これらの諸特性をすべて充分
に満足するものは得られていなかったのが実情である。
As described above, it is desired that an aluminum can lid material has low strength anisotropy, low ear ratio, good rivet formability, and good tearability. However, in the case of a 5000 series alloy conventionally used as a can lid material, in particular, a 5052 alloy can lid material used for negative pressure cans, a material which fully satisfies all of these characteristics has not been obtained. That is the fact.

【0007】この発明は以上の事情を背景としてなされ
たもので、強度の異方性が安定して小さく、かつ耳率も
確実かつ安定して低く、しかも引裂き性およびリベット
成形性に優れた、負圧缶に最適な缶蓋材を提供すること
を目的とするものである。
The present invention has been made in view of the above circumstances, and has a stable and small anisotropy of strength, a reliable and stable low ear ratio, and excellent tearability and rivet formability. It is an object of the present invention to provide a can lid material that is optimal for a negative pressure can.

【0008】[0008]

【課題を解決するための手段】前述のような課題を解決
するため、本発明者等が5052合金をベースとする缶
蓋用アルミニウム合金硬質板について鋭意実験・検討を
繰返した結果、成分組成、特にFe、Mn、Siの含有
量の相対的な関係を適切に調整すると同時に、熱間圧延
における仕上げ圧延の条件を厳密に規制して、熱間圧延
上り板の再結晶集合組織を適切に制御することにより、
前述の課題を解決し得ることを見出し、この発明をなす
に至ったのである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have repeatedly conducted intensive experiments and studies on an aluminum alloy hard plate for a can lid based on 5052 alloy. In particular, while appropriately adjusting the relative relationship between the contents of Fe, Mn, and Si, strictly regulating the conditions of finish rolling in hot rolling, and appropriately controlling the recrystallization texture of the hot-rolled up sheet. By doing
The inventors have found that the above-mentioned problem can be solved, and have accomplished the present invention.

【0009】具体的には、請求項1の発明の缶蓋用アル
ミニウム合金硬質板の製造方法は、Mg0.8〜3.0
%、Mn0.01〜1.2%、Fe0.10〜0.50
%、Si0.05〜0.40%を含有し、かつ{Fe量
(%)+Mn量(%)}/Si量(%)の値が20以下
であり、残部がAlおよび不可避的不純物よりなる合金
を素材とし、その鋳塊に対して粗圧延および仕上げ圧延
からなる熱間圧延を行なうにあたり、粗圧延終了後の仕
上げ圧延のパス数を3パス以上、5パス以下の範囲内と
して、仕上げ圧延開始直前の板厚t1と仕上げ圧延終了
後の板厚t2との比t1/t2を5〜25の範囲内と
し、さらに仕上げ圧延における最終パスの圧下率を20
〜70%の範囲内、最終パスの圧延速度を200m/分
以上として熱間圧延を終了させて、再結晶率が85%以
上でかつ板厚表層部における結晶粒のキューブ方位の方
位密度がランダム方位の5倍以上である熱間圧延上り板
を得、その後、40〜95%の圧延率で最終冷間圧延を
行なうことを特徴とするものである。
More specifically, the method for producing an aluminum alloy hard plate for a can lid according to the first aspect of the present invention comprises the steps of:
%, Mn 0.01 to 1.2%, Fe 0.10 to 0.50
%, 0.05 to 0.40% of Si, and the value of {Fe content (%) + Mn content (%)} / Si content (%) is 20 or less, and the balance consists of Al and inevitable impurities. In performing hot rolling comprising rough rolling and finish rolling on the ingot of the alloy, the number of finish rolling passes after the completion of rough rolling is set within a range of 3 or more and 5 or less. The ratio t1 / t2 between the thickness t1 immediately before the start and the thickness t2 after the finish rolling is set in the range of 5 to 25, and the rolling reduction of the final pass in the finish rolling is 20.
The hot rolling is terminated at a rolling speed of 200 m / min or more in the final pass within a range of 70% to 70%, and the recrystallization rate is 85% or more and the orientation density of the cube orientation of the crystal grains in the surface layer portion of the sheet thickness is random. It is characterized in that an as-rolled hot-rolled plate having at least 5 times the orientation is obtained, and then the final cold rolling is performed at a rolling ratio of 40 to 95%.

【0010】また請求項2の発明の缶蓋用アルミニウム
合金硬質板の製造方法は、Mg0.8〜3.0%、Mn
0.01〜1.2%、Fe0.10〜0.50%、Si
0.05〜0.40%を含有し、かつ{Fe量(%)+
Mn量(%)}/Si量(%)の値が20以下であり、
さらにCu0.01〜0.50%、Cr0.05〜0.
50%のうちから選ばれた1種または2種を含有し、し
かもTi量が0.03%以下に規制され、残部がAlお
よび不可避的不純物よりなる合金を素材とし、その鋳塊
に対して粗圧延および仕上げ圧延からなる熱間圧延を行
なうにあたり、粗圧延終了後の仕上げ圧延のパス数を3
パス以上、5パス以下の範囲内として、仕上げ圧延開始
直前の板厚t1と仕上げ圧延終了後の板厚t2との比t
1/t2を5〜25の範囲内とし、さらに仕上げ圧延に
おける最終パスの圧下率を20〜70%の範囲内、最終
パスの圧延速度を200m/分以上として熱間圧延を終
了させて、再結晶率が85%以上でかつ板厚表層部にお
ける結晶粒のキューブ方位の方位密度がランダム方位の
5倍以上である熱間圧延上り板を得、その後、40〜9
5%の圧延率で最終冷間圧延を行なうことを特徴とする
ものである。
[0010] The method for producing an aluminum alloy hard plate for a can lid according to the second aspect of the present invention is characterized in that:
0.01-1.2%, Fe 0.10-0.50%, Si
0.05 to 0.40%, and ΔFe amount (%) +
The value of Mn content (%) (/ Si content (%) is 20 or less;
Furthermore, Cu 0.01-0.50%, Cr 0.05-0.
An alloy containing one or two selected from 50%, the Ti content is regulated to 0.03% or less, and the balance is made of an alloy consisting of Al and unavoidable impurities. In performing hot rolling including rough rolling and finish rolling, the number of finish rolling passes after the completion of rough rolling is set to 3
The ratio t between the sheet thickness t1 immediately before the start of finish rolling and the sheet thickness t2 after the end of finish rolling is set within the range of not less than pass and not more than 5 passes
1 / t2 is set in the range of 5 to 25, the rolling reduction of the final pass in the finish rolling is set in the range of 20 to 70%, the rolling speed of the final pass is set to 200 m / min or more, and the hot rolling is terminated. A hot-rolled sheet having a crystallinity of 85% or more and an orientation density of crystal orientation of crystal grains in a surface layer portion of the sheet thickness of 5 times or more of a random orientation is obtained.
The final cold rolling is performed at a rolling reduction of 5%.

【0011】さらに請求項3の発明は、請求項1、請求
項2のいずれかに記載の缶蓋用アルミニウム合金硬質板
の製造方法において、前記最終冷間圧延の後、さらに1
00〜240℃の範囲内の温度で10時間以内の最終焼
鈍を施すことを特徴とするものである。
Further, the invention according to claim 3 is a method for manufacturing an aluminum alloy hard plate for a can lid according to any one of claims 1 and 2, further comprising:
The final annealing is performed at a temperature within the range of 00 to 240 ° C. for 10 hours or less.

【0012】[0012]

【発明の実施の形態】先ずこの発明の方法で使用するア
ルミニウム合金の成分限定理由について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS First, the reasons for limiting the components of the aluminum alloy used in the method of the present invention will be described.

