JP5052857B2 - Conductive composition, conductor using the same, and method for forming conductive circuit - Google Patents

Conductive composition, conductor using the same, and method for forming conductive circuit Download PDF

Info

Publication number
JP5052857B2
JP5052857B2 JP2006280310A JP2006280310A JP5052857B2 JP 5052857 B2 JP5052857 B2 JP 5052857B2 JP 2006280310 A JP2006280310 A JP 2006280310A JP 2006280310 A JP2006280310 A JP 2006280310A JP 5052857 B2 JP5052857 B2 JP 5052857B2
Authority
JP
Japan
Prior art keywords
conductive
conductive composition
organic acid
component
acid compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006280310A
Other languages
Japanese (ja)
Other versions
JP2008098058A (en
Inventor
修造 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2006280310A priority Critical patent/JP5052857B2/en
Publication of JP2008098058A publication Critical patent/JP2008098058A/en
Application granted granted Critical
Publication of JP5052857B2 publication Critical patent/JP5052857B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、耐マイグレーション性、導電回路の信頼性に優れた導電性組成物およびこれ
を用いた導電体、導電回路の形成方法に関する。
The present invention relates to a conductive composition excellent in migration resistance and conductive circuit reliability, a conductor using the same, and a method for forming a conductive circuit .

従来、ハイブリッド集積回路においては、耐熱性樹脂を用いたプリント基板、銅張積層板を用いたプリント配線板等が使用されている。これらのプリント基板等に配線等の導電膜を形成する場合、銀微粒子とポリエステル樹脂等のバインダー成分とを混練したポリマー型の導電ペーストが用いられている(例えば、特許文献1、2参照)。
この導電ペーストを、ポリエステル樹脂等のプラスチック基板上やポリエチレンテレフタレート(PET)フィルム等のフィルム上にスクリーン印刷し、その後、常温で乾燥するか、あるいは150℃程度にて加熱することにより、導電性の塗膜を形成したプリント配線板やフレキシブル配線板等を作製することができる。
Conventionally, in a hybrid integrated circuit, a printed board using a heat-resistant resin, a printed wiring board using a copper-clad laminate, and the like are used. When a conductive film such as a wiring is formed on such a printed board or the like, a polymer-type conductive paste in which silver fine particles and a binder component such as a polyester resin are kneaded is used (for example, see Patent Documents 1 and 2).
This conductive paste is screen-printed on a plastic substrate such as a polyester resin or a film such as a polyethylene terephthalate (PET) film, and then dried at room temperature or heated at about 150 ° C. A printed wiring board or a flexible wiring board on which a coating film is formed can be produced.

このようにして得られた導電性塗膜の体積抵抗率は、製膜条件にもよるが、10-Ωcm程度である。
これらプリント配線板やフレキシブル配線板等は、基板上に金属箔を貼り付け、この金属箔をエッチングによりパターニングするタイプの配線板に比べて、工程が単純、製造コストが低いという特徴がある。
特開2000−260224号公報 特開平05−114333号公報
The volume resistivity of the thus obtained conductive coating will depend on the deposition conditions, it is about 10- 4 [Omega] cm.
These printed wiring boards, flexible wiring boards, and the like are characterized in that the process is simple and the manufacturing cost is low as compared with a type of wiring board in which a metal foil is attached on a substrate and the metal foil is patterned by etching.
JP 2000-260224 A JP 05-114333 A

ところで、従来のポリマー型の導電ペーストでは、導電体に銀微粒子を用いているために、塗膜が高温高湿の雰囲気に晒されたりした場合、雰囲気中の水分を吸収して塗膜中の銀微粒子がマイグレーションを起こし易くなるために、塗膜の導電性が低下し、その結果、塗膜の信頼性が低下するという問題があった。
そこで、銀微粒子のマイグレーションを防止する対策として、印刷により、導電性の塗膜を保護レジストやカーボンペーストで被覆する方法が提案されている。しかしながら、この方法では、印刷により、導電性の塗膜を被覆する工程が増えるため、結果として、生産速度が低下する原因となっていた。さらに、ファインピッチが要求される導電性の塗膜のコネクタ部などを、印刷により被覆することは困難であった。
By the way, in the conventional polymer type conductive paste, since silver fine particles are used for the conductor, when the coating film is exposed to a high temperature and high humidity atmosphere, it absorbs moisture in the atmosphere and Since silver fine particles are liable to cause migration, the conductivity of the coating film is lowered, and as a result, the reliability of the coating film is lowered.
Therefore, as a measure for preventing migration of silver fine particles, a method of coating a conductive coating film with a protective resist or carbon paste by printing has been proposed. However, this method increases the number of steps for coating the conductive coating film by printing, resulting in a decrease in production speed. Furthermore, it has been difficult to coat a connector portion or the like of a conductive coating film requiring a fine pitch by printing.

本発明は、前記事情に鑑みてなされたもので、耐マイグレーション性に優れ、10-Ωcm程度の導電性を備える導電体を可能とする導電ペーストを提供することを目的とする。 The present invention has been made in view of the above circumstances, excellent migration resistance, and to provide a conductive paste which enables a conductor with a conductivity of about 10- 4 [Omega] cm.

本発明の請求項1に係る導電性組成物は、Sn成分およびBi成分を少なくとも含む導電物と、前記導電物の表面酸化膜を除去する有機酸化合物とを備えてなる、導電回路形成用の導電性組成物であって、前記導電物と前記有機酸化合物との配合比率は、重量比で、75:21〜90:6であり、前記導電物は、Sn 100−XBi(Xは重量%、Xは5以上、25以下)、Sn 100−XAgBi(Xは重量%、Xは5以上、25以下)、Sn 100−XAgCu0.5Bi(Xは重量%、Xは5以上、25以下)で表され、前記導電物に対する前記Bi成分の含有率は、重量比で、5%以上、25%以下であり、前記有機酸化合物は、低分子カルボン酸であることを特徴とする。 A conductive composition according to claim 1 of the present invention comprises a conductive material containing at least a Sn component and a Bi component, and an organic acid compound that removes a surface oxide film of the conductive material. a conductive composition, the blending ratio of the conductive material and the organic acid compound, by weight, 75: 21-90: 6, wherein the conductive material is, Sn 100 -X Bi X (X is Wt%, X is 5 or more and 25 or less, Sn 100 -X Ag 3 Bi X (X is wt%, X is 5 or more and 25 or less), Sn 100 -X Ag 3 Cu 0.5 Bi X (X is The content of the Bi component with respect to the conductive material is 5% or more and 25% or less by weight, and the organic acid compound is a low molecular weight carboxylic acid. It is characterized by being an acid.

発明の請求項に係る導電性組成物は、さらに、絶縁樹脂を含むことを特徴とする。 The conductive composition according to claim 2 of the present invention further includes an insulating resin.

本発明の請求項3に係る導電体は、請求項1または2に記載の導電性組成物に含まれる導電物の少なくとも一部が相互に融着してなることを特徴とする。
本発明の請求項4に係る導電回路の形成方法は、ポリエチレンテレフタレート、またはポリエチレンナフタレートからなる基材の一方の面に、Sn成分およびBi成分を少なくとも含む導電物と、前記導電物の表面酸化膜を除去する有機酸化合物とを、75:21〜90:6の重量比で配合し、前記導電物は、Sn 100−XBi(Xは重量%、Xは5以上、25以下)、Sn 100−XAgBi(Xは重量%、Xは5以上、25以下)、Sn 100−XAgCu0.5Bi(Xは重量%、Xは5以上、25以下)で表され、前記導電物に対する前記Bi成分の含有率は、重量比で、5%以上、25%以下であり、前記有機酸化合物は、低分子カルボン酸である導電性組成物を配し、前記導電性組成物に含まれる導電物の少なくとも一部を相互に融着させて、導電回路として機能する導電体を形成する、ことを特徴とする。
The conductor according to claim 3 of the present invention is characterized in that at least a part of the conductor contained in the conductive composition according to claim 1 or 2 is fused to each other.
According to a fourth aspect of the present invention, there is provided a method for forming a conductive circuit comprising: a conductive material containing at least an Sn component and a Bi component on one surface of a base material made of polyethylene terephthalate or polyethylene naphthalate; and surface oxidation of the conductive material. The organic acid compound for removing the film is blended in a weight ratio of 75:21 to 90: 6, and the conductive material is Sn 100 -X Bi X (X is wt%, X is 5 or more, 25 or less), Sn 100 -X Ag 3 Bi X ( X weight%, X is 5 or more, 25 or less), Sn 100 -X Ag 3 Cu 0.5 Bi X (X weight%, X is 5 or more, 25 or less) in The content of the Bi component with respect to the conductive material is 5% to 25% by weight, and the organic acid compound is a conductive composition that is a low-molecular carboxylic acid. Conductives contained in the conductive composition By fusing at least a portion of the object together, to form a conductor that functions as a conductive circuit, and wherein the.

本発明の導電性組成物は、Sn成分およびBi成分を少なくとも含む導電物と、有機酸化合物とを備えてなるので、150℃以下の低温で、この導電物を互いに融着させることができるから、ポリエチレンテレフタレートやポリエチレンナフタレートなどの可撓性の基材に適用可能で、さらに、耐マイグレーション性に優れ、10-Ωcm程度の導電性を備える導電体を実現することができる。また、本発明の導電性組成物によれば、低コストで、ファインピッチのフレキシブル配線基板を製造することができる。 Since the conductive composition of the present invention comprises a conductive material containing at least a Sn component and a Bi component and an organic acid compound, the conductive materials can be fused to each other at a low temperature of 150 ° C. or lower. , can be applied to flexible substrates such as polyethylene terephthalate and polyethylene naphthalate, further excellent in migration resistance, it is possible to realize a conductor comprises an electrically conductive approximately 10- 4 [Omega] cm. Moreover, according to the conductive composition of the present invention, a fine pitch flexible wiring board can be produced at low cost.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の導電性組成物は、Sn成分およびBi成分を少なくとも含む導電物と、有機酸化合物とを備えてなるものである。さらに、この導電性組成物は、絶縁樹脂を含むことが好ましい。   The conductive composition of the present invention comprises a conductive material containing at least a Sn component and a Bi component and an organic acid compound. Furthermore, this conductive composition preferably contains an insulating resin.

Sn成分およびBi成分を少なくとも含む導電物としては、Sn 100−XBi(Xは重量%、Xは5以上、25以下)、Sn 100−XAgBi(Xは重量%、Xは5以上、25以下)、Sn 100−XAgCu0.5Bi(Xは重量%、Xは5以上、25以下)で表されるものが用いられる。このような導電物としては、例えば、Sn90Bi10、Sn87AgBi10、Sn86.5AgCu0.5Bi10などが挙げられる。 As the conductive material including at least the Sn component and the Bi component, Sn 100 -X Bi X (X is wt%, X is 5 or more and 25 or less), Sn 100 -X Ag 3 Bi X (X is wt%, X is 5 or more and 25 or less), Sn 100 -X Ag 3 Cu 0.5 Bi X (X is wt%, X is 5 or more and 25 or less). Examples of such a conductive material include Sn 90 Bi 10 , Sn 87 Ag 3 Bi 10 , and Sn 86.5 Ag 3 Cu 0.5 Bi 10 .

Sn成分およびBi成分を少なくとも含む導電物の形状は、燐片状、板状、球状のいずれでもよく、その粒子径は3μm以上、10μm以下であることが好ましい。
また、Sn成分およびBi成分を少なくとも含む導電物の粒子径が3μm未満では、粒子の表面積の割合が大きくなり、酸素濃度が大きくなる。結果として、有機酸で酸化膜を除去できなくなり、粒子同士が融着しなくなってしまう。一方、Sn成分およびBi成分を少なくとも含む導電物の粒子径が10μmを超えると、粒子同士の凝集が生じやすく、分散性に優れた導電ペーストになり難い。また、粒子自体が大きい場合は、ファインピッチ用の導電回路に用いることができる。
The shape of the conductive material containing at least the Sn component and the Bi component may be any of a flake shape, a plate shape, and a spherical shape, and the particle diameter is preferably 3 μm or more and 10 μm or less.
In addition, when the particle diameter of the conductive material containing at least the Sn component and the Bi component is less than 3 μm, the ratio of the surface area of the particles increases and the oxygen concentration increases. As a result, the oxide film cannot be removed with the organic acid, and the particles cannot be fused. On the other hand, when the particle diameter of the conductive material containing at least the Sn component and the Bi component exceeds 10 μm, the particles are likely to aggregate and hardly form a conductive paste with excellent dispersibility. Further, when the particles themselves are large, they can be used in a conductive circuit for fine pitch.

また、Sn成分およびBi成分を少なくとも含む導電物に対するBi成分の含有率は、重量比で、5%以上、25%以下であることが好ましく、5%以上、20%以下であることがより好ましい。
Sn成分およびBi成分を少なくとも含む導電物の総量に対するBi成分の含有率は、重量比で、5%以上、25%以下であれば、この導電物を含む導電性組成物を用いて形成された導電体は、良好な比抵抗を維持するとともに、配線形状を維持することができる。この導電物の総量に対するBi成分の含有率が、重量比で、5%未満では、この導電物を含む導電性組成物を用いて形成された導電体は、良好な比抵抗を維持することができない。一方、この導電物の総量に対するBi成分の含有率が、重量比で、25%を超えると、この導電物を含む導電性組成物を用いて形成された導電体は、玉状になり、配線形状を維持することができない。
Further, the content of the Bi component with respect to the conductive material including at least the Sn component and the Bi component is preferably 5% or more and 25% or less, and more preferably 5% or more and 20% or less by weight. .
When the Bi component content relative to the total amount of the conductive material including at least the Sn component and the Bi component is 5% or more and 25% or less, the conductive composition including the conductive material was used. The conductor can maintain a good specific resistance and a wiring shape. When the content ratio of the Bi component with respect to the total amount of the conductive material is less than 5% by weight, the conductor formed using the conductive composition containing the conductive material can maintain a good specific resistance. Can not. On the other hand, when the content ratio of the Bi component with respect to the total amount of the conductive material exceeds 25% by weight, the conductor formed using the conductive composition containing the conductive material becomes ball-shaped, and the wiring The shape cannot be maintained.

有機酸化合物としては、低分子カルボン酸が用いられ、これらの中でも比較的酸価が大きいもの、融点が導電物の融点よりも低く、室温では固体のもの、例えば、融点が90℃〜135℃程度のものがより好ましい。
このような有機酸化合物としては、例えば、メチルコハク酸、コハク酸、グルタル酸等が挙げられる。
As the organic acid compound, a low molecular carboxylic acid is used. Among these, those having a relatively large acid value, melting point lower than the melting point of the conductive material, solid at room temperature, for example, the melting point is 90 ° C. to 135 ° C. A degree is more preferable.
Examples of such organic acid compounds include methyl succinic acid, succinic acid, glutaric acid and the like.

この導電性組成物では、導電物と有機酸化合物との配合比率は、重量比で、75:21〜90:6であることが好ましく、80:16〜85:11であることがより好ましい。
有機酸化合物の含有量が6重量部未満の場合、導電物の表面酸化膜を除去することができず、結果として導電物同士の融着が進行しない。一方、有機酸化合物の含有量が21重量部を超えると、導電物同士の平均距離が大きくなる結果、粒子が接触する確率が減り、融着することができない。
In this conductive composition, the blending ratio of the conductive material and the organic acid compound is preferably 75:21 to 90: 6, more preferably 80:16 to 85:11, by weight.
When the content of the organic acid compound is less than 6 parts by weight, the surface oxide film of the conductive material cannot be removed, and as a result, the fusion between the conductive materials does not proceed. On the other hand, when the content of the organic acid compound exceeds 21 parts by weight, the average distance between the conductive materials increases, and as a result, the probability that the particles come into contact with each other decreases and cannot be fused.

絶縁樹脂としては、導電性組成物を基材上に塗布した際に、玉状にならない程度に、導電性組成物の粘度を調整する役割を果たすとともに、基材との密着性を上げる役割を果たすものが用いられ、例えば、エチルセルロース樹脂、ポリウレタン樹脂、ポリエステル樹脂、フェノール樹脂、エポキシ樹脂、等が挙げられる。これらの中でも、エチルセルロースは、150℃で熱分解し、この分解成分の大部分が揮発してなくなるので、導電性組成物中に存在する際には導電性組成物の粘度を調整する役割を果たす一方、Sn成分およびBi成分を少なくとも含む導電物の粒子が相互に融着することを阻害し難いので好適である。   As an insulating resin, when the conductive composition is applied on a substrate, it plays a role of adjusting the viscosity of the conductive composition to the extent that it does not become a ball, and also increases the adhesion to the substrate. For example, ethyl cellulose resin, polyurethane resin, polyester resin, phenol resin, epoxy resin, and the like are used. Among these, ethyl cellulose is thermally decomposed at 150 ° C., and most of the decomposed components are not volatilized. Therefore, when it exists in the conductive composition, it plays a role in adjusting the viscosity of the conductive composition. On the other hand, it is preferable because it is difficult to inhibit the conductive particles containing at least the Sn component and the Bi component from fusing each other.

また、この導電性組成物には、必要に応じて、絶縁粒子、溶媒、分散剤等を配合してもよい。
絶縁粒子は、Sn成分およびBi成分を少なくとも含む導電物の粒子が相互に融着するのを阻害することなく、かつ、導電性組成物を基材上に塗布した際に、玉状にならない程度に、導電性組成物の粘度を調整する役割を果たすものが用いられ、例えば、シリカ粒子、酸化亜鉛粒子、酸化チタン粒子等が挙げられる。
また、絶縁粒子の粒子径は1μm以下であることが好ましい。
Moreover, you may mix | blend insulating particles, a solvent, a dispersing agent, etc. with this electrically conductive composition as needed.
The insulating particles do not hinder the conductive particles containing at least the Sn component and the Bi component from fusing with each other and do not become ball-shaped when the conductive composition is applied onto the substrate. In addition, what plays the role which adjusts the viscosity of an electroconductive composition is used, for example, a silica particle, a zinc oxide particle, a titanium oxide particle etc. are mentioned.
Moreover, it is preferable that the particle diameter of an insulating particle is 1 micrometer or less.

溶媒としては、水、メタノール、エタノール、2−プロパノール、セカンダリーブチルアルコール(SBA)等のアルコール類、アセトン、メチルエチルケトン等のケトン類、イソホロン、テルピネオール、エチレングリコールモノブチルエーテル、ブチルセロソルブアセテート、トルエン等が好適に用いられる。   As the solvent, water, alcohols such as methanol, ethanol, 2-propanol and secondary butyl alcohol (SBA), ketones such as acetone and methyl ethyl ketone, isophorone, terpineol, ethylene glycol monobutyl ether, butyl cellosolve acetate, toluene and the like are preferable. Used.

分散剤としては、ヒドロキシプロピルセルロース、ポリビニルピロリドン、ポリビニルアルコール等の他に、市販の分散剤として、例えば、ディスパービック160、ディスパービック161、ディスパービック162、ディスパービック163、ディスパービック166、ディスパービック170、ディスパービック180、ディスパービック182、ディスパービック184、ディスパービック190(以上、ビックケミー社製)、フローレンTG−720W、フローレンTG−730W、フローレンG−700、フローレンDOPA−17、フローレンDOPA−22、フローレンDOPA−158(以上、共栄社化学社製)、チラバゾールW−01、チラバゾールW−02(以上、太陽化学社製)、ソルスパース20000、ソルスパース24000、ソルスパース26000、ソルスパース27000、ソルスパース28000(以上、アビシア社製)、アジスパーPB711、アジスパーPB811、アジスパーPA111、アジスパーPW911(以上、味の素社製)等の高分子系分散剤を用いることができる。
このような分散剤の添加量は、Sn成分およびBi成分を少なくとも含む導電物100重量部に対して0.01重量部以上、10重量部以下であることが好ましく、0.1重量部以上、1重量部以下であることがより好ましい。
Examples of the dispersant include hydroxypropyl cellulose, polyvinyl pyrrolidone, polyvinyl alcohol, and other commercially available dispersants such as Dispersic 160, Dispersic 161, Dispersic 162, Dispersic 163, Dispersic 166, and Dispersic 170. , Disperbic 180, Disperbic 182, Disperbic 184, Disperbic 190 (above, manufactured by Big Chemie), Floren TG-720W, Floren TG-730W, Floren G-700, Floren DOPA-17, Floren DOPA-22, Floren DOPA-158 (above, manufactured by Kyoeisha Chemical Co., Ltd.), Tiravazole W-01, Tiravazole W-02 (above, manufactured by Taiyo Kagaku Co., Ltd.), Solsperse 20000, Solus High molecular weight dispersing agents such as Sose 24000, Solsperse 26000, Solsperse 27000, Solsperse 28000 (above, manufactured by Abyssia), Azisper PB711, Azisper PB811, Azisper PA111, Azisper PW911 (above, Ajinomoto Co., Inc.) can be used. .
The amount of the dispersant added is preferably 0.01 parts by weight or more and 10 parts by weight or less, based on 100 parts by weight of the conductive material containing at least the Sn component and the Bi component, More preferably, it is 1 part by weight or less.

通常、Sn成分およびBi成分を少なくとも含む導電物の粒子は大気中では、表面が酸化している。そのため、この導電物粒子単体では、その融点付近にて加熱しても、この導電物粒子は融解せず、図1に示すように、この導電物粒子は互いに融着しない。このような導電物粒子を用いた導電性組成物を基材上に印刷して、この導電性組成物を乾燥し、回路パターンを形成しても、この導電物粒子の表面は酸化しているので、回路パターンには電気は流れない。
本発明の導電性組成物が、Sn成分およびBi成分を少なくとも含む導電物と、酸化膜除去作用のある有機酸化合物とを含有するものであるので、加熱することで、有機酸化合物が導電粒子の表面酸化膜を除去することができるようになる。したがって、本発明の導電性組成物を、この導電物粒子の融点以上に加熱すると、この導電物粒子は融解し、結果として、図2に示すように、この導電物粒子は互いに融着する。ゆえに、本発明の導電性組成物を基材上に印刷して、この導電性組成物を乾燥すれば、導電性の回路(以下、「導電回路」と言う。)をなす導電体が形成される。
Normally, the surface of conductive particles containing at least a Sn component and a Bi component is oxidized in the atmosphere. For this reason, even if the conductive particles are heated in the vicinity of their melting points, the conductive particles are not melted, and the conductive particles are not fused to each other as shown in FIG. Even when a conductive composition using such conductive particles is printed on a substrate, the conductive composition is dried and a circuit pattern is formed, the surface of the conductive particles is oxidized. Therefore, no electricity flows through the circuit pattern.
Since the conductive composition of the present invention contains a conductive material containing at least an Sn component and a Bi component and an organic acid compound having an oxide film removing action, the organic acid compound becomes conductive particles by heating. The surface oxide film can be removed. Therefore, when the conductive composition of the present invention is heated to a temperature higher than the melting point of the conductive particles, the conductive particles melt, and as a result, the conductive particles are fused to each other as shown in FIG. Therefore, by printing the conductive composition of the present invention on a substrate and drying the conductive composition, a conductor forming a conductive circuit (hereinafter referred to as “conductive circuit”) is formed. The

この導電性組成物は、構成材料であるSn成分およびBi成分を少なくとも含む導電物と、有機酸化合物と、絶縁樹脂と、溶媒とを所定の配合比となるように秤量し、次いで、これらをポットミル、ボールミル、ホモジナイザー、スーパーミルなどを用いて攪拌・混合することにより、ペースト状に調製される。   This conductive composition weighs a conductive material containing at least a Sn component and a Bi component as constituent materials, an organic acid compound, an insulating resin, and a solvent so as to have a predetermined mixing ratio, and then A paste is prepared by stirring and mixing using a pot mill, a ball mill, a homogenizer, a super mill or the like.

本発明の導電性組成物は、種々の用途に好適に用いることができるが、とりわけ、フレキシブルプリント基板(FPC)に用いられる各種材料に適用することによって優れた効果を発揮する。FPC用材料としては、回路基板、メンブレン配線板等が挙げられる。   The conductive composition of the present invention can be suitably used for various applications, but exhibits an excellent effect when applied to various materials used for a flexible printed circuit board (FPC). Examples of the FPC material include a circuit board and a membrane wiring board.

図3は、本発明の導電性組成物を用いて形成した導電回路を備えた配線基板の一実施形態を示す概略断面図である。
この実施形態の配線基板10は、基材11と、導電回路12とから概略構成され、基材11の一方の面11aに、本発明の導電性組成物からなる導電回路12が配されてなるものである。
FIG. 3 is a schematic cross-sectional view showing an embodiment of a wiring board provided with a conductive circuit formed using the conductive composition of the present invention.
The wiring board 10 of this embodiment is schematically constituted by a base material 11 and a conductive circuit 12, and a conductive circuit 12 made of the conductive composition of the present invention is arranged on one surface 11a of the base material 11. Is.

基材11としては、可撓性のフィルム状シート部材などが用いられ、このようなフィルム状シート部材としては、例えば、ポリエチレンテレフタレート(PET)などのプラスチックかなるものが挙げられる。
また、基材11上に、導電回路12を形成する際に、基材11は加熱されるから、基材11としては耐熱性のものが用いられる。
As the base material 11, a flexible film-like sheet member or the like is used, and examples of such a film-like sheet member include those made of plastic such as polyethylene terephthalate (PET).
Moreover, since the base material 11 is heated when forming the conductive circuit 12 on the base material 11, a heat-resistant material is used as the base material 11.

導電回路12は、所定のパターン形状をなし、本発明の導電性組成物を用いて形成されてなるものである。
導電回路12は、スクリーン印刷などの印刷法により基材11上に、本発明の導電性組成物を印刷した後、加熱(乾燥)などの固化手段により形成することができる。この導電回路12の形成は、上記印刷法に限らず、オフセット印刷や平凹版印刷等によって行うこともできる。
また、この導電回路12の厚みは、5nm〜20μmであることが好ましい。
導電回路12の厚みが5nm未満では、回路抵抗が高くなり、場合によっては導電性組成物を数回印刷する必要がある。一方、導電回路12の厚みが20μmを超えると、導電回路12と基材11との密着性も低下することがある。
The conductive circuit 12 has a predetermined pattern shape and is formed using the conductive composition of the present invention.
The conductive circuit 12 can be formed by solidifying means such as heating (drying) after printing the conductive composition of the present invention on the substrate 11 by a printing method such as screen printing. The formation of the conductive circuit 12 is not limited to the above printing method, and can also be performed by offset printing or planographic printing.
The thickness of the conductive circuit 12 is preferably 5 nm to 20 μm.
When the thickness of the conductive circuit 12 is less than 5 nm, the circuit resistance becomes high, and in some cases, the conductive composition needs to be printed several times. On the other hand, when the thickness of the conductive circuit 12 exceeds 20 μm, the adhesion between the conductive circuit 12 and the base material 11 may be lowered.

以下、実験例により本発明をさらに具体的に説明するが、本発明は以下の実験例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with experimental examples, but the present invention is not limited to the following experimental examples.

(実験例1)
粒子径5μmの球状のSn90Bi10微粒子(三井金属社製、「微粒子A」とする。)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で85:11の比率で混合し、ペースト状の導電性組成物を調製した。
次いで、この導電性組成物を、スクリーン印刷法により、厚み75μmのポリエチレンテレフタレート(PET)フィルムの一面に塗布した。
その後、PETフィルム上に塗布した導電性組成物を、150℃にて10分間、乾燥して、この導電性組成物からなる厚み15μmの導電回路を形成した。
(Experimental example 1)
Spherical Sn 90 Bi 10 fine particles having a particle diameter of 5 μm (made by Mitsui Kinzoku Co., Ltd., “fine particles A”) and an organic acid compound (M407, M407-2) in a weight ratio of 85:11 A paste-like conductive composition was prepared by mixing at a ratio of.
Next, this conductive composition was applied to one surface of a polyethylene terephthalate (PET) film having a thickness of 75 μm by a screen printing method.
Thereafter, the conductive composition coated on the PET film was dried at 150 ° C. for 10 minutes to form a conductive circuit having a thickness of 15 μm made of this conductive composition.

(実験例2)
粒子径5μmの球状のSn87AgBi10微粒子(三井金属社製、「微粒子B」とする。)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で85:11の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み15μmの導電回路を形成した。
(Experimental example 2)
Spherical Sn 87 Ag 3 Bi 10 fine particles having a particle diameter of 5 μm (made by Mitsui Kinzoku Co., Ltd., “fine particles B”) and an organic acid compound (M407, M407-2) in a weight ratio of 85 are used. : The mixture was mixed at a ratio of 11 to prepare a paste-like conductive composition.
Using this conductive composition, a conductive circuit having a thickness of 15 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例3)
粒子径5μmの球状のSn87AgCu0.5Bi10微粒子(山石金属社製、「微粒子C」とする。)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で85:11の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み15μmの導電回路を形成した。
(Experimental example 3)
Using a mortar, spherical Sn 87 Ag 3 Cu 0.5 Bi 10 fine particles (manufactured by Yamaishi Metal Co., Ltd., “fine particles C”) having a particle diameter of 5 μm and an organic acid compound (manufactured by Mitsuteru, M407-2) A paste-like conductive composition was prepared by mixing at a weight ratio of 85:11.
Using this conductive composition, a conductive circuit having a thickness of 15 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例4)
平均粒子径5μmの鱗片状のAgPd微粒子(「微粒子D」とする。)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で85:11の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み15μmの導電回路を形成した。
(Experimental example 4)
A scaly AgPd fine particle (referred to as “fine particle D”) having an average particle diameter of 5 μm and an organic acid compound (M407-2, manufactured by Kouki Co., Ltd.) were mixed at a weight ratio of 85:11 using a mortar, A paste-like conductive composition was prepared.
Using this conductive composition, a conductive circuit having a thickness of 15 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例5)
粒子径5μmの球状の金めっきニッケル微粒子(日立金属社製社製、「微粒子E」とする。)と、エポキシ・フェノール混合樹脂(藤倉化成社製、XA−3059)とを、乳鉢により重量比で85:11の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み17μmの導電回路を形成した。
(Experimental example 5)
A spherical gold-plated nickel fine particle (made by Hitachi Metals Co., Ltd., “fine particle E”) and an epoxy / phenol mixed resin (Fujikura Kasei Co., Ltd., XA-3059) having a particle diameter of 5 μm are mixed in a weight ratio. Were mixed at a ratio of 85:11 to prepare a paste-like conductive composition.
Using this conductive composition, a conductive circuit having a thickness of 17 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例6)
粒子径5μmの球状の銅(Cu)微粒子(「微粒子F」とする。)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で85:11の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み12μmの導電回路を形成した。
(Experimental example 6)
Spherical copper (Cu) fine particles having a particle diameter of 5 μm (referred to as “fine particles F”) and an organic acid compound (M407-2, manufactured by Koterusha) were mixed in a weight ratio of 85:11. A paste-like conductive composition was prepared.
Using this conductive composition, a conductive circuit having a thickness of 12 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例7)
粒子径5μmの球状の銀(Ag)微粒子(「微粒子G」とする。)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で85:11の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み10μmの導電回路を形成した。
(Experimental example 7)
Spherical silver (Ag) fine particles (referred to as “fine particles G”) having a particle diameter of 5 μm and an organic acid compound (M407-2, manufactured by Koterusha) were mixed in a weight ratio of 85:11 using a mortar. A paste-like conductive composition was prepared.
Using this conductive composition, a 10 μm thick conductive circuit made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例8)
粒子径5μmの球状のSn80Bi10微粒子(三井金属社製)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で60:36の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み16μmの導電回路を形成した。
(Experimental example 8)
A spherical Sn 80 Bi 10 fine particle (Mitsui Kinzoku Co., Ltd.) having a particle size of 5 μm and an organic acid compound (M407-2, M407-2) are mixed at a weight ratio of 60:36 with a mortar, and pasty A conductive composition was prepared.
Using this conductive composition, a conductive circuit having a thickness of 16 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例9)
粒子径5μmの球状のSn90Bi10微粒子(三井金属社製)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で75:21の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み14μmの導電回路を形成した。
(Experimental example 9)
A spherical Sn 90 Bi 10 fine particle (Mitsui Metals Co., Ltd.) having a particle size of 5 μm and an organic acid compound (M407-2, M407-2) were mixed at a weight ratio of 75:21 using a mortar, and pasted. A conductive composition was prepared.
Using this conductive composition, a conductive circuit having a thickness of 14 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例10)
粒子径5μmの球状のSn90Bi10微粒子(三井金属社製)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で80:16の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み16μmの導電回路を形成した。
(Experimental example 10)
A spherical Sn 90 Bi 10 fine particle (made by Mitsui Kinzoku Co., Ltd.) having a particle diameter of 5 μm and an organic acid compound (manufactured by Mitsuteroshi Co., Ltd., M407-2) are mixed at a weight ratio of 80:16 with a mortar, and pasty A conductive composition was prepared.
Using this conductive composition, a conductive circuit having a thickness of 16 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例11)
粒子径5μmの球状のSn90Bi10微粒子(三井金属社製)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で85:11の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み15μmの導電回路を形成した。
(Experimental example 11)
A spherical Sn 90 Bi 10 fine particle (made by Mitsui Kinzoku Co., Ltd.) having a particle size of 5 μm and an organic acid compound (M407-2, made by Mitsuru Metal) were mixed at a weight ratio of 85:11 using a mortar, and pasty A conductive composition was prepared.
Using this conductive composition, a conductive circuit having a thickness of 15 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例12)
粒子径5μmの球状のSn90Bi10微粒子(三井金属社製)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で90:6の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み17μmの導電回路を形成した。
(Experimental example 12)
A spherical Sn 90 Bi 10 fine particle (Mitsui Kinzoku Co., Ltd.) having a particle size of 5 μm and an organic acid compound (M407-2, M407-2) are mixed at a weight ratio of 90: 6 by a mortar, and pasty A conductive composition was prepared.
Using this conductive composition, a conductive circuit having a thickness of 17 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例13)
粒子径5μmの球状のSn90Bi10微粒子(三井金属社製)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で95:1の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み16μmの導電回路を形成した。
(Experimental example 13)
A spherical Sn 90 Bi 10 fine particle (Mitsui Metals Co., Ltd.) having a particle size of 5 μm and an organic acid compound (M407-2, M407-2) were mixed at a weight ratio of 95: 1 by a mortar, and pasted. A conductive composition was prepared.
Using this conductive composition, a conductive circuit having a thickness of 16 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例14)
粒子径5μmの球状のSn90Bi10微粒子(三井金属社製)と、有機酸化合物(光輝社製、M407−2)と、増粘活性剤とを、乳鉢により重量比で85:11:4の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み17μmの導電回路を形成した。
(Experimental example 14)
Spherical Sn 90 Bi 10 fine particles (made by Mitsui Kinzoku Co., Ltd.) having a particle diameter of 5 μm, an organic acid compound (M407-2, M407-2), and a thickening activator in a weight ratio of 85: 11: 4 using a mortar. A paste-like conductive composition was prepared by mixing at a ratio of.
Using this conductive composition, a conductive circuit having a thickness of 17 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例15)
粒子径5μmの球状のSn97Bi微粒子(三井金属社製)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で85:11の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み17μmの導電回路を形成した。
(Experimental example 15)
A spherical Sn 97 Bi 3 fine particle (Mitsui Metals Co., Ltd.) having a particle size of 5 μm and an organic acid compound (M407-2, M407-2) were mixed at a weight ratio of 85:11 using a mortar, and pasted. A conductive composition was prepared.
Using this conductive composition, a conductive circuit having a thickness of 17 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例16)
粒子径5μmの球状のSn95Bi微粒子(三井金属社製)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で85:11の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み16μmの導電回路を形成した。
(Experimental example 16)
A spherical Sn 95 Bi 5 fine particle (Mitsui Metals Co., Ltd.) having a particle size of 5 μm and an organic acid compound (M407-2, M407-2) were mixed at a weight ratio of 85:11 using a mortar, and pasted. A conductive composition was prepared.
Using this conductive composition, a conductive circuit having a thickness of 16 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例17)
粒子径5μmの球状のSn90Bi10微粒子(三井金属社製)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で85:11の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み16μmの導電回路を形成した。
(Experimental example 17)
A spherical Sn 90 Bi 10 fine particle (made by Mitsui Kinzoku Co., Ltd.) having a particle size of 5 μm and an organic acid compound (M407-2, made by Mitsuru Metal) were mixed at a weight ratio of 85:11 using a mortar, and pasty A conductive composition was prepared.
Using this conductive composition, a conductive circuit having a thickness of 16 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例18)
粒子径5μmの球状のSn85Bi15微粒子(三井金属社製)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で85:11の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み16μmの導電回路を形成した。
(Experiment 18)
A spherical Sn 85 Bi 15 fine particle (made by Mitsui Kinzoku Co., Ltd.) having a particle diameter of 5 μm and an organic acid compound (manufactured by Mitsuru Co., Ltd., M407-2) were mixed at a weight ratio of 85:11 using a mortar, and pasty A conductive composition was prepared.
Using this conductive composition, a conductive circuit having a thickness of 16 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例19)
粒子径5μmの球状のSn80Bi20微粒子(三井金属社製)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で85:11の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み15μmの導電回路を形成した。
(Experimental example 19)
A spherical Sn 80 Bi 20 fine particle (made by Mitsui Kinzoku Co., Ltd.) having a particle diameter of 5 μm and an organic acid compound (M407-2, made by Mitsuru Metal Co., Ltd.) are mixed at a weight ratio of 85:11 using a mortar, and pasty A conductive composition was prepared.
Using this conductive composition, a conductive circuit having a thickness of 15 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例20)
粒子径5μmの球状のSn75Bi25微粒子(三井金属社製)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で85:11の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み16μmの導電回路を形成した。
(Experiment 20)
Spherical Sn 75 Bi 25 fine particles (made by Mitsui Kinzoku Co., Ltd.) having a particle diameter of 5 μm and an organic acid compound (M407-2, made by Mitsui Kinzoku Co., Ltd.) are mixed at a weight ratio of 85:11 using a mortar, and pasty A conductive composition was prepared.
Using this conductive composition, a conductive circuit having a thickness of 16 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例21)
粒子径5μmの球状のSn42Bi58微粒子(三井金属社製)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で85:11の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み18μmの導電回路を形成した。
(Experimental example 21)
Spherical Sn 42 Bi 58 fine particles (made by Mitsui Kinzoku Co., Ltd.) having a particle diameter of 5 μm and an organic acid compound (M407-2, made by Mitsui Kinzoku Co., Ltd.) were mixed at a weight ratio of 85:11 using a mortar, and pasty A conductive composition was prepared.
Using this conductive composition, a conductive circuit having a thickness of 18 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例22)
粒子径5μmの球状のSn90Bi10微粒子(三井金属社製)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で85:11の比率で混合し、さらに、Sn90Bi10微粒子100重量部に対して、エチルセルロース1.2重量部を添加して、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み18μmの導電回路を形成した。
(Experimental example 22)
A spherical Sn 90 Bi 10 fine particle (Mitsui Kinzoku Co., Ltd.) having a particle diameter of 5 μm and an organic acid compound (M407-2, M407-2) were mixed at a weight ratio of 85:11 with a mortar, A paste-like conductive composition was prepared by adding 1.2 parts by weight of ethyl cellulose to 100 parts by weight of Sn 90 Bi 10 fine particles.
Using this conductive composition, a conductive circuit having a thickness of 18 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例23)
粒子径5μmの球状のSn90Bi10微粒子(三井金属社製)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で85:11の比率で混合し、さらに、Sn90Bi10微粒子100重量部に対して、ポリウレタン3重量部を添加して、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み16μmの導電回路を形成した。
(Experimental example 23)
A spherical Sn 90 Bi 10 fine particle (Mitsui Kinzoku Co., Ltd.) having a particle diameter of 5 μm and an organic acid compound (M407-2, M407-2) were mixed at a weight ratio of 85:11 with a mortar, A paste-like conductive composition was prepared by adding 3 parts by weight of polyurethane to 100 parts by weight of Sn 90 Bi 10 fine particles.
Using this conductive composition, a conductive circuit having a thickness of 16 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例24)
粒子径5μmの球状のSn95Bi微粒子(三井金属社製)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で75:21の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み17μmの導電回路を形成した。
(Experimental example 24)
A spherical Sn 95 Bi 5 fine particle (Mitsui Kinzoku Co., Ltd.) having a particle diameter of 5 μm and an organic acid compound (M407-2, M407-2) were mixed in a mortar at a weight ratio of 75:21 to obtain a paste. A conductive composition was prepared.
Using this conductive composition, a conductive circuit having a thickness of 17 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例25)
粒子径5μmの球状のSn80Bi20微粒子(三井金属社製)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で75:21の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み14μmの導電回路を形成した。
(Experimental example 25)
A spherical Sn 80 Bi 20 fine particle (made by Mitsui Kinzoku Co., Ltd.) having a particle diameter of 5 μm and an organic acid compound (M407-2, made by Mitsuru Metal Co., Ltd.) are mixed at a weight ratio of 75:21 using a mortar, and pasty A conductive composition was prepared.
Using this conductive composition, a conductive circuit having a thickness of 14 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例26)
粒子径5μmの球状のSn95Bi微粒子(三井金属社製)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で90:6の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる厚み15μmの導電回路を形成した。
(Experimental example 26)
A spherical Sn 95 Bi 5 fine particle (made by Mitsui Kinzoku Co., Ltd.) having a particle size of 5 μm and an organic acid compound (manufactured by Mitsuteroshi Co., Ltd., M407-2) were mixed at a weight ratio of 90: 6 by a mortar, and pasty A conductive composition was prepared.
Using this conductive composition, a conductive circuit having a thickness of 15 μm made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(実験例27)
粒子径5μmの球状のSn80Bi20微粒子(三井金属社製)と、有機酸化合物(光輝社製、M407−2)とを、乳鉢により重量比で90:6の比率で混合し、ペースト状の導電性組成物を調製した。
この導電性組成物を用い、実験例1と同様にして、PETフィルム上に、この導電性組成物からなる導電回路を形成した。
(Experiment 27)
A spherical Sn 80 Bi 20 fine particle (made by Mitsui Kinzoku Co., Ltd.) having a particle diameter of 5 μm and an organic acid compound (M407-2, made by Mitsuru Metal Co., Ltd.) are mixed at a weight ratio of 90: 6 with a mortar to form a paste. A conductive composition was prepared.
Using this conductive composition, a conductive circuit made of this conductive composition was formed on a PET film in the same manner as in Experimental Example 1.

(耐マイグレーションの評価)
実験例1〜27で得られた導電回路について、耐マイグレーション性(デンドライト発生の有無)を評価した。
試験条件としては、回路間ギャップ300μmの間に、60℃、95%RH(相対湿度)の雰囲気下において電極間に5Vの直流電圧を印加し続けて、電極間の絶縁抵抗を測定した。
耐マイグレーション性の評価は、光学顕微鏡による導電回路の観察により行った。
なお、焼成後に回路中に、はんだボールが出現することなく、回路状態が良好に保たれているものを合格(○)、断線はしていないが、抵抗値が高いものや、膜表面にひび割れが観測されるものを(△)、焼成とともに回路中に、はんだボールが出現し、回路が断線してしまったものを不合格(×)と評価した。
結果を表1〜表4に示す。
なお、表1において、導電物の欄および有機酸化合物の欄に記されている数値は、導電物と有機酸化合物との配合比率を示す。
表2において、導電物の欄、有機酸化合物の欄および増粘活性剤の欄に記されている数値は、導電物と有機酸化合物と増粘活性剤との配合比率を示す。
表3および4において、導電物の欄および有機酸化合物の欄に記されている数値は、導電物と有機酸化合物との配合比率を示す。導電物中のBi成分の欄に記されている数値は、導電物に対するBi成分の含有率(重量%)を示す。
表4において、エチルセルロースの欄に記されている数値は、導電物100重量部に対するエチルセルロースの含有量を示す。また、ポリウレタンの欄に記されている数値は、導電物100重量部に対するポリウレタンの含有量を示す。
(Evaluation of migration resistance)
The conductive circuits obtained in Experimental Examples 1 to 27 were evaluated for migration resistance (presence of dendrite generation).
As test conditions, a DC voltage of 5 V was continuously applied between the electrodes in an atmosphere of 60 ° C. and 95% RH (relative humidity) during an inter-circuit gap of 300 μm, and the insulation resistance between the electrodes was measured.
The migration resistance was evaluated by observing the conductive circuit with an optical microscope.
In addition, a solder ball that does not appear in the circuit after firing and the circuit state is kept good is accepted (O), and the wire is not broken, but the resistance value is high or the film surface is cracked. Was observed (Δ), and when firing, solder balls appeared in the circuit and the circuit was disconnected, and the circuit was evaluated as rejected (x).
The results are shown in Tables 1 to 4.
In Table 1, the numerical values described in the column of the conductive material and the column of the organic acid compound indicate the blending ratio of the conductive material and the organic acid compound.
In Table 2, the numerical values described in the column of the conductive material, the column of the organic acid compound, and the column of the thickening activator indicate the blending ratio of the conductive material, the organic acid compound, and the thickening activator.
In Tables 3 and 4, the numerical values described in the column of the conductive material and the column of the organic acid compound indicate the blending ratio of the conductive material and the organic acid compound. The numerical value described in the column of the Bi component in the conductive material indicates the content (% by weight) of the Bi component with respect to the conductive material.
In Table 4, the numerical value described in the column of ethyl cellulose indicates the content of ethyl cellulose with respect to 100 parts by weight of the conductive material. Moreover, the numerical value described in the column of polyurethane shows content of the polyurethane with respect to 100 weight part of electrically conductive materials.

Figure 0005052857
Figure 0005052857

Figure 0005052857
Figure 0005052857

Figure 0005052857
Figure 0005052857

Figure 0005052857
Figure 0005052857

表1の結果から、実験例1〜3のように、導電物がSn成分およびBi成分を含むことにより、耐マイグレーション性を示すことが確認された。一方、実験例4〜7のように、導電ペーストに一般的に用いられるような金属をフィラーに用いた場合には、耐マイグレーション性を示さないことが確認された。
さらに、表2の結果から、実験例9〜12のように、導電物と有機酸化合物との配合比率を、重量比で、75:21〜90:6とすることにより、導電粒子同士が融着し、低抵抗化が実現する。また、実験例14のように、増粘活性剤を少量含んでも、導電粒子の融着は阻害されないことが確認された。一方、実験例8および13のように、導電物と有機酸化合物との配合比率を、重量比で、75:21〜90:6の範囲外とすると、導電粒子同士が融着せず、もしくは、融着し難くなり、低抵抗化が実現しなかった。
さらに、表3および4の結果から、実験例16〜20、および、実験例24〜27のように、導電物と有機酸化合物との配合比率を、重量比で、75:21〜90:6とし、かつ、導電物に対するBi成分の含有率を、重量比で、5%以上、25%以下とすることにより、印刷物が耐マイグレーション性を維持したまま、低抵抗かつ回路状態を保つことのできることが確認された。
表3の結果から、実験例15および21のように、導電物と有機酸化合物との配合比率を、重量比で、75:21〜90:6としても、導電物に対するBi成分の含有率を、重量比で、5%以上、25%以下の範囲外とすると、導電粒子同士が融着できないため、印刷物の低抵抗化が実現されないことが確認された。
表4の結果から、実験例22および23のように、少量の絶縁樹脂添加では、導電粒子の融着は阻害されないことが確認された。
From the results of Table 1, it was confirmed that the conductive material exhibited the resistance to migration by including the Sn component and the Bi component as in Experimental Examples 1 to 3. On the other hand, as in Experimental Examples 4 to 7, it was confirmed that migration resistance was not exhibited when a metal generally used for conductive paste was used for the filler.
Further, from the results in Table 2, the conductive particles and the organic acid compound are mixed at a weight ratio of 75:21 to 90: 6 as in Experimental Examples 9 to 12, so that the conductive particles are fused. Wear and low resistance is realized. Further, as in Experimental Example 14, it was confirmed that the fusion of the conductive particles was not inhibited even when a small amount of the thickening activator was included. On the other hand, as in Experimental Examples 8 and 13, when the blending ratio of the conductive material and the organic acid compound is out of the range of 75:21 to 90: 6 by weight ratio, the conductive particles do not fuse with each other, or It became difficult to fuse and low resistance was not realized.
Furthermore, from the results of Tables 3 and 4, as in Experimental Examples 16 to 20 and Experimental Examples 24 to 27, the blending ratio of the conductive material to the organic acid compound was 75:21 to 90: 6 by weight ratio. In addition, by setting the Bi component content to the conductive material to be 5% or more and 25% or less by weight, the printed material can maintain a low resistance and circuit state while maintaining migration resistance. Was confirmed.
From the results of Table 3, as in Experimental Examples 15 and 21, even if the blending ratio of the conductive material and the organic acid compound is 75:21 to 90: 6 by weight, the Bi component content relative to the conductive material is When the weight ratio is outside the range of 5% or more and 25% or less, it was confirmed that the resistance of the printed material cannot be reduced because the conductive particles cannot be fused together.
From the results of Table 4, it was confirmed that the fusion of the conductive particles was not inhibited by addition of a small amount of insulating resin as in Experimental Examples 22 and 23.

本発明の導電性組成物およびこれを用いた配線基板は、コネクタ嵌合部及び高いマイグレーション特性が要求されるファインピッチのプリント回路部にも適用できる。   The conductive composition of the present invention and the wiring board using the same can be applied to a connector fitting portion and a fine pitch printed circuit portion requiring high migration characteristics.

SnBi微粒子同士が融着していない状態を示す電子顕微鏡写真である。It is an electron micrograph which shows the state which SnBi microparticles | fine-particles are not melt | fused. SnBi微粒子同士が融着した状態を示す電子顕微鏡写真である。It is an electron micrograph which shows the state which SnBi microparticles | fine-particles fuse | melted. 本発明の導電性組成物を用いて形成した導電回路を備えた配線基板の一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the wiring board provided with the electrically conductive circuit formed using the electrically conductive composition of this invention.

符号の説明Explanation of symbols

10・・・配線基板、11・・・基材、12・・・導電回路。 DESCRIPTION OF SYMBOLS 10 ... Wiring board, 11 ... Base material, 12 ... Conductive circuit.

Claims (4)

Sn成分およびBi成分を少なくとも含む導電物と、前記導電物の表面酸化膜を除去する有機酸化合物とを備えてなる、導電回路形成用の導電性組成物であって、
前記導電物と前記有機酸化合物との配合比率は、重量比で、75:21〜90:6であり、
前記導電物は、Sn 100−XBi(Xは重量%、Xは5以上、25以下)、Sn 100−XAgBi(Xは重量%、Xは5以上、25以下)、Sn 100−XAgCu0.5Bi(Xは重量%、Xは5以上、25以下)で表され、
前記導電物に対する前記Bi成分の含有率は、重量比で、5%以上、25%以下であり、
前記有機酸化合物は、低分子カルボン酸であることを特徴とする導電性組成物。
A conductive composition for forming a conductive circuit, comprising: a conductive material containing at least a Sn component and a Bi component; and an organic acid compound that removes a surface oxide film of the conductive material,
The blend ratio of the conductive material and the organic acid compound is 75:21 to 90: 6 by weight,
The conductive material is Sn 100 -X Bi X (X is wt%, X is 5 or more and 25 or less), Sn 100 -X Ag 3 Bi X (X is wt%, X is 5 or more and 25 or less), Sn 100- X Ag 3 Cu 0.5 Bi X (X is% by weight, X is 5 or more and 25 or less),
The Bi component content relative to the conductive material is 5% or more and 25% or less by weight ratio,
The conductive composition, wherein the organic acid compound is a low-molecular carboxylic acid.
さらに、絶縁樹脂を含むことを特徴とする請求項1に記載の導電性組成物。  Furthermore, insulating resin is contained, The electrically conductive composition of Claim 1 characterized by the above-mentioned. 請求項1または2に記載の導電性組成物に含まれる導電物の少なくとも一部が相互に融着してなることを特徴とする導電体。  A conductor comprising at least a part of the conductor contained in the conductive composition according to claim 1 or 2 fused to each other. ポリエチレンテレフタレート、またはポリエチレンナフタレートからなる基材の一方の面に、
Sn成分およびBi成分を少なくとも含む導電物と、前記導電物の表面酸化膜を除去する有機酸化合物とを、75:21〜90:6の重量比で配合し、前記導電物は、Sn 100−XBi(Xは重量%、Xは5以上、25以下)、Sn 100−XAgBi(Xは重量%、Xは5以上、25以下)、Sn 100−XAgCu0.5Bi(Xは重量%、Xは5以上、25以下)で表され、前記導電物に対する前記Bi成分の含有率は、重量比で、5%以上、25%以下であり、前記有機酸化合物は、低分子カルボン酸である導電性組成物を配し、
前記導電性組成物に含まれる導電物の少なくとも一部を相互に融着させて、導電回路として機能する導電体を形成する、ことを特徴とする導電回路の形成方法。
On one side of a base material made of polyethylene terephthalate or polyethylene naphthalate,
A conductive material containing at least a Sn component and a Bi component and an organic acid compound that removes a surface oxide film of the conductive material are blended in a weight ratio of 75:21 to 90: 6, and the conductive material is Sn 100 − X Bi X (X is wt%, X is 5 or more and 25 or less), Sn 100 -X Ag 3 Bi X (X is wt%, X is 5 or more and 25 or less), Sn 100 -X Ag 3 Cu 0. 5 Bi X (X is% by weight, X is 5 or more and 25 or less), and the Bi component content relative to the conductive material is 5% or more and 25% or less by weight, and the organic acid The compound comprises a conductive composition that is a low molecular carboxylic acid,
A method for forming a conductive circuit, comprising forming a conductor functioning as a conductive circuit by fusing at least part of the conductive material contained in the conductive composition.
JP2006280310A 2006-10-13 2006-10-13 Conductive composition, conductor using the same, and method for forming conductive circuit Expired - Fee Related JP5052857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006280310A JP5052857B2 (en) 2006-10-13 2006-10-13 Conductive composition, conductor using the same, and method for forming conductive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006280310A JP5052857B2 (en) 2006-10-13 2006-10-13 Conductive composition, conductor using the same, and method for forming conductive circuit

Publications (2)

Publication Number Publication Date
JP2008098058A JP2008098058A (en) 2008-04-24
JP5052857B2 true JP5052857B2 (en) 2012-10-17

Family

ID=39380681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006280310A Expired - Fee Related JP5052857B2 (en) 2006-10-13 2006-10-13 Conductive composition, conductor using the same, and method for forming conductive circuit

Country Status (1)

Country Link
JP (1) JP5052857B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0773730A (en) * 1993-06-29 1995-03-17 Asahi Chem Ind Co Ltd Conductive powder
JP3273015B2 (en) * 1997-04-08 2002-04-08 松下電器産業株式会社 Method for producing conductive paste
JP3849842B2 (en) * 1999-10-05 2006-11-22 Tdk株式会社 Flux for soldering, solder paste, electronic component device, electronic circuit module, electronic circuit device, and soldering method
TW200634127A (en) * 2004-12-15 2006-10-01 Tamurakaken Corp An electrically conductive adhesive, electrical part and electrical part module were made of it
WO2006080247A1 (en) * 2005-01-25 2006-08-03 Fujikura Kasei Co., Ltd. Conductive paste

Also Published As

Publication number Publication date
JP2008098058A (en) 2008-04-24

Similar Documents

Publication Publication Date Title
EP1884960B1 (en) Conductive paste and wiring board using it
JP4089311B2 (en) Conductive paste, conductive film, and method of manufacturing conductive film
JP4929653B2 (en) Conductive paste and wiring board using the same
KR101086358B1 (en) conductive paste
KR101275389B1 (en) Conductive paste and wiring board using same
KR100678533B1 (en) Conductive powder and method for preparing the same
JP6562196B2 (en) Copper fine particle sintered body and method for producing conductive substrate
JP2005044798A (en) Conductive powder and its production method
JP2018152218A (en) Conductive paste, chip electronic component and method for producing the same
JP2018137131A (en) Conductive paste, aluminum nitride circuit board and method for producing the same
JP5052857B2 (en) Conductive composition, conductor using the same, and method for forming conductive circuit
JPS6131454A (en) Electrically-conductive copper paste composition
JP4441817B2 (en) Circuit board
JP6197504B2 (en) Conductive paste and substrate with conductive film
JPH0931402A (en) Production of carbon-based conductive paste
JP4354047B2 (en) Conductive paste composition for via filling
JP4024787B2 (en) Conductive paste for forming conductive portion of ferrite multilayer circuit board and ferrite multilayer circuit board using the conductive paste
JPS62230869A (en) Electrically conductive coating compound to be soldered
TW201120162A (en) Polymer thick film silver electrode composition for use as a plating link
JP2006260885A (en) Forming method of conductive composition and conductive coating film, as well as conductive coating film, conductive circuit, and substrate
JP2001273816A (en) Conductive paste
JP4774750B2 (en) Conductive paste and wiring board using the same
JP3336315B2 (en) Conductive paste and printed wiring board using the same
JP4545733B2 (en) Conductive paste composition and circuit board
JP2006066475A (en) Composition for forming thick film resistor, process for forming thick film resistor, and thick film resistor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120725

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees