JP5849805B2 - Conductive paste and substrate with conductive film - Google Patents

Conductive paste and substrate with conductive film Download PDF

Info

Publication number
JP5849805B2
JP5849805B2 JP2012065997A JP2012065997A JP5849805B2 JP 5849805 B2 JP5849805 B2 JP 5849805B2 JP 2012065997 A JP2012065997 A JP 2012065997A JP 2012065997 A JP2012065997 A JP 2012065997A JP 5849805 B2 JP5849805 B2 JP 5849805B2
Authority
JP
Japan
Prior art keywords
component
copper
conductive paste
copper particles
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012065997A
Other languages
Japanese (ja)
Other versions
JP2013197045A (en
Inventor
平社 英之
英之 平社
米田 貴重
貴重 米田
富弥 杉浦
富弥 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2012065997A priority Critical patent/JP5849805B2/en
Priority to TW102108106A priority patent/TWI597345B/en
Priority to KR1020130026720A priority patent/KR101976855B1/en
Priority to CN201310092376.5A priority patent/CN103325437B/en
Publication of JP2013197045A publication Critical patent/JP2013197045A/en
Application granted granted Critical
Publication of JP5849805B2 publication Critical patent/JP5849805B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09D161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C09D161/22Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C09D161/24Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds with urea or thiourea
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C09D161/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C09D161/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/06Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)
  • Non-Insulated Conductors (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、導電性ペーストおよびこれを用いた導電膜付き基材に関する。   The present invention relates to a conductive paste and a substrate with a conductive film using the same.

従来から、電子部品やプリント配線基板等の配線導体の形成に、導電性の高い金属粒子を含有する導電性ペーストを用いる方法が知られている。このうち、プリント配線基板の製造は、絶縁基材上に導電性ペーストを所望のパターン形状に塗布し硬化して、配線パターンをなす導電膜を形成して行われている。   Conventionally, a method using a conductive paste containing highly conductive metal particles is known for forming wiring conductors such as electronic components and printed wiring boards. Among these, a printed wiring board is manufactured by applying a conductive paste in a desired pattern shape on an insulating base material and curing it to form a conductive film forming a wiring pattern.

導電性ペーストとしては、金属粒子として銀粒子を含有する銀ペーストが従来主流であったが(特許文献1)、マイグレーションの点で問題があった。この点、金属粒子として銅粒子を含有する銅ペーストは、マイグレーション現象が生じにくいため、電気回路の接続信頼性を高めることができる。   As the conductive paste, silver paste containing silver particles as metal particles has been the mainstream in the past (Patent Document 1), but there is a problem in terms of migration. In this respect, a copper paste containing copper particles as metal particles is less likely to cause a migration phenomenon, so that the connection reliability of an electric circuit can be improved.

プリント配線基板等の配線導体には様々な特性が要求されるが、配線パターンの絶縁基材への密着性は、電気回路の接続信頼性に重要な影響を及ぼすため、最も重要な特性の一つである。   Various characteristics are required for wiring conductors such as printed wiring boards, but the adhesion of the wiring pattern to the insulating base material has an important effect on the connection reliability of the electric circuit, so it is one of the most important characteristics. One.

プリント配線基板に用いられる基材としては、従来からガラス、ポリエチレンテレフタレート(PET)、ポリイミド(PI)等が使用されているが、近年、タッチパネル等の用途を中心に、ガラスやPET等の絶縁基材の上に、錫ドープ酸化インジウム(ITO)膜などの透明導電膜が形成された透明導電膜付き基材が用いられている。プリント配線基板として、このような透明導電膜付き基材を用いる場合、透明導電膜上に導電性ペーストを塗布して導電膜を形成することになる(例えば、特許文献2参照。)。   Conventionally, glass, polyethylene terephthalate (PET), polyimide (PI) and the like have been used as a base material used for a printed wiring board, but recently, insulating groups such as glass and PET are mainly used for touch panels and the like. A substrate with a transparent conductive film in which a transparent conductive film such as a tin-doped indium oxide (ITO) film is formed on a material is used. When using such a substrate with a transparent conductive film as a printed wiring board, a conductive paste is applied on the transparent conductive film to form a conductive film (see, for example, Patent Document 2).

上記目的で使用される透明導電膜付き基材における透明導電膜としては、ITO膜が広く用いられている。   An ITO film is widely used as a transparent conductive film in a substrate with a transparent conductive film used for the above purpose.

このような場合において、ITO膜に対する導電膜の密着性を向上させる方法としては、遷移金属化合物を有機溶媒中に溶解した溶液をITO膜の表面に塗布し、加熱処理を施して下地層を形成する方法が開示されている(例えば、特許文献3参照。)。   In such a case, as a method for improving the adhesion of the conductive film to the ITO film, a solution in which a transition metal compound is dissolved in an organic solvent is applied to the surface of the ITO film, and a heat treatment is performed to form a base layer. Is disclosed (see, for example, Patent Document 3).

しかしながら、この方法では、下地層の形成を必要とし、下地層形成後に導電性ペーストを塗布する工程を行うため、工程数が増加し作業性が悪いという問題があった。   However, this method requires the formation of a foundation layer, and the process of applying a conductive paste is performed after the foundation layer is formed. Therefore, there is a problem that the number of processes increases and the workability is poor.

また、ITO膜等の透明導電膜上に塗布される導電性ペーストの密着性を向上させるために、酸性もしくはアルカリ性溶液で処理し、透明導電膜表面を活性にする方法、紫外線、電子線を照射し透明導電膜表面を活性にする方法、コロナ処理やプラズマ処理を施し透明導電膜表面を活性にする方法が知られている(例えば、特許文献4参照。)。   Moreover, in order to improve the adhesiveness of the conductive paste applied on a transparent conductive film such as an ITO film, a method of activating the transparent conductive film surface by treating with an acidic or alkaline solution, irradiation with ultraviolet rays or electron beams A method for activating the surface of the transparent conductive film and a method for activating the surface of the transparent conductive film by performing corona treatment or plasma treatment are known (for example, see Patent Document 4).

しかしながら、この方法では、上記の処理を実施した後に、導電性ペーストを塗布する工程を行なうため、工程数が増加し作業性が悪いという問題があった。   However, this method has a problem that the number of steps is increased and workability is poor because the step of applying the conductive paste is performed after the above-described treatment.

特開平5−212579号公報JP-A-5-212579 特開2009−116452号公報JP 2009-116452 A 特開2005−293937号公報JP 2005-293937 A 再公表特許99/59814号公報Republished Patent No. 99/59814

本発明は、上記した従来技術の問題点を解決するため、ITO膜上に下地層を形成することなしに、かつ、ITO膜表面を活性化させる処理を実施することなしに、直接塗布して硬化させるだけで良好な密着性を発現し、導電性が高い導電膜を形成することができる導電性ペーストと、そのような導電性ペーストを使用して形成された導電膜付きの基材の提供を目的とする。   In order to solve the above-described problems of the prior art, the present invention can be applied directly without forming a base layer on the ITO film and without performing a treatment for activating the ITO film surface. Providing a conductive paste that can form a conductive film that exhibits good adhesion and high conductivity only by curing, and a substrate with a conductive film that is formed using such a conductive paste With the goal.

上記した目的を達成するため、本発明は、(A)平均粒子径が10nm〜20μmの銅粒子と、(B)リン酸基を有する有機重合体のアミン塩と、(C)ホルムアルデヒドを一成分とする熱硬化性樹脂からなるバインダ樹脂と、を含有し、前記(A)成分の銅粒子100質量部に対し前記(C)成分のバインダ樹脂を5〜40質量部含有し、前記(C)成分のバインダ樹脂100質量部に対し前記(B)成分の有機重合体のアミン塩を0.1〜100質量部含有することを特徴とする導電性ペーストを提供する。   In order to achieve the above object, the present invention comprises (A) copper particles having an average particle diameter of 10 nm to 20 μm, (B) an amine salt of an organic polymer having a phosphate group, and (C) formaldehyde as one component. A binder resin composed of a thermosetting resin, containing 5 to 40 parts by mass of the binder resin of the component (C) with respect to 100 parts by mass of the copper particles of the component (A), and the component (C). Provided is an electroconductive paste characterized by containing 0.1 to 100 parts by mass of the amine salt of the organic polymer as the component (B) with respect to 100 parts by mass of the component binder resin.

本発明の導電性ペーストにおいて、前記(B)成分の有機重合体の塩は、酸価が10〜200mgKOH/gであり、かつ、アミン価が10〜200mgKOH/gであることが好ましい。 In the conductive paste of the present invention, the organic polymer salt of the component (B) has an acid value of 10 to 200 mg KOH / g and an amine value of 10 to 200 mg KOH / g. preferable.

本発明の導電性ペーストにおいて、前記(B)成分の有機重合体のアミン塩は、リン酸基を有する有機重合体のアンモニウム塩、アルキルアミン塩、または、アルキロールアミン塩であることが好ましい。   In the conductive paste of the present invention, the amine salt of the organic polymer as the component (B) is preferably an ammonium salt, an alkylamine salt, or an alkylolamine salt of an organic polymer having a phosphate group.

本発明の導電性ペーストにおいて、前記(C)成分のバインダ樹脂は、フェノール樹脂、メラミン樹脂、キシレン樹脂、および、尿素樹脂からなる群から選択される1種以上あることが好ましい。   In the conductive paste of the present invention, the binder resin as the component (C) is preferably at least one selected from the group consisting of a phenol resin, a melamine resin, a xylene resin, and a urea resin.

本発明の導電性ペーストは、さらに、(D)分子中に少なくとも1個の1級アミノ基を有する高分子化合物のカルボン酸塩を含有することが好ましい。   The conductive paste of the present invention preferably further contains (D) a carboxylate of a polymer compound having at least one primary amino group in the molecule.

本発明の導電性ペーストにおいて、前記(D)成分は、ポリエチレンイミンのギ酸塩、または、ポリアリルアミンのギ酸塩であることが好ましい。   In the conductive paste of the present invention, the component (D) is preferably a polyethyleneimine formate or a polyallylamine formate.

また、本発明の導電性ペーストにおいて、前記(A)成分の銅粒子100質量部に対し前記(D)成分の高分子化合物のカルボン酸塩を0.05質量部含有することが好ましい。 Further, the electroconductive paste of the present invention, the (A) with respect to the copper particles 100 parts by weight of component a (D) it is preferred that the carboxylate component of the polymer compound containing 0.05 to 5 parts by weight.

また、本発明の導電性ペーストにおいて、前記(A)成分の銅粒子の個数基準の粒子径分布において、小粒子径側からの積算値が10%のときの粒子径をD10、50%のときの粒子径をD50、90%のときの粒子径をD90とするとき、D90/D50の値が4.0以下、かつ、D90/D10の値が3.0以上であることが好ましい。   In the conductive paste of the present invention, in the particle size distribution based on the number of copper particles of the component (A), the particle size when the integrated value from the small particle size side is 10% is D10, 50%. When the particle size of D50 is 90% and the particle size is 90%, it is preferable that the D90 / D50 value is 4.0 or less and the D90 / D10 value is 3.0 or more.

また、本発明の導電性ペーストにおいて、前記(A)成分の銅粒子は、表面酸素量が0.5以下の銅粒子であることが好ましい。   In the conductive paste of the present invention, the copper particles of the component (A) are preferably copper particles having a surface oxygen content of 0.5 or less.

また、本発明は、錫ドープ酸化インジウム(ITO)膜を有する基材の前記ITO膜上に、本発明の導電性ペーストを塗布し硬化させてなる導電膜を有することを特徴とする導電膜付き基材を提供する。   The present invention also includes a conductive film comprising a conductive film obtained by applying and curing the conductive paste of the present invention on the ITO film of a base material having a tin-doped indium oxide (ITO) film. A substrate is provided.

本発明によれば、ITO膜を有する基材のITO膜上に下地層を形成することなしに、かつ、ITO膜表面を活性化させる処理を実施することなしに、ITO膜との密着性が良好で導電性が高い導電膜を形成し得る導電性ペーストを得ることができる。   According to the present invention, adhesion to the ITO film can be achieved without forming a base layer on the ITO film of the base material having the ITO film and without performing a treatment for activating the ITO film surface. A conductive paste capable of forming a good conductive film having high conductivity can be obtained.

さらに、本発明によれば、このような導電性ペーストを用いることで、ITO膜との密着性が良好で導電性が高い導電膜を有する導電膜付き基材を得ることができる。   Furthermore, according to the present invention, by using such a conductive paste, it is possible to obtain a substrate with a conductive film having a conductive film with good adhesion to the ITO film and high conductivity.

以下、本発明の実施の形態について説明する。なお、本発明は、以下の説明に限定して解釈されるものではない。   Embodiments of the present invention will be described below. In addition, this invention is limited to the following description and is not interpreted.

<導電性ペースト>
本発明の導電性ペーストは、(A)平均粒子径が10nm〜20μmの銅粒子と、(B)リン酸基を有する有機重合体のアミン塩と、(C)ホルムアルデヒドを一成分とする熱硬化性樹脂からなるバインダ樹脂と、を含有し、前記(A)成分の銅粒子100質量部に対し前記(C)成分のバインダ樹脂を5〜40質量部含有し、前記(C)成分のバインダ樹脂100質量部に対し前記(B)成分の有機重合体の塩を0.1〜100質量部含有することを特徴とする。以下、導電性ペーストを構成する各成分について、詳細に説明する。
<Conductive paste>
The conductive paste of the present invention includes (A) copper particles having an average particle diameter of 10 nm to 20 μm, (B) an amine salt of an organic polymer having a phosphate group, and (C) thermosetting containing formaldehyde as one component. A binder resin made of a functional resin, and 5 to 40 parts by mass of the binder resin of the component (C) with respect to 100 parts by mass of the copper particles of the component (A), and the binder resin of the component (C) 0.1-100 mass parts of salt of the organic polymer of the said (B) component is contained with respect to 100 mass parts. Hereinafter, each component constituting the conductive paste will be described in detail.

(A)銅粒子
(A)成分の銅粒子は、導電性ペーストの導電成分である。
(A) Copper particle The copper particle of (A) component is an electroconductive component of an electroconductive paste.

(A)成分の銅粒子の平均粒子径は10nm〜20μmの範囲である。銅粒子の形状に応じて、この範囲内において適宜調整されればよい。銅粒子は、後述するように銅粒子、水素化銅微粒子、銅複合粒子の1種以上が使用できる。銅粒子の平均粒子径が下限値以上であれば、該銅粒子を含む導電ペーストの流動特性が良好となる。また、銅粒子の平均粒子径が上限値以下であれば、微細配線を作製しやすくなる。   (A) The average particle diameter of the copper particle of a component is the range of 10 nm-20 micrometers. Depending on the shape of the copper particles, it may be appropriately adjusted within this range. As described later, one or more of copper particles, copper hydride fine particles, and copper composite particles can be used as the copper particles. If the average particle diameter of the copper particles is not less than the lower limit value, the flow characteristics of the conductive paste containing the copper particles will be good. Moreover, if the average particle diameter of a copper particle is below an upper limit, it will become easy to produce fine wiring.

(A)成分の銅粒子としては、例えば、以下に示す銅粒子(A1)〜(A5)の使用が好ましい。
(A1)平均一次粒子径が0.3〜20μmの銅粒子。
(A2)平均一次粒子径0.3〜20μmの銅粒子の表面に、平均凝集粒子径20〜400nmの水素化銅微粒子が付着した銅複合粒子。
(A3)平均凝集粒子径が10nm〜1μmの水素化銅微粒子。
(A4)平均一次粒子径が1〜20μmの銅粒子の表面に、平均凝集粒子径が20〜400nmの銅微粒子が付着した銅複合粒子。
(A5)平均凝集粒子径が10nm〜1μmの銅微粒子。
(A) As a copper particle of a component, use of the copper particle (A1)-(A5) shown below is preferable, for example.
(A1) Copper particles having an average primary particle size of 0.3 to 20 μm.
(A2) Copper composite particles in which copper hydride fine particles having an average aggregated particle size of 20 to 400 nm are attached to the surface of copper particles having an average primary particle size of 0.3 to 20 μm.
(A3) Copper hydride fine particles having an average aggregated particle size of 10 nm to 1 μm.
(A4) Copper composite particles in which copper fine particles having an average aggregate particle diameter of 20 to 400 nm are attached to the surface of copper particles having an average primary particle diameter of 1 to 20 μm.
(A5) Copper fine particles having an average aggregated particle size of 10 nm to 1 μm.

水素化銅微粒子は、加熱することで水素化銅が金属銅に変換され、銅微粒子となる。すなわち、水素化銅微粒子が付着した銅複合粒子(A2)は、加熱されることにより銅微粒子が付着した銅複合粒子(A4)となる。また、水素化銅微粒子(A3)は、加熱されることにより銅微粒子(A5)となる。   When the copper hydride fine particles are heated, the copper hydride is converted into metallic copper to form copper fine particles. That is, the copper composite particles (A2) to which the copper hydride fine particles are attached become the copper composite particles (A4) to which the copper fine particles are attached by being heated. The copper hydride fine particles (A3) become copper fine particles (A5) when heated.

本明細書中における平均粒子径は、上記した銅粒子の形状によって以下のように求めることができる。一次粒子について平均一次粒子径を求めるときは、走査型電子顕微鏡(以下、「SEM」と記す。)像の中から無作為に選んだ100個の粒子のFeret径を測定し、それらを平均することにより算出される。二次粒子について平均凝集粒子径を求めるときは、透過型電子顕微鏡(以下、「TEM」と記す。)像の中から無作為に選んだ100個の粒子のFeret径を測定し、それらを平均することにより算出される。   The average particle diameter in this specification can be calculated | required as follows with the shape of an above-described copper particle. When determining the average primary particle diameter of primary particles, the Feret diameters of 100 particles randomly selected from a scanning electron microscope (hereinafter referred to as “SEM”) image are measured and averaged. Is calculated by When determining the average aggregate particle diameter of secondary particles, the Feret diameters of 100 particles randomly selected from a transmission electron microscope (hereinafter referred to as “TEM”) image were measured, and the averages were averaged. It is calculated by doing.

また、上記した銅粒子(A2)のように、銅粒子と、該銅粒子に付着した水素化銅微粒子とを含む粒子の場合は、当該粒子全体をSEMによって観察し、水素化銅微粒子も含めたうえでのFeret径を測定する。   Moreover, in the case of the particle | grains containing a copper particle and the copper hydride fine particle adhering to this copper particle like above-mentioned copper particle (A2), the said whole particle | grain is observed by SEM, and a copper hydride fine particle is also included. In addition, the Feret diameter is measured.

また、(A)成分の銅粒子の個数基準の粒子径分布において、小粒子径側からの積算値が10%のときの粒子径をD10、50%のときの粒子径をD50、90%のときの粒子径をD90とするとき、D90/D50の値が4.0以下、かつ、D90/D10の値が3.0以上であることが好ましい。D90/D50の値が4.0以下であれば、導電性ペーストを用いて微細配線を作製しやすくなる。D90/D10の値が3.0以上であれば、導電膜ペーストを用いて形成される導電膜中の銅粒子密度が向上して導電性が良くなる。   In addition, in the particle size distribution based on the number of copper particles of the component (A), the particle size when the integrated value from the small particle size side is 10% is D10, and the particle size when 50% is D50 and 90%. When the particle diameter is D90, the value of D90 / D50 is preferably 4.0 or less and the value of D90 / D10 is preferably 3.0 or more. If the value of D90 / D50 is 4.0 or less, it becomes easy to produce a fine wiring using a conductive paste. If the value of D90 / D10 is 3.0 or more, the copper particle density in the electrically conductive film formed using electrically conductive film paste will improve, and electroconductivity will become good.

(A)成分の銅粒子の個数基準の粒子径分布は、上記の手順で得られたFeret径の測定結果から求める。具体的には、小粒子径側からの積算値を求め、小粒子径側からの積算値が10%のときの粒子径をD10とし、小粒子径側からの積算値が50%のときの粒子径をD50、小粒子径側からの積算値が90%のときの粒子径をD90とする。   The number-based particle size distribution of the component (A) copper particles is determined from the measurement result of the Feret diameter obtained by the above procedure. Specifically, the integrated value from the small particle diameter side is obtained, the particle diameter when the integrated value from the small particle diameter side is 10% is D10, and the integrated value from the small particle diameter side is 50%. The particle diameter is D50, and the particle diameter when the integrated value from the small particle diameter side is 90% is D90.

また、(A)成分の銅粒子は、表面酸素量が0.5以下のものが好ましい。表面酸素量が0.5以下の銅粒子を使用すると、銅粒子間の接触抵抗がより小さくなり、得られる導電膜の導電性が向上する。   Further, the copper particles as the component (A) preferably have a surface oxygen amount of 0.5 or less. When copper particles having a surface oxygen content of 0.5 or less are used, the contact resistance between the copper particles becomes smaller, and the conductivity of the obtained conductive film is improved.

本発明における「表面酸素量」は、銅粒子の表面銅濃度(単位:原子%)に対する表面酸素濃度(単位:原子%)の割合で表される。なお、銅粒子の表面銅濃度と表面酸素濃度とは、X線光電子分光分析により求められる。測定は、粒子表面から中心へ向けて約3nmの深さまでの範囲に対して行われる。この範囲について測定がなされていれば、粒子表面の状態を十分に把握できる。   The “surface oxygen amount” in the present invention is represented by the ratio of the surface oxygen concentration (unit: atomic%) to the surface copper concentration (unit: atomic%) of the copper particles. In addition, the surface copper concentration and surface oxygen concentration of a copper particle are calculated | required by X-ray photoelectron spectroscopy analysis. Measurements are made over a range from the particle surface to the center to a depth of about 3 nm. If the measurement is performed in this range, the state of the particle surface can be sufficiently grasped.

表面酸素量が0.5以下の銅粒子としては、銅粒子表面を還元処理してなる「表面改質銅粒子」、または銅粒子表面の少なくとも一部に銅微粒子が付着した「複合金属銅粒子」を好ましく使用できる。   As the copper particles having a surface oxygen amount of 0.5 or less, “surface modified copper particles” formed by reducing the surface of the copper particles, or “composite metal copper particles having copper fine particles attached to at least a part of the surface of the copper particles” Can be preferably used.

本発明における「表面改質銅粒子」は、銅粒子表面を、pH値が3以下の分散媒中で還元処理して得られるものであり、例えば、(1)銅粒子を分散媒に分散して「銅分散液」とした後、(2)銅分散液のpH値を所定値以下に調整し、(3)銅分散液に還元剤を添加する、湿式還元法により製造できる。   “Surface-modified copper particles” in the present invention are obtained by reducing the surface of copper particles in a dispersion medium having a pH value of 3 or less. For example, (1) copper particles are dispersed in a dispersion medium. Then, it can be produced by a wet reduction method in which (2) the pH value of the copper dispersion is adjusted to a predetermined value or less and (3) a reducing agent is added to the copper dispersion.

本発明における「複合金属銅粒子」は、金属銅粒子表面の少なくとも一部に、金属銅微粒子を付着させたものであり、金属銅粒子表面に水素化銅微粒子が付着してなる「銅複合粒子」を加熱し、水素化銅微粒子を金属銅微粒子に変換して得られるものである。なお、金属銅粒子表面の微粒子の付着の有無は、SEM像を観察して確認することができる。また、金属銅粒子の表面に付着した水素化銅微粒子の同定は、X線回折装置(リガク社製、TTR−III)を用いて行うことができる。   The “composite metal copper particles” in the present invention are obtained by attaching metal copper fine particles to at least a part of the surface of the metal copper particles, and “copper composite particles obtained by attaching copper hydride fine particles to the surface of the metal copper particles. Is heated to convert the copper hydride fine particles into metal copper fine particles. In addition, the presence or absence of adhesion of fine particles on the surface of the metal copper particles can be confirmed by observing the SEM image. Moreover, the identification of the copper hydride fine particles adhering to the surface of the metal copper particles can be performed using an X-ray diffractometer (manufactured by Rigaku Corporation, TTR-III).

銅複合粒子における金属銅粒子としては、導電性ペーストに一般的に用いられる公知の銅粒子を使用でき、その粒子形状は、球状であってもよく、板状であってもよい。そして、この金属銅粒子の平均粒子径は、0.3〜20μmであることが好ましく、1〜10μmであることがより好ましい。金属銅粒子の平均粒子径が0.3μm未満であると、導電性ペーストとしたときに、十分な流動特性を得られない。一方、金属銅粒子の平均粒子径が20μmを超えると、得られる導電性ペーストによる、微細配線の作製が困難となるおそれがある。なお、金属銅粒子の平均粒子径は、前記したように、TEM像またはSEM像の中から無作為に抽出した100個の金属銅粒子のFeret径を測定し、この測定値を平均して算出したものである。   As the metal copper particles in the copper composite particles, known copper particles generally used for conductive paste can be used, and the particle shape may be spherical or plate-like. And it is preferable that it is 0.3-20 micrometers, and, as for the average particle diameter of this metal copper particle, it is more preferable that it is 1-10 micrometers. When the average particle diameter of the copper metal particles is less than 0.3 μm, sufficient flow characteristics cannot be obtained when a conductive paste is obtained. On the other hand, when the average particle diameter of the metal copper particles exceeds 20 μm, it may be difficult to produce fine wiring by the obtained conductive paste. The average particle diameter of the copper metal particles is calculated by measuring the Feret diameters of 100 metal copper particles randomly extracted from the TEM image or SEM image, and averaging the measured values. It is a thing.

銅複合粒子における水素化銅微粒子は、主として1〜20nm程度の一次粒子が凝集した二次粒子として存在しており、その粒子形状は球状であってもよく、板状であってもよい。水素化銅微粒子の平均粒子径は、20〜400nmが好ましく、30〜300nmがより好ましく、50〜200nmがさらに好ましい。特に好ましくは80〜150nmである。水素化銅微粒子の平均粒子径が20nm未満であると、水素化銅微粒子の融着・成長が生じ易くなり、導電膜としたときに、体積収縮に伴うクラック等の不具合が発生するおそれがある。一方、水素化銅微粒子の平均粒子径が400nmを超えると、粒子表面積が十分でなく、表面融解現象が生じにくくなり、緻密な導電膜を形成することが困難となる。水素化銅微粒子の平均粒子径は、前記したように、TEM像またはSEM像の中から無作為に抽出した100個の水素化銅微粒子の粒子径を測定し、その測定値を平均して算出したものである。   The copper hydride fine particles in the copper composite particles are present mainly as secondary particles in which primary particles of about 1 to 20 nm are aggregated, and the particle shape may be spherical or plate-like. The average particle size of the copper hydride fine particles is preferably 20 to 400 nm, more preferably 30 to 300 nm, and still more preferably 50 to 200 nm. Most preferably, it is 80-150 nm. When the average particle diameter of the copper hydride fine particles is less than 20 nm, the copper hydride fine particles are likely to be fused and grown, and there is a possibility that defects such as cracks due to volume shrinkage may occur when the conductive film is formed. . On the other hand, when the average particle diameter of the copper hydride fine particles exceeds 400 nm, the particle surface area is not sufficient, the surface melting phenomenon is hardly caused, and it becomes difficult to form a dense conductive film. As described above, the average particle diameter of the copper hydride fine particles is calculated by measuring the particle diameters of 100 copper hydride fine particles randomly extracted from the TEM image or SEM image, and averaging the measured values. It is a thing.

金属銅粒子表面に付着する水素化銅微粒子の量は、金属銅粒子の量の5〜50質量%であることが好ましく、10〜35質量%であることがより好ましい。水素化銅微粒子の量が金属銅粒子の量の5質量%未満であると、金属銅粒子間に導電パスが十分に形成されず、導電膜の体積抵抗率を低減する効果を十分に得られないおそれがある。一方、水素化銅微粒子の量が金属銅粒子の量の50質量%を超えると、導電性ペーストとして十分な流動性を確保するのが困難となる。なお、金属銅粒子の表面に付着した水素化銅微粒子の量は、例えば、還元剤を加える前の水溶性銅化合物溶液中の銅イオン濃度と、水素化銅微粒子生成終了後の反応液中に残存する銅イオン濃度との差から算出することができる。   The amount of the copper hydride fine particles adhering to the surface of the metal copper particles is preferably 5 to 50% by mass, and more preferably 10 to 35% by mass of the amount of the metal copper particles. When the amount of the copper hydride fine particles is less than 5% by mass of the amount of the metal copper particles, the conductive path is not sufficiently formed between the metal copper particles, and the effect of reducing the volume resistivity of the conductive film can be sufficiently obtained. There is a risk of not. On the other hand, when the amount of copper hydride fine particles exceeds 50% by mass of the amount of metal copper particles, it becomes difficult to ensure sufficient fluidity as a conductive paste. The amount of copper hydride fine particles adhering to the surface of the metal copper particles is, for example, the copper ion concentration in the water-soluble copper compound solution before adding the reducing agent and the reaction liquid after the completion of copper hydride fine particle production. It can be calculated from the difference from the remaining copper ion concentration.

(B)リン酸基を有する有機重合体のアミン塩
導電性粒子として、銀粒子を用いた導電性ペーストでは、低温かつ短時間での硬化が可能であるという理由から、ポリエステル樹脂、フェノキシ樹脂等の熱可塑性樹脂がバインダ樹脂として用いられている。
(B) Amine salt of organic polymer having phosphoric acid group The conductive paste using silver particles as the conductive particles can be cured at a low temperature and in a short time, so that polyester resin, phenoxy resin, etc. These thermoplastic resins are used as binder resins.

これに対して、本発明の導電性ペーストの場合、(A)成分の銅粒子が、銀粒子に比べて酸化されやすいため、導電膜の信頼性を向上させるという観点から、後述するように、(C)成分のバインダ樹脂として、熱硬化性樹脂が用いられる。   On the other hand, in the case of the conductive paste of the present invention, since the copper particles of the component (A) are more easily oxidized than the silver particles, from the viewpoint of improving the reliability of the conductive film, as described later, As the binder resin of component (C), a thermosetting resin is used.

しかしながら、バインダ樹脂として、熱硬化性樹脂を使用した場合、ITO膜上に導電性ペーストを塗布して導電膜を形成した際に、ITOに対する導電膜の密着性が劣る点が問題となる。その理由は、樹脂の極性が大きく、表面エネルギーが大きくなるためにITO膜表面への濡れ性が悪くなり、十分な密着面積を確保しにくいためである。   However, when a thermosetting resin is used as the binder resin, when the conductive film is formed on the ITO film by applying a conductive paste, the adhesion of the conductive film to the ITO is inferior. The reason is that the polarity of the resin is large and the surface energy is large, so that the wettability to the ITO film surface is deteriorated and it is difficult to secure a sufficient adhesion area.

このため、導電性粒子として銅粒子を用いた導電性ペーストを用いてITO膜上に導電膜を形成する場合、ITO膜上に下地層を形成する方法(特許文献3参照)、ITO膜表面を活性化させる処理を実施する方法(特許文献4参照)等の手段を講じて、ITO膜に対する導電膜の密着性を向上させる必要があった。   For this reason, when forming a conductive film on an ITO film using a conductive paste using copper particles as conductive particles, a method of forming a base layer on the ITO film (see Patent Document 3), It has been necessary to improve the adhesion of the conductive film to the ITO film by taking measures such as a method of performing the activation process (see Patent Document 4).

これに対し、本発明の導電性ペーストでは、(B)成分として、リン酸基を有する有機重合体のアミン塩を配合することで、該導電性ペーストを用いて形成される導電膜がITO膜に対して良好な密着性を発現する。この理由は以下の二つである。
1.(B)成分中、リン酸基、および、アミン塩を構成する部分は、ITO膜に対して相互作用を発現する。
2.(B)成分中、有機重合体の部分は、(C)成分のバインダ樹脂に対して相溶性を発現する。この結果、導電性ペースト中で、(B)成分の有機重合体の部分が(C)成分のバインダ樹脂と相溶するとともに、(B)成分のリン酸基、および、アミン塩を構成する部分がITO膜と相互作用を発現するため、該導電性ペーストを用いて形成される導電膜がITO膜に対して良好な密着性を発現する。
また、界面活性機能を有する(B)成分の配合により、ITO膜表面と導電性ペーストとの間の界面エネルギーを減少させて、導電性ペーストのITO膜表面への濡れ性を向上させる機能も有することにより該導電性ペーストを用いて形成される導電膜がITO膜に対して良好な密着性を発現する。
On the other hand, in the conductive paste of the present invention, the conductive film formed using the conductive paste by blending an amine salt of an organic polymer having a phosphate group as the component (B) is an ITO film. Expresses good adhesion. There are two reasons for this.
1. (B) The part which comprises a phosphate group and an amine salt in a component expresses interaction with respect to an ITO film | membrane.
2. In the component (B), the organic polymer portion exhibits compatibility with the binder resin of the component (C). As a result, in the conductive paste, the portion of the organic polymer of the component (B) is compatible with the binder resin of the component (C), and the portion constituting the phosphate group and the amine salt of the component (B) Exhibits an interaction with the ITO film, the conductive film formed using the conductive paste exhibits good adhesion to the ITO film.
Also, by blending the component (B) having a surface active function, the interface energy between the ITO film surface and the conductive paste is reduced, and the wettability of the conductive paste to the ITO film surface is improved. Accordingly, the conductive film formed using the conductive paste exhibits good adhesion to the ITO film.

(B)成分を構成するリン酸基を有する有機重合体のアミン塩は、少なくとも1個のリン酸基と、アミン塩を構成する部分を有する。上述したように、(B)成分中のリン酸基およびアミン塩を構成する部分はITO膜に対して相互作用を発揮するので、有機重合体の塩はリン酸基を複数有していることが好ましく、酸価およびアミン価が下記を満たすものが好ましい。   The amine salt of the organic polymer having a phosphate group constituting the component (B) has at least one phosphate group and a portion constituting the amine salt. As described above, since the portion constituting the phosphoric acid group and the amine salt in the component (B) exhibits an interaction with the ITO film, the salt of the organic polymer has a plurality of phosphoric acid groups. The acid value and amine value satisfying the following are preferable.

具体的には、酸価(JIS K7237の規定に拠る)が10〜200mgKOH/gであるものが好ましく、30〜100mgKOH/gであるものがより好ましい。酸価が10mgKOH/g未満であると、ITO膜との密着性が低下するおそれがある。酸価が200mgKOH/g超では、有機重合体の部分が、炭素数が9以下の低分子量となって(C)成分のバインダ樹脂との相溶性が低下するおそれがある。   Specifically, the acid value (according to JIS K7237) is preferably 10 to 200 mgKOH / g, more preferably 30 to 100 mgKOH / g. There exists a possibility that adhesiveness with an ITO film | membrane may fall that an acid value is less than 10 mgKOH / g. When the acid value exceeds 200 mgKOH / g, the organic polymer portion has a low molecular weight having 9 or less carbon atoms, and the compatibility with the component (C) binder resin may be reduced.

アミン価(JIS K7237の規定に拠る)は10〜200mgKOH/gであるものが好ましく、30〜100mgKOH/gであるものがより好ましい。アミン価が10mgKOH/g未満であると、ITO膜との密着性が低下するおそれがある。アミン価が200mgKOH/g超では、有機重合体の部分が、炭素数が9以下の低分子量となって(C)成分のバインダ樹脂との相溶性が低下するおそれがある。   The amine value (according to JIS K7237) is preferably 10 to 200 mgKOH / g, more preferably 30 to 100 mgKOH / g. There exists a possibility that adhesiveness with an ITO film | membrane may fall that an amine titer is less than 10 mgKOH / g. If the amine value exceeds 200 mgKOH / g, the organic polymer portion has a low molecular weight of 9 or less, and the compatibility with the binder resin of component (C) may be reduced.

(B)成分を構成する有機重合体のアミン塩の好適例は、リン酸基を有する有機重合体のアンモニウム塩、アルキルアミン塩、または、アルキロールアミン塩が挙げられる。
有機重合体の部分については、炭素数が10以上の有機重合体であることが好ましく、炭素数が100以上の有機重合体であることがさらに好ましい。直鎖状の主鎖を有するものであっても、分岐構造を有するものであってもよい。また、有機重合体の部分が共重合体の場合、ブロック共重合体であっても、交互共重合体であっても、グラフト共重合体であっても、ランダム共重合体であってもよい。また、有機重合体の部分は、ポリエステル、及び、または、ポリオキシエチレンの重合物であることが好ましい。
(B) The suitable example of the amine salt of the organic polymer which comprises a component includes the ammonium salt, alkylamine salt, or alkylolamine salt of the organic polymer which has a phosphate group.
The organic polymer portion is preferably an organic polymer having 10 or more carbon atoms, and more preferably an organic polymer having 100 or more carbon atoms. Even if it has a linear main chain, it may have a branched structure. When the organic polymer portion is a copolymer, it may be a block copolymer, an alternating copolymer, a graft copolymer, or a random copolymer. . The organic polymer part is preferably a polymer of polyester and / or polyoxyethylene.

(B)成分を構成する有機重合体のアミン塩としては、市販品を用いてもよい。市販品の具体例としては、Disperbyk180(ビックケミー社製)、Disperbyk142(ビックケミー社製)がある。   As the amine salt of the organic polymer constituting the component (B), a commercially available product may be used. Specific examples of commercially available products include Disperbyk 180 (manufactured by Big Chemie) and Disperbyk 142 (manufactured by Big Chemie).

本発明の導電性ペーストにおいて、(B)成分の有機重合体のアミン塩の配合量は、(C)成分のバインダ樹脂100質量部に対して0.1〜100質量部である。すなわち、(B)成分(有機重合体のアミン塩)の(C)成分(バインダ樹脂)に対する配合割合は、0.1〜100質量%である。(B)の有機重合体のアミン塩の配合量が、(C)成分のバインダ樹脂100質量部に対して0.1質量部以上であれば、導電性ペーストを用いて形成される導電膜のITO膜表面との密着性が良好となる。(B)の有機重合体のアミン塩の配合量が、(C)成分のバインダ樹脂100質量部に対して100質量部以下であれば、導電性を阻害して導電膜の体積抵抗率を悪化させることが少なく、良好な導電性を有する導電膜を形成できる。   In the conductive paste of the present invention, the compounding amount of the amine salt of the organic polymer as the component (B) is 0.1 to 100 parts by mass with respect to 100 parts by mass of the binder resin as the component (C). That is, the compounding ratio with respect to (C) component (binder resin) of (B) component (amine salt of an organic polymer) is 0.1-100 mass%. When the blending amount of the amine salt of the organic polymer (B) is 0.1 parts by mass or more with respect to 100 parts by mass of the binder resin (C), the conductive film formed using the conductive paste Adhesiveness with the ITO film surface is improved. If the blending amount of the amine salt of the organic polymer (B) is 100 parts by mass or less with respect to 100 parts by mass of the binder resin (C), the conductivity is inhibited and the volume resistivity of the conductive film is deteriorated. Thus, a conductive film having favorable conductivity can be formed.

(B)成分の有機重合体のアミン塩の配合量は、(C)成分のバインダ樹脂100質量部に対して0.5〜40質量部であること、すなわち、(B)成分(有機重合体のアミン塩)の(C)成分(バインダ樹脂)に対する配合割合0.5〜40質量%であることがより好ましい。   The compounding amount of the amine salt of the organic polymer (B) is 0.5 to 40 parts by mass with respect to 100 parts by mass of the binder resin (C), that is, the component (B) (organic polymer). It is more preferable that the mixing ratio is 0.5 to 40% by mass with respect to the component (C) (binder resin).

(C)バインダ樹脂
上述したように、導電性粒子として銅粒子を用いた導電性ペーストでは、バインダ樹脂として熱硬化性樹脂が用いられる。本発明の導電性ペーストでは、(C)成分のバインダ樹脂として、ホルムアルデヒドを一成分とする熱硬化性樹脂からなるものを用いる。その理由はホルムアルデヒドから生成するメチロール基の還元作用により銅粒子表面の酸化を抑制でき、さらに適度に硬化収縮が進行して銅粒子同士の接触が確保されるためである。
ホルムアルデヒドを一成分とする熱硬化性樹脂としては、フェノール樹脂、メラミン樹脂、キシレン樹脂、尿素樹脂が例示される。中でもフェノール樹脂がメチロール基の還元作用と硬化収縮の程度から好ましい。硬化収縮が大きすぎると導電膜内に不要な応力が蓄積し、機械的破壊の原因になる。硬化収縮が少なすぎると銅粒子同士の接触が十分に確保できない。
(C) Binder Resin As described above, in the conductive paste using copper particles as the conductive particles, a thermosetting resin is used as the binder resin. In the conductive paste of the present invention, a binder resin made of a thermosetting resin containing formaldehyde as one component is used as the binder resin of component (C). The reason is that the reduction of the methylol group produced from formaldehyde can suppress the oxidation of the surface of the copper particles, and further the curing shrinkage proceeds to ensure the contact between the copper particles.
Examples of the thermosetting resin containing formaldehyde as one component include phenol resin, melamine resin, xylene resin, and urea resin. Of these, a phenol resin is preferred from the viewpoint of the reducing action of the methylol group and the degree of cure shrinkage. If the curing shrinkage is too large, unnecessary stress accumulates in the conductive film, causing mechanical breakdown. If the curing shrinkage is too small, sufficient contact between the copper particles cannot be ensured.

本発明の導電性ペーストにおいて、(C)成分のバインダ樹脂の配合量は、(A)成分の銅粒子の体積と、銅粒子間に存在する空隙部の体積と、の比率に応じて適宜選択できるが、(A)成分の銅粒子100質量部に対して、5〜40質量部であることが好ましく、5〜20質量部がより好ましい。5質量部以上であれば、導電性ペーストの流動特性が良好となる。40質量部以下であれば、導電ペーストを用いて形成される導電膜の体積抵抗率を低く抑えることができる。   In the conductive paste of the present invention, the blending amount of the binder resin as the component (C) is appropriately selected according to the ratio between the volume of the copper particles as the component (A) and the volume of the voids existing between the copper particles. However, it is preferably 5 to 40 parts by mass and more preferably 5 to 20 parts by mass with respect to 100 parts by mass of the copper particles of the component (A). If it is 5 mass parts or more, the fluidity | liquidity characteristic of an electrically conductive paste will become favorable. If it is 40 mass parts or less, the volume resistivity of the electrically conductive film formed using an electrically conductive paste can be restrained low.

本発明の導電性ペーストにおいて、本発明の導電性ペーストは、上記(A)〜(C)の各成分に加えて、(D)成分として、分子中に少なくとも1個の1級アミノ基を含有する高分子化合物のカルボン酸塩を含有することが好ましい。(D)成分として、このようなアミノ基含有高分子化合物を含有することにより、導電性ペーストを用いて形成される導電膜のITO膜表面との密着性がさらに向上する。その理由は、アミノ基含有高分子化合物に含有される1級アミノ基等のアミノ基が、(C)成分としてのバインダ樹脂の有する酸性基と酸塩基反応による結合を形成しつつ、同時にITO膜表面と相互作用も行っているためであると考えられる。   In the conductive paste of the present invention, the conductive paste of the present invention contains at least one primary amino group in the molecule as the component (D) in addition to the components (A) to (C). It is preferable to contain a carboxylate of the polymer compound. By containing such an amino group-containing polymer compound as component (D), the adhesion of the conductive film formed using the conductive paste to the ITO film surface is further improved. The reason is that an amino group such as a primary amino group contained in the amino group-containing polymer compound forms a bond by an acid-base reaction with an acidic group of the binder resin as the component (C), and at the same time, an ITO film This is thought to be due to the interaction with the surface.

(D)成分を構成するアミノ基含有高分子化合物は、分子中に少なくとも1個、好ましくは複数個の1級アミノ基を含有し、質量平均分子量Mwが300〜20000である高分子量のアミンである。アミノ基含有高分子化合物の質量平均分子量(Mw)は、600〜1600の範囲がより好ましい。   The amino group-containing polymer compound constituting the component (D) is a high molecular weight amine containing at least one, preferably a plurality of primary amino groups in the molecule and having a mass average molecular weight Mw of 300 to 20000. is there. The mass average molecular weight (Mw) of the amino group-containing polymer compound is more preferably in the range of 600 to 1600.

(D)成分を構成するアミノ基含有高分子化合物は、少なくとも1個、好ましくは複数個の1級アミノ基とともに、2級アミノ基および/または3級アミノ基を含有することが好ましく、アミン価(JIS K7237の規定に拠る)が700〜1500mgKOH/gであるものが好ましく、850〜1200mgKOH/gであるものが特に好ましい。(D)成分を構成するアミノ基含有高分子化合物は、直鎖状の主鎖を有する化合物であっても、分岐構造を有する化合物であってもよい。なかでも、分岐構造を有する高分子アミンであることが好ましい。(D)成分を構成するアミノ基含有高分子化合物としては、具体的には、上記範囲の質量平均分子量(Mw)を有するポリエチレンイミンやポリアリルアミンが挙げられる。特に、ポリエチレンイミンが好ましい。   The amino group-containing polymer compound constituting the component (D) preferably contains a secondary amino group and / or a tertiary amino group together with at least one, preferably a plurality of primary amino groups. Those according to JIS K7237 are preferably 700 to 1500 mgKOH / g, particularly preferably 850 to 1200 mgKOH / g. The amino group-containing polymer compound constituting the component (D) may be a compound having a linear main chain or a compound having a branched structure. Among these, a polymer amine having a branched structure is preferable. Specific examples of the amino group-containing polymer compound constituting the component (D) include polyethyleneimine and polyallylamine having a mass average molecular weight (Mw) in the above range. In particular, polyethyleneimine is preferable.

上記のアミノ基含有高分子化合物は、含有されるアミノ基(1級アミノ基、ならびに2級アミノ基および/または3級アミノ基)がカルボン酸と反応して塩を形成した形で、本発明の導電性ペーストに含有される。アミノ基含有高分子化合物のアミノ基と塩を形成する酸としては、塩酸、硫酸、硝酸、カルボン酸、スルホン酸等を挙げることができるが、アミノ基との結合性の強さが適度であることから、カルボン酸が好ましい。カルボン酸の中でも、カルボニル基の炭素原子を含めた炭素数が10以下のカルボン酸が好ましく、炭素数が4以下のカルボン酸が特に好ましい。具体的には、ギ酸が特に好ましい。
したがって、アミノ基含有高分子化合物のカルボン酸としては、ポリエチレンイミンのギ酸塩、ポリアリルアミンのギ酸塩が好ましく、特に、ポリエチレンイミンのギ酸塩が好ましい。
The above amino group-containing polymer compound is obtained by reacting the amino group contained therein (primary amino group and secondary amino group and / or tertiary amino group) with a carboxylic acid to form a salt. Contained in the conductive paste. Examples of the acid that forms a salt with the amino group of the amino group-containing polymer compound include hydrochloric acid, sulfuric acid, nitric acid, carboxylic acid, sulfonic acid, etc., but the binding strength with the amino group is moderate. Therefore, carboxylic acid is preferable. Among carboxylic acids, a carboxylic acid having 10 or less carbon atoms including a carbon atom of a carbonyl group is preferable, and a carboxylic acid having 4 or less carbon atoms is particularly preferable. Specifically, formic acid is particularly preferable.
Therefore, as the carboxylic acid of the amino group-containing polymer compound, polyethyleneimine formate and polyallylamine formate are preferred, and polyethyleneimine formate is particularly preferred.

(D)成分として、アミノ基含有高分子化合物のカルボン酸塩を配合する場合、その配合量は、(A)成分の銅粒子100質量部に対して0.05〜5質量部が好ましく、0.1〜2質量部が特に好ましい。すなわち、(D)成分(アミノ基含有高分子化合物カルボン酸塩)の(A)成分(銅粒子)に対する配合割合は、0.05〜5質量%が好ましく、0.1〜2質量%の範囲が特に好ましい。(D)成分のアミノ基含有高分子化合物カルボン酸塩の配合量が、(A)成分の銅粒子100質量部に対して0.05質量部以上であれば、導電ペーストを用いて形成される導電膜のITO膜表面との密着性が良好となる。5質量部以下であれば、導電性を阻害して導電膜の体積抵抗率を悪化させることが少なく、良好な導電性を有する導電膜を形成できる。   (D) When mix | blending the carboxylate of an amino-group-containing high molecular compound as a component, 0.05-5 mass parts is preferable with respect to 100 mass parts of copper particles of (A) component, and the compounding quantity is 0. .1 to 2 parts by mass is particularly preferable. That is, the blending ratio of the component (D) (amino group-containing polymer compound carboxylate) to the component (A) (copper particles) is preferably from 0.05 to 5% by mass, and from 0.1 to 2% by mass. Is particularly preferred. If the compounding amount of the amino group-containing polymer compound carboxylate of component (D) is 0.05 parts by mass or more with respect to 100 parts by mass of copper particles of component (A), the conductive paste is used. The adhesion of the conductive film to the ITO film surface is improved. If it is 5 parts by mass or less, it is less likely to inhibit the conductivity and deteriorate the volume resistivity of the conductive film, and a conductive film having good conductivity can be formed.

(E)その他の成分
本発明の導電性ペーストは、上記(A)〜(D)の各成分に加えて、必要に応じて、溶剤や各種の添加剤(レベリング剤、カップリング剤、粘度調整剤、酸化防止剤等。)を、本発明の効果を損なわない範囲で含んでいてもよい。特に、適度な流動性を有するペーストを得るために、熱硬化性樹脂を溶解し得る溶剤を含有させることが好ましい。
(E) Other components In addition to the components (A) to (D) described above, the conductive paste of the present invention includes a solvent and various additives (leveling agent, coupling agent, viscosity adjustment as necessary). Agents, antioxidants, etc.) as long as the effects of the present invention are not impaired. In particular, in order to obtain a paste having appropriate fluidity, it is preferable to contain a solvent capable of dissolving the thermosetting resin.

溶剤としては、例えば、シクロヘキサノン、シクロヘキサノール、テルピネオール、エチレングリコール、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテートを使用できる。印刷用ペーストとして、適度な粘度範囲とする観点から、導電性ペーストに含有させる溶剤の量は、銅粒子に対して1〜10質量%が好ましい。   Examples of the solvent include cyclohexanone, cyclohexanol, terpineol, ethylene glycol, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether acetate, ethylene glycol monobutyl ether acetate, diethylene glycol, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether. Diethylene glycol monoethyl ether acetate and diethylene glycol monobutyl ether acetate can be used. From the viewpoint of setting an appropriate viscosity range as the printing paste, the amount of the solvent contained in the conductive paste is preferably 1 to 10% by mass with respect to the copper particles.

導電性ペーストは、上記(A)〜(D)の各成分、および必要に応じて前記溶剤等のその他の成分を混合して得ることができる。上記の(A)〜(D)の各成分を混合する時には、熱硬化性樹脂の硬化や溶剤の揮発が生じない程度の温度下で、加熱しながら行うことができる。   The conductive paste can be obtained by mixing the components (A) to (D) above and other components such as the solvent as necessary. When mixing each component of said (A)-(D), it can carry out, heating at the temperature which does not produce the hardening of a thermosetting resin, or volatilization of a solvent.

混合、撹拌時の温度は、10〜40℃とすることが好ましい。より好ましくは、20〜30℃とするのがよい。導電ペーストを調製する時に10℃以上の温度に加熱することで、ペーストの粘度を十分に低下させることができ、撹拌を円滑にかつ十分に行うことができる。一方、導電ペーストを調製するときの温度が120℃を超えると、ペースト中で樹脂の硬化が生じるおそれや、粒子同士の融着が生じるおそれがある。なお、混合時に銅粒子が酸化されるのを防止するため、不活性ガスで置換した容器内で混合することが好ましい。   The temperature during mixing and stirring is preferably 10 to 40 ° C. More preferably, it is good to set it as 20-30 degreeC. By heating to a temperature of 10 ° C. or higher when preparing the conductive paste, the viscosity of the paste can be sufficiently reduced, and stirring can be performed smoothly and sufficiently. On the other hand, if the temperature at which the conductive paste is prepared exceeds 120 ° C., the resin may be cured in the paste or the particles may be fused. In order to prevent the copper particles from being oxidized during mixing, it is preferable to mix in a container substituted with an inert gas.

以上説明した本発明の導電性ペーストにおいては、(A)所定の平均粒子径を有する銅粒子とともに、(B)リン酸基を有する有機重合体のアミン塩、および(C)ホルムアルデヒドを一成分とする熱硬化性樹脂からなるバインダ樹脂を含有しているので、この導電性ペーストにより形成される導電膜は、ITO膜との密着性に優れている。そして、導電性ペーストが、(D)成分として、分子中に少なくとも1個の1級アミノ基を含有する高分子化合物のカルボン酸塩を含有すると、ITO膜との密着性がさらに向上する。そのため、本発明の導電性ペーストから得られる導電膜は、ITO膜表面と良好な密着性を有する。   In the conductive paste of the present invention described above, (A) copper particles having a predetermined average particle size, (B) an amine salt of an organic polymer having a phosphate group, and (C) formaldehyde as one component Since the binder resin which consists of thermosetting resin to contain is contained, the electrically conductive film formed with this electrically conductive paste is excellent in adhesiveness with an ITO film | membrane. And when a conductive paste contains the carboxylate of the high molecular compound which contains at least 1 primary amino group in a molecule | numerator as (D) component, adhesiveness with an ITO film | membrane will improve further. Therefore, the conductive film obtained from the conductive paste of the present invention has good adhesion to the ITO film surface.

<導電膜付き基材>
本発明の導電膜付き基材は、ITO膜を有する基材と、この基材のITO膜上に前記した本発明の導電性ペーストを塗布し硬化させて形成した導電膜とを有する。
<Substrate with conductive film>
The base material with a conductive film of the present invention has a base material having an ITO film and a conductive film formed by applying and curing the above-described conductive paste of the present invention on the ITO film of the base material.

基材本体としては、ガラス基板、プラスチック基板(例えば、ポリイミド基板、ポリエステル基板等)、繊維強化複合材料からなる基板(例えば、ガラス繊維強化樹脂基板等)が挙げられる。これらの基材本体の表面にITO膜が形成されて、ITO膜付き基材が構成される。   Examples of the substrate main body include a glass substrate, a plastic substrate (for example, a polyimide substrate, a polyester substrate, etc.), and a substrate (for example, a glass fiber reinforced resin substrate, etc.) made of a fiber reinforced composite material. An ITO film is formed on the surface of these substrate bodies to form a substrate with an ITO film.

導電性ペーストの塗布方法としては、スクリーン印刷法、ロールコート法、エアナイフコート法、ブレードコート法、バーコート法、グラビアコート法、ダイコート法、スライドコート法等の公知の方法が挙げられる。これらの中でもスクリーン印刷法が好ましい。   Examples of the method of applying the conductive paste include known methods such as screen printing, roll coating, air knife coating, blade coating, bar coating, gravure coating, die coating, and slide coating. Among these, the screen printing method is preferable.

塗布層の硬化は、温風加熱、熱輻射加熱等の方法で加熱し、導電性ペースト中の樹脂(熱硬化性樹脂)を硬化させることにより行う。   The coating layer is cured by heating with a method such as warm air heating or heat radiation heating to cure the resin (thermosetting resin) in the conductive paste.

加熱温度および加熱時間は、導電膜に求められる特性に応じて適宜決定すればよい。加熱温度は、80〜200℃が好ましい。加熱温度が80℃以上であれば、バインダ樹脂の硬化が円滑に進行し、銅粒子間の接触が良好になって導電性が向上するとともに、導電膜のITO膜との密着性が向上する。加熱温度が200℃以下であれば、基材本体としてプラスチック基板を使用できるので、基材選択の自由度が高まる。   What is necessary is just to determine a heating temperature and a heating time suitably according to the characteristic calculated | required by the electrically conductive film. The heating temperature is preferably 80 to 200 ° C. If heating temperature is 80 degreeC or more, hardening of binder resin will advance smoothly, the contact between copper particles will become favorable, electroconductivity will improve, and the adhesiveness with the ITO film | membrane of an electrically conductive film will improve. If heating temperature is 200 degrees C or less, since a plastic substrate can be used as a base-material main body, the freedom degree of base-material selection increases.

ITO膜上に形成される導電膜の厚さは、安定した導電性と配線形状の維持を確保する観点から、1〜200μmであることが好ましく、5〜100μmの範囲がより好ましい。   The thickness of the conductive film formed on the ITO film is preferably 1 to 200 μm and more preferably 5 to 100 μm from the viewpoint of ensuring stable conductivity and maintaining the wiring shape.

導電膜の体積抵抗率(比抵抗ともいう。)は、1.0×10-4Ωcm以下であることが好ましい。導電膜の体積抵抗率が1.0×10-4Ωcmを超えると、電子機器用の導電体としての使用が困難となる場合がある。 The volume resistivity (also referred to as specific resistance) of the conductive film is preferably 1.0 × 10 −4 Ωcm or less. When the volume resistivity of the conductive film exceeds 1.0 × 10 −4 Ωcm, it may be difficult to use it as a conductor for electronic equipment.

また、導電膜のITO膜表面との密着性は、クロスカット法で測定した値として、60/100以上が好ましい。ITO膜との密着性が60/100未満であると、電子機器用の導電体としての使用が困難となる場合がある。なお、クロスカット法による密着性の測定は、JIS K 5600−5−6に規定された方法で導電膜をゴバン目状にクロスカットした後、セロハンテープ(商品名:セロハンテープ#405ニチバン社製品)を用いて導電膜を剥離することにより行う。そして、剥離せずに残存したゴバン目数をXとし、X/100を密着性の測定値とする。   Further, the adhesion of the conductive film to the ITO film surface is preferably 60/100 or more as a value measured by a cross-cut method. When the adhesiveness with the ITO film is less than 60/100, it may be difficult to use it as a conductor for electronic equipment. In addition, the adhesiveness measurement by the cross-cut method is performed by cross-cutting the conductive film into a gob-like shape by a method defined in JIS K 5600-5-6, and then using cellophane tape (product name: cellophane tape # 405 manufactured by Nichiban Co., Ltd.). ) To remove the conductive film. The number of gobangs remaining without being peeled is X, and X / 100 is a measured value of adhesion.

以下、本発明を実施例によりさらに詳しく説明するが、本発明はこれらの実施例に限定されない。なお、銅粒子の平均粒子径、導電膜の厚さおよび体積抵抗率(比抵抗)は、それぞれ以下に示す装置を用いて測定した。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples. In addition, the average particle diameter of the copper particles, the thickness of the conductive film, and the volume resistivity (specific resistance) were measured using the apparatuses shown below.

(平均粒子径)
銅粒子の平均粒子径は、SEM(日本電子社製、S−4300)により得られたSEM像の中から無作為に選ばれた100個の粒子のFeret径を測定し、その平均(数平均)をとることによって求めた。
(Average particle size)
The average particle diameter of the copper particles was determined by measuring the Feret diameter of 100 particles randomly selected from SEM images obtained by SEM (manufactured by JEOL Ltd., S-4300), and calculating the average (number average). ).

(導電膜の厚さ)
導電膜の厚さは、DEKTAK3(Veeco metrology Group社製)を用いて測定した。
(Thickness of conductive film)
The thickness of the conductive film was measured by using DEKTAK3 (manufactured by Veeco metrology group).

(導電膜の体積抵抗率)
導電膜の体積抵抗率は、四探針式体積抵抗率計(三菱油化社製、型式:lorestaIP MCP−T250)を用いて測定した。
(Volume resistivity of conductive film)
The volume resistivity of the conductive film was measured using a four-probe type volume resistivity meter (manufactured by Mitsubishi Yuka Co., Ltd., model: lorestaIP MCP-T250).

実施例1
ガラス製ビーカー内に、ギ酸3.0gと50質量%の次亜リン酸水溶液9.0gを入れた後、このビーカーをウォーターバスに入れ40℃に保持した。このビーカー内に銅粒子(三井金属鉱業社製、商品名:1400YP、平均一次粒子径:7μm)5.0gを徐々に添加し、30分間撹拌して銅分散液を得た。
Example 1
In a glass beaker, 3.0 g of formic acid and 9.0 g of a 50 mass% hypophosphorous acid aqueous solution were placed, and the beaker was placed in a water bath and maintained at 40 ° C. In this beaker, 5.0 g of copper particles (Mitsui Metal Mining Co., Ltd., trade name: 1400 YP, average primary particle size: 7 μm) was gradually added and stirred for 30 minutes to obtain a copper dispersion.

得られた銅分散液から、遠心分離器を使用し、回転数3000rpmで10分間遠心分離して沈殿物を回収した。この沈殿物を蒸留水30gに分散させ、遠心分離によって再び凝集物を沈殿させ、沈殿物を分離した。その後、得られた沈殿物を、−35kPaの減圧下、80℃で60分間加熱し、残留水分を揮発させて徐々に除去して、粒子表面が表面改質された銅粒子(A−1)を得た。   The resulting copper dispersion was centrifuged at 3000 rpm for 10 minutes using a centrifuge to collect a precipitate. This precipitate was dispersed in 30 g of distilled water, and the aggregate was precipitated again by centrifugation, thereby separating the precipitate. Thereafter, the obtained precipitate was heated at 80 ° C. for 60 minutes under a reduced pressure of −35 kPa to volatilize and remove residual moisture, and the copper particles (A-1) whose particle surfaces were surface-modified Got.

得られた銅粒子(A−1)の表面酸素量は、0.16であった。この値は、X線光電子分光分析(アルバック・ファイ社製、ESCA5500)によって表面酸素濃度[原子%]と表面銅濃度[原子%]を求め、表面酸素濃度を表面銅濃度で除して算出した。なお、酸素量計(LECO社製、商品番号:「ROH−600」)を用いて測定したところ、銅粒子(A−1)中の酸素量は460ppmであった。   The surface oxygen content of the obtained copper particles (A-1) was 0.16. This value was calculated by obtaining the surface oxygen concentration [atomic%] and the surface copper concentration [atomic%] by X-ray photoelectron spectroscopy (manufactured by ULVAC-PHI, ESCA5500), and dividing the surface oxygen concentration by the surface copper concentration. . In addition, when it measured using the oxygen meter (the product number: "ROH-600" by LECO company), the oxygen amount in a copper particle (A-1) was 460 ppm.

次いで、得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂(群栄化学社製、商品名:レジトップPL6220、以下の例において全て同じ。)7.4gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加えた。さらに、この混合物とともに、(B)成分としてのリン酸基を有する有機重合体のアミン塩(ビックケミー社製:Disperbyk180(酸価:94mgKOH/g、アミン価:94mgKOH/g))0.006gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分(リン酸基を有する有機重合体のアミン塩)の配合量は、(C)成分(フェノール樹脂)に対して0.12質量%であった。   Subsequently, 12 g of the obtained surface-modified copper particles (A-1) was added to a phenol resin as a component (C) (manufactured by Gunei Chemical Co., Ltd., trade name: RESITOP PL6220, all the same in the following examples). .4 g was added to a resin solution dissolved in 4.3 g of ethylene glycol monobutyl ether acetate. Further, together with this mixture, 0.006 g of an amine salt of an organic polymer having a phosphate group as component (B) (manufactured by Big Chemie: Disperbyk 180 (acid value: 94 mgKOH / g, amine value: 94 mgKOH / g)) And mixed at room temperature to obtain a copper paste. In addition, the compounding quantity of (B) component (amine salt of the organic polymer which has a phosphoric acid group) was 0.12 mass% with respect to (C) component (phenol resin).

実施例2
実施例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂7.4gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのリン酸基を有する有機重合体のアミン塩(ビックケミー社製:Disperbyk142(酸価:46mgKOH/g、アミン価:43mgKOH/g))0.01g(有効成分として0.006g)を乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分(リン酸基を有する有機重合体のアミン塩)の配合量は、(C)成分(フェノール樹脂)に対して0.12質量%であった。
Example 2
A resin solution obtained by dissolving 12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 and 7.4 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. In addition, together with this mixture, an amine salt of an organic polymer having a phosphoric acid group as component (B) (manufactured by Big Chemie: Disperbyk 142 (acid value: 46 mg KOH / g, amine value: 43 mg KOH / g)) 0.01 g ( As an active ingredient, 0.006 g) was put in a mortar and mixed at room temperature to obtain a copper paste. In addition, the compounding quantity of (B) component (amine salt of the organic polymer which has a phosphoric acid group) was 0.12 mass% with respect to (C) component (phenol resin).

実施例3
実施例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂7.4gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのリン酸基を有する有機重合体のアミン塩(ビックケミー社製:Disperbyk180)0.05gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分(リン酸基を有する有機重合体のアミン塩)の配合量は、(C)成分(フェノール樹脂)に対して1.0質量%であった。
Example 3
A resin solution obtained by dissolving 12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 and 7.4 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. In addition, together with this mixture, 0.05 g of an amine salt of an organic polymer having a phosphoric acid group as component (B) (manufactured by Big Chemie: Disperbyk 180) was placed in a mortar and mixed at room temperature to obtain a copper paste. . In addition, the compounding quantity of (B) component (amine salt of the organic polymer which has a phosphoric acid group) was 1.0 mass% with respect to (C) component (phenol resin).

実施例4
実施例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂7.4gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのリン酸基を有する有機重合体のアミン塩(ビックケミー社製:Disperbyk142(酸価:46mgKOH/g、アミン価:43mgKOH/g))0.08g(有効成分として0.05g)を乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分(リン酸基を有する有機重合体のアミン塩)の配合量は、(C)成分(フェノール樹脂)に対して1.0質量%であった。
Example 4
A resin solution obtained by dissolving 12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 and 7.4 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. In addition, together with this mixture, an amine salt of an organic polymer having a phosphate group as component (B) (by Big Chemie: Disperbyk 142 (acid value: 46 mgKOH / g, amine value: 43 mgKOH / g)) 0.08 g ( 0.05 g) as an active ingredient was put in a mortar and mixed at room temperature to obtain a copper paste. In addition, the compounding quantity of (B) component (amine salt of the organic polymer which has a phosphoric acid group) was 1.0 mass% with respect to (C) component (phenol resin).

実施例5
実施例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂7.4gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのリン酸基を有する有機重合体のアミン塩(ビックケミー社製:Disperbyk180)0.125gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分(リン酸基を有する有機重合体のアミン塩)の配合量は、(C)成分(フェノール樹脂)に対して2.5質量%であった。
Example 5
A resin solution obtained by dissolving 12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 and 7.4 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. In addition, together with this mixture, 0.125 g of an organic polymer amine salt having a phosphate group as component (B) (by Big Chemie: Disperbyk 180) was placed in a mortar and mixed at room temperature to obtain a copper paste. . In addition, the compounding quantity of (B) component (amine salt of the organic polymer which has a phosphate group) was 2.5 mass% with respect to (C) component (phenol resin).

実施例6
実施例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂7.4gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのリン酸基を有する有機重合体のアミン塩(ビックケミー社製:Disperbyk142)0.21g(有効成分として0.125g)を乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分(リン酸基を有する有機重合体のアミン塩)の配合量は、(C)成分(フェノール樹脂)に対して2.5質量%であった。
Example 6
A resin solution obtained by dissolving 12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 and 7.4 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. In addition, along with this mixture, 0.21 g (0.125 g as an active ingredient) of an amine salt of an organic polymer having a phosphate group as component (B) (manufactured by Big Chemie: Disperbyk 142) is placed in a mortar at room temperature. The copper paste was obtained by mixing. In addition, the compounding quantity of (B) component (amine salt of the organic polymer which has a phosphate group) was 2.5 mass% with respect to (C) component (phenol resin).

実施例7
実施例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂7.4gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのリン酸基を有する有機重合体のアミン塩(ビックケミー社製:Disperbyk180)0.25gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分(リン酸基を有する有機重合体のアミン塩)の配合量は、(C)成分(フェノール樹脂)に対して5.0質量%であった。
Example 7
A resin solution obtained by dissolving 12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 and 7.4 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. In addition, together with this mixture, 0.25 g of an amine salt of an organic polymer having a phosphate group as component (B) (manufactured by Big Chemie: Disperbyk 180) was placed in a mortar and mixed at room temperature to obtain a copper paste. . In addition, the compounding quantity of (B) component (amine salt of the organic polymer which has a phosphate group) was 5.0 mass% with respect to (C) component (phenol resin).

実施例8
実施例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂7.4gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのリン酸基を有する有機重合体のアミン塩(ビックケミー社製:Disperbyk142)0.42g(有効成分として0.25g)を乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分(リン酸基を有する有機重合体のアミン塩)の配合量は、(C)成分(フェノール樹脂)に対して5.0質量%であった。
Example 8
A resin solution obtained by dissolving 12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 and 7.4 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. In addition, together with this mixture, 0.42 g (0.25 g as an active ingredient) of an amine salt of an organic polymer having a phosphate group as component (B) (manufactured by Big Chemie: Disperbyk 142) is placed in a mortar at room temperature. The copper paste was obtained by mixing. In addition, the compounding quantity of (B) component (amine salt of the organic polymer which has a phosphate group) was 5.0 mass% with respect to (C) component (phenol resin).

実施例9
水温を50℃に設定したウォーターバス内にガラス製ビーカーを設置し、ビーカー内にポリエチレンイミン(純正化学社製、商品名:ポリエチレンイミン1200、Mw:1200、アミン価:1120mmol/g)50gを入れ、撹拌を激しく行いながらギ酸45gをゆっくりと滴下した。薄黄色をした前記ポリエチレンイミンは煙を出しながら激しく反応し、茶褐色の液体に変化した。滴下終了後、30分間そのまま撹拌した後、ガラス容器に生成物であるポリエチレンイミンのギ酸塩を回収した。
Example 9
A glass beaker is installed in a water bath set at a water temperature of 50 ° C., and 50 g of polyethyleneimine (manufactured by Junsei Chemical Co., Ltd., trade name: polyethyleneimine 1200, Mw: 1200, amine value: 1120 mmol / g) is placed in the beaker. Then, 45 g of formic acid was slowly added dropwise with vigorous stirring. The light-yellow polyethyleneimine reacted violently with smoke and turned into a brown liquid. After completion of the dropwise addition, the mixture was stirred as it was for 30 minutes, and then the polyethyleneimine formate as a product was recovered in a glass container.

次いで、実施例1と同様にして得られた表面改質銅粒子(A−1)の12gを、フェノール樹脂7.4gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、上記の手順で得られた(D)成分としてのポリエチレンイミンギ酸塩0.05gと(B)成分としてのリン酸基を有する有機重合体のアミン塩(ビックケミー社製:Disperbyk180)0.05gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(D)成分(ポリエチレンイミンギ酸塩)の配合量は、(A)成分(銅粒子)に対して0.4質量%であり、(B)成分(リン酸基を有する有機重合体のアミン塩)の配合量は、(C)成分(フェノール樹脂)に対して1.0質量%であった。   Next, 12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 was added to a resin solution obtained by dissolving 7.4 g of a phenol resin in 4.3 g of ethylene glycol monobutyl ether acetate. Together with the mixture, 0.05 g of polyethyleneimine formate as component (D) obtained by the above procedure and an amine salt of an organic polymer having a phosphoric acid group as component (B) (Disperbyk 180 manufactured by Big Chemie) 05 g was put in a mortar and mixed at room temperature to obtain a copper paste. In addition, the compounding quantity of (D) component (polyethyleneimine formate) is 0.4 mass% with respect to (A) component (copper particle), (B) component (organic polymer which has a phosphate group) The compounding amount of (amine salt) was 1.0% by mass relative to component (C) (phenol resin).

比較例1
実施例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂7.4gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加えた。そして、この混合物を乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。
Comparative Example 1
A resin solution obtained by dissolving 12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 and 7.4 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. added. Then, this mixture was put in a mortar and mixed at room temperature to obtain a copper paste.

比較例2
実施例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂7.4gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分の代わりにリン酸基を持たない有機重合体のアミン塩(ビックケミー社製:Disperbyk140(酸価:73mgKOH/g、アミン価:76mgKOH/g))0.25g(有効成分として0.125g)を乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、リン酸基を持たない有機重合体のアミン塩の配合量は、(C)成分(フェノール樹脂)に対して1.0質量%であった。
Comparative Example 2
A resin solution obtained by dissolving 12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 and 7.4 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. In addition, together with this mixture, an amine salt of an organic polymer having no phosphoric acid group in place of the component (B) (by Big Chemie: Disperbyk 140 (acid value: 73 mgKOH / g, amine value: 76 mgKOH / g)) 25 g (0.125 g as an active ingredient) was put in a mortar and mixed at room temperature to obtain a copper paste. In addition, the compounding quantity of the amine salt of the organic polymer which does not have a phosphoric acid group was 1.0 mass% with respect to (C) component (phenol resin).

比較例3
実施例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂7.4gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分の代わりにp−トルエンスルホン酸のアミン塩(KING INDUSTRY社製、商品名:NACURE2500)0.12gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、p−トルエンスルホン酸のアミン塩の配合量は、(C)成分(フェノール樹脂)に対して2.5質量%であった。
Comparative Example 3
A resin solution obtained by dissolving 12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 and 7.4 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. In addition, together with this mixture, 0.12 g of an amine salt of p-toluenesulfonic acid (KING INDUSTRY, trade name: NACURE 2500) is placed in a mortar instead of the component (B) and mixed at room temperature to obtain a copper paste. Obtained. In addition, the compounding quantity of the amine salt of p-toluenesulfonic acid was 2.5 mass% with respect to (C) component (phenol resin).

比較例4
実施例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂7.4gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分の代わりに有機重合体でないリン酸基を有する化合物のアミン塩(第一工業製薬社製、商品名:プライサーフDOM(オクチルリン酸エステルのエタノールアミン塩))0.12gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、有機重合体でないリン酸基を有する化合物のアミン塩の配合量は、(C)成分(フェノール樹脂)に対して2.5質量%であった。
Comparative Example 4
A resin solution obtained by dissolving 12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 and 7.4 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. In addition to this mixture, in addition to the component (B), an amine salt of a compound having a phosphate group that is not an organic polymer (Daiichi Kogyo Seiyaku Co., Ltd., trade name: Plysurf DOM (ethanolamine salt of octyl phosphate ester) )) 0.12 g was put in a mortar and mixed at room temperature to obtain a copper paste. In addition, the compounding quantity of the amine salt of the compound which has a phosphoric acid group which is not an organic polymer was 2.5 mass% with respect to (C) component (phenol resin).

比較例5
実施例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてのフェノール樹脂7.4gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのリン酸基を有する有機重合体のアミン塩(ビックケミー社製:Disperbyk180)0.00125gを乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分(リン酸基を有する有機重合体のアミン塩)の配合量は、(C)成分(フェノール樹脂)に対して0.024質量%であった。
Comparative Example 5
A resin solution obtained by dissolving 12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 and 7.4 g of phenol resin as component (C) in 4.3 g of ethylene glycol monobutyl ether acetate. In addition, together with this mixture, 0.00125 g of an organic polymer amine salt having a phosphate group as component (B) (manufactured by Big Chemie: Disperbyk 180) was placed in a mortar and mixed at room temperature to obtain a copper paste. . In addition, the compounding quantity of (B) component (amine salt of the organic polymer which has a phosphoric acid group) was 0.024 mass% with respect to (C) component (phenol resin).

比較例6
実施例1と同様にして得られた表面改質銅粒子(A−1)の12gを、(C)成分としてフェノール樹脂7.4gをエチレングリコールモノブチルエーテルアセテート4.3gに溶解した樹脂溶液に加え、さらにこの混合物とともに、(B)成分としてのリン酸基を有する有機重合体のアミン塩(ビックケミー社製:Disperbyk142)0.0021g(有効成分として0.00125g)を乳鉢に入れ、室温下で混ぜ合わせて銅ペーストを得た。なお、(B)成分(リン酸基を有する有機重合体のアミン塩)の配合量は、(C)成分(フェノール樹脂)に対して0.024質量%であった。
Comparative Example 6
12 g of the surface-modified copper particles (A-1) obtained in the same manner as in Example 1 was added to a resin solution in which 7.4 g of a phenol resin as a component (C) was dissolved in 4.3 g of ethylene glycol monobutyl ether acetate. In addition, together with this mixture, 0.0021 g of an organic polymer amine salt having a phosphate group as component (B) (manufactured by Big Chemie: Disperbyk 142) (0.00125 g as an active ingredient) is placed in a mortar and mixed at room temperature. Together, a copper paste was obtained. In addition, the compounding quantity of (B) component (amine salt of the organic polymer which has a phosphoric acid group) was 0.024 mass% with respect to (C) component (phenol resin).

次に、実施例1〜9および比較例1〜6で得られた銅ペーストを、スパッタリング法で成膜したITO膜付きガラス基板のITO膜(厚さ50nm)上にそれぞれ塗布し、150℃で30分間加熱して、(C)成分としてのフェノール樹脂を硬化させ、厚さ10μmの導電膜を形成した。そして、得られた導電膜の電気抵抗値を抵抗値計(ケースレー社製、商品名:ミリオームハイテスタ)を用いて測定し、体積抵抗率(比抵抗;単位μΩcm)を測定した。また、導電膜の密着性をクロスカット法により評価した。   Next, each of the copper pastes obtained in Examples 1 to 9 and Comparative Examples 1 to 6 was applied onto an ITO film (thickness 50 nm) of a glass substrate with an ITO film formed by a sputtering method. By heating for 30 minutes, the phenol resin as the component (C) was cured to form a conductive film having a thickness of 10 μm. And the electrical resistance value of the obtained electrically conductive film was measured using the resistance value meter (the Keithley company make, brand name: milliohm Hitester), and the volume resistivity (specific resistance; unit microohm cm) was measured. Moreover, the adhesiveness of the electrically conductive film was evaluated by the cross-cut method.

Figure 0005849805
表中、(B)成分の配合量は、(C)成分(フェノール樹脂)に対する質量%であり、(D)成分の配合量は、表面改質銅粒子(A−1)に対する質量%である。
Figure 0005849805
In the table, the amount of component (B) is mass% relative to component (C) (phenolic resin), and the amount of component (D) is mass% relative to surface-modified copper particles (A-1). .

表1からわかるように、表面改質銅粒子とともに、(B)成分としてのリン酸基を有する有機重合体のアミン塩を、(C)成分としてのフェノール樹脂に対する質量%で0.1〜100質量%配合した実施例1〜9の銅ペーストを用いることにより、ITO膜上に下地層を形成することなしに、かつ、ITO膜表面を活性化させる処理を実施することなしに、導電性ペーストをITO膜上に直接塗布して硬化させるだけで、ITO膜との密着性が良好であるうえに、体積抵抗率が低く、十分に高い導電性を有していた。   As can be seen from Table 1, together with the surface-modified copper particles, the amine salt of the organic polymer having a phosphate group as the component (B) is 0.1 to 100% by mass relative to the phenol resin as the component (C). By using the copper pastes of Examples 1 to 9 blended by mass%, the conductive paste is formed without forming the underlayer on the ITO film and without activating the ITO film surface. By directly applying and curing on the ITO film, the adhesiveness with the ITO film was good, the volume resistivity was low, and it had sufficiently high conductivity.

本発明の導電性ペーストは、様々な用途に利用でき、たとえば、プリント配線板等における配線パターンの形成および修復、半導体パッケージ内の層間配線、プリント配線板と電子部品との接合等の用途に利用できる。   The conductive paste of the present invention can be used for various purposes, for example, for the formation and repair of wiring patterns in printed wiring boards, interlayer wiring in semiconductor packages, and bonding between printed wiring boards and electronic components. it can.

Claims (10)

(A)平均粒子径が10nm〜20μmの銅粒子と、
(B)リン酸基を有する有機重合体のアミン塩と、
(C)ホルムアルデヒドを一成分とする熱硬化性樹脂からなるバインダ樹脂と、を含有し、
前記(A)成分の銅粒子100質量部に対し前記(C)成分のバインダ樹脂を5〜40質量部含有し、前記(C)成分のバインダ樹脂100質量部に対し前記(B)成分の有機重合体のアミン塩を0.1〜100質量部含有することを特徴とする導電性ペースト。
(A) copper particles having an average particle diameter of 10 nm to 20 μm;
(B) an amine salt of an organic polymer having a phosphate group;
(C) a binder resin composed of a thermosetting resin containing formaldehyde as one component,
5 to 40 parts by mass of the binder resin of the (C) component is contained with respect to 100 parts by mass of the copper particles of the (A) component, and the organic of the (B) component with respect to 100 parts by mass of the binder resin of the (C) component A conductive paste containing 0.1 to 100 parts by mass of a polymer amine salt.
前記(B)成分の有機重合体のアミン塩が、酸価が10〜200mgKOH/gであり、かつ、アミン価が10〜200mgKOH/gである、請求項1に記載の導電性ペースト。 2. The conductivity according to claim 1, wherein the amine salt of the organic polymer as the component (B) has an acid value of 10 to 200 mg KOH / g and an amine value of 10 to 200 mg KOH / g. paste. 前記(B)成分の有機重合体のアミン塩が、リン酸基を有する有機重合体のアンモニウム塩、アルキルアミン塩、または、アルキロールアミン塩である、請求項1または2に記載の導電性ペースト。   The conductive paste according to claim 1 or 2, wherein the amine salt of the organic polymer as the component (B) is an ammonium salt, an alkylamine salt, or an alkylolamine salt of an organic polymer having a phosphate group. . 前記(C)成分のバインダ樹脂が、フェノール樹脂、メラミン樹脂、キシレン樹脂、および、尿素樹脂からなる群から選択される1種以上である、請求項1〜3のいずれかに記載の導電性ペースト。   The electrically conductive paste in any one of Claims 1-3 whose binder resin of the said (C) component is 1 or more types selected from the group which consists of a phenol resin, a melamine resin, a xylene resin, and a urea resin. . さらに、(D)分子中に少なくとも1個の1級アミノ基を有する高分子化合物のカルボン酸塩を含有する、請求項1〜4のいずれかに記載の導電性ペースト。   Furthermore, (D) The electrically conductive paste in any one of Claims 1-4 containing the carboxylate of the high molecular compound which has at least 1 primary amino group in a molecule | numerator. 前記(D)成分が、ポリエチレンイミンのギ酸塩、または、ポリアリルアミンのギ酸塩である、請求項5に記載の導電性ペースト。   The conductive paste according to claim 5, wherein the component (D) is a polyethyleneimine formate or a polyallylamine formate. 前記(A)成分の銅粒子100質量部に対し前記(D)成分の高分子化合物のカルボン酸塩を0.05質量部含有する、請求項5または6に記載の導電性ペースト。 Wherein (A) the relative copper particles 100 parts by weight of component (D) is 0.05 to 5 parts by weight of carboxylate of the polymer compound of the component, according to claim 5 or 6 conductive paste according to. 前記(A)成分の銅粒子の個数基準の粒子径分布において、小粒子径側からの積算値が10%のときの粒子径をD10、50%のときの粒子径をD50、90%のときの粒子径をD90とするとき、D90/D50の値が4.0以下、かつ、D90/D10の値が3.0以上である、請求項1〜7のいずれかに記載の導電性ペースト。   In the particle size distribution based on the number of copper particles of the component (A), when the integrated value from the small particle size side is 10%, the particle size is D10, and when the particle size is 50%, the particle size is D50, 90%. The conductive paste according to any one of claims 1 to 7, wherein a value of D90 / D50 is 4.0 or less and a value of D90 / D10 is 3.0 or more, when the particle diameter of D90 is D90. 前記(A)成分の銅粒子が、表面酸素量が0.5以下の銅粒子である、請求項1〜8のいずれかに記載の導電性ペースト。   The conductive paste according to claim 1, wherein the copper particles of the component (A) are copper particles having a surface oxygen content of 0.5 or less. 錫ドープ酸化インジウム(ITO)膜を有する基材の前記ITO膜上に、請求項1〜9のいずれかに記載の導電性ペーストを塗布し硬化させてなる導電膜を有することを特徴とする導電膜付き基材。   A conductive film comprising a conductive film obtained by applying and curing the conductive paste according to any one of claims 1 to 9 on the ITO film of a substrate having a tin-doped indium oxide (ITO) film. Substrate with film.
JP2012065997A 2012-03-22 2012-03-22 Conductive paste and substrate with conductive film Active JP5849805B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012065997A JP5849805B2 (en) 2012-03-22 2012-03-22 Conductive paste and substrate with conductive film
TW102108106A TWI597345B (en) 2012-03-22 2013-03-07 Conductive paste and attached conductive film substrate
KR1020130026720A KR101976855B1 (en) 2012-03-22 2013-03-13 Conductive paste and substrate with conductive film
CN201310092376.5A CN103325437B (en) 2012-03-22 2013-03-21 Conductive paste and the base material with conducting film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012065997A JP5849805B2 (en) 2012-03-22 2012-03-22 Conductive paste and substrate with conductive film

Publications (2)

Publication Number Publication Date
JP2013197045A JP2013197045A (en) 2013-09-30
JP5849805B2 true JP5849805B2 (en) 2016-02-03

Family

ID=49194128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012065997A Active JP5849805B2 (en) 2012-03-22 2012-03-22 Conductive paste and substrate with conductive film

Country Status (4)

Country Link
JP (1) JP5849805B2 (en)
KR (1) KR101976855B1 (en)
CN (1) CN103325437B (en)
TW (1) TWI597345B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6737563B2 (en) * 2014-02-06 2020-08-12 Nissha株式会社 Transparent conductive support, touch sensor, and method for manufacturing the same
CN116417177B (en) * 2023-03-15 2024-08-20 苏州锦艺新材料科技股份有限公司 Conductive paste for ceramic capacitor and preparation method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2514516B2 (en) 1992-02-05 1996-07-10 タツタ電線株式会社 Solderable conductive paste
EP1078733A4 (en) 1998-05-15 2003-05-21 Toyo Boseki Transparent conductive film and touch panel
JP4401294B2 (en) * 2002-09-04 2010-01-20 ナミックス株式会社 Conductive adhesive and circuit using the same
JP4792203B2 (en) 2004-03-31 2011-10-12 ハリマ化成株式会社 Method for forming metal thin film layer on conductive ITO film, and metal thin film layer on conductive ITO film by the method
US7981327B2 (en) * 2005-10-14 2011-07-19 Toyo Ink Mfg. Co. Ltd. Method for producing metal particle dispersion, conductive ink using metal particle dispersion produced by such method, and conductive coating film
JP4983150B2 (en) * 2006-04-28 2012-07-25 東洋インキScホールディングス株式会社 Method for producing conductive coating
JP4893587B2 (en) 2007-11-02 2012-03-07 東洋インキScホールディングス株式会社 Manufacturing method of conductive member for touch panel, and conductive member for touch panel
KR101494045B1 (en) * 2008-08-29 2015-02-16 이시하라 산교 가부시끼가이샤 Metallic copper dispersion, process for producing the metallic copper dispersion, electrode, wiring pattern, and coating film formed using the metallic copper dispersion, decorative article and antimicrobial article with the coating film formed thereon, and processes for producing the decorative article and the antimicrobial article
KR20100109416A (en) * 2009-03-31 2010-10-08 디아이씨 가부시끼가이샤 Electroconductive paste composition and the method of producing the same
CN104588643B (en) * 2009-09-30 2017-08-29 大日本印刷株式会社 Metal particle dispersion, the manufacture method of conductive board and conductive board
CN103210452B (en) * 2010-11-16 2015-06-17 旭硝子株式会社 Conductive paste and base with conductive film

Also Published As

Publication number Publication date
CN103325437B (en) 2016-12-28
KR20130108126A (en) 2013-10-02
KR101976855B1 (en) 2019-05-09
TWI597345B (en) 2017-09-01
CN103325437A (en) 2013-09-25
JP2013197045A (en) 2013-09-30
TW201348399A (en) 2013-12-01

Similar Documents

Publication Publication Date Title
JP5880441B2 (en) Conductive paste and substrate with conductive film
US9676969B2 (en) Composition set, conductive substrate and method of producing the same, and conductive adhesive composition
KR101385330B1 (en) Conductive particle, method for producing same, anisotropic conductive film, assembly and connection method
JP2013115004A (en) Water-based copper paste material and formation method for conductive layer
JP2007227156A (en) Conductive paste, and printed wiring board using it
KR20140038413A (en) Conductive paste, base having conductive film obtained using same, and method for producing base having conductive film
KR20130076745A (en) Conductive paste, substrate with conductive film and method for producing the same
JP6562196B2 (en) Copper fine particle sintered body and method for producing conductive substrate
JP5849805B2 (en) Conductive paste and substrate with conductive film
TW201327582A (en) Conductive paste and method of preparing conductive paste
JP6197504B2 (en) Conductive paste and substrate with conductive film
JP2019121568A (en) Manufacturing method of solder adhesive metal paste conductive film
JP2017214548A (en) Conductive resin composition
JP2014049191A (en) Conductive paste and substrate with conductive membrane
JP2016046136A (en) Conductive paste and substrate with conductive film
JP2004127537A (en) Conductive thermosetting resin composition for electrode formation
TW201516126A (en) Conductive paste and substrate with conductive film
JP2005060656A (en) Conductive adhesive and conductive adhesive-cured product
JPH0520922A (en) Conductive copper paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151117

R150 Certificate of patent or registration of utility model

Ref document number: 5849805

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350