JP2015050133A - Conductive paste and substrate with conductive film - Google Patents

Conductive paste and substrate with conductive film Download PDF

Info

Publication number
JP2015050133A
JP2015050133A JP2013182783A JP2013182783A JP2015050133A JP 2015050133 A JP2015050133 A JP 2015050133A JP 2013182783 A JP2013182783 A JP 2013182783A JP 2013182783 A JP2013182783 A JP 2013182783A JP 2015050133 A JP2015050133 A JP 2015050133A
Authority
JP
Japan
Prior art keywords
component
average particle
metal particles
conductive paste
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013182783A
Other languages
Japanese (ja)
Other versions
JP6197504B2 (en
Inventor
平社 英之
Hideyuki Hirakoso
英之 平社
米田 貴重
Takashige Yoneda
貴重 米田
陽平 柏田
Yohei Kashiwada
陽平 柏田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2013182783A priority Critical patent/JP6197504B2/en
Priority to TW103124441A priority patent/TWI631160B/en
Priority to CN201410448468.7A priority patent/CN104425054B/en
Priority to KR1020140117539A priority patent/KR102195144B1/en
Publication of JP2015050133A publication Critical patent/JP2015050133A/en
Application granted granted Critical
Publication of JP6197504B2 publication Critical patent/JP6197504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks

Abstract

PROBLEM TO BE SOLVED: To provide a conductive paste capable of forming a conductive film having good conductivity and excellent durability, and to provide a substrate with a conductive film formed by using such a conductive paste.SOLUTION: The conductive paste contains (A) metal particles having a volume resistivity of 10 μΩ cm or less and an average particle diameter of 1-15 μm, (B) base metal particles having an average particle diameter of 0.1-3 μm and an oxidation-reduction potential of -440 to 320 mV (SHE), and (C) a binder resin. The base metal particles as the component (B) are contained in an amount of 0.01-3 pts.mass based on 100 pts.mass of the metal particles as the component (A).

Description

本発明は、導電性ペーストおよびこれを用いた導電膜付き基材に関する。   The present invention relates to a conductive paste and a substrate with a conductive film using the same.

従来から、電子部品やプリント配線基板等の配線導体の形成に、導電性の高い金属粒子を含有する導電性ペーストを用いる方法が知られている。このうち、プリント配線基板の製造は、絶縁基材上に導電性ペーストを所望のパターン形状に塗布し硬化して、配線パターンをなす導電膜を形成して行われている。   Conventionally, a method using a conductive paste containing highly conductive metal particles is known for forming wiring conductors such as electronic components and printed wiring boards. Among these, a printed wiring board is manufactured by applying a conductive paste in a desired pattern shape on an insulating base material and curing it to form a conductive film forming a wiring pattern.

上記の目的で使用される導電性ペーストが具備すべき点は、(1)良好な導電性を有すること、(2)スクリーン印刷、凹版印刷が容易であること、(3)絶縁基体上への塗膜の密着性がよいこと、(4)細線回路が形成できること、などである。
これらを満足するため、導電性ペーストは、銅や銀といった固有抵抗値が低い金属粒子、バインダ樹脂、分散剤としての飽和脂肪酸又は不飽和脂肪酸、あるいはこれらの金属塩を所要量含有する(特許文献1参照)。
The conductive paste used for the above purpose should have (1) good conductivity, (2) easy screen printing and intaglio printing, and (3) application on an insulating substrate. That is, the adhesiveness of the coating film is good, and (4) a fine wire circuit can be formed.
In order to satisfy these requirements, the conductive paste contains metal particles having a low specific resistance value such as copper and silver, a binder resin, a saturated fatty acid or an unsaturated fatty acid as a dispersant, or a metal salt thereof (Patent Document). 1).

上記した構成の導電性ペーストによって導電膜を形成することで、良好な導電性や密着性を確保することはできる。しかしながら、初期の導電性は良好であるものの、耐酸化性が弱いために導電耐久性に欠ける。そのため、25℃の大気中に30日間放置するだけで比抵抗が50%も上昇するように経時的に導電性が損なわれるという問題点があった。
耐酸化性を向上させる目的で銅や銀といった固有抵抗値が低い金属粒子をニッケルでコートすること(特許文献2参照)や、ニッケル粉を添加剤としてペーストに加えることが提案されている(特許文献3参照)。
しかしながら、特許文献2に記載の導電性ペーストは、金属粒子の表面にニッケルを無電解めっきで薄くコートするという複雑なプロセスが存在するために高コストになるという問題がある。また、銅や銀と比較してニッケルは卑な金属であるため、ニッケルの部分で選択的に酸化が進む。この結果として、金属粒子表面には酸化されたニッケルが存在することになり、導電性が損なわれてしまうという問題がある。また、特許文献3に記載の導電性ペーストは、固有抵抗値が低い銀粒子に粒径が大きなニッケル粒子を添加しているために導電阻害となり、銀粒子だけの場合と比較して20〜65%程度、導電性が悪化してしまうという問題を有している。
By forming the conductive film with the conductive paste having the above-described configuration, good conductivity and adhesion can be ensured. However, although the initial electrical conductivity is good, the electrical durability is lacking due to weak oxidation resistance. Therefore, there is a problem that the conductivity is deteriorated with time so that the specific resistance increases by 50% just by leaving it in the atmosphere at 25 ° C. for 30 days.
For the purpose of improving oxidation resistance, it has been proposed to coat metal particles having a low specific resistance value such as copper and silver with nickel (see Patent Document 2) and to add nickel powder as an additive to the paste (patent) Reference 3).
However, the conductive paste described in Patent Document 2 has a problem of high cost due to the complicated process of thinly coating the surface of the metal particles with nickel by electroless plating. Further, since nickel is a base metal compared to copper or silver, oxidation proceeds selectively at the nickel portion. As a result, oxidized nickel exists on the surface of the metal particles, and there is a problem that conductivity is impaired. In addition, the conductive paste described in Patent Document 3 has a conductivity hindrance because nickel particles having a large particle diameter are added to silver particles having a low specific resistance value, which is 20 to 65 as compared with the case of only silver particles. %, There is a problem that the conductivity is deteriorated.

特開2007−184143号公報JP 2007-184143 A 特開2004−162164号公報JP 2004-162164 A 特開平9−35530号公報JP-A-9-35530

そこで本発明はスクリーン印刷で電子回路を形成した場合に高い導電性を有しながら、優れた耐久性を有する硬化膜が形成可能な導電ペーストを提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a conductive paste capable of forming a cured film having excellent durability while having high conductivity when an electronic circuit is formed by screen printing.

上記した目的を達成するため、本発明は、(A)体積固有抵抗値が10μΩ・cm以下で、平均粒径が1〜15μmの金属粒子と、(B)平均粒径が0.1〜3μmであり、酸化還元電位が−440mV〜320mV(SHE)である卑金属の粒子と、(C)バインダ樹脂と、を含有する導電性ペーストであって、前記(A)成分の金属粒子100質量部に対し、前記(B)成分の卑金属粒子を0.01〜3質量部含有することを特徴とする導電性ペーストを提供する。   In order to achieve the above object, the present invention provides (A) a metal particle having a volume resistivity of 10 μΩ · cm or less and an average particle size of 1 to 15 μm, and (B) an average particle size of 0.1 to 3 μm. A conductive paste containing base metal particles having an oxidation-reduction potential of −440 mV to 320 mV (SHE) and (C) a binder resin, in 100 parts by mass of the metal particles of the component (A). On the other hand, the electroconductive paste characterized by containing 0.01-3 mass parts of base metal particles of the said (B) component is provided.

本発明の導電性ペーストにおいて、((B)成分の卑金属粒子の平均粒径)/((A)成分の金属粒子の平均粒径)の値が、0.01〜1.0であることが好ましい。   In the conductive paste of the present invention, the value of (average particle diameter of base metal particles of component (B)) / (average particle diameter of metal particles of component (A)) is 0.01 to 1.0. preferable.

本発明の導電性ペーストにおいて、前記(A)成分の金属粒子は、平均粒径が1〜15μmの銅粒子または銀粒子であることが好ましい。   In the conductive paste of the present invention, the metal particles of the component (A) are preferably copper particles or silver particles having an average particle diameter of 1 to 15 μm.

本発明の導電性ペーストにおいて、前記(C)成分のバインダ樹脂は、ホルムアルデヒドを一成分とする熱硬化性樹脂からなる樹脂が好ましく、フェノール樹脂、メラミン樹脂、キシレン樹脂、および、尿素樹脂からなる群から選択される1種以上であることがさらに好ましい。   In the conductive paste of the present invention, the binder resin of the component (C) is preferably a resin made of a thermosetting resin containing formaldehyde as one component, and a group consisting of a phenol resin, a melamine resin, a xylene resin, and a urea resin. More preferably, it is at least one selected from the group consisting of:

本発明の導電性ペーストにおいて、前記(B)成分の卑金属粒子がニッケル、錫、ビスマス、鉄からなる群から選択される1種以上であることが好ましい。   In the conductive paste of the present invention, the base metal particles of the component (B) are preferably one or more selected from the group consisting of nickel, tin, bismuth and iron.

また、本発明は、前記した本発明の導電性ペーストを塗布し硬化させてなる導電膜を基材上に有することを特徴とする導電膜付き基材を提供する。   Moreover, this invention provides the base material with an electrically conductive film characterized by having on a base material the electrically conductive film formed by apply | coating and hardening the above-mentioned electrically conductive paste of this invention.

本発明の導電ペーストによれば、高い導電性を有しながら、導電耐久性に優れた硬化膜を得ることができる。具体的には、初期の比抵抗が30μΩcm以下で、後述する実施例に記載の手順にしたがって測定される耐久性が高温高湿試験後での抵抗値の変化(増加)量が15%以下である。
また、このような導電ペーストを用いることで、導電性に優れ、使用時の環境による導電性の悪化が抑制された信頼性の高い導電膜付き基材を得ることができる。このように信頼性の高い導電膜は高度な耐久性が要求される自動車部品用途等に適している。
According to the conductive paste of the present invention, it is possible to obtain a cured film having high conductivity and excellent conductivity durability. Specifically, the initial specific resistance is 30 μΩcm or less, and the durability measured according to the procedure described in the examples described later is a change (increase) in resistance value after a high temperature and high humidity test of 15% or less. is there.
Moreover, by using such a conductive paste, it is possible to obtain a highly reliable base material with a conductive film that is excellent in conductivity and in which deterioration of conductivity due to an environment during use is suppressed. As described above, the highly reliable conductive film is suitable for automobile parts and the like that require high durability.

以下、本発明の実施の形態について説明する。なお、本発明は、以下の説明に限定して解釈されるものではない。
<導電性ペースト>
本発明の導電性ペーストは、(A)体積固有抵抗値が10μΩ・cm以下で、平均粒径が1〜15μmの金属粒子と、(B)平均粒径が0.1〜3μmであり、酸化還元電位が−440mV〜320mV(SHE)である卑金属の粒子と、(C)バインダ樹脂と、を含有する導電性ペーストであって、(A)成分の金属粒子100質量部に対し、(B)成分の卑金属粒子を0.01〜3質量部含有することを特徴とする。
以下、導電性ペーストを構成する各成分について、詳細に説明する。
Embodiments of the present invention will be described below. In addition, this invention is limited to the following description and is not interpreted.
<Conductive paste>
The conductive paste of the present invention has (A) a metal resistivity having a volume resistivity of 10 μΩ · cm or less and an average particle size of 1 to 15 μm, and (B) an average particle size of 0.1 to 3 μm. A conductive paste containing base metal particles having a reduction potential of −440 mV to 320 mV (SHE) and (C) a binder resin, and (B) with respect to 100 parts by mass of the component (A) metal particles. It contains 0.01 to 3 parts by mass of the component base metal particles.
Hereinafter, each component constituting the conductive paste will be described in detail.

(A)金属粒子
(A)成分の金属粒子は、導電性ペーストの導電成分である。
(A)成分の金属粒子は導電性が良好であることが求められる。本発明では、体積固有抵抗値が10Ω・cm以下の金属粒子を用いる。
これを満たす金属としては、金、銀、銅が挙げられる。これらの中でも、銀、銅が抵抗値の低さ、入手し易さ等理由から好ましく、マイグレーション現象が起こりにくいことから銅が特に好ましい。
(A) Metal particle The metal particle of (A) component is a conductive component of a conductive paste.
(A) The metal particle of a component is calculated | required that electroconductivity is favorable. In the present invention, metal particles having a volume resistivity value of 10 Ω · cm or less are used.
Gold, silver, and copper are mentioned as a metal which satisfy | fills this. Among these, silver and copper are preferable for reasons such as low resistance and availability, and copper is particularly preferable because migration phenomenon hardly occurs.

(A)成分の金属粒子は、後述する定義による粒子径の平均値、すなわち、平均粒径が1〜15μmである。
本明細書における金属粒子の粒子径は、走査型電子顕微鏡(以下、「SEM」と記す。)像の中から無作為に選んだ100個の金属粒子のFeret径を測定し、各金属粒子におけるFeret径が最大値となる径方向を長軸とし、該長軸に直交する軸を短軸とするとき、該長軸方向のFeret径と、該短軸方向のFeret径と、の平均値((長軸方向のFeret径+短軸方向のFeret径)/2)として算出される。
なお、上記した金属粒子の粒子径とは、金属粒子の一次粒子径である。
本明細書における金属粒子の粒子径の平均値(平均粒径)は、上記により算出された金属粒子の粒子径を平均(数平均)したものである。
(A)成分の金属粒子の粒子径の平均値(平均粒径)が、上記の範囲を満たしていることで、金属粒子を含む導電性ペーストの流動特性が良好となり、該導電性ペーストにより微細配線を作製しやすい。金属粒子の粒子径の平均値(平均粒径)が1μm未満であると、導電性ペーストとしたときに、十分な流動特性を得られない。一方、金属粒子の粒子径の平均値(平均粒径)が15μmを超えると、得られる導電性ペーストによる、微細配線の作製が困難となるおそれがある。
(A)成分の金属粒子の粒子径の平均値(平均粒径)は、1〜15μmであることが好ましく、2〜8μmであることがより好ましい。
The (A) component metal particles have an average particle diameter according to the definition described later, that is, an average particle diameter of 1 to 15 μm.
The particle diameter of the metal particles in this specification is determined by measuring the Feret diameter of 100 metal particles randomly selected from a scanning electron microscope (hereinafter referred to as “SEM”) image. When the radial direction in which the Feret diameter is the maximum value is a major axis and the axis orthogonal to the major axis is a minor axis, the average value of the Feret diameter in the major axis direction and the Feret diameter in the minor axis direction ( It is calculated as (Feret diameter in the major axis direction + Feret diameter in the minor axis direction) / 2).
The particle diameter of the metal particles described above is the primary particle diameter of the metal particles.
The average value (average particle diameter) of the particle diameters of the metal particles in this specification is the average (number average) of the particle diameters of the metal particles calculated as described above.
When the average value (average particle diameter) of the particle diameter of the metal particles of the component (A) satisfies the above range, the flow characteristics of the conductive paste containing metal particles are improved, and the conductive paste is finer. Easy to fabricate wiring. When the average particle diameter (average particle diameter) of the metal particles is less than 1 μm, sufficient flow characteristics cannot be obtained when a conductive paste is obtained. On the other hand, if the average value (average particle diameter) of the particle diameter of the metal particles exceeds 15 μm, it may be difficult to produce fine wiring using the obtained conductive paste.
The average particle diameter (average particle diameter) of the metal particles (A) is preferably 1 to 15 μm, and more preferably 2 to 8 μm.

また、(A)成分の金属粒子としては、金属粒子表面を還元処理した「表面改質金属粒子」を用いてよい。表面改質金属粒子は、還元処理により、粒子表面の酸素濃度が低くなるため、金属粒子間の接触抵抗がより小さくなり、得られる導電膜の導電性が向上する。   Further, as the metal particles of the component (A), “surface modified metal particles” obtained by reducing the surface of the metal particles may be used. Since the surface-modified metal particles have a reduced oxygen concentration on the particle surface due to the reduction treatment, the contact resistance between the metal particles is further reduced, and the conductivity of the obtained conductive film is improved.

本発明の導電性ペーストにおいて、(A)成分の金属粒子の配合量は、導電性ペーストの全成分の合計100質量部に対して、75〜95質量部であることが好ましく、80〜90質量部がより好ましい。75質量部以上であれば、導電性ペーストを用いて形成される導電膜の導電性が良好になる。95質量部以下であれば、金属粒子とバインダ樹脂とが結合する部分が増えて硬化膜の硬度が向上するとともに導電性ペーストの流動特性が良好となる。   In the conductive paste of the present invention, the compounding amount of the metal particles of the component (A) is preferably 75 to 95 parts by mass, and 80 to 90 parts by mass with respect to 100 parts by mass in total of all components of the conductive paste. Part is more preferred. If it is 75 mass parts or more, the electroconductivity of the electrically conductive film formed using an electrically conductive paste will become favorable. If it is 95 mass parts or less, the part which a metal particle and binder resin couple | bond will increase, the hardness of a cured film will improve, and the flow characteristic of an electrically conductive paste will become favorable.

(B)卑金属粒子
(B)成分の卑金属粒子は、耐久性の向上に寄与する成分である。(B)成分の卑金属粒子に用いられる卑金属は、(A)成分の金属より酸化しやすい金属でありながら、空気中の酸素による自発的な酸化は進行しにくい金属である。この卑金属の酸化還元電位は、安定な金属イオンが水溶液中で金属に還元される25℃での標準電極電位(酸化還元電位)を基準として、−440mV〜320mV(SHE(標準水素電極))の範囲にある。
具体的な金属としてはニッケル(酸化還元電位−257mV(SHE))、錫(酸化還元電位−140mV(SHE))、ビスマス(酸化還元電位317mV(SHE))、鉄(酸化還元電位−440mV(SHE))等が挙げられる。これらの中でも、ニッケル、錫が抵抗値の低さ、入手し易さ等理由から好ましく、表面酸化膜の安定性の点からニッケルが特に好ましい。
(B) Base metal particles The base metal particles (B) are components that contribute to improved durability. The base metal used for the base metal particles of the component (B) is a metal that is more easily oxidized than the metal of the component (A), but is less prone to spontaneous oxidation by oxygen in the air. The base metal oxidation-reduction potential is -440 mV to 320 mV (SHE (standard hydrogen electrode)) with reference to a standard electrode potential (oxidation-reduction potential) at 25 ° C. at which stable metal ions are reduced to metal in an aqueous solution. Is in range.
Specific metals include nickel (redox potential -257 mV (SHE)), tin (redox potential -140 mV (SHE)), bismuth (redox potential 317 mV (SHE)), iron (redox potential -440 mV (SHE)). )) And the like. Among these, nickel and tin are preferable for reasons such as low resistance and availability, and nickel is particularly preferable from the viewpoint of the stability of the surface oxide film.

(B)成分の卑金属粒子は、導電性を主に発揮する(A)成分の金属粒子間に存在し、(A)成分の金属粒子との相互作用において、(B)成分の卑金属は、(A)成分の金属よりも卑な金属であるため、(A)成分の金属粒子が酸化する環境にある場合に犠牲陽極として働き、(A)成分の金属粒子の酸化を抑制できていると考えられる。その一方で、比較的固有抵抗値が高い(B)成分の卑金属粒子は、加熱硬化時に、固有抵抗値が低い金属粒子((A)成分の粒子)同士の界面には、ほとんど存在しないため、金属粒子間での導通が阻害されることがない。   The (B) component base metal particles are present between the (A) component metal particles that mainly exhibit conductivity. In the interaction with the (A) component metal particles, the (B) component base metal is ( Since it is a base metal rather than the metal of component A), it acts as a sacrificial anode when the metal particles of component (A) are in an oxidizing environment, and is considered to be able to suppress oxidation of the metal particles of component (A). It is done. On the other hand, since the base metal particles of the component (B) having a relatively high specific resistance value are hardly present at the interface between the metal particles having a low specific resistance value (particles of the component (A)) during heat curing, Conduction between metal particles is not hindered.

(B)成分の卑金属粒子は、前述した定義による粒子径の平均値、すなわち、平均粒径が0.1〜3μmである。
(B)成分の卑金属粒子の粒子径の平均値(平均粒径)が、上記の範囲を満たしていることで、卑金属粒子を含む導電性ペーストの流動特性が良好となり、該導電性ペーストにより微細配線を作製しやすい。卑金属粒子の粒子径の平均値(平均粒径)が0.1μm未満であると、導電性ペーストとしたときに、流動特性を得られにくくなるとともに自発的な酸化が進行して耐久性の向上に寄与しにくくなる。一方、卑金属粒子の粒子径の平均値(平均粒径)が3μmを超えると、導電耐久性の向上に寄与しにくくなるおそれがある。
(B)成分の卑属粒子の粒子径の平均値(平均粒径)は、0.1〜3μmであることが好ましく、0.1〜2μmであることがより好ましく、0.1〜1μmであることがさらに好ましい。
The base metal particles (B) have an average particle diameter according to the definition described above, that is, an average particle diameter of 0.1 to 3 μm.
When the average particle diameter (average particle diameter) of the base metal particles of the component (B) satisfies the above range, the flow characteristics of the conductive paste containing the base metal particles are improved, and the conductive paste is finer. Easy to fabricate wiring. When the average particle size (average particle size) of the base metal particles is less than 0.1 μm, it is difficult to obtain flow characteristics when conductive paste is used, and spontaneous oxidation progresses to improve durability. It becomes difficult to contribute to. On the other hand, if the average particle diameter (average particle diameter) of the base metal particles exceeds 3 μm, it may be difficult to contribute to the improvement of the conductive durability.
The average value (average particle diameter) of the base particle of the component (B) is preferably 0.1 to 3 μm, more preferably 0.1 to 2 μm, and 0.1 to 1 μm. More preferably.

なお、(B)成分の卑金属粒子の平均粒径と、(A)成分の金属粒子の平均粒径と、の比に着目した場合、(B)成分の卑金属粒子の平均粒径/(A)成分の金属粒子の平均粒径の値は0.01〜1.0であることが好ましい。
(B)成分の卑金属粒子の平均粒径/(A)成分の金属粒子の平均粒径の値が、上記の範囲を満たしていることで、導電性ペースト中の金属粒子との関係において卑金属粒子が犠牲陽極として有効に作用し、導電性ペーストを用いて形成される導電膜が良好な導電性と優れた耐久性を有する。(B)成分の卑金属粒子の平均粒径/(A)成分の金属粒子の平均粒径の値が0.01未満であると、導電性ペーストとしたときに、流動特性を得られにくくなるとともに自発的な酸化が進行して耐久性の向上に寄与しにくくなる。一方、卑金属粒子の粒子径の平均値(平均粒径)が1.0を超えると、導電耐久性の向上に寄与しにくくなるおそれがある。
(B)成分の卑金属粒子の平均粒径/(A)成分の金属粒子の平均粒径の値は、0.03〜0.5であることがより好ましい。
In addition, when paying attention to the ratio between the average particle diameter of the base metal particles of the component (B) and the average particle diameter of the metal particles of the component (A), the average particle diameter of the base metal particles of the component (B) / (A) The average particle size of the component metal particles is preferably 0.01 to 1.0.
The average particle size of the base metal particles (B) / the average particle size of the metal particles (A) satisfies the above range, so that the base metal particles in relation to the metal particles in the conductive paste Effectively acts as a sacrificial anode, and the conductive film formed using the conductive paste has good conductivity and excellent durability. When the value of the average particle diameter of the base metal particles (B) / the average particle diameter of the metal particles (A) is less than 0.01, it is difficult to obtain flow characteristics when the conductive paste is used. Spontaneous oxidation proceeds to make it difficult to contribute to improvement of durability. On the other hand, when the average value (average particle diameter) of the base metal particles exceeds 1.0, it may be difficult to contribute to the improvement of the conductive durability.
The average particle size of the base metal particles (B) / the average particle size of the metal particles (A) is more preferably 0.03 to 0.5.

本発明の導電性ペーストにおいて、(B)成分の卑金属粒子の配合量は、(A)成分の金属粒子100質量部に対して0.01〜3質量部である。配合量は、0.02〜2.5質量部が好ましく、0.02〜1.5質量部がさらに好ましく、0.02〜1.0が特に好ましく、0.02〜0.3が極めて好ましい。
(B)成分の卑金属粒子の配合量が上記の範囲を満たしていることで、導電性ペースト中の金属粒子との関係において卑金属粒子が犠牲陽極として有効に作用し、導電性ペーストを用いて形成される導電膜が、良好な導電性と、優れた耐久性を有する。
(B)成分の卑金属粒子の配合量が、(A)成分の金属粒子100質量部に対して0.01質量部未満だと、卑金属粒子の配合量が不足するため、導電性ペースト中の金属粒子との関係において卑金属粒子が犠牲陽極として十分に機能しない。このため、耐久性の向上に寄与しにくくなる。
一方、(B)成分の卑金属粒子の配合量が、(A)成分の金属粒子100質量部に対して3質量部超だと、加熱硬化時に、固有抵抗値が低い金属粒子((A)成分の粒子)同士の界面に比較的固有抵抗値が高い卑金属粒子((B)成分の粒子)が存在するようになり、固有抵抗値が低い金属粒子間での導通が阻害される結果、形成される導電膜の導電性が低くなると考えられる。
In the conductive paste of the present invention, the compounding amount of the base metal particles (B) is 0.01 to 3 parts by mass with respect to 100 parts by mass of the metal particles (A). The blending amount is preferably 0.02 to 2.5 parts by mass, more preferably 0.02 to 1.5 parts by mass, particularly preferably 0.02 to 1.0, and extremely preferably 0.02 to 0.3. .
(B) Since the blending amount of the base metal particles of the component satisfies the above range, the base metal particles effectively act as a sacrificial anode in relation to the metal particles in the conductive paste, and are formed using the conductive paste. The conductive film to be formed has good conductivity and excellent durability.
When the blending amount of the base metal particles of the component (B) is less than 0.01 parts by weight with respect to 100 parts by weight of the metal particles of the component (A), the blending amount of the base metal particles is insufficient, so the metal in the conductive paste Base metal particles do not function sufficiently as sacrificial anodes in relation to the particles. For this reason, it becomes difficult to contribute to the improvement of durability.
On the other hand, when the blending amount of the base metal particles of the component (B) is more than 3 parts by mass with respect to 100 parts by mass of the metal particles of the component (A), the metal particles having a low specific resistance value during the heat curing (component (A) Base metal particles (particles of component (B)) having a relatively high specific resistance value are present at the interface between each other), and conduction between metal particles having a low specific resistance value is hindered. The conductivity of the conductive film is considered to be low.

(C)バインダ樹脂
金属粒子を含有する導電性ペースト導電ペーストでは、硬化後に形成する金属粒子からなる導電体の構造を維持するためにバインダ樹脂が用いられる。
本発明の導電性ペーストでは、(C)成分のバインダ樹脂として、ホルムアルデヒドを一成分とする熱硬化性樹脂からなるものを用いることが好ましい。その理由は、ホルムアルデヒドを一成分とする熱硬化性樹脂は加熱硬化時の収縮が大きく、金属粒子を押しつける力が強くなるために高い導電性が得られやすいためである。また、特に金属粒子として銅微粒子を使用した場合にホルムアルデヒドから生成するメチロール基の還元作用により銅粒子表面の酸化を抑制でき、さらに適度に硬化収縮が進行して銅粒子同士の接触が確保されるためである。
(C) Binder resin In the conductive paste conductive paste containing metal particles, a binder resin is used to maintain the structure of the conductor made of metal particles formed after curing.
In the electrically conductive paste of this invention, it is preferable to use what consists of thermosetting resin which has formaldehyde as one component as binder resin of (C) component. The reason is that a thermosetting resin containing formaldehyde as one component has a large shrinkage at the time of heat-curing and has a strong force to press metal particles, so that high conductivity is easily obtained. In particular, when copper fine particles are used as the metal particles, the reduction of the methylol group generated from formaldehyde can suppress the oxidation of the surface of the copper particles, and further the curing shrinkage proceeds to ensure the contact between the copper particles. Because.

ホルムアルデヒドを一成分とする熱硬化性樹脂としては、フェノール樹脂、メラミン樹脂、キシレン樹脂、尿素樹脂が例示される。中でもフェノール樹脂がメチロール基の還元作用と硬化収縮の程度から好ましい。硬化収縮が大きすぎると導電膜内に不要な応力が蓄積し、機械的破壊の原因になる。硬化収縮が少なすぎると金属粒子同士の接触が十分に確保できない。   Examples of the thermosetting resin containing formaldehyde as one component include phenol resin, melamine resin, xylene resin, and urea resin. Of these, a phenol resin is preferred from the viewpoint of the reducing action of the methylol group and the degree of cure shrinkage. If the curing shrinkage is too large, unnecessary stress accumulates in the conductive film, causing mechanical breakdown. If the curing shrinkage is too small, sufficient contact between the metal particles cannot be ensured.

本発明の導電性ペーストにおいて、(C)成分のバインダ樹脂の配合量は、(A)成分の銅粒子の体積と、金属粒子間に存在する空隙部の体積と、の比率に応じて適宜選択できるが、導電性ペーストの全成分の合計100質量部に対して、5〜25質量部であることが好ましく、10〜20質量部がより好ましい。5質量部以上であれば、バインダ樹脂と金属粒子表面とが結合する部分が増えて硬化膜の硬度が向上するとともに導電性ペーストの流動特性が良好となる。25質量部以下であれば、導電性ペーストを用いて形成される導電膜の導電性が良好になる。   In the conductive paste of the present invention, the blending amount of the binder resin as the component (C) is appropriately selected according to the ratio between the volume of the copper particles as the component (A) and the volume of the voids existing between the metal particles. Although it can do, it is preferable that it is 5-25 mass parts with respect to 100 mass parts of total of all the components of an electrically conductive paste, and 10-20 mass parts is more preferable. If it is 5 mass parts or more, the part which binder resin and the metal particle surface couple | bond will increase, the hardness of a cured film will improve, and the flow characteristic of an electrically conductive paste will become favorable. If it is 25 mass parts or less, the electroconductivity of the electrically conductive film formed using an electrically conductive paste will become favorable.

(D)その他の成分
本発明の導電性ペーストは、上記(A)〜(C)の各成分に加えて、必要に応じて、溶剤や各種の添加剤(レベリング剤、粘度調整剤等。)を、本発明の効果を損なわない範囲で含んでいてもよい。特に、適度な流動性を有するペーストを得るために、熱硬化性樹脂を溶解し得る溶剤を含有させることが好ましい。
溶剤としては、例えば、シクロヘキサノン、シクロヘキサノール、テルピネオール、エチレングリコール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテートを使用できる。印刷用ペーストとして、適度な粘度範囲とする観点から、導電性ペーストに含有させる溶剤の量は、導電性ペーストの全成分の合計100質量部に対して、5〜40質量部の割合であることが好ましい。
(D) Other components In addition to the components (A) to (C) described above, the conductive paste of the present invention includes a solvent and various additives (leveling agent, viscosity modifier, etc.) as necessary. May be included as long as the effects of the present invention are not impaired. In particular, in order to obtain a paste having appropriate fluidity, it is preferable to contain a solvent capable of dissolving the thermosetting resin.
Examples of the solvent include cyclohexanone, cyclohexanol, terpineol, ethylene glycol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether. Diethylene glycol monoethyl ether acetate and diethylene glycol monobutyl ether acetate can be used. From the viewpoint of setting an appropriate viscosity range as a printing paste, the amount of the solvent contained in the conductive paste is 5 to 40 parts by mass with respect to 100 parts by mass in total of all components of the conductive paste. Is preferred.

導電性ペーストは、上記(A)〜(C)の各成分、および必要に応じて前記溶剤等のその他の成分を混合して得ることができる。上記の(A)〜(C)の各成分を混合する時には、熱硬化性樹脂の硬化や溶剤の揮発が生じない程度の温度下で、加熱しながら行うことができる。
混合、撹拌時の温度は、10〜40℃とすることが好ましい。より好ましくは、20〜30℃とするのがよい。導電ペーストを調製する時に10℃以上の温度に加熱することで、ペーストの粘度を十分に低下させることができ、撹拌を円滑にかつ十分に行うことができる。一方、導電ペーストを調製するときの温度が120℃を超えると、ペースト中で樹脂の硬化が生じるおそれや、粒子同士の融着が生じるおそれがある。なお、混合時に金属粒子が酸化されるのを防止するため、不活性ガスで置換した容器内で混合することが好ましい。
The conductive paste can be obtained by mixing the components (A) to (C) above and other components such as the solvent as necessary. When mixing each component of said (A)-(C), it can carry out, heating at the temperature which does not produce the hardening of a thermosetting resin, or volatilization of a solvent.
The temperature during mixing and stirring is preferably 10 to 40 ° C. More preferably, it is good to set it as 20-30 degreeC. By heating to a temperature of 10 ° C. or higher when preparing the conductive paste, the viscosity of the paste can be sufficiently reduced, and stirring can be performed smoothly and sufficiently. On the other hand, if the temperature at which the conductive paste is prepared exceeds 120 ° C., the resin may be cured in the paste or the particles may be fused. In order to prevent the metal particles from being oxidized during mixing, it is preferable to mix in a container substituted with an inert gas.

以上説明した本発明の導電性ペーストにおいては、(A)成分の、体積固有抵抗値が10μΩ・cm以下で、平均粒径が1〜15μmの金属粒子とともに、(B)平均粒径が0.01〜3μmであり、酸化還元電位が−440mV〜320mV(SHE)である卑金属粒子および、(C)成分のバインダ樹脂を含有しているので、この導電性ペーストにより形成される導電膜は、導電性と耐久性に優れている。   In the conductive paste of the present invention described above, the (A) component has a volume resistivity of 10 μΩ · cm or less and an average particle size of 1 to 15 μm, and (B) an average particle size of 0.1 μm. Since it contains base metal particles having a redox potential of −440 μm to 320 mV (SHE) and a binder resin of component (C), the conductive film formed from this conductive paste is conductive Excellent in durability and durability.

<導電膜付き基材>
本発明の導電膜付き基材は、基材と、この基材上に上述した本発明の導電性ペーストを塗布し硬化させて形成した導電膜と、を有する。
基材本体としては、ガラス基板、プラスチック基板(例えば、ポリイミド基板、ポリエステル基板等)、繊維強化複合材料からなる基板(例えば、ガラス繊維強化樹脂基板等)が挙げられる。
<Substrate with conductive film>
The base material with a conductive film of the present invention has a base material and a conductive film formed by applying and curing the conductive paste of the present invention described above on the base material.
Examples of the base body include a glass substrate, a plastic substrate (for example, a polyimide substrate, a polyester substrate, etc.), and a substrate (for example, a glass fiber reinforced resin substrate, etc.) made of a fiber reinforced composite material.

導電性ペーストの塗布方法としては、スクリーン印刷法、ロールコート法、エアナイフコート法、ブレードコート法、バーコート法、グラビアコート法、ダイコート法、スライドコート法等の公知の方法が挙げられる。これらの中でもスクリーン印刷法が好ましい。   Examples of the method of applying the conductive paste include known methods such as screen printing, roll coating, air knife coating, blade coating, bar coating, gravure coating, die coating, and slide coating. Among these, the screen printing method is preferable.

塗布層の硬化は、温風加熱、熱輻射加熱等の方法で加熱し、導電性ペースト中の樹脂(熱硬化性樹脂)を硬化させることにより行う。   The coating layer is cured by heating with a method such as warm air heating or heat radiation heating to cure the resin (thermosetting resin) in the conductive paste.

加熱温度および加熱時間は、導電膜に求められる特性に応じて適宜決定すればよい。加熱温度は、80〜200℃が好ましい。加熱温度が80℃以上であれば、バインダ樹脂の硬化が円滑に進行し、金属粒子間の接触が良好になって導電性および耐久性が向上する。加熱温度が200℃以下であれば、基材本体としてプラスチック基板を使用できるので、基材選択の自由度が高まる。   What is necessary is just to determine a heating temperature and a heating time suitably according to the characteristic calculated | required by the electrically conductive film. The heating temperature is preferably 80 to 200 ° C. If heating temperature is 80 degreeC or more, hardening of binder resin will advance smoothly, the contact between metal particles will become favorable, and electroconductivity and durability will improve. If heating temperature is 200 degrees C or less, since a plastic substrate can be used as a base-material main body, the freedom degree of base-material selection increases.

基材上に形成される導電膜の厚さは、安定した導電性と配線形状の維持を確保する観点から、1〜200μmであることが好ましく、5〜100μmの範囲がより好ましい。   The thickness of the conductive film formed on the substrate is preferably 1 to 200 μm and more preferably 5 to 100 μm from the viewpoint of ensuring stable conductivity and maintaining the wiring shape.

導電膜の比抵抗(体積抵抗率ともいう。)は、30μΩcm以下であることが好ましい。導電膜の比抵抗が30μΩcmを超えると、電子機器用の導電体としての使用が困難となる場合がある。   The specific resistance (also referred to as volume resistivity) of the conductive film is preferably 30 μΩcm or less. When the specific resistance of the conductive film exceeds 30 μΩcm, it may be difficult to use it as a conductor for electronic equipment.

また、後述する実施例に記載の手順にしたがって測定される導電耐久性が耐久性試験後での比抵抗の変化(増加)量が20%以下であることが好ましく。10%以下であることがより好ましく、5%以下であることが特に好ましい。 Moreover, it is preferable that the amount of change (increase) in the specific resistance after the durability test is 20% or less as measured by the procedure described in the examples described later. It is more preferably 10% or less, and particularly preferably 5% or less.

以下、本発明を実施例によりさらに詳しく説明するが、本発明はこれらの実施例に限定されない。例1〜8は実施例、例9〜13は比較例である。なお、金属粒子(銅粒子)と卑金属粒子(ニッケル粒子)の平均粒子径、導電膜の厚さおよび比抵抗は、それぞれ以下に示す装置を用いて測定した。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples. Examples 1 to 8 are examples, and examples 9 to 13 are comparative examples. In addition, the average particle diameter of the metal particles (copper particles) and the base metal particles (nickel particles), the thickness of the conductive film, and the specific resistance were measured using the following apparatuses.

(平均粒子径)
金属粒子として銅粒子を用いた。銅粒子の粒子径は、SEM(日立ハイテクノロジーズ社製、S−4300)により得られたSEM像の中から無作為に選ばれた100個の粒子のFeret径を測定し、各銅粒子におけるFeret径が最大値となる径方向を長軸とし、該長軸に直交する軸を短軸とするとき、該長軸方向のFeret径と、該短軸方向のFeret径と、の平均値((長軸方向のFeret径+短軸方向のFeret径)/2)として算出した。そして、算出された銅粒子の粒子径を平均(数平均)することにより粒子径の平均値(平均粒子径)を求めた。
(Average particle size)
Copper particles were used as the metal particles. The particle diameter of the copper particles was determined by measuring the Feret diameter of 100 particles randomly selected from SEM images obtained by SEM (manufactured by Hitachi High-Technologies Corporation, S-4300). When the major axis is the radial direction where the diameter is the maximum, and the minor axis is the axis orthogonal to the major axis, the average value of the Feret diameter in the major axis direction and the Feret diameter in the minor axis direction (( It was calculated as Feret diameter in the major axis direction + Feret diameter in the minor axis direction) / 2). And the average value (average particle diameter) of the particle diameter was calculated | required by averaging the particle diameter of the calculated copper particle (number average).

(導電膜の厚さ)
導電膜の厚さは、DEKTAK3(Veeco metrology Group社製)を用いて測定した。
(Thickness of conductive film)
The thickness of the conductive film was measured by using DEKTAK3 (manufactured by Veeco metrology group).

(導電膜の比抵抗)
導電膜の比抵抗は、四探針式体積抵抗率計(三菱油化社製、型式:lorestaIP MCP−T250)を用いて測定した。
(Specific resistance of conductive film)
The specific resistance of the conductive film was measured using a four-probe type volume resistivity meter (manufactured by Mitsubishi Yuka Co., Ltd., model: lorestaIP MCP-T250).

例1
ガラス製ビーカー内に、ギ酸3.0gと50質量%の次亜リン酸水溶液9.0gを入れた後、このビーカーをウォーターバスに入れ40℃に保持した。このビーカー内に、粒子径の平均値が6μmの銅粒子(三井金属鉱業株式会社製、商品名:1400YP)5.0gを徐々に添加し、30分間撹拌して銅分散液を得た。
得られた銅分散液から、遠心分離器を使用し、回転数3000rpmで10分間遠心分離して沈殿物を回収した。この沈殿物を蒸留水30gに分散させ、遠心分離によって再び凝集物を沈殿させ、沈殿物を分離した。その後、得られた沈殿物を、−35kPaの減圧下、80℃で60分間加熱し、残留水分を揮発させて徐々に除去して、粒子表面が表面改質された銅粒子(A)を得た。
表面改質後の銅粒子は、粒子径の平均値が変化せず、6μmである。なお、表面改質後の銅粒子は、粒子径の平均値が変化しないことは、以下に示す他の例についても同様である。
次いで、得られた表面改質銅粒子(A)の12gを、(C)成分としてのフェノール樹脂(群栄化学社製、商品名:レジトップPL6220、以下の例において全て同じ。)3.7gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加えた。さらに、この混合物とともに、(B)成分としてのニッケル粉(平均粒径0.3μm、酸化還元電位−257mV(SHE))0.02gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分の配合量は、(A)成分の銅粒子100質量部に対して0.17質量部であった。(C)成分の配合量は、銅ペーストの全成分の合計100質量部に対して11質量部であった。また、(B)成分のニッケル粉(粒子)の平均粒径/(A)成分の銅粒子の平均粒径の値は、0.05である。
Example 1
In a glass beaker, 3.0 g of formic acid and 9.0 g of a 50 mass% hypophosphorous acid aqueous solution were placed, and the beaker was placed in a water bath and maintained at 40 ° C. In this beaker, 5.0 g of copper particles having an average particle diameter of 6 μm (Mitsui Metal Mining Co., Ltd., trade name: 1400 YP) were gradually added and stirred for 30 minutes to obtain a copper dispersion.
The resulting copper dispersion was centrifuged at 3000 rpm for 10 minutes using a centrifuge to collect a precipitate. This precipitate was dispersed in 30 g of distilled water, and the aggregate was precipitated again by centrifugation, thereby separating the precipitate. Thereafter, the obtained precipitate is heated at 80 ° C. under a reduced pressure of −35 kPa for 60 minutes to volatilize and remove residual moisture, thereby obtaining copper particles (A) whose particle surfaces are surface-modified. It was.
The average particle diameter of the copper particles after the surface modification is 6 μm without changing. In addition, it is the same also about the other example shown below that the average value of a particle diameter does not change the copper particle after surface modification.
Next, 12 g of the obtained surface-modified copper particles (A) was added to 3.7 g of a phenol resin as a component (C) (manufactured by Gunei Chemical Co., Ltd., trade name: Regitop PL 6220, all in the following examples). Was added to a resin solution dissolved in 4.3 g of ethylene glycol monobutyl ether acetate. Furthermore, together with this mixture, 0.02 g of nickel powder (average particle size 0.3 μm, oxidation-reduction potential −257 mV (SHE)) as component (B) was put in a mortar and mixed at room temperature to obtain a copper paste. . In addition, the compounding quantity of (B) component was 0.17 mass part with respect to 100 mass parts of copper particle of (A) component. (C) The compounding quantity of the component was 11 mass parts with respect to a total of 100 mass parts of all the components of a copper paste. Moreover, the value of the average particle diameter of the nickel powder (particles) of the component (B) / the average particle diameter of the copper particles of the component (A) is 0.05.

例2
銅粒子を粒子径の平均値が7μmの銅粒子(日本アトマイズ加工株式会社製、商品名:AFS−Cu)、ニッケル粉を平均粒径0.5μmに変更した以外は例1と同様にして銅ペーストを得た。(B)成分のニッケル粉(粒子)の平均粒径/(A)成分の銅粒子の平均粒径の値は、0.07である。
Example 2
Copper particles were obtained in the same manner as in Example 1 except that the copper particles were changed to copper particles having an average particle diameter of 7 μm (manufactured by Nippon Atomizing Co., Ltd., trade name: AFS-Cu) and nickel powder was changed to an average particle size of 0.5 μm A paste was obtained. The value of (B) component nickel powder (particles) average particle size / (A) component copper particles average particle size is 0.07.

例3
銅粒子を粒子径の平均値が3μmの銅粒子(日本アトマイズ加工株式会社製、商品名:AFS−Cu)に変更した以外は例1と同様にして銅ペーストを得た。(B)成分のニッケル粉(粒子)の平均粒径/(A)成分の銅粒子の平均粒径の値は、0.1である。
Example 3
A copper paste was obtained in the same manner as in Example 1 except that the copper particles were changed to copper particles having an average particle diameter of 3 μm (manufactured by Nippon Atomizing Co., Ltd., trade name: AFS-Cu). The value of the average particle diameter of the (B) component nickel powder (particles) / the average particle diameter of the (A) component copper particles is 0.1.

例4
例1と同様にして得られた表面改質銅粒子(A)の12gを、(C)成分としてのフェノール樹脂3.7gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのニッケル粉(平均粒径0.1μm)0.004gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分の配合量は、(A)成分の銅粒子100質量部に対して0.03質量部であった。また、(B)成分のニッケル粉(粒子)の平均粒径/(A)成分の銅粒子の平均粒径の値は、0.03である。
Example 4
12 g of the surface-modified copper particles (A) obtained in the same manner as in Example 1 was added to a resin solution obtained by dissolving 3.7 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate, Along with this mixture, 0.004 g of nickel powder (average particle size 0.1 μm) as component (B) was put in a mortar and mixed at room temperature to obtain a copper paste. In addition, the compounding quantity of (B) component was 0.03 mass part with respect to 100 mass parts of copper particle of (A) component. Moreover, the value of the average particle diameter of the nickel powder (particles) of the component (B) / the average particle diameter of the copper particles of the component (A) is 0.03.

例5
例1と同様にして得られた表面改質銅粒子(A)の12gを、(C)成分としてのフェノール樹脂3.7gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのニッケル粉(平均粒径2.5μm)0.02gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分の配合量は、(A)成分の銅粒子100質量部に対して0.17質量部であった。また、(B)成分のニッケル粉(粒子)の平均粒径/(A)成分の銅粒子の平均粒径の値は、0.42である。
Example 5
12 g of the surface-modified copper particles (A) obtained in the same manner as in Example 1 was added to a resin solution obtained by dissolving 3.7 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate, Together with this mixture, 0.02 g of nickel powder (average particle size 2.5 μm) as component (B) was placed in a mortar and mixed at room temperature to obtain a copper paste. In addition, the compounding quantity of (B) component was 0.17 mass part with respect to 100 mass parts of copper particle of (A) component. Moreover, the value of the average particle diameter of nickel powder (particles) of component (B) / the average particle diameter of copper particles of component (A) is 0.42.

例6
例1と同様にして得られた表面改質銅粒子(A)の12gを、(C)成分としてのフェノール樹脂3.7gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのニッケル粉(平均粒径0.3μm)0.1gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分の配合量は、(A)成分の銅粒子100質量部に対して0.8質量部であった。また、(B)成分のニッケル粉(粒子)の平均粒径/(A)成分の銅粒子の平均粒径の値は、0.05である。
Example 6
12 g of the surface-modified copper particles (A) obtained in the same manner as in Example 1 was added to a resin solution obtained by dissolving 3.7 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate, Together with this mixture, 0.1 g of nickel powder (average particle size 0.3 μm) as component (B) was put in a mortar and mixed at room temperature to obtain a copper paste. In addition, the compounding quantity of (B) component was 0.8 mass part with respect to 100 mass parts of copper particles of (A) component. Moreover, the value of the average particle diameter of the nickel powder (particles) of the component (B) / the average particle diameter of the copper particles of the component (A) is 0.05.

例7
例3と同様にして得られた表面改質銅粒子(A)の12gを、(C)成分としてのフェノール樹脂3.7gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのニッケル粉(平均粒径2.5μm)0.02gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分の配合量は、(A)成分の銅粒子100質量部に対して0.17質量部であった。また、(B)成分のニッケル粉(粒子)の平均粒径/(A)成分の銅粒子の平均粒径の値は、0.83である。
Example 7
12 g of the surface-modified copper particles (A) obtained in the same manner as in Example 3 was added to a resin solution obtained by dissolving 3.7 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. Together with this mixture, 0.02 g of nickel powder (average particle size 2.5 μm) as component (B) was placed in a mortar and mixed at room temperature to obtain a copper paste. In addition, the compounding quantity of (B) component was 0.17 mass part with respect to 100 mass parts of copper particle of (A) component. Moreover, the value of the average particle diameter of the nickel powder (particles) of the component (B) / the average particle diameter of the copper particles of the component (A) is 0.83.

例8
例1と同様にして得られた表面改質銅粒子(A)の12gを、(C)成分としてのフェノール樹脂3.7gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのニッケル粉(平均粒径2.5μm)0.2gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分の配合量は、(A)成分の銅粒子100質量部に対して1.7質量部であった。また、(B)成分のニッケル粉(粒子)の平均粒径/(A)成分の銅粒子の平均粒径の値は、0.42である。
Example 8
12 g of the surface-modified copper particles (A) obtained in the same manner as in Example 1 was added to a resin solution obtained by dissolving 3.7 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate, Together with this mixture, 0.2 g of nickel powder (average particle size 2.5 μm) as component (B) was placed in a mortar and mixed at room temperature to obtain a copper paste. In addition, the compounding quantity of (B) component was 1.7 mass parts with respect to 100 mass parts of copper particles of (A) component. Moreover, the value of the average particle diameter of nickel powder (particles) of component (B) / the average particle diameter of copper particles of component (A) is 0.42.

例9
例1と同様にして得られた表面改質銅粒子(A)の12gに対し、(B)成分のニッケル粉を添加しなかった以外は例1と同様にして、室温下で混ぜ合わせて銅ペーストを得た。
Example 9
To 12 g of the surface-modified copper particles (A) obtained in the same manner as in Example 1, the copper powder was mixed at room temperature in the same manner as in Example 1 except that the nickel powder of component (B) was not added. A paste was obtained.

例10
例1と同様にして得られた表面改質銅粒子(A)の12gを、(C)成分としてのフェノール樹脂3.7gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのニッケル粉(平均粒径0.3μm)0.001gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分の配合量は、(A)成分の銅粒子100質量部に対して0.008質量部であった。また、(B)成分のニッケル粉(粒子)の平均粒径/(A)成分の銅粒子の平均粒径の値は、0.05である。
Example 10
12 g of the surface-modified copper particles (A) obtained in the same manner as in Example 1 was added to a resin solution obtained by dissolving 3.7 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate, Along with this mixture, 0.001 g of nickel powder (average particle size 0.3 μm) as component (B) was put in a mortar and mixed at room temperature to obtain a copper paste. In addition, the compounding quantity of (B) component was 0.008 mass part with respect to 100 mass parts of copper particle of (A) component. Moreover, the value of the average particle diameter of the nickel powder (particles) of the component (B) / the average particle diameter of the copper particles of the component (A) is 0.05.

例11
例1と同様にして得られた表面改質銅粒子(A)の12gを、(C)成分としてのフェノール樹脂3.7gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのニッケル粉(平均粒径0.3μm)0.4gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分の配合量は、(A)成分の銅粒子100質量部に対して3.3質量部であった。また、(B)成分のニッケル粉(粒子)の平均粒径/(A)成分の銅粒子の平均粒径の値は、0.05である。
Example 11
12 g of the surface-modified copper particles (A) obtained in the same manner as in Example 1 was added to a resin solution obtained by dissolving 3.7 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate, Together with this mixture, 0.4 g of nickel powder (average particle size 0.3 μm) as component (B) was put in a mortar and mixed at room temperature to obtain a copper paste. In addition, the compounding quantity of (B) component was 3.3 mass parts with respect to 100 mass parts of copper particles of (A) component. Moreover, the value of the average particle diameter of the nickel powder (particles) of the component (B) / the average particle diameter of the copper particles of the component (A) is 0.05.

例12
例1と同様にして得られた表面改質銅粒子(A)の12gを、(C)成分としてのフェノール樹脂3.7gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのニッケル粉(平均粒径0.05μm)0.02gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分の配合量は、(A)成分の銅粒子100質量部に対して0.17質量部であった。また、(B)成分のニッケル粉(粒子)の平均粒径/(A)成分の銅粒子の平均粒径の値は、0.008である。
Example 12
12 g of the surface-modified copper particles (A) obtained in the same manner as in Example 1 was added to a resin solution obtained by dissolving 3.7 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate, Together with this mixture, 0.02 g of nickel powder (average particle size 0.05 μm) as component (B) was placed in a mortar and mixed at room temperature to obtain a copper paste. In addition, the compounding quantity of (B) component was 0.17 mass part with respect to 100 mass parts of copper particle of (A) component. Moreover, the value of the average particle diameter of the nickel powder (particles) of the component (B) / the average particle diameter of the copper particles of the component (A) is 0.008.

例13
例1と同様にして得られた表面改質銅粒子(A)の12gを、(C)成分としてのフェノール樹脂3.7gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのニッケル粉(平均粒径10μm)0.02gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分の配合量は、(A)成分の銅粒子100質量部に対して0.17質量部であった。また、(B)成分のニッケル粉(粒子)の平均粒径/(A)成分の銅粒子の平均粒径の値は、1.7である。
Example 13
12 g of the surface-modified copper particles (A) obtained in the same manner as in Example 1 was added to a resin solution obtained by dissolving 3.7 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate, Along with this mixture, 0.02 g of nickel powder (average particle size 10 μm) as component (B) was put in a mortar and mixed at room temperature to obtain a copper paste. In addition, the compounding quantity of (B) component was 0.17 mass part with respect to 100 mass parts of copper particle of (A) component. Moreover, the value of the average particle diameter of the nickel powder (particles) of the component (B) / the average particle diameter of the copper particles of the component (A) is 1.7.

次に、例1〜13で得られた銅ペーストを、3mmの厚さのガラス上にそれぞれ塗布し、150℃で30分間加熱して、(C)成分としてのフェノール樹脂を硬化させ、厚さ15μmの導電膜を形成した。そして、得られた導電膜の電気抵抗値を抵抗値計(ケースレー社製、商品名:ミリオームハイテスタ)を用いて測定し、比抵抗(体積抵抗率;単位μΩcm)を測定した。また、同じ導電膜を85℃85%RHの高温高湿槽で250時間保存後に電気抵抗値を測定し、電気抵抗値の変化量を測定した。
結果を表1にまとめた。
Next, each of the copper pastes obtained in Examples 1 to 13 was applied onto a glass having a thickness of 3 mm and heated at 150 ° C. for 30 minutes to cure the phenol resin as the component (C). A 15 μm conductive film was formed. And the electrical resistance value of the obtained electrically conductive film was measured using the resistance meter (The product name: Milliohm Hitester by the Keithley company), and the specific resistance (volume resistivity; unit microohm cm) was measured. Further, after the same conductive film was stored in a high-temperature and high-humidity tank at 85 ° C. and 85% RH for 250 hours, the electrical resistance value was measured, and the change amount of the electrical resistance value was measured.
The results are summarized in Table 1.

Figure 2015050133
表1からわかるように、粒子径の平均値が1.0〜15μmの銅粒子とともに、銅粒子100質量部に対し、粒子径の平均値が0.1〜3μmのニッケル粉を0.01〜3質量部含有する例1〜8の導電性ペーストを用いることにより、該導電性ペーストを基材に塗布し、硬化させた導電膜は、比抵抗が低く、25μΩcm以下であった。また、高温高湿保存後での導電性の変化(低下)も抑制されていた。これは銅粒子の間に適切な量のニッケル粒子が存在することができ、銅粒子とニッケル粒子間の接触面積が大きくなったために犠牲陽極としての機能が有効に働いたためであると考える。
これに対し、(B)成分のニッケル粉を配合しなかった例9、(B)成分のニッケル粉の配合量が、(A)成分の金属粒子100質量部に対して、0.01質量部未満の例10、3質量部超の例11、(B)成分のニッケル粉として平均粒径が0.1〜3μmではなく平均粒径が0.05μmのニッケル粉を配合した例12、(B)成分のニッケル粉として平均粒径が0.1〜3μmではなく平均粒径が10μmのニッケル粉を配合した例13は、いずれも、導電性ペーストを用いて作製した導電膜は高温高湿保存後の導電性の変化(低下)が大きかった。
また、特許文献1の銅粉を使用した金属ペーストから形成した導電膜は25℃の大気中に30日間放置しただけで比抵抗が50%も上昇するほどに導電性の変化(低下)が大きく、この導電膜を使用して電子部品の導体配線を形成することは困難である。
Figure 2015050133
As can be seen from Table 1, together with copper particles having an average particle diameter of 1.0 to 15 μm, nickel powder having an average particle diameter of 0.1 to 3 μm with respect to 100 parts by mass of copper particles is 0.01 to By using the conductive paste of Examples 1 to 8 containing 3 parts by mass, the conductive film obtained by applying the conductive paste to a substrate and curing it had a low specific resistance and was 25 μΩcm or less. Moreover, the change (decrease) in conductivity after storage at high temperature and high humidity was also suppressed. It is considered that this is because an appropriate amount of nickel particles can be present between the copper particles, and the contact area between the copper particles and the nickel particles has increased, so that the function as a sacrificial anode has worked effectively.
In contrast, Example 9 in which the nickel powder of the component (B) was not blended, the blending amount of the nickel powder of the component (B) was 0.01 parts by mass with respect to 100 parts by mass of the metal particles of the component (A). Less than Example 10, more than 11 parts by weight of Example 11, (B) as the nickel powder of the component (B), Example 12 in which the average particle diameter is not 0.1 to 3 μm but the average particle diameter is 0.05 μm, (B In Example 13, in which nickel powder having an average particle size of 10 μm instead of 0.1 to 3 μm was used as the component nickel powder, all the conductive films prepared using the conductive paste were stored at high temperature and high humidity. The later change (decrease) in conductivity was large.
In addition, the conductive film formed from the metal paste using the copper powder of Patent Document 1 has a large change (decrease) in conductivity as the specific resistance increases by 50% just by leaving it in the atmosphere at 25 ° C. for 30 days. It is difficult to form a conductor wiring of an electronic component using this conductive film.

本発明の導電性ペーストは、様々な用途に利用でき、たとえば、プリント配線板等における配線パターンの形成および修復、半導体パッケージ内の層間配線、プリント配線板と電子部品との接合等の用途に利用できる。   The conductive paste of the present invention can be used for various purposes, for example, for the formation and repair of wiring patterns in printed wiring boards, interlayer wiring in semiconductor packages, and bonding between printed wiring boards and electronic components. it can.

Claims (7)

(A)体積固有抵抗値が10μΩ・cm以下で、平均粒径が1〜15μmの金属粒子と、(B)平均粒径が0.1〜3μmであり、酸化還元電位が−440mV〜320mV(SHE)である卑金属の粒子と、(C)バインダ樹脂と、を含有する導電性ペーストであって、前記(A)成分の金属粒子100質量部に対し、前記(B)成分の卑金属粒子を0.01〜3質量部含有することを特徴とする導電性ペースト。   (A) a metal particle having a volume resistivity of 10 μΩ · cm or less and an average particle diameter of 1 to 15 μm, and (B) an average particle diameter of 0.1 to 3 μm and an oxidation-reduction potential of −440 mV to 320 mV ( SHE) and a conductive paste containing (C) a binder resin, and 0 parts of the base metal particles of the component (B) with respect to 100 parts by mass of the metal particles of the component (A). A conductive paste containing 0.01 to 3 parts by mass. 前記(B)成分の卑金属粒子の平均粒径/前記(A)成分の金属粒子の平均粒径の値が、0.01〜1.0である、請求項1に記載の導電性ペースト。   2. The conductive paste according to claim 1, wherein the average particle diameter of the base metal particles of the component (B) / the average particle diameter of the metal particles of the component (A) is 0.01 to 1.0. 前記(A)成分の金属粒子が、平均粒径が1〜15μmの銅粒子または銀粒子である、請求項1または2に記載の導電性ペースト。   The conductive paste according to claim 1 or 2, wherein the metal particles of the component (A) are copper particles or silver particles having an average particle diameter of 1 to 15 µm. 前記(C)成分のバインダ樹脂が、ホルムアルデヒドを一成分とする熱硬化性樹脂からなる樹脂である、請求項1〜3のいずれかに記載の導電性ペースト。   The electrically conductive paste in any one of Claims 1-3 whose binder resin of said (C) component is resin which consists of thermosetting resin which uses formaldehyde as one component. 前記(B)成分の卑金属粒子がニッケル、錫、ビスマス、鉄からなる群から選択される1種以上である、請求項1〜4のいずれかに記載の導電性ペースト。   The electrically conductive paste in any one of Claims 1-4 whose base metal particle of the said (B) component is 1 or more types selected from the group which consists of nickel, tin, bismuth, and iron. 前記(C)成分のバインダ樹脂が、フェノール樹脂、メラミン樹脂、キシレン樹脂、尿素樹脂からなる群から選択される1種以上である、請求項1〜5のいずれかに記載の導電性ペースト。   The electrically conductive paste in any one of Claims 1-5 whose binder resin of the said (C) component is 1 or more types selected from the group which consists of a phenol resin, a melamine resin, a xylene resin, and a urea resin. 請求項1〜6のいずれかに記載の導電性ペーストを塗布し硬化させてなる導電膜を基材上に有することを特徴とする導電膜付き基材。   A base material with a conductive film comprising a conductive film formed by applying and curing the conductive paste according to claim 1 on a base material.
JP2013182783A 2013-09-04 2013-09-04 Conductive paste and substrate with conductive film Active JP6197504B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013182783A JP6197504B2 (en) 2013-09-04 2013-09-04 Conductive paste and substrate with conductive film
TW103124441A TWI631160B (en) 2013-09-04 2014-07-16 Conductive paste and substrate with conductive film
CN201410448468.7A CN104425054B (en) 2013-09-04 2014-09-04 Conductive paste and the base material with conducting film
KR1020140117539A KR102195144B1 (en) 2013-09-04 2014-09-04 Conductive paste and substrate with conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013182783A JP6197504B2 (en) 2013-09-04 2013-09-04 Conductive paste and substrate with conductive film

Publications (2)

Publication Number Publication Date
JP2015050133A true JP2015050133A (en) 2015-03-16
JP6197504B2 JP6197504B2 (en) 2017-09-20

Family

ID=52699963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013182783A Active JP6197504B2 (en) 2013-09-04 2013-09-04 Conductive paste and substrate with conductive film

Country Status (4)

Country Link
JP (1) JP6197504B2 (en)
KR (1) KR102195144B1 (en)
CN (1) CN104425054B (en)
TW (1) TWI631160B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105555111A (en) * 2015-12-10 2016-05-04 深圳市法鑫忠信新材料有限公司 Shielding film and continuous shielding film manufacturing system and method
WO2019218268A1 (en) * 2018-05-16 2019-11-21 Henkel Ag & Co., Kgaa Curable adhesive composition for die attach

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08161931A (en) * 1994-12-02 1996-06-21 Murata Mfg Co Ltd Conductive paste, and conductive body and multilayer ceramic board using it
JPH08161930A (en) * 1994-12-02 1996-06-21 Murata Mfg Co Ltd Conductive paste, and conductive body and multilayer ceramic board using it
JPH11284296A (en) * 1998-01-29 1999-10-15 Kyocera Corp Wiring board
JP2003115216A (en) * 2001-07-19 2003-04-18 Toray Ind Inc Conductive paste
JP2005353620A (en) * 2004-06-08 2005-12-22 Koa Corp Resistor composition and resistor using the same
JP2010108696A (en) * 2008-10-29 2010-05-13 Mitsuboshi Belting Ltd Resistive paste, and resistor
JP2014022194A (en) * 2012-07-18 2014-02-03 Noritake Co Ltd PASTE COMPOSITION FOR FORMING Ag ELECTRODE, METHOD FOR MANUFACTURING THE SAME AND SOLAR CELL
JP2014078594A (en) * 2012-10-10 2014-05-01 Noritake Co Ltd Paste composition and solar battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3783788B2 (en) 1995-07-18 2006-06-07 日立化成工業株式会社 Manufacturing method of conductive paste and electric circuit forming substrate
AU2002330479A1 (en) * 2002-09-04 2004-03-29 Namics Corporation Conductive adhesive and circuit comprising it
JP4182234B2 (en) 2002-09-20 2008-11-19 Dowaエレクトロニクス株式会社 Copper powder for conductive paste and method for producing the same
JP2004264031A (en) * 2003-01-23 2004-09-24 Matsushita Electric Ind Co Ltd Method for measuring conductive particle
CN1737072B (en) * 2004-08-18 2011-06-08 播磨化成株式会社 Conductive adhesive agent and process for manufacturing article using the conductive adhesive agent
JP4894266B2 (en) 2006-01-06 2012-03-14 住友金属鉱山株式会社 Conductive powder surface treatment method, conductive powder and conductive paste
US20130098431A1 (en) * 2011-10-25 2013-04-25 Heraeus Precious Metals North America Conshohocken Llc Electroconductive Paste Composition Containing Metal Nanoparticles

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08161931A (en) * 1994-12-02 1996-06-21 Murata Mfg Co Ltd Conductive paste, and conductive body and multilayer ceramic board using it
JPH08161930A (en) * 1994-12-02 1996-06-21 Murata Mfg Co Ltd Conductive paste, and conductive body and multilayer ceramic board using it
JPH11284296A (en) * 1998-01-29 1999-10-15 Kyocera Corp Wiring board
JP2003115216A (en) * 2001-07-19 2003-04-18 Toray Ind Inc Conductive paste
JP2005353620A (en) * 2004-06-08 2005-12-22 Koa Corp Resistor composition and resistor using the same
JP2010108696A (en) * 2008-10-29 2010-05-13 Mitsuboshi Belting Ltd Resistive paste, and resistor
JP2014022194A (en) * 2012-07-18 2014-02-03 Noritake Co Ltd PASTE COMPOSITION FOR FORMING Ag ELECTRODE, METHOD FOR MANUFACTURING THE SAME AND SOLAR CELL
JP2014078594A (en) * 2012-10-10 2014-05-01 Noritake Co Ltd Paste composition and solar battery

Also Published As

Publication number Publication date
CN104425054B (en) 2017-12-19
CN104425054A (en) 2015-03-18
KR102195144B1 (en) 2020-12-24
TW201510015A (en) 2015-03-16
JP6197504B2 (en) 2017-09-20
KR20150027721A (en) 2015-03-12
TWI631160B (en) 2018-08-01

Similar Documents

Publication Publication Date Title
JP4972955B2 (en) Conductive paste and printed wiring board using the same
KR100678533B1 (en) Conductive powder and method for preparing the same
JP4935592B2 (en) Thermosetting conductive paste
JP2010044967A (en) Conductive adhesive and led substrate using it
JP2013115004A (en) Water-based copper paste material and formation method for conductive layer
TWI588237B (en) Conductive adhesive
JP5488059B2 (en) Conductive paste
WO2012161201A1 (en) Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film
JP2019056104A (en) Conductive composition and wiring board using the same
JP3879749B2 (en) Conductive powder and method for producing the same
JP6197504B2 (en) Conductive paste and substrate with conductive film
JP5458862B2 (en) Heat-curable silver paste and conductor film formed using the same
JP2005093105A (en) Conductive structure and its manufacturing method
JP6488156B2 (en) Conductive paste
JP2016110939A (en) Conductive paste, and wiring board and solid electrolytic capacitor prepared with the conductive paste
JP5849805B2 (en) Conductive paste and substrate with conductive film
JP2017130393A (en) Conductive paste and method for forming silver film
JP2014049191A (en) Conductive paste and substrate with conductive membrane
JP2019121568A (en) Manufacturing method of solder adhesive metal paste conductive film
JP3547083B2 (en) Thermosetting conductive paste
KR20230058317A (en) Conductive adhesive, electronic circuit using the same and manufacturing method thereof
JP5052857B2 (en) Conductive composition, conductor using the same, and method for forming conductive circuit
JPH02163150A (en) Electrically conductive paste
JP2005060656A (en) Conductive adhesive and conductive adhesive-cured product
TW201516126A (en) Conductive paste and substrate with conductive film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170807

R150 Certificate of patent or registration of utility model

Ref document number: 6197504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250