【0013】Mg:Mgの添加は、それ自体の固溶によ
る強度向上に効果があり、また転位との相互作用が大き
いため、加工硬化による強度向上が期待でき、したがっ
て缶蓋材として必要な強度を得るためにMgは不可欠な
元素である。但し、Mg量が0.8%未満では缶蓋材と
して充分な強度を得ることができず、一方3.0%を越
えれば生産コストが高くなる。そこでMg量は0.8〜
3.0%の範囲内とした。
Mg: The addition of Mg is effective in improving strength due to solid solution itself, and has a large interaction with dislocations, so that strength can be expected to be improved by work hardening, and therefore the strength required as a can lid material Mg is an indispensable element to obtain the following. However, if the Mg content is less than 0.8%, sufficient strength as a can lid material cannot be obtained, while if it exceeds 3.0%, the production cost increases. Therefore, the amount of Mg is 0.8 ~
It was within the range of 3.0%.

【0014】Mn:Mnの添加は、スコア部分の引き裂
き性を向上させて開缶性を向上させるAl−Mn−(S
i)、Al−Fe−Mn−(Si)系晶出物の生成およ
び強度向上に大きな効果をもたらす。Mn量が0.01
%未満では、これらの効果が小さく、一方1.2%を越
えれば、引裂き性は向上するものの、巨大晶出物が生成
されるとともに晶出物の数も多くなり、最終板の深絞り
加工時において0°/90°耳を生成させて低耳率化に
寄与する熱間圧延上り板のキューブ方位粒の密度を充分
に高めることが困難となり、またリベット成形性の低下
を招いたりする。そこでMn量は0.01〜1.2%の
範囲内とした。
Mn: The addition of Mn improves the tearability of the score portion and improves the openability of Al—Mn— (S
i) has a great effect on formation of Al-Fe-Mn- (Si) -based crystallization and improvement in strength. Mn amount is 0.01
%, The effect is small. On the other hand, if it exceeds 1.2%, the tearability is improved, but a large amount of crystallized matter is generated and the number of crystallized matter increases. It becomes difficult to sufficiently increase the density of the cube-oriented grains of the hot-rolled ascending sheet, which contributes to the generation of 0 ° / 90 ° ears and a low ear ratio, and also causes a reduction in rivet formability. Therefore, the Mn content is set in the range of 0.01 to 1.2%.

【0015】Fe:Feの添加は、スコア部分の引き裂
き性を向上させて開缶性を向上させるAl−Fe−Mn
−(Si)系晶出物の生成に効果を及ぼす。またFe
は、缶蓋材として必要な成形性を向上させる結晶粒微細
化に大きな効果を示し、Feの添加量が多いほど結晶粒
は微細化される。但し、Fe量が0.10%未満ではそ
の効果が現れず、一方0.50%を越えれば、引裂き性
は向上するものの、巨大晶出物が生成されるとともに晶
出物の数も多くなり、最終板の深絞り加工時において0
°/90°耳を生成させて低耳率化に寄与する熱間圧延
上り板のキューブ方位粒の密度を充分に高めることが困
難となり、またリベット成形性の低下を招いたりする。
そこでFe量は0.10〜0.50%の範囲内とした。
Fe: The addition of Fe improves the tearability of the score portion and improves the openability of Al—Fe—Mn.
-Has an effect on the generation of (Si) -based crystals. Also, Fe
Shows a great effect on the refinement of crystal grains for improving the formability required for a can lid material, and the more Fe is added, the more the crystal grains are refined. However, when the Fe content is less than 0.10%, the effect is not exhibited. On the other hand, when the Fe content exceeds 0.50%, although the tearing property is improved, a large crystallized substance is generated and the number of the crystallized substance increases. 0 during deep drawing of the plate
It is difficult to sufficiently increase the density of the cube-oriented grains of the hot-rolled ascending sheet which contributes to lowering of the ear ratio by generating the angle of 90 ° / 90 °, and also lowers the rivet formability.
Therefore, the amount of Fe was set in the range of 0.10 to 0.50%.

【0016】Si:Siによって形成されるMg2 Si
晶出物も、スコア部分の引き裂き性を向上させて開缶性
を向上させる効果がある。但しSi量が0.05%未満
ではその効果が現れず、一方0.40%を越えれば、引
裂き性は向上するものの、巨大晶出物が生成されるとと
もに晶出物の数も多くなり、最終板の深絞り加工時にお
いて0°/90°耳を生成させて低耳率化に寄与する熱
間圧延上り板のキューブ方位粒の密度を充分に高めるこ
とが困難となり、またリベット成形性の低下を招いたり
する。そこでSi量は0.05〜0.40%の範囲内と
した。
Si: Mg 2 Si formed by Si
The crystallized substance also has the effect of improving the tearability of the score portion and improving the can openability. However, if the Si content is less than 0.05%, the effect is not exhibited, while if it exceeds 0.40%, although the tearing property is improved, a large crystallized substance is generated and the number of the crystallized substance increases, and In deep drawing, it is difficult to sufficiently increase the density of cube-oriented grains of the hot-rolled ascending sheet, which generates 0 ° / 90 ° ears and contributes to a low ear ratio, and also reduces the rivet formability. Invite you. Therefore, the amount of Si is set in the range of 0.05 to 0.40%.

【0017】{Fe量(%)+Mn量(%)}/Si量
(%)≦20:Fe量、Mn量およびSi量がこの条件
を満たすことによって、Al−Fe−Mn−Si晶出物
の生成を促進し、晶出物サイズを小径化することができ
る。晶出物サイズが小さくなれば、晶出物の周辺から成
長するランダム方位粒の密度が低下し、そのため0°/
90°耳の生成に寄与するキューブ方位粒を優先的に成
長させ、その結果として製品板の耳率を低く抑えること
が可能となる。そこでこの発明では、Fe、Mn、Si
のそれぞれの添加量を前述のように規定するばかりでな
く、{Fe量(%)+Mn量(%)}/Si量(%)の
値を20以下と規定した。
{Fe content (%) + Mn content (%)} / Si content (%) ≦ 20: When the Fe content, the Mn content and the Si content satisfy these conditions, the Al—Fe—Mn—Si crystallized product is obtained. Can be promoted, and the size of the crystallized product can be reduced. As the crystallite size decreases, the density of the randomly oriented grains growing from the periphery of the crystallite decreases, so that 0 ° /
Cube orientation grains contributing to the generation of 90 ° ears are preferentially grown, and as a result, the ear rate of the product plate can be kept low. Therefore, in the present invention, Fe, Mn, Si
Not only as described above, but also the value of {Fe amount (%) + Mn amount (%)} / Si amount (%) was specified to be 20 or less.

【0018】さらにこの発明で用いる合金には、強度の
より一層の向上のためにCuおよびCrの一方または双
方を添加しても良い。これらの限定理由を次に示す。
Further, one or both of Cu and Cr may be added to the alloy used in the present invention in order to further improve the strength. The reasons for these limitations are as follows.

