JP2015047591A - Seawater desalination system and control method thereof - Google Patents

Seawater desalination system and control method thereof Download PDF

Info

Publication number
JP2015047591A
JP2015047591A JP2013182766A JP2013182766A JP2015047591A JP 2015047591 A JP2015047591 A JP 2015047591A JP 2013182766 A JP2013182766 A JP 2013182766A JP 2013182766 A JP2013182766 A JP 2013182766A JP 2015047591 A JP2015047591 A JP 2015047591A
Authority
JP
Japan
Prior art keywords
water
treated
flocculant
concentration
injection rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013182766A
Other languages
Japanese (ja)
Inventor
利昭 荒戸
Toshiaki Arato
利昭 荒戸
晃治 陰山
Koji Kageyama
晃治 陰山
みさき 隅倉
Misaki Sumikura
みさき 隅倉
剛 武本
Takeshi Takemoto
剛 武本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2013182766A priority Critical patent/JP2015047591A/en
Publication of JP2015047591A publication Critical patent/JP2015047591A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a desalination system which can effectively prevent the generation of biofouling of a reverse osmosis membrane module, and to provide a control method of the desalination system.SOLUTION: A desalination system includes: a flocculation device 3 which injects a flocculant into water 1 to be treated, which is seawater or saline water, to subject the water 1 to be treated to flocculation treatment; a reverse osmosis membrane module 6 which separates the water 1 to be treated after the flocculation treatment into salt-removed fresh water 21 and salt-concentrated water 22; and a control device 10 which controls the flocculation device 3 and the reverse osmosis membrane module 6. The control device 10 controls the injection rate of the flocculant based on the concentrations of dissolved low molecular polysaccharides of 20 kDa or less and organic nitrogen components contained in the water 1 to be treated.

Description

本発明は、海水またはかん水から逆浸透膜を用いて淡水を得る淡水化システムおよび淡水化処理制御方法に関する。   The present invention relates to a desalination system and a desalination treatment control method for obtaining fresh water from seawater or brine using a reverse osmosis membrane.

近年、地球規模の人口増加や新興国の台頭にともなう増水需要の顕在化により、逆浸透膜(Reverse Osmosis Membrane;以下「RO膜」と称する。)を用いて、海水などから淡水を得る淡水化システムが増加する傾向が顕著となっている。RO膜は、セルロースやポリアミド等の素材で造られており、このRO膜に海水の浸透圧の2倍以上の圧力を加えることで、水をRO膜の微細孔に通過させ、塩分(主にNaCl)の透過を抑制し、淡水を得るものである。RO膜を用いた淡水化システムにおいて、RO膜の透過性能を低下させる現象としてバイオファウリングが知られている。   In recent years, with the emergence of increased water demand due to global population growth and the emergence of emerging countries, reverse osmosis membrane (Reverse Osmosis Membrane; hereinafter referred to as “RO membrane”) is used to obtain fresh water from seawater. The tendency for the system to increase is remarkable. The RO membrane is made of materials such as cellulose and polyamide. By applying a pressure of at least twice the osmotic pressure of seawater to this RO membrane, water is passed through the micropores of the RO membrane, and the salinity (mainly NaCl) permeation is suppressed and fresh water is obtained. In a desalination system using an RO membrane, biofouling is known as a phenomenon that reduces the permeation performance of the RO membrane.

バイオファウリングの生成には、植物プランクトン由来の生体高分子物質、炭素を含有する有機物のうち特に粘着性を有する多糖類を包含するTEP(Transparent Expolymer Particles:透明細胞外粒子(透明粒子状有機物)が大きく寄与していることが知られている。   For biofouling, TEP (Transparent Expolymer Particles: Transparent extracellular particles (transparent particulate organic matter)), which includes phytoplankton-derived biopolymers and carbon-containing organic substances, especially polysaccharides with adhesive properties Is known to contribute greatly.

特許文献1では、このTEP、ろ過膜にどの程度ファウリングを起こさせるか示す指標であるMFI(Modified Fouling Index)、SDI(Silt Density Index)等の複数の水質項目を測定し、予め記憶されたこれら各水質項目と凝集剤注入率との関係に基づいて凝集剤の注入率を決定している。   In Patent Document 1, a plurality of water quality items such as MFI (Modified Fouling Index) and SDI (Silt Density Index), which are indexes indicating how much fouling is caused in the TEP and filtration membrane, are measured and stored in advance. The flocculant injection rate is determined based on the relationship between each water quality item and the flocculant injection rate.

また、特許文献2では、凝集監視装置を設置し、採取試料の濁度または色度を測定し、その測定値に応じて凝集剤の注入量を制御する方法が提案されている。   Patent Document 2 proposes a method of installing an aggregation monitoring device, measuring the turbidity or chromaticity of a collected sample, and controlling the injection amount of the flocculant according to the measured value.

特開2012−170848号公報JP 2012-170848 A 特開平5−146608号公報JP-A-5-146608

特許文献1及び特許文献2では、バイオファウリングを抑制するため、TEP、MFI及びSDIの水質項目、または濁度及び色度に基づいて、被処理水に添加する凝集剤の注入率を求め、RO膜の前段にて凝集処理を行うものである。   In Patent Document 1 and Patent Document 2, in order to suppress biofouling, the injection rate of the flocculant added to the water to be treated is determined based on the water quality items of TEP, MFI, and SDI, or turbidity and chromaticity. Aggregation is performed before the RO membrane.

しかしながら、上記水質項目に基づき凝集剤注入率を決定する方式では、必ずしもRO膜のファウリング発生を抑制することは困難であり、ファウリング原因因子との相関の高い成分に基づいて凝集剤注入率を求める必要がある。   However, in the method of determining the flocculant injection rate based on the above water quality items, it is difficult to suppress the occurrence of fouling of the RO membrane, and the flocculant injection rate is based on a component that has a high correlation with the factor causing fouling. It is necessary to ask.

そこで、本発明は、逆浸透膜モジュールのバイオファウリングの発生を有効に防止し得る淡水化システム及びその制御方法を提供する。   Therefore, the present invention provides a desalination system that can effectively prevent the occurrence of biofouling in a reverse osmosis membrane module and a control method thereof.

上記課題を解決するため、本発明の淡水化システムは、海水またはかん水である被処理水に凝集剤を注入し凝集処理する凝集処理装置と、凝集処理後の被処理水から塩分が除去された淡水と塩分が濃縮された濃縮水に分離する逆浸透膜モジュールと、前記凝集処理装置及び逆浸透膜モジュールを制御する制御装置を有し、前記制御装置は、前記被処理水に含まれる少なくとも20kDa以下の溶存低分子多糖類及び有機態窒素成分の濃度に基づいて前記凝集剤の注入率を制御することを特徴とする。   In order to solve the above-mentioned problems, the desalination system of the present invention has a coagulation treatment device that injects a coagulant into seawater or brine to be treated and performs coagulation treatment, and salt is removed from the water to be treated after coagulation treatment. A reverse osmosis membrane module that separates fresh water and salt-enriched concentrated water, and a control device that controls the coagulation treatment device and the reverse osmosis membrane module, wherein the control device is at least 20 kDa contained in the treated water The injection rate of the flocculant is controlled based on the concentration of the following dissolved low molecular weight polysaccharide and organic nitrogen component.

本発明によれば、逆浸透膜モジュールのバイオファウリングの発生を有効に防止し得る淡水化システム及びその制御方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the desalination system which can prevent effectively generation | occurrence | production of the biofouling of a reverse osmosis membrane module, and its control method can be provided.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

本発明の一実施例に係る淡水化システムの全体構成図である。It is a whole block diagram of the desalination system which concerns on one Example of this invention. 図1に示す淡水化システムにおける凝集剤注入制御手順を示す概念図である。It is a conceptual diagram which shows the coagulant | flocculant injection | pouring control procedure in the desalination system shown in FIG. 凝集剤注入率と凝集処理後の20kDa以下の溶存低分子多糖類濃度の関係を示す凝集パターン特性図である。It is an aggregation pattern characteristic figure which shows the relationship between the coagulant | flocculant injection rate and the dissolved low molecular polysaccharide density | concentration of 20 kDa or less after an aggregation process. 凝集剤注入率と凝集処理後の上澄み液のE260値の関係を示す凝集パターン特性図である。It is an aggregation pattern characteristic figure which shows the relationship between the coagulant | flocculant injection rate and E260 value of the supernatant liquid after an aggregation process. 凝集剤注入率、pHとフミン酸除去率の関係を示す図である。It is a figure which shows the relationship between a coagulant injection rate, pH, and a humic acid removal rate.

以下、実施例について図面を用いて説明する。   Hereinafter, embodiments will be described with reference to the drawings.

図1は、本発明の一実施例に係る淡水化システムの全体構成図である。図1において水の流れを実線矢印で示し、信号線を点線矢印で示している。図1に示されるように、淡水化システム100は、海水またはかん水である被処理水1を貯留する取水タンク2、取水タンク2より配管12を介して送水される被処理水1に凝集剤を添加し凝集処理を行う凝集処理装置3、凝集処理後の被処理水1を膜分離するマルティメディアフィルタ4(以下、MMF膜)、限外ろ過膜5(以下、UF膜)、逆浸透膜(RO膜:Reverse Osmosis Membrane)モジュール6から構成されている。凝集処理装置3は、被処理水1に無機系凝集剤または高分子凝集剤を添加し、被処理水1中に含まれる有機物等の不純物を凝集剤に捕捉しフロックを形成する。以下では、無機系凝集剤として塩化第二鉄を用いる場合を例に説明する。また、凝集処理装置3は、図示しない撹拌機を有し、撹拌機の撹拌翼を駆動するモータの回転数を制御することで撹拌強度を制御しフロックの形成及び成長を促進する。凝集処理後の被処理水1は、配管13、14を介して、MMF膜4及びUF膜5に送水され、そのフィルタ孔径に応じて固液分離される。固液分離後の被処理水1は配管15を介して逆浸透膜モジュール6へ送水され、塩分が除去された淡水21と高濃度の塩水である濃縮水22とに膜分離される。逆浸透膜モジュール6は、例えば、逆浸透膜(RO膜)のエレメントをその内部に多段に接続する構造を有している。   FIG. 1 is an overall configuration diagram of a desalination system according to an embodiment of the present invention. In FIG. 1, the flow of water is indicated by a solid arrow, and the signal line is indicated by a dotted arrow. As shown in FIG. 1, a desalination system 100 includes a water intake tank 2 that stores water to be treated 1 that is seawater or brine, and a flocculant added to the water 1 to be treated that is fed from the water intake tank 2 through a pipe 12. A coagulation treatment apparatus 3 for adding and coagulating, a multi-media filter 4 (hereinafter referred to as MMF membrane) for separating the treated water 1 after the coagulation treatment, an ultrafiltration membrane 5 (hereinafter referred to as UF membrane), a reverse osmosis membrane (RO) (Membrane: Reverse Osmosis Membrane) module 6. The agglomeration apparatus 3 adds an inorganic flocculant or a polymer flocculant to the water 1 to be treated, and traps impurities such as organic substances contained in the water 1 to be treated to form flocs. Below, the case where ferric chloride is used as an inorganic type flocculant is demonstrated to an example. The agglomeration processing apparatus 3 has a stirrer (not shown), and controls the rotation speed of a motor that drives the stirrer blades of the stirrer to control the stirring strength and promote floc formation and growth. The treated water 1 after the coagulation treatment is sent to the MMF membrane 4 and the UF membrane 5 through the pipes 13 and 14, and is separated into solid and liquid according to the filter pore diameter. The treated water 1 after the solid-liquid separation is sent to the reverse osmosis membrane module 6 through the pipe 15 and separated into fresh water 21 from which salt content has been removed and concentrated water 22 which is high-concentration salt water. The reverse osmosis membrane module 6 has, for example, a structure in which elements of a reverse osmosis membrane (RO membrane) are connected in multiple stages.

凝集処理装置3、MMF膜4及びUF膜5により前処理部が構成され、逆浸透膜モジュール6の前段にて被処理水1から有機物等の不純物を除去する。なお、前処理部の構成はこれらに限定されるものではなく、例えば、MMF膜4、UF膜5に代えて、精密ろ過膜(MF膜)、砂ろ過装置などを用いても良い。   The coagulation treatment apparatus 3, the MMF membrane 4, and the UF membrane 5 constitute a pretreatment unit, and impurities such as organic substances are removed from the water 1 to be treated before the reverse osmosis membrane module 6. In addition, the structure of a pre-processing part is not limited to these, For example, instead of the MMF membrane 4 and the UF membrane 5, you may use a microfiltration membrane (MF membrane), a sand filtration apparatus, etc.

分析装置7は、取水タンク2より凝集処理装置3へ送水される被処理水1を、配管12から分岐する分岐配管16を介して取り込むと共に、凝集処理後の被処理水を配管13から分岐する分岐配管17を介して取り込む。そして分析装置7は、取り込まれた被処理水に対し後述する分析項目に対応する分析処理を行う。本実施例においては、取水タンク2からの被処理水と凝集処理装置3にて凝集処理された後の被処理水を取り込む場合について説明するが、これに限られず、例えば、MMF膜4により固液分離された後の被処理水またはUF膜5により固液分離された後の被処理水も取り込むよう構成しても良い。   The analyzer 7 takes in the treated water 1 sent from the water intake tank 2 to the flocculation treatment device 3 via the branch pipe 16 branched from the pipe 12 and branches the treated water after the flocculation treatment from the pipe 13. Take in via the branch pipe 17. And the analyzer 7 performs the analysis process corresponding to the analysis item mentioned later with respect to the taken in to-be-processed water. In the present embodiment, the case where the water to be treated from the water intake tank 2 and the water to be treated after being agglomerated by the aggregating treatment device 3 will be described. However, the present invention is not limited to this. You may comprise so that the to-be-processed water after liquid separation or the to-be-processed water after solid-liquid separation by the UF membrane 5 may also be taken in.

分析装置7による分析結果18は制御装置10に設けられた記憶装置11に格納される。制御装置10は、記憶装置11に格納された分析結果に基づき、凝集処理装置3内の被処理水へ凝集剤貯留槽8より注入する凝集剤の注入率を求める。なお、pH調整剤貯留槽23から取水タンク2へ注入するpH調整剤の投入量を併せて求めるようにしても良い。この場合、取水タンク2内で被処理水1にpH調整剤を注入することに代えて、取水タンク2と凝集処理装置3を接続する配管12または凝集処理装置3へpH調整剤を注入するよう構成しても良い。以下では、被処理水1として海水を取り込む場合を想定し説明する。   The analysis result 18 by the analysis device 7 is stored in the storage device 11 provided in the control device 10. Based on the analysis result stored in the storage device 11, the control device 10 obtains the injection rate of the flocculant injected from the flocculant storage tank 8 into the water to be treated in the flocculant treatment device 3. In addition, you may make it obtain | require collectively the injection amount of the pH adjuster inject | poured into the intake water tank 2 from the pH adjuster storage tank 23. FIG. In this case, instead of injecting the pH adjusting agent into the water to be treated 1 in the intake water tank 2, the pH adjusting agent is injected into the pipe 12 connecting the intake water tank 2 and the aggregation treatment device 3 or the aggregation treatment device 3. It may be configured. Below, the case where seawater is taken in as treated water 1 is explained.

また、例えばジャーテスター等で実現さる凝集試験装置9は、上記分析装置7へ供給される被処理水またはこの被処理水に人工成分を添加したものを用いて、凝集剤の注入率を変え凝集処理を行い、凝集処理後の被処理水に対し、分析装置7と同様の分析項目について分析し試験結果として記憶装置11へ格納する。この際、各分析項目と凝集剤注入率との相関を表す情報を記憶装置11に格納することで、制御装置10は、分析装置7より得られる原海水である被処理水および凝集処理装置3による凝集処理後の被処理水の分析結果に対応する凝集剤注入率を得ることが可能となる。一般的にジャーテスターは複数のビーカと撹拌機構を備えており、凝集処理装置3と同様の条件で凝集試験を行うことが可能に構成されている。   Further, the agglomeration test apparatus 9 realized by, for example, a jar tester uses the water to be treated supplied to the analyzer 7 or a material obtained by adding an artificial component to the water to be agglomerated to change the coagulant injection rate. Processing is performed, and the water to be treated after the coagulation treatment is analyzed with respect to analysis items similar to those of the analysis device 7 and stored in the storage device 11 as test results. At this time, by storing information representing the correlation between each analysis item and the coagulant injection rate in the storage device 11, the control device 10 can treat the raw water obtained from the analysis device 7 and the coagulation treatment device 3. It becomes possible to obtain the coagulant injection rate corresponding to the analysis result of the water to be treated after the coagulation treatment. Generally, a jar tester includes a plurality of beakers and a stirring mechanism, and is configured to be able to perform an agglomeration test under the same conditions as the agglomeration processing apparatus 3.

次に分析装置7にて分析する分析項目について説明する。原海水である被処理水及び凝集処理後の被処理水中に含まれる(1)分子量20kDa以下の微小な溶存多糖類、(2)有機態窒素成分及び(3)フミン質の3成分を分析する。以下では、これら3成分を分析し被処理水に注入すべき凝集剤の注入率を求める場合を例に説明するが、これに限られず、少なくとも(1)分子量20kDa以下の微小な溶存多糖類および(2)有機態窒素成分の2成分を分析すれば凝集剤注入率を求めることができる。   Next, analysis items analyzed by the analyzer 7 will be described. Analyzes the three components of (1) minute dissolved polysaccharides with a molecular weight of 20 kDa or less, (2) organic nitrogen components, and (3) humic substances contained in the treated water that is raw seawater and the treated water after the coagulation treatment. . In the following, the case where the three components are analyzed to determine the injection rate of the flocculant to be injected into the water to be treated will be described as an example. However, the present invention is not limited to this, and at least (1) a minute dissolved polysaccharide having a molecular weight of 20 kDa or less and (2) If two components of the organic nitrogen component are analyzed, the flocculant injection rate can be determined.

ここで、微小な溶存多糖類とは、海水中に溶存する糖成分の中でとくに0.45μm以下に分画される糖分であり、海水中濃度は一般的にフェノール硫酸法などの分析方法により定量化される。一方、本発明で注目する、20kDa以下の低分子量の溶存多糖類は、フェノール硫酸法では計測することが困難であるため、高速液体クロマトグラフィー(HPLC)によるリン酸―フェニルヒドラジン糖分析システムを採用して定量化する。なお、分子量20kDaの粒子径は約70nmとなる。   Here, the minute dissolved polysaccharide is a sugar component that is fractionated to 0.45 μm or less among the sugar components dissolved in the seawater, and the concentration in the seawater is generally determined by an analysis method such as the phenol-sulfuric acid method. Quantified. On the other hand, a low molecular weight dissolved polysaccharide of 20 kDa or less, which is of interest in the present invention, is difficult to measure with the phenol-sulfuric acid method, and therefore employs a phosphate-phenylhydrazine sugar analysis system by high performance liquid chromatography (HPLC). And quantify. The particle size with a molecular weight of 20 kDa is about 70 nm.

また、有機態窒素成分は、タンパク質を構成する成分に相当し、被処理水中の全窒素(T−N)、アンモニア態窒素(NH4−N)および硝酸性窒素(NO3−N)の各成分をそれぞれ分析し、次式により差分を求めることで得られる。   In addition, the organic nitrogen component corresponds to a component constituting protein, and each component of total nitrogen (TN), ammonia nitrogen (NH4-N) and nitrate nitrogen (NO3-N) in the water to be treated is included. It is obtained by analyzing each and obtaining the difference by the following equation.

有機態窒素=(T−N)―(NH4−N)―(NO3−N)
また、フミン質の分析は、E260値を用いる。E260値とは、紫外線吸光度を示し、波長260nmの紫外線を被処理水に照射したときの吸光度の値であり、2重結合を有する有機物の存在量を示す指標である。具体的には、フミン酸あるいはフルボ酸の濃度が高ければE260値は大となる。
Organic nitrogen = (TN)-(NH4-N)-(NO3-N)
Moreover, E260 value is used for the analysis of humic substances. The E260 value indicates the ultraviolet absorbance, which is an absorbance value when the water to be treated is irradiated with ultraviolet rays having a wavelength of 260 nm, and is an index indicating the abundance of an organic substance having a double bond. Specifically, the E260 value increases as the concentration of humic acid or fulvic acid increases.

以下、凝集試験装置9により得られる上記分子量20kDa以下の低分子量の溶存多糖類、E260値として得られるフミン質の濃度と凝集剤注入率との相関を表す情報について説明する。   Hereinafter, the low molecular weight dissolved polysaccharide having a molecular weight of 20 kDa or less obtained by the aggregation test apparatus 9 and information representing the correlation between the concentration of humic substance obtained as the E260 value and the flocculant injection rate will be described.

図3は、凝集剤注入率と凝集処理後の20kDa以下の溶存低分子多糖類濃度の関係を示す凝集パターン特性図である。図3において、縦軸に20kDa以下の溶存低分子多糖の濃度を表し、横軸に無機系凝集剤である塩化第二鉄の注入量を示している。図3に示される凝集パターン特性は、凝集試験装置9により、予め20kDa以下の溶存低分子多糖類濃度の異なる試験水(海水)を用意し、塩化第二鉄の添加量を変化させ20kDa以下の溶存低分子多糖類の濃度変化を得たものである。   FIG. 3 is an aggregation pattern characteristic diagram showing the relationship between the flocculant injection rate and the concentration of dissolved low molecular polysaccharides of 20 kDa or less after the aggregation treatment. In FIG. 3, the vertical axis represents the concentration of dissolved low molecular polysaccharides of 20 kDa or less, and the horizontal axis represents the injection amount of ferric chloride, which is an inorganic flocculant. The aggregation pattern characteristics shown in FIG. 3 are prepared by preparing test water (seawater) having different dissolved low-molecular-weight polysaccharide concentrations of 20 kDa or less in advance using the aggregation test device 9, and changing the addition amount of ferric chloride to 20 kDa or less. The concentration of dissolved low-molecular polysaccharides was obtained.

図3において、横軸Fe(塩化第二鉄)添加量“0”は、原海水での20kDa以下の溶存低分子多糖類濃度であり、濃度C1の海水を丸、濃度C2の海水を三角、濃度C3の海水を四角でプロットしている。pH調整剤を投入することなく分析した場合(pH=8)の結果を黒塗りで、また、pH調整剤を投入しpHを“6”(酸性)に原海水を調整した場合を白抜き四角および三角で示している。pH調整することなく凝集剤の添加量を増加させると、いずれの濃度の海水においても20kDa以下の溶存低分子多糖濃度は低下し、ある添加量を超えると溶存低分子多糖類の濃度は上昇している。また、pH調整剤を投入し予めpHを“6”に低減した場合、更に20kDa以下の溶存低分子多糖濃度の低減効果は増大する。すなわち、凝集剤の添加量を、溶存低分子多糖類の濃度が低下から上昇に切り替わるときの値(最適値)に増加させることで溶存低分子多糖類の濃度を低減でき、更に、予めpHを低く調整することで溶存低分子多糖類の濃度低減効果を高くすることができる。   In FIG. 3, the horizontal axis Fe (ferric chloride) addition amount “0” is the concentration of dissolved low-molecular polysaccharides of 20 kDa or less in the raw seawater, the seawater with the concentration C1 is round, the seawater with the concentration C2 is triangular, Seawater with concentration C3 is plotted as a square. When the analysis is performed without adding the pH adjuster (pH = 8), the results are shown in black, and when the raw seawater is adjusted to pH “6” (acidic) by adding the pH adjuster, the white square And a triangle. When the addition amount of the flocculant is increased without adjusting the pH, the concentration of dissolved low-molecular polysaccharides of 20 kDa or less decreases in any concentration of seawater, and the concentration of dissolved low-molecular polysaccharides increases when a certain addition amount is exceeded. ing. Moreover, when a pH adjuster is added and the pH is reduced to “6” in advance, the effect of reducing the dissolved low-molecular polysaccharide concentration of 20 kDa or less is further increased. That is, by increasing the amount of the flocculant added to the value (optimum value) when the concentration of the dissolved low-molecular polysaccharide is switched from a decrease to an increase, the concentration of the dissolved low-molecular polysaccharide can be reduced, and the pH is adjusted in advance. The effect of reducing the concentration of dissolved low-molecular-weight polysaccharides can be increased by adjusting to a low level.

この現象は、海水中のpHに依存する塩化第二鉄凝集剤の状態変化によるものである。通常の原海水のpHは“8”程度であり、このときの海水に注入された塩化第二鉄は水酸化鉄状態になり、海水中の20kDa以下の溶存低分子多糖類を効率的に捕捉しフロックを形成する。水酸化鉄にはFe(OH)2+、Fe(OH) 、あるいはFe(OH) などがある。海水(pH=8)の場合には、Fe(OH) とFe(OH) が共存する状態と考えられる。凝集現象を促進するにはFe(OH) が安定して存在することが重要であり、そのためにはpHを“8”〜“6”程度に調整することが有効となる。逆にpHを“6”よりさらに酸性側に下げると、Fe(OH)2+、Fe(OH)2+、Fe(OH) あるいはFe3+が共存する状態に変化し、Fe(OH) が生成しにくい状態となることで海水中の溶存低分子多糖類を捕捉する効率が低下する。 This phenomenon is due to a change in the state of the ferric chloride flocculant depending on the pH in the seawater. The pH of ordinary raw seawater is about “8”, and the ferric chloride injected into the seawater at this time is in an iron hydroxide state and efficiently captures dissolved low-molecular polysaccharides of 20 kDa or less in the seawater. A flock is formed. The iron hydroxide Fe (OH) 2+, Fe ( OH) 2 +, or Fe (OH) 4 -, and the like. In the case of seawater (pH = 8), it is considered that Fe (OH) 2 + and Fe (OH) 4 coexist. In order to promote the agglomeration phenomenon, it is important that Fe (OH) 2 + exists stably. For that purpose, it is effective to adjust the pH to about “8” to “6”. Lowering the more acidic side than "6" to pH Conversely, Fe (OH) 2+, Fe (OH) 2+, change state Fe (OH) 2 + or Fe 3+ coexist, Fe (OH) 2 The efficiency of capturing low-molecular polysaccharides dissolved in seawater is reduced by becoming a state in which + is hardly generated.

制御装置10内の記憶装置11に、凝集剤注入率と20kDa以下の溶存低分子多糖類濃度との相関を表す情報として、図3に示す凝集パターンあるいは図3に示す凝集パターンから得られる関数を格納する。なお、有機態窒素成分濃度と凝集剤注入率との相関を表す情報についても同様に、凝集試験装置9により得られる。   In the storage device 11 in the control device 10, as the information representing the correlation between the flocculant injection rate and the dissolved low molecular polysaccharide concentration of 20 kDa or less, the aggregation pattern shown in FIG. 3 or the function obtained from the aggregation pattern shown in FIG. Store. The information representing the correlation between the organic nitrogen component concentration and the flocculant injection rate is also obtained by the coagulation test apparatus 9 in the same manner.

図4は、凝集剤注入率と凝集処理後の上澄み液のE260値の関係を示す凝集パターン特性図である。縦軸にE260値、横軸にFe(塩化第二鉄)添加量を示している。E260値は、は、測定装置のセル内の溶液の光路長(cm)に対する透過率(Absorbance)として表される。図3と同様に、海水中のフミン質濃度が異なる試験水(海水)を用意し、凝集試験装置9にて塩化第二鉄凝集剤の添加量を変化させ凝集処理後の上澄み液のE260値の変化を得たものである。   FIG. 4 is an agglomeration pattern characteristic diagram showing the relationship between the flocculant injection rate and the E260 value of the supernatant after the agglomeration treatment. The vertical axis indicates the E260 value, and the horizontal axis indicates the amount of Fe (ferric chloride) added. The E260 value is expressed as the transmittance (Absorbance) with respect to the optical path length (cm) of the solution in the cell of the measuring apparatus. Similar to FIG. 3, test water (seawater) having different humic concentrations in seawater is prepared, and the amount of ferric chloride flocculant added is changed in the coagulation test apparatus 9 to change the E260 value of the supernatant after the coagulation treatment. Is obtained.

図4において、フミン質濃度C1の海水を丸、フミン質濃度C2の海水を三角、フミン質濃度C3の海水を四角で示している。pH調整剤を投入することなく分析した場合(pH=8)の結果を黒塗りで、また、pH調整剤を投入しpHを“6”に調整した場合を白抜き四角および丸で示している。いずれの場合においても塩化第二鉄凝集剤の添加量を増加させるとE260値は低下し、ある添加量を超えるとE260値は再び上昇する。よって、制御装置10内の記憶装置11に、凝集剤注入率とE260値との相関を表す情報として、図4に示す凝集パターンあるいは図4に示す凝集パターンから得られる関数を格納する。   In FIG. 4, seawater having a humic substance concentration C1 is indicated by a circle, seawater having a humic substance concentration C2 is indicated by a triangle, and seawater having a humic substance concentration C3 is indicated by a square. When the analysis is performed without adding the pH adjuster (pH = 8), the results are shown in black, and when the pH adjuster is added to adjust the pH to “6”, the open squares and circles are shown. . In any case, when the addition amount of the ferric chloride flocculant is increased, the E260 value decreases, and when it exceeds a certain addition amount, the E260 value increases again. Therefore, the storage device 11 in the control device 10 stores the aggregation pattern shown in FIG. 4 or a function obtained from the aggregation pattern shown in FIG. 4 as information indicating the correlation between the coagulant injection rate and the E260 value.

更に、フミン質であるフミン酸の除去性能について説明する。図5は、凝集剤注入率、pHとフミン酸除去率の関係を示す図である。図5において横軸にpH、縦軸に塩化第二鉄凝集剤のFe(塩化第二鉄)量で換算した試験水(海水)への添加濃度をとり、pHとFe(塩化第二鉄)添加濃度を変え、E260値として得られる凝集前と凝集処理後のフミン酸濃度からフミン酸除去率をプロットしたものである。すなわち、フミン酸を含有する海水に対し、凝集処理する前のE260値(E260−前)を測定し、その後、塩化第二鉄凝集剤を添加し凝集処理後のE260値(E260−後)を測定し次式にてフミン酸除去率を求める。   Furthermore, the removal performance of humic acid, which is a humic substance, will be described. FIG. 5 is a graph showing the relationship between the flocculant injection rate, pH, and humic acid removal rate. In FIG. 5, the horizontal axis represents pH, and the vertical axis represents the concentration of ferric chloride flocculant added to the test water (seawater) in terms of the amount of Fe (ferric chloride). The pH and Fe (ferric chloride) The humic acid removal rate is plotted from the humic acid concentrations before and after the aggregation treatment obtained by changing the addition concentration as the E260 value. That is, for seawater containing humic acid, the E260 value before flocculation treatment (E260-before) is measured, and thereafter, the ferric chloride flocculant is added to obtain the E260 value after flocculation treatment (after E260-after). Measure the humic acid removal rate by the following formula.

フミン酸除去率=100×[(E260−前)−(E260−後)]/(E260−前)
凝集試験装置9では、試験水である海水にフミン酸試薬を添加し、塩化第二鉄凝集剤及びpH調整剤を添加し、上記フミン酸除去率を求める。図5に示されるように、塩化第二鉄凝集剤の添加濃度を高くすることでフミン酸除去率は向上する。また、pH調整剤を添加し海水のpHを“8”から“6”へ低下するようpH調整することで、同量の塩化第二鉄凝集剤でフミン酸除去率を向上できる。すなわち、少ない塩化第二鉄凝集剤の添加量で同様のフミン酸除去率を得ることができる。従って、pH調整剤として例えば硫酸を用いる場合、硫酸添加による薬品コストは上昇するものの、塩化第二鉄凝集剤添加量を低減でき、その分薬品コストを低下できる。このようにpH調整剤と塩化鉄凝集剤を併用することで、バイオファウリング抑制可能な淡水化システムを最適運転できる。
Humic acid removal rate = 100 × [(E260−before) − (E260−after)] / (E260−before)
In the coagulation test apparatus 9, a humic acid reagent is added to seawater as test water, a ferric chloride coagulant and a pH adjuster are added, and the humic acid removal rate is obtained. As shown in FIG. 5, the humic acid removal rate is improved by increasing the addition concentration of the ferric chloride flocculant. Moreover, the humic acid removal rate can be improved with the same amount of ferric chloride flocculant by adding a pH adjuster and adjusting the pH of the seawater to lower the pH from “8” to “6”. That is, the same humic acid removal rate can be obtained with a small addition amount of the ferric chloride flocculant. Accordingly, when sulfuric acid is used as the pH adjuster, for example, the chemical cost due to the addition of sulfuric acid increases, but the amount of ferric chloride flocculant added can be reduced, and the chemical cost can be reduced accordingly. Thus, the desalination system which can suppress biofouling can be optimally operated by using a pH adjuster and an iron chloride flocculant together.

なお、凝集試験装置9で用いる試験水として、海水にフミン酸試薬を添加するものの他に、20kDa以下の溶存低分子多糖類の代替として単糖類(グルコース、フルクトース、マンノース等)を添加しても良く、また、有機態窒素成分の代替として海洋細菌用の培地を用いても良い。   In addition to the test water used in the agglutination test apparatus 9, in addition to the humic acid reagent added to seawater, a monosaccharide (glucose, fructose, mannose, etc.) may be added as an alternative to a dissolved low molecular polysaccharide of 20 kDa or less. It is also possible to use a medium for marine bacteria as an alternative to the organic nitrogen component.

次に、制御装置10が、上記分装置7より得られる原海水である被処理水及び凝集処理後の被処理水中に含まれる(1)分子量20kDa以下の微小な溶存多糖類及び(2)有機態窒素成分の濃度に基づき、凝集剤貯留槽8より凝集処理装置3へ投入する凝集剤注入率の算出について説明する。上述のとおり分子量20kDa以下の微小な溶存多糖類の濃度と凝集剤注入率との相関を表す情報、及び有機態窒素成分の濃度と凝集剤注入率との相関を表す情報が、制御装置10内の記憶装置11に格納されている。   Next, the control device 10 includes (1) a minute dissolved polysaccharide having a molecular weight of 20 kDa or less, and (2) an organic material, which is contained in the treated water that is the raw seawater obtained from the separating device 7 and the treated water after the aggregation treatment. The calculation of the flocculant injection rate to be fed from the flocculant reservoir 8 to the flocculant processing device 3 based on the concentration of the state nitrogen component will be described. As described above, information indicating the correlation between the concentration of a minute dissolved polysaccharide having a molecular weight of 20 kDa or less and the coagulant injection rate, and information indicating the correlation between the concentration of the organic nitrogen component and the coagulant injection rate are stored in the control device 10. Are stored in the storage device 11.

分岐配管16を介して取り込まれる、取水タンク2から送水される被処理水1に対する分析装置7による分析結果18を制御装置10が受信する。ここで分析結果18には、被処理水1に含まれる分子量20kDa以下の微小な溶存多糖類(分析成分A)の濃度、及び被処理水1に含まれる有機態窒素成分(分析成分B)の濃度が含まれる。分析成分Aと分析成分Bの2つの濃度から最適な凝集剤注入率Yを求める場合、まずそれぞれの分析成分に対応する凝集剤注入率の最適値を決定する。すなわち、分析成分Aにおいて、最適な凝集注入率を図3に示す凝集パターンより求める。図3に示した凝集パターンは、凝集剤を添加する前の海水に含まれる分析成分Aの異なる濃度の試験水に対し凝集剤添加量を一定間隔n倍ずつ上げていき、分析成分Aの特性曲線f(Y)として記憶装置11に格納されているものである。その際のf(Y)において、dX/dY=0となる凝集剤注入率を算出する。dX/dY=0となる条件は、それ以上に凝集剤注入量を増加しても、分析成分Aの凝集除去率が上がらないことを意味し、図3において説明した凝集剤添加量の最適値に相当するものである。なお、仮に凝集剤注入率を増やし続けても、分析成分Aの濃度が低下し続ける場合には、あらかじめ設定しておいた分析成分Aの濃度の閾値に到達した時点での凝集剤注入率をもって最適値とする。分析成分Bについても同様に凝集剤注入率の最適値をもとめる。 The control device 10 receives the analysis result 18 by the analyzer 7 for the treated water 1 taken from the intake tank 2 and taken in via the branch pipe 16. Here, the analysis result 18 includes the concentration of a minute dissolved polysaccharide (analytical component A) having a molecular weight of 20 kDa or less contained in the water 1 to be treated and the organic nitrogen component (analytical component B) contained in the water 1 to be treated. Concentration is included. When obtaining the optimum coagulant injection rate Y from the two concentrations of the analysis component A and the analysis component B, first, the optimum value of the coagulant injection rate corresponding to each analysis component is determined. That is, for analysis component A, the optimum aggregation injection rate is obtained from the aggregation pattern shown in FIG. The agglomeration pattern shown in FIG. 3 shows the characteristics of the analysis component A by increasing the addition amount of the flocculant by a predetermined interval n times with respect to the test water having different concentrations of the analysis component A contained in the seawater before adding the flocculant. It is stored in the storage device 11 as a curve f (Y A ). At f (Y A ) at that time, the flocculant injection rate at which dX / dY A = 0 is calculated. The condition that dX / dY A = 0 means that the aggregation removal rate of the analysis component A does not increase even if the injection amount of the flocculant is further increased, and the optimum addition amount of the flocculant described in FIG. It corresponds to the value. If the concentration of the analysis component A continues to decrease even if the flocculant injection rate is continuously increased, the flocculant injection rate at the time when the threshold value of the concentration of the analysis component A set in advance is reached. Use the optimum value. Similarly, for the analysis component B, the optimum value of the flocculant injection rate is obtained.

続いてそれぞれの凝集剤注入率の最適値がYA(分析成分A)、YB(分析成分B)と規定されたうえで、例えば次の(1)式のような関係から新たにYcをもとめることになる。   Subsequently, after the optimum values of the respective coagulant injection rates are defined as YA (analytical component A) and YB (analytical component B), for example, a new Yc is obtained from the relationship such as the following equation (1). become.

Yc=a・YA+b・YB ・・・(1)
a:成分Aの重み係数、b:成分Bの重み係数、ただしa+b=1
上記重み係数a、bは、分析成分A及び分析成分Bの重要度に基づいて設定されるものであり、本実施例では、分析成分Aの重要度が分析成分Bの重要度より高い。
Yc = a · YA + b · YB (1)
a: Weighting factor of component A, b: Weighting factor of component B, where a + b = 1
The weighting factors a and b are set based on the importance of the analysis component A and the analysis component B. In this embodiment, the importance of the analysis component A is higher than the importance of the analysis component B.

本実施例では、分子量20kDa以下の微小な溶存多糖類(分析成分A)、及び有機態窒素成分(分析成分B)の2成分の濃度に基づき凝集剤注入率の最適値Ycを求める場合を説明した。上記2成分に加え、フミン質(分析成分C)の3成分の濃度に基づき凝集剤注入率の最適値を求める場合は、図4に示す凝集パターンから得られる凝集剤注入率の最適値を用いれば良い。よって、n個の分析成分を用いる場合は次の(2)式により、凝集剤注入率の最適値を求めればよい。   In this example, the case where the optimum value Yc of the flocculant injection rate is determined based on the concentrations of two components of a minute dissolved polysaccharide (analytical component A) having a molecular weight of 20 kDa or less and an organic nitrogen component (analytical component B) is described. did. When the optimum value of the flocculant injection rate is obtained based on the concentration of the three components of humic substance (analytical component C) in addition to the above two components, the optimum value of the flocculant injection rate obtained from the aggregation pattern shown in FIG. It ’s fine. Therefore, when n analysis components are used, the optimum value of the flocculant injection rate may be obtained by the following equation (2).

Y=n1・Y1+n2・Y2+…+nn・Yn ・・・ (2)
成分Yi(i=1,2,…,nn)の重み係数は、式(1)と同様に分析成分の重要度に応じて設定すれば良く、凝集試験装置9により分析成分毎の凝集パターンを得ることにより設定される。
Y = n1 / Y1 + n2 / Y2 + ... + nn / Yn (2)
The weighting coefficient of the component Yi (i = 1, 2,..., Nn) may be set according to the importance of the analysis component as in the equation (1), and the aggregation pattern for each analysis component is determined by the aggregation test device 9. Set by getting.

図2は、図1に示す淡水化システムにおける凝集剤注入制御手順を示す概念図である。図2において、図1に示す分析装置7、制御装置10をそれぞれ2つ有する図としているが、これは説明を分かりやすくするためのものであり、分岐配管16及び分岐配管17を介して被処理水を取り込む分析装置7は同一のものである。   FIG. 2 is a conceptual diagram showing a coagulant injection control procedure in the desalination system shown in FIG. In FIG. 2, the analysis device 7 and the control device 10 shown in FIG. 1 are each provided as two figures, but this is for easy understanding and is processed through the branch pipe 16 and the branch pipe 17. The analyzer 7 for taking in water is the same.

図2において、被処理水1は、開閉弁40及び分岐配管16を介して分析装置7に取り込まれ、上述の分析項目について分析される。分析装置7は被処理水1に対する分析結果を制御装置10へ送信する。また、配管12を介して凝集処理装置3へ送水された被処理水1は、凝集剤貯留槽8より調節弁43を介して所定量の塩化第二鉄凝集剤が注入され、急速撹拌槽31、緩速撹拌槽32及び沈殿槽33にて撹拌される。急速撹拌槽31内で、図示しない撹拌機により被処理水1と塩化第二鉄凝集剤が撹拌され、凝集反応によりフロックが形成される。その後、急速撹拌槽31にて凝集処理後の被処理水は緩速撹拌槽32へ送水され撹拌された後、沈殿槽33へ送水され、形成されたフロックが除去される。急速撹拌槽31と緩速撹拌槽32には、撹拌翼及び撹拌翼を駆動するモータからなる図示しない撹拌機が設けられており、急速撹拌槽31内の撹拌翼を駆動するモータの回転数が、緩速撹拌槽32内の撹拌翼を駆動するモータの回転数より高く設定されている。これは、急速撹拌により被処理水1中の有機物等の不純物を塩化第二鉄凝集剤に捕捉させフロックを形成し、その後、緩速撹拌することで、塩化第二鉄凝集剤に捕捉された不純物の剥離を防止しつつフロックを成長させるためである。   In FIG. 2, the water to be treated 1 is taken into the analyzer 7 via the on-off valve 40 and the branch pipe 16 and analyzed for the above-described analysis items. The analysis device 7 transmits the analysis result for the treated water 1 to the control device 10. In addition, a predetermined amount of ferric chloride flocculant is injected from the flocculant storage tank 8 through the control valve 43 into the water to be treated 1 sent to the flocculation treatment apparatus 3 via the pipe 12, and the rapid stirring tank 31. In the slow stirring tank 32 and the precipitation tank 33, the stirring is performed. In the rapid stirring tank 31, the water to be treated 1 and the ferric chloride flocculant are stirred by a stirrer (not shown), and flocs are formed by agglomeration reaction. Thereafter, the water to be treated after the coagulation treatment in the rapid stirring tank 31 is sent to the slow stirring tank 32 and stirred, and then sent to the precipitation tank 33, and the formed floc is removed. The rapid stirring tank 31 and the slow stirring tank 32 are provided with a stirrer (not shown) including a stirring blade and a motor for driving the stirring blade, and the rotational speed of the motor for driving the stirring blade in the rapid stirring tank 31 is set. The rotation speed of the motor that drives the stirring blade in the slow stirring tank 32 is set higher. This is because the impurities such as organic matter in the water 1 to be treated are trapped in the ferric chloride flocculant by rapid stirring to form a floc, and then slowly trapped by the ferric chloride flocculant. This is for growing flocs while preventing the separation of impurities.

急速撹拌槽31、緩速撹拌槽32及び沈殿槽33により凝集処理された被処理水は、それぞれ開閉弁40及び分岐配管17を介して分析装置7に取り込まれ、上述の分析項目について分析される。また、制御装置10は、分析装置7より送信される被処理水分析結果と、凝集試験装置9により予め得られ記憶装置11に格納された図3及び図4に示す凝集パターンに基づき凝集剤注入率の最適値51を求める。求めた凝集剤注入率の最適値51と、凝集処理装置3による凝集処理後の被処理水の分析結果に含まれる分子量20kDa以下の微小な溶存多糖類の濃度及び有機態窒素成分の濃度52に基づいて凝集剤注入率が決定される。   The water to be treated that has been subjected to the agglomeration treatment in the rapid stirring tank 31, the slow stirring tank 32, and the settling tank 33 is taken into the analyzer 7 through the on-off valve 40 and the branch pipe 17, respectively, and analyzed for the above-described analysis items. . Further, the control device 10 injects the flocculant based on the analysis result of the water to be treated transmitted from the analysis device 7 and the aggregation patterns shown in FIGS. 3 and 4 obtained in advance by the aggregation test device 9 and stored in the storage device 11. The optimum value 51 of the rate is obtained. The optimum value 51 of the obtained flocculant injection rate, the concentration of minute dissolved polysaccharides having a molecular weight of 20 kDa or less, and the concentration of organic nitrogen component 52 included in the analysis result of the water to be treated after the aggregation treatment by the aggregation treatment device 3 Based on this, the flocculant injection rate is determined.

続いて、流量計41により測定された取水タンク2より送水される被処理水1の流量と、上記決定された凝集剤注入率により凝集剤貯留槽8より凝集処理装置3へ注入すべき凝集剤の注入量が設定され、設定された注入量となるよう調節弁43の開度が設定される。これにより、凝集剤貯留槽8より調節弁43を介して凝集剤が凝集処理装置3へ注入される。ここで、凝集剤貯留槽8と調節弁43との間には流量計42が設けられている。仮に、凝集剤貯留槽8から凝集処理装置3へ凝集剤が注入されている状態で、上記凝集剤の注入量が変更された場合、流量計42により測定された流量と上記設定された注入量の差分に応じて調節弁43の開度が補正可能となっている。   Subsequently, the coagulant to be injected from the coagulant storage tank 8 to the coagulation treatment device 3 based on the flow rate of the water to be treated 1 fed from the intake tank 2 measured by the flow meter 41 and the determined coagulant injection rate. And the opening degree of the control valve 43 is set so that the set injection amount is obtained. As a result, the flocculant is injected from the flocculant reservoir 8 through the control valve 43 into the flocculant processing device 3. Here, a flow meter 42 is provided between the flocculant storage tank 8 and the control valve 43. If the injection amount of the flocculant is changed in a state where the flocculant is injected from the flocculant storage tank 8 to the flocculant treatment device 3, the flow rate measured by the flow meter 42 and the set injection amount are set. The opening degree of the control valve 43 can be corrected according to the difference.

また、凝集処理後の被処理水に含まれる、分子量20kDa以下の微小な溶存多糖類及び有機態窒素成分の分析結果により、図3及び図4に示す凝集パターンの補正が必要となる場合には、凝集処理装置3に設けられた図示しない撹拌機の撹拌強度(撹拌翼の回転速度、撹拌翼の面積等の諸物性値)、被処理水の水質、淡水化システム100を構成する各装置のデータに基づき凝集試験装置9にて上述の処理を実行し、新たに凝集パターンを作成し、制御装置10へ送信可能に構成されている。   In addition, when the analysis result of minute dissolved polysaccharides having a molecular weight of 20 kDa or less and organic nitrogen components contained in the water to be treated after the aggregation treatment, correction of the aggregation pattern shown in FIGS. 3 and 4 is necessary. , Stirring strength of a stirrer (not shown) provided in the agglomeration processing device 3 (property values such as the rotation speed of the stirring blade, the area of the stirring blade), water quality of the water to be treated, and each device constituting the desalination system 100 The agglomeration test apparatus 9 executes the above-described processing based on the data, newly creates an agglomeration pattern, and can be transmitted to the control apparatus 10.

本実施例においては、凝集剤注入率と分子量20kDa以下の微小な溶存多糖類の濃度の相関を表す情報、凝集剤注入率と有機態窒素成分との相関を表す情報、凝集剤注入率とフミン質濃度との相関を表す情報を、凝集試験装置9により予め求める構成としたがこれに限られるものではない。例えば、分析装置7により被処理水1に人工成分53として、海水にフミン酸試薬、20kDa以下の溶存低分子多糖類の代替として単糖類(グルコース、フルクトース、マンノース等)を添加し、また、有機態窒素成分の代替として海洋細菌用の培地を用いて、凝集試験装置9と同様に処理することにより、上述の図3及び図4に示す凝集パターンを得るよう構成しても良い。   In this example, information indicating the correlation between the coagulant injection rate and the concentration of a minute dissolved polysaccharide having a molecular weight of 20 kDa or less, information indicating the correlation between the coagulant injection rate and the organic nitrogen component, the coagulant injection rate and humin The information representing the correlation with the quality concentration is determined in advance by the agglutination test apparatus 9, but the present invention is not limited to this. For example, the analysis apparatus 7 adds an artificial component 53 to the water 1 to be treated, a humic acid reagent, and a monosaccharide (glucose, fructose, mannose, etc.) as an alternative to a dissolved low-molecular polysaccharide of 20 kDa or less to seawater. A culture medium for marine bacteria may be used as an alternative to the state nitrogen component, and processing may be performed in the same manner as the aggregation test apparatus 9 so as to obtain the aggregation pattern shown in FIGS. 3 and 4 described above.

また、凝集処理装置3を、急速撹拌槽31、緩速撹拌槽32及び沈殿槽33を直列に配する構成としたが、これに限られず、1つの撹拌槽にて凝集処理装置3を構成しても良い。   In addition, the agglomeration processing apparatus 3 is configured such that the rapid stirring tank 31, the slow stirring tank 32, and the precipitation tank 33 are arranged in series. However, the present invention is not limited thereto, and the aggregation processing apparatus 3 is configured by one stirring tank. May be.

なお、上記特定成分である、(1)分子量20kDa以下の微小な溶存多糖類、(2)有機態窒素成分及び(3)フミン質の分析以外にも原海水の基本的性質を把握するために通常の運転時に分析される項目(濁度、pH、SDI値など)を随時計測しても良い。   To understand the basic properties of raw seawater other than the analysis of the above-mentioned specific components (1) minute dissolved polysaccharides with a molecular weight of 20 kDa or less, (2) organic nitrogen components, and (3) humic substances Items analyzed during normal operation (turbidity, pH, SDI value, etc.) may be measured at any time.

本実施例によれば、逆浸透膜モジュール6でのバイオファウリング発生の要因となる、被処理水中の分子量20kDa以下の微小な溶存多糖類及び有機態窒素成分濃度に応じて凝集剤注入率を最適に設定でき、バイオファウリング抑制可能な淡水化システムを実現できる。   According to the present example, the flocculant injection rate is determined according to the concentration of minute dissolved polysaccharides and organic nitrogen components having a molecular weight of 20 kDa or less in the water to be treated, which cause biofouling in the reverse osmosis membrane module 6. A desalination system that can be set optimally and can suppress bio-fouling can be realized.

また、更に本実施例によれば、被処理水中の分子量20kDa以下の微小な溶存多糖類及び有機態窒素成分濃度に加え、フミン質の濃度に基づいて凝集剤注入率を設定でき、より効果的にバイオファウリングを抑制できる。   In addition, according to this example, the flocculant injection rate can be set based on the concentration of humic substances in addition to the concentration of minute dissolved polysaccharides and organic nitrogen components having a molecular weight of 20 kDa or less in the water to be treated. Biofouling can be suppressed.

また、本実施例によれば、pH調整剤と凝集剤を併用することにより、薬剤コストを考慮した淡水化システムの運転が可能となる。   Moreover, according to the present Example, the desalination system which considered the chemical | medical agent cost can be operated by using a pH adjuster and a flocculant together.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の実施例の構成の追加・削除・置換をすることが可能である。   In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace the configurations of other embodiments with respect to a part of the configurations of the embodiments.

1 被処理水
2 取水タンク
3 凝集処理装置
4 マイルティメディアフィルタ
5 限外ろ過膜
6 逆浸透膜モジュール
7 分析装置
8 凝集剤貯留槽
9 凝集試験装置
10 制御装置
11 記憶装置
12、13、14、15 配管
16、17 分岐配管
18 分析結果
19 制御指令
20 試験結果
21 淡水
22 濃縮水
23 pH調整剤貯留槽
31 急速撹拌槽
32 緩速撹拌槽
33 沈殿槽
40 弁
41、42 流量計
43 調節弁
51、52 信号線
53 人工成分
100 淡水化システム
DESCRIPTION OF SYMBOLS 1 Water to be treated 2 Intake tank 3 Aggregation treatment device 4 Milety media filter 5 Ultrafiltration membrane 6 Reverse osmosis membrane module 7 Analyzing device 8 Coagulant storage tank 9 Aggregation test device 10 Control device 11 Storage devices 12, 13, 14, 15 Pipe 16, 17 Branch pipe 18 Analysis result 19 Control command 20 Test result 21 Fresh water 22 Concentrated water 23 pH adjuster storage tank 31 Rapid stirring tank 32 Slow stirring tank 33 Precipitation tank 40 Valve 41, 42 Flow meter 43 Control valve 51 , 52 Signal line 53 Artificial component 100 Desalination system

Claims (11)

被処理水に凝集剤を注入し凝集処理する凝集処理装置と、
凝集処理後の被処理水から塩分が除去された淡水と塩分が濃縮された濃縮水に分離する逆浸透膜モジュールと、
前記凝集処理装置及び逆浸透膜モジュールを制御する制御装置を有し、
前記制御装置は、前記被処理水に含まれる少なくとも20kDa以下の溶存低分子多糖類及び有機態窒素成分の濃度に基づいて前記凝集剤の注入率を制御することを特徴とする淡水化システム。
An aggregating treatment apparatus for injecting an aggregating agent into the water to be treated to agglomerate;
A reverse osmosis membrane module that separates the fresh water from which the salinity has been removed from the water to be treated after the flocculation treatment and the concentrated water in which the salinity is concentrated;
A controller for controlling the aggregating apparatus and the reverse osmosis membrane module;
The said control apparatus controls the injection rate of the said coagulant | flocculant based on the density | concentration of the dissolved low molecular polysaccharide and organic nitrogen component of at least 20 kDa or less contained in the said to-be-treated water.
請求項1に記載の淡水化システムにおいて、
前記制御装置は、前記被処理水に含まれるフミン質の濃度に基づいて前記凝集剤の注入率を制御することを特徴とする淡水化システム。
The desalination system according to claim 1,
The said control apparatus controls the injection rate of the said coagulant | flocculant based on the density | concentration of the humic substance contained in the said to-be-processed water, The desalination system characterized by the above-mentioned.
請求項1に記載の淡水化システムにおいて、
前記制御装置は、前記凝集剤注入率と前記20kDa以下の溶存低分子多糖類濃度の相関を表す情報及び前記凝集剤注入率と前記有機態窒素成分の濃度の相関を表す情報を格納する記憶装置を備え、測定された前記被処理水に含まれる前記20kDa以下の溶存低分子多糖類濃度及び有機態窒素成分濃度と前記記憶装置に格納された相関情報に基づき前記凝集剤の注入率を制御することを特徴とする淡水化システム。
The desalination system according to claim 1,
The control device stores information indicating the correlation between the flocculant injection rate and the dissolved low molecular polysaccharide concentration of 20 kDa or less, and information indicating the correlation between the flocculant injection rate and the concentration of the organic nitrogen component And controlling the injection rate of the flocculant based on the measured low-molecular polysaccharide concentration and organic nitrogen component concentration of 20 kDa or less contained in the treated water and the correlation information stored in the storage device A desalination system characterized by that.
請求項3に記載の淡水化システムにおいて、
凝集試験装置を設け、異なる注入率の凝集剤を前記被処理水に添加したときの凝集処理後の被処理水に含まれる前記20kDa以下の溶存低分子多糖類及び有機態窒素成分の濃度を測定し、凝集剤注入率に対応する前記溶存低分子多糖類及び有機態窒素成分濃度の変化を凝集パターンとして求め、求めた凝集パターンを前記記憶装置に格納することを特徴とする淡水化システム。
The desalination system according to claim 3,
A coagulation test device is provided to measure the concentration of dissolved low-molecular polysaccharides and organic nitrogen components of 20 kDa or less contained in the water to be treated after the coagulation treatment when flocculants having different injection rates are added to the water to be treated. Then, a change in the dissolved low-molecular-weight polysaccharide and organic nitrogen component concentration corresponding to the coagulant injection rate is obtained as an aggregation pattern, and the obtained aggregation pattern is stored in the storage device.
請求項4に記載の淡水化システムにおいて、
前記被処理水にフミン酸試薬を添加し、異なる注入率の凝集剤を前記被処理水に添加したときの凝集処理後の被処理水に含まれるフミン質の濃度を測定し、凝集剤注入率に対応するフミン質の濃度変化を凝集パターンとして求め、求めた凝集パターンを前記記憶装置に格納することを特徴とする淡水化システム。
The desalination system according to claim 4,
The humic acid reagent is added to the water to be treated, and the concentration of humic substances contained in the water to be treated after the flocculation treatment when flocculants having different injection rates are added to the water to be treated is measured. A desalination system characterized in that a change in the concentration of humic substances corresponding to the above is obtained as an aggregation pattern, and the obtained aggregation pattern is stored in the storage device.
pH調整剤が添加された被処理水に凝集剤を注入し凝集処理する凝集処理装置と、
凝集処理後の被処理水から塩分が除去された淡水と塩分が濃縮された濃縮水に分離する逆浸透膜モジュールと、
前記凝集処理装置及び逆浸透膜モジュールを制御する制御装置を有し、
前記制御装置は、前記被処理水に含まれる少なくとも20kDa以下の溶存低分子多糖類及び有機態窒素成分の濃度に基づいて前記pH調整剤及び前記凝集剤の注入率を制御することを特徴とする淡水化システム。
an aggregating treatment device for injecting an aggregating agent into the water to be treated to which a pH adjuster has been added,
A reverse osmosis membrane module that separates the fresh water from which the salinity has been removed from the water to be treated after the flocculation treatment and the concentrated water in which the salinity is concentrated;
A controller for controlling the aggregating apparatus and the reverse osmosis membrane module;
The said control apparatus controls the injection rate of the said pH adjuster and the said flocculant based on the density | concentration of the dissolved low molecular polysaccharide and organic nitrogen component of at least 20 kDa or less contained in the said to-be-processed water. Desalination system.
請求項6に記載の淡水化システムにおいて、
前記制御装置は、前記被処理水のpHが6から7の範囲となるようpH調整剤の注入率を制御することを特徴とする淡水化システム。
The desalination system according to claim 6,
The said control apparatus controls the injection rate of a pH adjuster so that the pH of the said to-be-processed water may be in the range of 6-7.
請求項7に記載の淡水化システムにおいて、
前記制御装置は、前記凝集剤及びpH調整剤の注入率と前記20kDa以下の溶存低分子多糖類濃度の相関を表す情報及び、前記凝集剤及びpH調整剤の注入率と前記有機態窒素成分の濃度の相関を表す情報を格納する記憶装置を備え、測定された前記被処理水に含まれる前記20kDa以下の溶存低分子多糖類濃度及び有機態窒素成分濃度と前記記憶装置に格納された相関情報に基づき前記凝集剤及びpH調整剤の注入率を制御することを特徴とする淡水化システム。
The desalination system according to claim 7,
The control device includes information indicating a correlation between the injection rate of the flocculant and the pH adjuster and the dissolved low molecular polysaccharide concentration of 20 kDa or less, the injection rate of the flocculant and the pH adjuster, and the organic nitrogen component. A storage device for storing information representing the correlation between the concentrations, the dissolved low molecular polysaccharide concentration of 20 kDa or less and the organic nitrogen component concentration contained in the measured water to be treated, and the correlation information stored in the storage device The desalination system characterized by controlling the injection rate of the flocculant and the pH adjuster based on the above.
請求項1または請求項6に記載の淡水化システムにおいて、
前記凝集処理装置は、直列に配された急速撹拌槽、緩速撹拌槽及び沈殿槽を備え、
前記急速撹拌槽の撹拌強度は、前記緩速撹拌槽の撹拌強度よりも高く設定されることを特徴とする淡水化システム。
In the desalination system of Claim 1 or Claim 6,
The agglomeration apparatus comprises a rapid stirring tank, a slow stirring tank and a precipitation tank arranged in series,
The desalination system characterized in that the stirring intensity of the rapid stirring tank is set higher than the stirring intensity of the slow stirring tank.
被処理水に凝集剤を注入し凝集処理後の被処理水を、逆浸透膜モジュールにて塩分が除去された淡水と塩分が濃縮された濃縮水に分離する淡水化システムの制御方法であって、
取水される被処理水に含まれる20kDa以下の溶存低分子多糖類及び有機態窒素成分の濃度を測定し、
測定された前記溶存低分子多糖類及び有機態窒素成分の濃度に応じて、前記被処理水へ注入する凝集剤の注入率を求め、求めた注入率の凝集剤を前記被処理水に添加することにより凝集処理を行うことを特徴とする淡水化システムの制御方法。
A control method for a desalination system, in which a flocculant is injected into water to be treated and the water to be treated is separated into fresh water from which salt has been removed by a reverse osmosis membrane module and concentrated water in which the salt has been concentrated. ,
Measure the concentration of dissolved low molecular polysaccharides and organic nitrogen components of 20 kDa or less contained in the water to be treated,
According to the measured concentrations of the dissolved low molecular weight polysaccharide and the organic nitrogen component, the injection rate of the flocculant to be injected into the water to be treated is obtained, and the flocculant having the obtained injection rate is added to the water to be treated. A control method for a desalination system, characterized in that a coagulation treatment is performed.
請求項10に記載の淡水化システムの制御方法において、
異なる注入率の凝集剤を前記被処理水に添加し凝集処理を行い、凝集処理後の被処理水に含まれる前記20kDa以下の溶存低分子多糖類及び有機態成分の濃度を測定し、
前記得られた凝集剤注入率と前記20kDa以下の溶存低分子多糖類及び有機態窒素成分の濃度との相関を表す凝集パターンを保持し、
前記取水された被処理水に含まれる20kDa以下の溶存低分子多糖類及び有機態窒素成分の測定濃度と、前記凝集パターンに基づき凝集剤の注入率を求めることを特徴とする淡水化システムの制御方法。
In the control method of the desalination system of Claim 10,
A flocculant having a different injection rate is added to the water to be treated to perform a coagulation treatment, and the concentrations of the dissolved low-molecular polysaccharides and organic components of 20 kDa or less contained in the water to be treated after the coagulation treatment are measured,
Holding the obtained flocculant injection rate and the aggregation pattern representing the correlation between the dissolved low-molecular-weight polysaccharide of 20 kDa or less and the concentration of organic nitrogen component,
Control of a desalination system characterized in that the injection rate of a flocculant is determined based on the measured concentration of dissolved low molecular polysaccharides and organic nitrogen components of 20 kDa or less and the organic nitrogen component contained in the water to be treated. Method.
JP2013182766A 2013-09-04 2013-09-04 Seawater desalination system and control method thereof Pending JP2015047591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013182766A JP2015047591A (en) 2013-09-04 2013-09-04 Seawater desalination system and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013182766A JP2015047591A (en) 2013-09-04 2013-09-04 Seawater desalination system and control method thereof

Publications (1)

Publication Number Publication Date
JP2015047591A true JP2015047591A (en) 2015-03-16

Family

ID=52698069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013182766A Pending JP2015047591A (en) 2013-09-04 2013-09-04 Seawater desalination system and control method thereof

Country Status (1)

Country Link
JP (1) JP2015047591A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101745146B1 (en) * 2015-10-05 2017-06-08 대림산업 주식회사 The apparatus and method of iron oxide dynamic membrane filtration as SWRO pretreatment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101745146B1 (en) * 2015-10-05 2017-06-08 대림산업 주식회사 The apparatus and method of iron oxide dynamic membrane filtration as SWRO pretreatment

Similar Documents

Publication Publication Date Title
Brehant et al. Comparison of MF/UF pretreatment with conventional filtration prior to RO membranes for surface seawater desalination
US20120205307A1 (en) Fluid treatment apparatus and method
JP4862576B2 (en) Aggregation apparatus and aggregation method
JP2012223723A (en) Control device and control method of seawater desalination system
JP2015044149A (en) Flocculation treatment method, flocculation treatment device and water treatment apparatus
WO2014103860A1 (en) Water treatment method
KR102013255B1 (en) Seawater Desalination Plant and Control Method for the same
Wang et al. Effects on the purification of tannic acid and natural dissolved organic matter by forward osmosis membrane
Xu et al. Ultrafiltration as pretreatment of seawater desalination: Critical flux, rejection and resistance analysis
Brehant et al. Assessment of ultrafiltration as a pretreatment of reverse osmosis membranes for surface seawater desalination
KR101550702B1 (en) Water-purifying System with high recovery rate and Method Using Membrane Filtration for Manufacturing Purified Water
Gupta et al. Contributions of surface and pore deposition to (ir) reversible fouling during constant flux microfiltration of secondary municipal wastewater effluent
Ren et al. Effect of operating conditions on the performance of multichannel ceramic ultrafiltration membranes for cattle wastewater treatment
Kweon et al. Evaluation of coagulation and PAC adsorption pretreatments on membrane filtration for a surface water in Korea: A pilot study
KR20120068110A (en) Pretreatment apparatus and method for seawater desalination
JP2008264723A (en) Method and apparatus for coagulating impurity
Johir et al. In-line flocculation–filtration as pre-treatment to reverse osmosis desalination
Jeong et al. Pretreatment for seawater desalination by flocculation: Performance of modified poly ferric silicate (PFSi-δ) and ferric chloride as flocculants
JP2011056411A (en) System and method for desalination of water to be treated
JP7113454B2 (en) Water treatment method and equipment
JP5863176B2 (en) Method for evaluating water to be treated, membrane treatment apparatus, water treatment plant, and operation method thereof
JP2015047591A (en) Seawater desalination system and control method thereof
Kim et al. Dual media filtration and ultrafiltration as pretreatment options of low-turbidity seawater reverse osmosis processes
JP6441712B2 (en) Method for evaluating membrane clogging of treated water
WO2016038726A1 (en) Water treatment apparatus and water treatment method