【0019】Cu:Cuの添加は強度向上に有効であ
り、そこで缶蓋材のより一層の強度向上を図る場合には
Cuを添加しても良い。但し、Cu量が0.01%未満
では上述の効果が得られず、一方0.50%を越えて過
剰に添加すれば、缶蓋材として重要な特性である耐食性
の低下を招くおそれがあり、また加工硬化特性が大きく
なるため、成形性の低下を招くことがある。したがって
Cuを積極的に添加する場合のCu添加量は、0.01
〜0.50%の範囲内とした。なおCuを積極添加しな
い場合でも、不可避的不純物として0.01%未満のC
uが許容されることはもちろんである。
Cu: The addition of Cu is effective in improving the strength. Therefore, in order to further improve the strength of the can lid material, Cu may be added. However, if the Cu content is less than 0.01%, the above-mentioned effects cannot be obtained. On the other hand, if it is added in excess of 0.50%, the corrosion resistance which is an important property as a can lid material may be reduced. In addition, since the work hardening characteristics are increased, the moldability may be reduced. Therefore, the Cu addition amount when Cu is positively added is 0.01%.
-0.50%. Even if Cu is not positively added, less than 0.01% of C
Of course, u is allowed.

【0020】Cr:Crの添加も強度向上に有効であ
り、より一層の強度向上を図る場合にはCrを添加して
も良い。但しCr量が0.05%未満ではその効果が現
れず、一方0.50%を越えれば巨大晶出物が生成され
るとともに晶出物の生成数が多くなり過ぎ、成形性の低
下を招く。そこでCrを積極添加する場合のCr添加量
は0.05〜0.50%の範囲内とした。なおCrを積
極添加しない場合でも、不可避的不純物としての0.0
5%未満のCrが許容されることはもちろんである。
Cr: The addition of Cr is also effective for improving the strength. For further improving the strength, Cr may be added. However, if the Cr content is less than 0.05%, the effect is not exhibited, while if it exceeds 0.50%, giant crystallized substances are generated and the number of crystallized substances is excessively increased, leading to a reduction in formability. . Therefore, when Cr is positively added, the amount of Cr added is set in the range of 0.05 to 0.50%. Even when Cr is not positively added, 0.0 as inevitable impurities is used.
Of course, less than 5% Cr is acceptable.

【0021】以上の各元素のほかはAlおよび不可避的
不純物とすれば良いが、通常のアルミニウム合金では鋳
塊組織の微細化のために微量のTiを添加することがあ
り、この発明の方法で用いる合金についても、微量のT
iを添加することは許容される。但し、Tiの添加量が
多ければ鋳塊組織が羽毛状晶になりにくく、粒状晶が生
成されやすくなる。そして粒状晶の場合には、羽毛状晶
の場合よりも粒界に晶出する晶出物を粗大にさせてしま
うおそれがあり、またTi量が多くなれば巨大晶出物を
生成するとともに、晶出物の生成数を増加させてしま
い、引裂き性は向上するものの、製品板の深絞り加工時
において0°/90°耳を生成させて低耳率化に寄与す
る熱間圧延上り板のキューブ方位粒の密度を充分に高め
ることが困難となり、またリベット成形性の低下を招い
たりする。そこでTi量は0.03%以下とすることが
望ましい。
Other than the above elements, Al and unavoidable impurities may be used. However, in a normal aluminum alloy, a small amount of Ti may be added to refine the ingot structure. Regarding the alloy used, a small amount of T
It is acceptable to add i. However, if the added amount of Ti is large, the ingot structure is unlikely to become feather-like crystals, and granular crystals are easily generated. And in the case of granular crystals, there is a risk that the crystallized substances that crystallize at the grain boundaries will be coarser than in the case of feathery crystals, and if the amount of Ti increases, a large crystallized substance is generated, Although the number of crystallized substances is increased and the tearing property is improved, a 0 ° / 90 ° lug is generated at the time of deep drawing of a product plate, and a hot rolled up plate which contributes to a low lug ratio is produced. It becomes difficult to sufficiently increase the density of the cube-oriented grains, and the rivet formability is reduced. Therefore, it is desirable that the Ti content be 0.03% or less.

【0022】次にこの発明の方法における製造プロセス
について説明する。
Next, the manufacturing process in the method of the present invention will be described.

【0023】先ず、前述の成分組成のアルミニウム合金
を常法に従って溶製し、DC鋳造法などの常法に従って
鋳造する。鋳塊に対しては、均質化処理を行なってから
熱間圧延のための加熱を行なうか、または均質化処理を
兼ねて熱間圧延のための加熱を行なう。これらの加熱の
条件は特に限定されるものではなく、常法に従えば良い
が、熱間圧延直前の加熱は、熱間圧延開始温度以上でか
つ溶融が生じない温度で行なうことはもちろんである。
First, an aluminum alloy having the above-mentioned composition is melted according to a conventional method, and is cast according to a conventional method such as a DC casting method. The ingot is heated for hot rolling after performing the homogenization process, or is heated for hot rolling also serving as the homogenization process. The conditions for these heating are not particularly limited and may be in accordance with a conventional method. Of course, heating immediately before hot rolling is performed at a temperature not lower than the hot rolling start temperature and at which no melting occurs. .

【0024】熱間圧延は粗圧延および仕上げ圧延によっ
て行なうが、この発明の方法の場合、熱間圧延上り板の
再結晶集合組織を適正化して、製品板の低耳率を安定し
て確保するとともに、強度の異方性を少なくするために
重要な工程であり、そのために特に熱間仕上げ圧延の条
件を厳密に規制する必要がある。
The hot rolling is performed by rough rolling and finish rolling. In the case of the method of the present invention, the recrystallization texture of the hot-rolled ascending sheet is optimized to stably secure a low ear rate of the product sheet. At the same time, it is an important step for reducing the anisotropy of strength, and therefore it is necessary to strictly regulate the conditions of hot finish rolling.

【0025】すなわち、熱間仕上げ圧延の条件を適切に
規制すれば、熱間仕上げ圧延およびその後の冷却過程で
再結晶が進行し、かつ再結晶粒や亜結晶粒としてキュー
ブ方位(立方体方位)の結晶粒が生成され、そのキュー
ブ方位粒は製品板において0°/90°耳の生成に寄与
し、結果的に45°耳の生成を制御して低耳率化に寄与
するとともに、強度の異方性の低減に寄与する。そして
熱間仕上げ圧延上り板の再結晶率が体積率で85%以上
で、かつ板厚方向の表層部についてキューブ方位密度が
ランダム方位の5倍以上であることが、最終板における
低耳率を安定して達成しかつ強度の異方性を得るために
必要である。なおキューブ方位密度がランダム方位の5
倍以上とは、板厚表層部についてX線回折を行なって集
合組織を測定し、3次元方位分布関数を計算して、キュ
ーブ方位の方位密度が、ランダム方位の方位密度の5倍
以上であること、すなわち方位の配向がない粉末サンプ
ルをランダム方位とし、そのX線回折強度に対するキュ
ーブ方位のX線回折強度の比が5倍以上であることを意
味する。
That is, if the conditions of the hot finish rolling are appropriately regulated, recrystallization proceeds during the hot finish rolling and the subsequent cooling process, and the cube orientation (cubic orientation) as recrystallized grains or subcrystal grains. Crystal grains are generated, and the cube-oriented grains contribute to the generation of 0 ° / 90 ° ears on the product plate, and consequently control the generation of 45 ° ears to contribute to a low ear ratio and a difference in strength. Contributes to reduction of anisotropy. The recrystallization rate of the hot-finished rolled-up sheet is at least 85% by volume and the cube orientation density of the surface layer in the sheet thickness direction is at least 5 times the random orientation. It is necessary to stably achieve and obtain strength anisotropy. The cube azimuth density is 5 for random azimuth.
The term “double or more” means that the texture is measured by performing X-ray diffraction on the surface layer portion of the sheet thickness, and a three-dimensional azimuth distribution function is calculated. That is, it means that the powder sample having no orientation orientation is a random orientation, and the ratio of the X-ray diffraction intensity of the cube orientation to the X-ray diffraction intensity is 5 times or more.

【0026】熱間仕上げ圧延上り板における再結晶率が
85%未満では、45°耳に寄与する圧延集合組織がか
なり残存するため、0°/90°耳の生成に寄与するキ
ューブ方位の方位密度を充分に高めることが困難とな
る。ここで、熱間仕上げ圧延上り板における板厚表層部
のキューブ方位密度がランダム方位の5倍未満では、そ
の後の冷間圧延において形成される圧延集合組織とのバ
ランスが崩れ、製品板の耳率が高くなって、缶胴との巻
締め不良などが生じるおそれがあるとともに、強度の異
方性が大きくなって、安定した開缶性や落下強度を確保
することが困難となる。なおここで板厚表層部とは、板
表面から深さ200μmの位置までの領域を意味する。
また、上述のように熱間仕上げ圧延板の再結晶率および
キューブ方位密度を達成するためには、熱間仕上げ圧延
の条件として、次の(A)〜(C)の条件が必要であ
る。
If the recrystallization rate of the hot-finished rolled-up sheet is less than 85%, a considerable amount of the rolling texture contributing to the 45 ° ear remains, so that the azimuth density of the cube orientation contributing to the generation of 0 ° / 90 ° ears. Is difficult to sufficiently increase. Here, when the cube orientation density of the surface layer portion of the hot-rolled ascending sheet is less than 5 times the random orientation, the balance with the rolling texture formed in the subsequent cold rolling is lost, and the ear ratio of the product sheet is lost. Is high, and there is a possibility that poor tightening with the can body or the like may occur, and the anisotropy of the strength increases, making it difficult to secure stable openability and drop strength. Here, the sheet thickness portion means a region from the plate surface to a position at a depth of 200 μm.
Further, in order to achieve the recrystallization rate and cube orientation density of the hot-finished rolled sheet as described above, the following conditions (A) to (C) are necessary as the conditions of the hot finish rolling.

【0027】(A) 熱間仕上げ圧延を3〜5パスで行
なう。熱間仕上げ圧延のパス数が3パス未満の場合、所
要の熱間圧延上り板厚を得るために必要な1パスあたり
の圧下率が大きくなり過ぎ、そのため熱間仕上げ圧延に
おいてロールによる剪断変形を多く受けて、熱間圧延上
り後の板厚表層部におけるキューブ方位粒の方位密度が
ランダム方位の5倍を下廻るおそれがある。一方、パス
数が5パスを越えれば、設備コストが増大するとともに
生産性の低下を招く。そこで熱間仕上げ圧延のパス数は
3〜5パスとした。
(A) Hot finish rolling is performed in 3 to 5 passes. If the number of passes of the hot finish rolling is less than 3, the rolling reduction per pass required to obtain the required hot-rolled ascending thickness becomes too large. In many cases, there is a possibility that the orientation density of the cube orientation grains in the surface layer portion of the sheet thickness after hot rolling has fallen below five times the random orientation. On the other hand, if the number of passes exceeds five, the equipment cost increases and productivity decreases. Therefore, the number of passes of the hot finish rolling was set to 3 to 5 passes.

【0028】(B) 熱間仕上げ圧延開始直前の板厚t
1と熱間仕上げ圧延終了後の板厚t2との比t1/t2
を5〜25の範囲内とする。t1/t2の比が5未満で
は、熱間仕上げ圧延中において充分な歪みを蓄積するこ
とができず、キューブ方位粒の成長を助長することがで
きない。一方、t1/t2の比が25を越える場合、熱
間仕上げ圧延中におけるロールによる剪断変形の効果が
大きくなり過ぎ、熱間圧延上り後、板厚表層部における
キューブ方位粒の方位密度がランダム方位の5倍を下廻
るおそれがある。そこで5≦t1/t2≦25と規定し
た。
(B) Sheet thickness t immediately before start of hot finish rolling
1 and the thickness t2 after completion of hot finish rolling t1 / t2
Is in the range of 5 to 25. If the ratio of t1 / t2 is less than 5, sufficient strain cannot be accumulated during hot finish rolling, and growth of cube-oriented grains cannot be promoted. On the other hand, when the ratio of t1 / t2 exceeds 25, the effect of shear deformation by the roll during hot finish rolling becomes too large, and after hot rolling, the orientation density of cube orientation grains in the surface layer portion of the sheet thickness becomes random orientation. May be less than 5 times. Therefore, 5 ≦ t1 / t2 ≦ 25 is defined.

【0029】(C) 熱間仕上げ圧延における最終パス
の圧下率を20〜70%の範囲内、最終パスの圧延速度
を200m/分以上とする。熱間仕上げ圧延における最
終パスの圧下率が20%未満では、充分な歪みを蓄積す
ることが困難なため、0°/90°耳に寄与するキュー
ブ方位粒の成長を助長することが困難となる。一方、熱
間仕上げ圧延における最終パスの圧下率が70%を越え
る場合、板の表面品質が低下してしまったり、板厚表層
部におけるキューブ方位粒の方位密度がランダム方位の
5倍を下廻ってしまうおそれがある。また熱間仕上げ圧
延の最終パスにおける圧延速度が200m/分未満であ
れば、熱間仕上げ圧延による蓄積歪みが小さくなり、か
つ熱間仕上げ圧延中の温度低下が著しくなるため、熱間
仕上げ圧延上り板のキューブ方位粒の体積率を高めるこ
とが困難となる。そこで熱間仕上げ圧延における最終パ
スの圧下率を20〜70%とし、同じく最終パスの圧延
速度を200m/分以上と規定した。なお熱間仕上げ圧
延最終パスの圧延速度の上限は特に限定しないが、50
0m/分以下とするのが通常である。
(C) The reduction rate of the final pass in the hot finish rolling is within the range of 20 to 70%, and the rolling speed of the final pass is 200 m / min or more. If the rolling reduction of the final pass in hot finish rolling is less than 20%, it is difficult to accumulate sufficient strain, and it is difficult to promote the growth of cube-oriented grains that contribute to 0 ° / 90 ° ears. . On the other hand, when the rolling reduction of the final pass in the hot finish rolling exceeds 70%, the surface quality of the sheet is reduced, or the orientation density of the cube orientation grains in the surface layer portion of the sheet is less than 5 times the random orientation. There is a possibility that it will. If the rolling speed in the final pass of the hot finish rolling is less than 200 m / min, the accumulated strain due to the hot finish rolling becomes small and the temperature drop during the hot finish rolling becomes remarkable. It becomes difficult to increase the volume fraction of the cube-oriented grains of the plate. Therefore, the rolling reduction of the final pass in the hot finish rolling was set to 20 to 70%, and the rolling speed of the final pass was also specified to be 200 m / min or more. The upper limit of the rolling speed in the final pass of the hot finish rolling is not particularly limited.
Usually, it is 0 m / min or less.

【0030】なお熱間粗圧延については特に限定される
ものではなく、常法に従って行なえば良いが、一般には
熱間粗圧延開始温度を400〜580℃程度とし、粗圧
延終了温度は330〜480℃程度とし、さらに粗圧延
開始時の板厚t3と粗圧延終了板厚(=仕上げ圧延開始
直前の板厚)t2との比t3/t2は10〜45程度と
することが好ましい。
The hot rough rolling is not particularly limited and may be carried out according to a conventional method. Generally, the hot rough rolling start temperature is about 400 to 580 ° C. and the rough rolling end temperature is 330 to 480. C., and the ratio t3 / t2 of the plate thickness t3 at the start of rough rolling to the plate thickness at the end of rough rolling (= the plate thickness immediately before the start of finish rolling) is preferably about 10 to 45.

【0031】また熱間仕上げ圧延における前記(A)〜
(C)以外の条件についても特に限定しないが、仕上げ
圧延開始温度については300〜460℃程度、上り温
度は270〜340℃程度とすることが好ましい。
In the hot finish rolling, the above (A) to
The conditions other than (C) are not particularly limited, but the finish rolling start temperature is preferably about 300 to 460 ° C, and the ascending temperature is preferably about 270 to 340 ° C.

【0032】以上のような熱間圧延によって得られた再
結晶率が85%以上でかつ板厚表層部のキューブ方位の
方位密度がランダム方位の5倍以上となっている熱延板
に対しては、さらに最終冷間圧延を行なって所要の板
厚、強度に仕上げる。
A hot rolled sheet having a recrystallization ratio of 85% or more obtained by hot rolling as described above and an orientation density of the cube orientation at the surface portion of the sheet thickness of at least 5 times the random orientation is obtained. Is further subjected to final cold rolling to obtain a required thickness and strength.

【0033】最終冷間圧延は、40〜95%の圧延率で
行なう必要がある。最終冷間圧延の圧延率が40%未満
では、缶蓋材として必要な強度が得られず、一方95%
を越えれば、冷間圧延によって導入される転位密度が多
くなり過ぎて、強度の異方性が増大したり、冷間圧延中
の板のエッジ割れが生じやすくなるとともに、リベット
成形の際の材料の割れが生じやすくなって、缶として内
容物を長期間良好に保存することが困難となるおそれが
ある。さらに、95%を越えて最終冷間圧延率を極度に
高めた場合、圧延集合組織の発達が顕著となって、製品
板における45°耳が高くなって、低耳率を確保するこ
とが困難となってしまう。そこで最終冷間圧延の圧延率
は40〜95%の範囲内とした。なお成形性を確保する
ためには、冷間圧延中の板の発熱により最終冷間圧延上
り時の板の到達温度が100℃以上となるように圧延す
ることが望ましく、特に後述するような最終冷間圧延後
の最終焼鈍(仕上げ焼鈍)を行なわない場合には、最終
冷間圧延上り時の板到達温度を100℃以上にすること
が成形性の向上に有効である。
The final cold rolling needs to be performed at a rolling rate of 40 to 95%. If the rolling reduction of the final cold rolling is less than 40%, the strength required as a can lid material cannot be obtained, while 95%
If the temperature exceeds the limit, the dislocation density introduced by the cold rolling becomes too large, the anisotropy of the strength increases, and the edge crack of the plate during the cold rolling tends to occur, and the material at the time of rivet forming is formed. Cracks are likely to occur, and it may be difficult to store the contents as a can in a good condition for a long period of time. Further, when the final cold rolling reduction is extremely increased to more than 95%, the development of the rolling texture becomes remarkable, the 45 ° ear in the product plate becomes high, and it is difficult to secure a low ear ratio. Will be. Therefore, the rolling reduction in the final cold rolling is set in the range of 40 to 95%. In order to ensure formability, it is desirable to perform rolling so that the temperature of the sheet at the time of final cold rolling is 100 ° C. or higher due to heat generation of the sheet during cold rolling. When final annealing (finish annealing) after cold rolling is not performed, it is effective to improve the formability by setting the temperature at which the sheet reaches 100 ° C. or more at the time of final cold rolling.

【0034】上述のように最終冷間圧延によって所要の
板厚、強度とした後には、これをそのまま缶蓋材とする
ことができるが、場合によっては請求項3で規定してい
るように、最終冷間圧延後に100〜240℃の範囲内
の温度で10時間以下の最終焼鈍(仕上げ焼鈍)を施し
ても良い。このような最終焼鈍は、最終冷間圧延によっ
て導入された転位を消滅させる効果を示す。したがって
最終焼鈍を施すことにより、最終冷間圧延で生じた最大
耐力差を低減し、またリベット成形性をさらに向上させ
ることができる。ここで、最終焼鈍温度が100℃未満
の温度では上述の効果が得られず、一方、240℃を越
えれば回復の進行が大き過ぎ、強度不足を招く。また最
終焼鈍の加熱時間が10時間を越えれば、生産性の低下
を招く。そこで最終冷間圧延後に最終焼鈍を行なう場合
の焼鈍条件は、100〜240℃の温度で10時間以下
と規定した。なお最終焼鈍の加熱時間の下限は特に規定
しないが、一般には1時間程度以上で上記の効果を得る
ことができる。
After the required thickness and strength are obtained by the final cold rolling as described above, this can be used as a can lid material as it is, but in some cases, as defined in claim 3, After the final cold rolling, final annealing (finish annealing) at a temperature in the range of 100 to 240 ° C. for 10 hours or less may be performed. Such final annealing has an effect of eliminating dislocations introduced by final cold rolling. Therefore, by performing the final annealing, it is possible to reduce the maximum proof stress difference generated in the final cold rolling and further improve the rivet formability. Here, if the final annealing temperature is lower than 100 ° C., the above-mentioned effects cannot be obtained. On the other hand, if the final annealing temperature is higher than 240 ° C., the progress of recovery is too large, resulting in insufficient strength. If the heating time of the final annealing exceeds 10 hours, the productivity will be reduced. Therefore, the annealing conditions for performing the final annealing after the final cold rolling were specified to be 10 hours or less at a temperature of 100 to 240 ° C. Although the lower limit of the heating time of the final annealing is not particularly defined, the above effect can be generally obtained in about 1 hour or more.

【0035】[0035]

【実施例】表1の合金No.1〜No.9に示す種々の
化学成分のAl合金鋳塊を、表2の製造符号A〜Rに示
す種々のプロセス条件で処理し、最終板厚0.25mm
に仕上げた。一般に缶蓋材は焼付け塗装後に成形加工さ
れるため、表2に示す各条件で製造した各板を塗装し
て、250℃×24secで焼付け処理を施した後に、
耳率、機械的性質特に強度異方性、リベット成形性およ
び引裂き性を調査した。その結果を表3に示す。なお耳
率は6%を越えた場合に不合格として×印を付し、強度
異方性については、圧延方向に対して0°、45°、9
0°の各方向の耐力を調べてその最大差(最大耐力差)
を求め、その値が25MPaを越えた場合に不合格とし
て×印を付した。なおまた、コーヒー缶などとして用い
られる負圧缶用の蓋材には、ビールや炭酸飲料などに用
いられる陽圧缶と比較すれば強度に関する厳しい要求は
されないのが通常であるが、圧延方向に対して0°、4
5°、90°方向のいずれの耐力も210N/mm2
下廻った場合は不合格として×印を付した。さらにリベ
ット成形性の評価については、リベット成形を行なった
缶蓋を200個作製し、目視により割れの有無を調査し
て、1個でも割れが認められたものは不合格として×印
を付した。また引裂き性については、塗装焼付け処理を
施した板を用いて圧延方向に沿って引裂き、その時の引
裂き荷重を従来材と比較して評価し、従来材より劣る場
合を不合格として×印を付した。
EXAMPLE Alloy No. 1 in Table 1 was used. 1 to No. 9 were processed under various process conditions indicated by production codes A to R in Table 2 to obtain a final sheet thickness of 0.25 mm.
Finished. In general, since the can lid material is formed after baking coating, each plate manufactured under the conditions shown in Table 2 is coated and baked at 250 ° C. × 24 sec.
Ear ratio, mechanical properties, especially strength anisotropy, rivet formability and tearability were investigated. Table 3 shows the results. When the ear ratio exceeded 6%, the sample was rejected and marked with a cross, and the strength anisotropy was 0 °, 45 °, 9 ° with respect to the rolling direction.
Check the proof stress in each direction at 0 ° and determine the maximum difference (maximum proof stress difference)
Was determined, and when the value exceeded 25 MPa, the sample was rejected and marked with x. In addition, the cover material for negative pressure cans used as coffee cans and the like is generally not strictly required in terms of strength as compared to positive pressure cans used for beer, carbonated beverages, etc., but in the rolling direction. 0 °, 4
When both the proof stresses in the directions of 5 ° and 90 ° were less than 210 N / mm 2 , the specimen was rejected and marked with a cross. Furthermore, regarding the evaluation of rivet formability, 200 rivet-formed can lids were produced, and the presence or absence of cracks was visually inspected. If at least one was found to be cracked, it was marked as unacceptable. . In addition, tearability was evaluated along the rolling direction using a plate that had been subjected to paint baking treatment, and the tearing load at that time was evaluated in comparison with the conventional material. did.

【0036】[0036]

【表1】 [Table 1]

【0037】[0037]

【表2】 [Table 2]

【0038】[0038]

【表3】 [Table 3]

【0039】表1〜表3において、製造符号A,B,
G,J〜Mは、いずれもこの発明で規定する成分組成範
囲内の合金(発明合金)を用い、かつ製造プロセスとし
てこの発明で規定する条件範囲内のプロセス(発明プロ
セス)を適用したものであるが、これらの本発明例で
は、いずれも耳率が低くかつ強度異方性も少なく、さら
にリベット成形性および引裂き性も良好であって、総合
的に缶蓋材として優れていることが判明した。
In Tables 1 to 3, the serial numbers A, B,
G and J to M are all alloys (inventive alloys) within the component composition range specified in the present invention, and a process (inventive process) within the condition range specified in the present invention is applied as a manufacturing process. However, all of these examples of the present invention have a low ear ratio, low strength anisotropy, good rivet formability and tearability, and have been found to be excellently comprehensive as a can lid material. did.

【0040】一方製造符号C,D,E,F,H,Iはい
ずれも発明合金を用いたが、製造プロセス条件がこの発
明で規定するプロセス(発明プロセス)の条件を外れた
ものであり、これらの場合は、少なくとも1以上の特性
が劣っていた。具体的には、製造符号Cは熱間仕上げ圧
延後の再結晶率が低く、かつ板厚表層部のキューブ方位
密度も低かった例であるが、この場合には耳率が高くな
ってしまった。また製造符号Dは熱間仕上げ圧延のパス
数が少なく、熱間仕上げ圧延開始時と終了後の板厚の比
が25を越え、板厚表層部のキューブ方位密度が低くな
った例であるが、この場合も耳率が高くなってしまっ
た。また製造符号Eは最終冷間圧延率が高過ぎた例であ
るが、この場合は耳率が高いばかりでなく、最大耐力差
が大きくて強度異方性に劣り、またリベット成形性にも
劣っていた。さらに製造符号Fは最終冷間圧延まではこ
の発明のプロセス条件に従ったが、最終冷間圧延後の最
終焼鈍の温度が高過ぎた例であり、この場合は各方向の
強度が低く、缶蓋材として強度不足となった。また製造
符号Hは熱間仕上げ圧延最終パスの圧下率が低く、熱間
仕上げ圧延後の再結晶率が低くかつ板厚表層部のキュー
ブ方位密度も低かった例であるが、この場合は、耳率が
高くなってしまった。そしてまた製造符号Iは熱間仕上
げ圧延最終パスの圧延速度が低過ぎ、熱間仕上げ圧延後
の再結晶率が低く、かつ板厚表層部のキューブ方位密度
が低過ぎた例であるが、この場合は耳率が高くなってし
まった。
On the other hand, the production codes C, D, E, F, H, and I all used the invention alloy, but the production process conditions deviated from the conditions of the process (invention process) defined in the present invention. In these cases, at least one or more properties were inferior. Specifically, the production code C is an example in which the recrystallization rate after the hot finish rolling is low and the cube orientation density of the surface layer portion of the sheet thickness is low, but in this case, the ear ratio is increased. . Production code D is an example in which the number of passes of the hot finish rolling is small, the ratio of the sheet thickness at the start and end of the hot finish rolling exceeds 25, and the cube orientation density of the surface layer portion of the sheet thickness is low. In this case, too, the ear rate was high. Production code E is an example in which the final cold rolling reduction is too high. In this case, not only the ear ratio is high, but also the maximum yield strength difference is large and the strength anisotropy is poor, and the rivet formability is also poor. I was Further, the production code F was in accordance with the process conditions of the present invention until the final cold rolling, but is an example in which the temperature of the final annealing after the final cold rolling was too high. In this case, the strength in each direction was low, Insufficient strength as lid material. Production code H is an example in which the reduction rate of the final pass of the hot finish rolling is low, the recrystallization rate after the hot finish rolling is low, and the cube orientation density of the surface layer portion of the sheet thickness is low. The rate has increased. The production code I is an example in which the rolling speed of the final pass of the hot finish rolling is too low, the recrystallization rate after the hot finish rolling is low, and the cube orientation density of the surface layer portion is too low. If you have a high ear rate.

【0041】また製造符号N〜Rは、いずれも製造プロ
セスはこの発明で規定する条件を満たしたが、合金とし
てこの発明で規定する成分組成範囲を外れるもの(比較
合金)を用いた例であり、この場合もいずれかの特性が
劣っていた。具体的には、製造符号NはMn量が過剰な
合金No.5を用いた例であるが、この場合は熱間仕上
げ圧延後の板厚表層部のキューブ方位密度が低く、製品
板の耳率が高くなるとともにリベット成形性も劣ってし
まった。また製造符号OはMg量が過剰で(Fe+M
n)/Si比も20を上廻った合金No.6を用いた例
であるが、この場合も熱間仕上げ圧延後の板厚表層部の
キューブ方位密度が低く、製品板の耳率が高くなってし
まった。また製造符号PはFe量が過剰である合金N
o.7を用いた例であるが、この場合も熱間仕上げ圧延
後の板厚表層部のキューブ方位密度が低く、製品板の耳
率が高くなるとともにリベット成形性に劣ってしまっ
た。さらに製造符号QはTi量が過剰な合金No.8を
用いた例であるが、この場合も熱間仕上げ圧延後の板厚
表層部のキューブ方位密度が低く、耳率が高くなるとと
もにリベット成形性も劣ってしまった。そしてまた製造
符号RはSi量が過剰な合金No.9を用いた例である
が、この場合は引裂き性に劣っていた。
The production codes N to R are examples in which the production process satisfies the conditions specified in the present invention, but the alloys which are out of the component composition range specified in the present invention (comparative alloys) are used. Also, in this case, one of the characteristics was inferior. Specifically, the production code N indicates the alloy No. having an excessive Mn content. In this case, the cube orientation density of the sheet thickness surface layer after hot finish rolling was low, the ear ratio of the product sheet was high, and the rivet formability was also inferior. The production code O has an excessive Mg content (Fe + M
n) / Si ratio of alloy no. In this case, the cube orientation density of the surface layer portion after the hot finish rolling was low, and the edge ratio of the product plate was high. The production code P indicates the alloy N having an excessive amount of Fe.
o. In this case, too, the cube orientation density of the surface layer portion after the hot finish rolling was low, the ear ratio of the product plate was high, and the rivet formability was poor. Further, the production code Q indicates that the alloy No. In this example, the cube orientation density of the surface layer portion after the hot finish rolling was low, the ear ratio was high, and the rivet formability was also poor. Further, the production code R indicates the alloy No. having an excessive amount of Si. This is an example using No. 9, but in this case, the tearing property was poor.

【0042】[0042]

【発明の効果】この発明の缶蓋用アルミニウム合金硬質
板の製造方法によれば、耳率が低くかつ強度の異方性も
少なく、しかもリベット成形性および引き裂き性も優れ
た缶蓋材を確実かつ安定して得ることができ、そのため
この発明の方法により得られた板を缶蓋に使用すれば、
缶胴材との巻き締め加工の際において巻き締め不良が生
じるおそれが少なく、また強度の異方性が少ないため缶
を落下させた衝撃によりスコア部分から割れるおそれも
少なく、さらにはリベット成形時において割れが発生す
るおそれも少なく、しかも開缶性も良好となるなど、優
れた効果を発揮することができ、特にコーヒー、紅茶な
どの負圧缶用のステイオンタブ方式の缶の缶蓋に最適と
なる。
According to the method for manufacturing an aluminum alloy hard plate for a can lid of the present invention, a can lid material having a low ear ratio, a small anisotropy in strength, and excellent rivet formability and tearability can be surely obtained. And can be obtained stably, therefore, if the plate obtained by the method of the present invention is used for a can lid,
When tightening with the can body, there is little risk of poor tightening, and there is little anisotropy in strength, so there is little risk of breaking from the score part due to the impact of dropping the can, and furthermore, at the time of rivet forming Excellent effect, such as a low risk of cracking and good openability.Especially suitable for the can lid of a stainless steel tub type can for negative pressure cans such as coffee and tea. Becomes

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 673 C22F 1/00 673 683 683 685 685Z 686 686A 694 694A 694B 694Z ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 673 C22F 1/00 673 683 683 685 685Z 686 686A 694 694A 694B 694Z

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Mg0.8〜3.0%(mass%、以
下同じ)、Mn0.01〜1.2%、Fe0.10〜
0.50%、Si0.05〜0.40%を含有し、かつ
{Fe量(%)+Mn量(%)}/Si量(%)の値が
20以下であり、残部がAlおよび不可避的不純物より
なる合金を素材とし、その鋳塊に対して粗圧延および仕
上げ圧延からなる熱間圧延を行なうにあたり、粗圧延終
了後の仕上げ圧延のパス数を3パス以上、5パス以下の
範囲内として、仕上げ圧延開始直前の板厚t1と仕上げ
圧延終了後の板厚t2との比t1/t2を5〜25の範
囲内とし、さらに仕上げ圧延における最終パスの圧下率
を20〜70%の範囲内、最終パスの圧延速度を200
m/分以上として熱間圧延を終了させて、再結晶率が8
5%以上でかつ板厚表層部における結晶粒のキューブ方
位の方位密度がランダム方位の5倍以上である熱間圧延
上り板を得、その後、40〜95%の圧延率で最終冷間
圧延を行なうことを特徴とする、缶蓋用アルミニウム合
金硬質板の製造方法。
1. Mg 0.8 to 3.0% (mass%, the same applies hereinafter), Mn 0.01 to 1.2%, Fe 0.10 to 0.10
0.50%, Si 0.05 to 0.40%, and the value of {Fe amount (%) + Mn amount (%)} / Si amount (%) is 20 or less, and the balance is Al and inevitable In the case of using an alloy made of impurities as a raw material and performing hot rolling comprising rough rolling and finish rolling on the ingot, the number of finish rolling passes after the completion of rough rolling is set in a range of 3 or more and 5 or less. The ratio t1 / t2 between the thickness t1 immediately before the start of finish rolling and the thickness t2 after finish rolling is in the range of 5 to 25, and the rolling reduction of the final pass in finish rolling is in the range of 20 to 70%. , Set the final pass rolling speed to 200
m / min or more to end the hot rolling, and the recrystallization rate becomes 8
A hot-rolled ascending plate having an orientation density of 5% or more and a cube orientation of crystal grains at a surface layer portion of the sheet thickness being 5 times or more of a random orientation is obtained, and then subjected to final cold rolling at a rolling ratio of 40 to 95%. A method for producing an aluminum alloy hard plate for a can lid, which is performed.
【請求項2】 Mg0.8〜3.0%、Mn0.01〜
1.2%、Fe0.10〜0.50%、Si0.05〜
0.40%を含有し、かつ{Fe量(%)+Mn量
(%)}/Si量(%)の値が20以下であり、さらに
Cu0.01〜0.50%、Cr0.05〜0.50%
のうちから選ばれた1種または2種を含有し、しかもT
i量が0.03%以下に規制され、残部がAlおよび不
可避的不純物よりなる合金を素材とし、その鋳塊に対し
て粗圧延および仕上げ圧延からなる熱間圧延を行なうに
あたり、粗圧延終了後の仕上げ圧延のパス数を3パス以
上、5パス以下の範囲内として、仕上げ圧延開始直前の
板厚t1と仕上げ圧延終了後の板厚t2との比t1/t
2を5〜25の範囲内とし、さらに仕上げ圧延における
最終パスの圧下率を20〜70%の範囲内、最終パスの
圧延速度を200m/分以上として熱間圧延を終了させ
て、再結晶率が85%以上でかつ板厚表層部における結
晶粒のキューブ方位の方位密度がランダム方位の5倍以
上である熱間圧延上り板を得、その後、40〜95%の
圧延率で最終冷間圧延を行なうことを特徴とする、缶蓋
用アルミニウム合金硬質板の製造方法。
2. Mg 0.8 to 3.0%, Mn 0.01 to 2.
1.2%, Fe 0.10-0.50%, Si 0.05-
0.40%, and the value of {Fe content (%) + Mn content (%)} / Si content (%) is 20 or less, and further 0.01 to 0.50% Cu and 0.05 to 0 Cr. .50%
Containing one or two selected from the group consisting of
When the amount of i is regulated to 0.03% or less and the balance is made of an alloy consisting of Al and unavoidable impurities, the ingot is subjected to hot rolling including rough rolling and finish rolling. The number of passes of the finish rolling is set within the range of 3 or more and 5 or less, and the ratio t1 / t between the thickness t1 immediately before the start of the finish rolling and the thickness t2 after the finish rolling is completed.
2 was set in the range of 5 to 25, the rolling reduction in the final pass in the finish rolling was set in the range of 20 to 70%, the rolling speed in the final pass was set to 200 m / min or more, and the hot rolling was terminated. Is 85% or more and the orientation density of the cube orientation of the crystal grains in the surface layer portion of the sheet thickness is 5 times or more of the random orientation, and then the final cold rolling is performed at a rolling reduction of 40 to 95%. A method for producing an aluminum alloy hard plate for a can lid.
【請求項3】 請求項1、請求項2のいずれかに記載の
缶蓋用アルミニウム合金硬質板の製造方法において、 前記最終冷間圧延の後、さらに100〜240℃の範囲
内の温度で10時間以内の最終焼鈍を施すことを特徴と
する、缶蓋用アルミニウム合金硬質板の製造方法。
3. The method for producing an aluminum alloy hard plate for a can lid according to claim 1, wherein the final cold rolling is further performed at a temperature within a range of 100 to 240 ° C. A method for producing an aluminum alloy hard plate for a can lid, wherein the final annealing is performed within a period of time.
JP2000019512A 2000-01-28 2000-01-28 Manufacturing method of aluminum alloy hard plate for can lid Expired - Fee Related JP3998387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000019512A JP3998387B2 (en) 2000-01-28 2000-01-28 Manufacturing method of aluminum alloy hard plate for can lid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000019512A JP3998387B2 (en) 2000-01-28 2000-01-28 Manufacturing method of aluminum alloy hard plate for can lid

Publications (2)

Publication Number Publication Date
JP2001214248A true JP2001214248A (en) 2001-08-07
JP3998387B2 JP3998387B2 (en) 2007-10-24

Family

ID=18546200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000019512A Expired - Fee Related JP3998387B2 (en) 2000-01-28 2000-01-28 Manufacturing method of aluminum alloy hard plate for can lid

Country Status (1)

Country Link
JP (1) JP3998387B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036305A (en) * 2004-07-29 2006-02-09 Toyo Aluminium Kk Packaging material, and package using the same
JP2007070711A (en) * 2005-09-09 2007-03-22 Furukawa Sky Kk High-strength aluminum alloy for cap and method for producing the same
JP2007277587A (en) * 2006-04-03 2007-10-25 Furukawa Sky Kk Aluminum alloy rolled sheet for battery case having excellent multistage workability, and its production method
JP2007277588A (en) * 2006-04-03 2007-10-25 Furukawa Sky Kk Aluminum alloy rolled sheet for battery case having excellent multistage workability, and its production method
JP2011132592A (en) * 2009-12-25 2011-07-07 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for ring-pull cap and method for manufacturing the sheet
JP2013023757A (en) * 2011-07-25 2013-02-04 Sumitomo Light Metal Ind Ltd Aluminum alloy plate for negative pressure can lid, and method of manufacturing the same
WO2015041021A1 (en) * 2013-09-20 2015-03-26 株式会社神戸製鋼所 Aluminum alloy sheet for negative-pressure can lid
JP2016160511A (en) * 2015-03-04 2016-09-05 株式会社神戸製鋼所 Aluminum alloy sheet for negative pressure can-top
CN108220698A (en) * 2018-01-12 2018-06-29 北京科技大学 A kind of preparation method of vehicle-body outer panel high formability aluminum alloy composite board
CN108220699A (en) * 2018-01-12 2018-06-29 北京科技大学 The preparation method of body structural member High-strength high-plasticity aluminum alloy double-layer composite board

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006036305A (en) * 2004-07-29 2006-02-09 Toyo Aluminium Kk Packaging material, and package using the same
JP4562449B2 (en) * 2004-07-29 2010-10-13 東洋アルミニウム株式会社 Packaging material and package using the same
JP2007070711A (en) * 2005-09-09 2007-03-22 Furukawa Sky Kk High-strength aluminum alloy for cap and method for producing the same
JP2007277587A (en) * 2006-04-03 2007-10-25 Furukawa Sky Kk Aluminum alloy rolled sheet for battery case having excellent multistage workability, and its production method
JP2007277588A (en) * 2006-04-03 2007-10-25 Furukawa Sky Kk Aluminum alloy rolled sheet for battery case having excellent multistage workability, and its production method
JP2011132592A (en) * 2009-12-25 2011-07-07 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for ring-pull cap and method for manufacturing the sheet
JP2013023757A (en) * 2011-07-25 2013-02-04 Sumitomo Light Metal Ind Ltd Aluminum alloy plate for negative pressure can lid, and method of manufacturing the same
WO2015041021A1 (en) * 2013-09-20 2015-03-26 株式会社神戸製鋼所 Aluminum alloy sheet for negative-pressure can lid
JP2015059251A (en) * 2013-09-20 2015-03-30 株式会社神戸製鋼所 Aluminum alloy sheet for negative-pressure can lid
JP2016160511A (en) * 2015-03-04 2016-09-05 株式会社神戸製鋼所 Aluminum alloy sheet for negative pressure can-top
WO2016140054A1 (en) * 2015-03-04 2016-09-09 株式会社神戸製鋼所 Aluminum alloy sheet for negative-pressure can lids
CN107406923A (en) * 2015-03-04 2017-11-28 株式会社神户制钢所 Negative pressure cover aluminium alloy plate
CN108220698A (en) * 2018-01-12 2018-06-29 北京科技大学 A kind of preparation method of vehicle-body outer panel high formability aluminum alloy composite board
CN108220699A (en) * 2018-01-12 2018-06-29 北京科技大学 The preparation method of body structural member High-strength high-plasticity aluminum alloy double-layer composite board
CN108220699B (en) * 2018-01-12 2019-10-22 北京科技大学 The preparation method of body structural member High-strength high-plasticity aluminum alloy double-layer composite board

Also Published As

Publication number Publication date
JP3998387B2 (en) 2007-10-24

Similar Documents

Publication Publication Date Title
JP5898426B2 (en) Aluminum alloy plate for negative pressure can lid and manufacturing method thereof
JP4950495B2 (en) Manufacturing method of aluminum alloy plate for PP cap
JP3998387B2 (en) Manufacturing method of aluminum alloy hard plate for can lid
JP5391234B2 (en) Aluminum alloy plate for PP cap
JP3726893B2 (en) Method for producing an aluminum alloy plate used for a lid for a positive pressure can excellent in rivet formability, score workability and blow-up resistance
JP2783311B2 (en) Al alloy plate for negative pressure can stay tab type end with excellent openability and method of manufacturing the same
JP2002105574A (en) Aluminum alloy hard sheet for can peever and its production method
JP5480688B2 (en) Aluminum alloy plate for PP cap and method for producing the same
JP4077997B2 (en) Manufacturing method of aluminum alloy hard plate for can lid
JP3904868B2 (en) Aluminum alloy can lid material with excellent formability used for non-carbonated beverages, food cans and daily miscellaneous goods, and its manufacturing method
JP2004183045A (en) Aluminum alloy sheet for coated tab, and its production method
JP2745254B2 (en) Aluminum alloy hard plate excellent in local overhang property and method of manufacturing the same
JPH055149A (en) Hard aluminum alloy sheet for forming and its production
JP2953592B2 (en) Lid for aluminum can with stay-on tub method and method for producing the same
JP3853103B2 (en) Method for producing aluminum alloy sheet with excellent openability
JP3248803B2 (en) Al alloy plate for full open end with excellent openability and method for producing the same
JP5335189B2 (en) Aluminum alloy plate for cap and method for producing the same
JP4599057B2 (en) Aluminum alloy hard plate for can end having excellent cold rollability and anisotropy and method for producing the same
JP4335035B2 (en) Aluminum alloy plate for can end having excellent anisotropy and method for producing the same
JP2579865B2 (en) Aluminum alloy plate for negative pressure can stay tab type end and its manufacturing method
JPH1112676A (en) Hard aluminum alloy sheet for forming, can lid using the hard sheet, and production of the hard sheet
JP4392263B2 (en) Aluminum alloy plate for packaging container end and manufacturing method thereof
JP2599450B2 (en) Manufacturing method of aluminum alloy plate for can end
JP3733566B2 (en) Manufacturing method of aluminum alloy coated tab material with excellent bending workability
JPH04325659A (en) Manufacture of aluminum alloy hard sheet for forming excellent in tearing property

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070807

R150 Certificate of patent or registration of utility model

Ref document number: 3998387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees