JP2015041713A - Paste composition and solar battery element - Google Patents

Paste composition and solar battery element Download PDF

Info

Publication number
JP2015041713A
JP2015041713A JP2013172808A JP2013172808A JP2015041713A JP 2015041713 A JP2015041713 A JP 2015041713A JP 2013172808 A JP2013172808 A JP 2013172808A JP 2013172808 A JP2013172808 A JP 2013172808A JP 2015041713 A JP2015041713 A JP 2015041713A
Authority
JP
Japan
Prior art keywords
paste composition
powder
aluminum
mass
boron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013172808A
Other languages
Japanese (ja)
Other versions
JP6202939B2 (en
Inventor
孝輔 辻
Kosuke Tsuji
孝輔 辻
マルワン ダムリン
Dhamrin Marwan
マルワン ダムリン
萌子 松原
Moeko Matsubara
萌子 松原
正博 中原
Masahiro Nakahara
正博 中原
隆 和辻
Takashi Watsuji
隆 和辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Aluminum KK
Original Assignee
Toyo Aluminum KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Aluminum KK filed Critical Toyo Aluminum KK
Priority to JP2013172808A priority Critical patent/JP6202939B2/en
Priority to CN201480046204.7A priority patent/CN105474409B/en
Priority to KR1020167004597A priority patent/KR102217722B1/en
Priority to PCT/JP2014/071462 priority patent/WO2015025799A1/en
Priority to TW103129037A priority patent/TWI632562B/en
Publication of JP2015041713A publication Critical patent/JP2015041713A/en
Application granted granted Critical
Publication of JP6202939B2 publication Critical patent/JP6202939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • H01L31/0288Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a paste composition which is to be used for forming an electrode on the backside of a silicon semiconductor substrate, and which makes possible to increase an open-circuit voltage, and to suppress the reduction in current density; and a solar battery element including a backside electrode which is formed by use of such a composition.SOLUTION: A paste composition is to be used for forming an electrode on the backside of a silicon semiconductor substrate which a crystalline silicon solar battery includes. The paste composition comprises: aluminum powder; Al-B alloy powder; glass powder; and an organic vehicle. In the paste composition, the concentration of the boron is 0.005-0.05 mass%.

Description

この発明は、一般的にはペースト組成物と太陽電池素子に関し、特定的には、結晶系シリコン太陽電池を構成するシリコン半導体基板の裏面上に電極を形成する際に用いられるペースト組成物、およびそれを用いて裏面電極が形成された太陽電池素子に関するものである。   The present invention generally relates to a paste composition and a solar cell element, and specifically, a paste composition used when forming an electrode on the back surface of a silicon semiconductor substrate constituting a crystalline silicon solar cell, and It is related with the solar cell element in which the back surface electrode was formed using it.

シリコン半導体基板の裏面上に電極が形成された電子部品として、特開2003−69056号公報(特許文献1)、特表2009−530845号公報(特許文献2)に開示されているような太陽電池素子が知られている。   As an electronic component having an electrode formed on the back surface of a silicon semiconductor substrate, a solar cell as disclosed in Japanese Patent Application Laid-Open No. 2003-69056 (Patent Document 1) and Japanese Translation of PCT International Publication No. 2009-530845 (Patent Document 2). Devices are known.

図1は、太陽電池素子の一般的な断面構造を模式的に示す図である。   FIG. 1 is a diagram schematically showing a general cross-sectional structure of a solar cell element.

図1に示すように、太陽電池素子は、厚みが200μm程度のp型シリコン半導体基板1を用いて構成される。p型シリコン半導体基板1の受光面側には、厚みが0.3〜0.6μmのn型不純物層としてn+層2と、その上に反射防止膜3とグリッド電極4が形成されている。 As shown in FIG. 1, the solar cell element is configured using a p-type silicon semiconductor substrate 1 having a thickness of about 200 μm. On the light receiving surface side of the p-type silicon semiconductor substrate 1, an n + layer 2 is formed as an n-type impurity layer having a thickness of 0.3 to 0.6 μm, and an antireflection film 3 and a grid electrode 4 are formed thereon. .

また、p型シリコン半導体基板1の裏面側には、アルミニウム電極層5が形成されている。アルミニウム電極層5は、アルミニウム粉末、ガラスフリットおよび有機質ビヒクルからなるペースト組成物をスクリーン印刷等によって塗布し、乾燥した後、660℃(アルミニウムの融点)以上の温度にて短時間焼成することによって形成されている。この焼成の際にアルミニウムがp型シリコン半導体基板1の内部に拡散することにより、アルミニウム電極層5とp型シリコン半導体基板1との間にAl-Si合金層6が形成されると同時に、アルミニウム原子の拡散による不純物層としてp+層7が形成される。このp+層7の存在により、電子の再結合を防止し、生成キャリアの収集効率を向上させるBSF(Back Surface Field)効果が得られる。 An aluminum electrode layer 5 is formed on the back side of the p-type silicon semiconductor substrate 1. The aluminum electrode layer 5 is formed by applying a paste composition made of aluminum powder, glass frit, and organic vehicle by screen printing or the like, drying, and baking for a short time at a temperature of 660 ° C. (melting point of aluminum) or higher. Has been. During the firing, aluminum diffuses into the p-type silicon semiconductor substrate 1, thereby forming an Al—Si alloy layer 6 between the aluminum electrode layer 5 and the p-type silicon semiconductor substrate 1. A p + layer 7 is formed as an impurity layer by atomic diffusion. Due to the presence of the p + layer 7, a BSF (Back Surface Field) effect that prevents recombination of electrons and improves the collection efficiency of generated carriers can be obtained.

+層7としてのBSF層が形成される仕組みについては、概略的に以下のように説明することができる。まず、ペースト組成物が塗布されたp型シリコン半導体基板1を状態図におけるAl-Si合金の固相線の温度(577℃)以上の高温(一般的には700〜900℃)で熱処理するときに、ペーストに含まれるAlとセル由来のSiとが溶融することによってAl-Si合金の溶融物が形成される。その後、Al-Si合金の溶融物が形成されたp型シリコン半導体基板1を室温付近まで急冷することによって、Al-Si溶融物が再び固化される。このときに、シリコンへのアルミニウム原子の拡散がアルミニウムへのケイ素原子の拡散に比べて遅いことによってAl-Si合金の溶融物のうちのアルミニウム原子の一部がケイ素中に取り残されるため、Al-Si合金層6が形成されると同時に、高濃度のアルミニウムを含むケイ素の層として、p+層7(つまりBSF層)が形成される。 The mechanism by which the BSF layer as the p + layer 7 is formed can be roughly described as follows. First, when the p-type silicon semiconductor substrate 1 to which the paste composition is applied is heat-treated at a high temperature (generally 700 to 900 ° C.) higher than the temperature of the solidus line of the Al—Si alloy (577 ° C.) in the phase diagram. In addition, the Al-Si alloy melt is formed by melting Al contained in the paste and cell-derived Si. Thereafter, the Al-Si melt is solidified again by rapidly cooling the p-type silicon semiconductor substrate 1 on which the Al-Si alloy melt is formed to near room temperature. At this time, since the diffusion of aluminum atoms into silicon is slower than the diffusion of silicon atoms into aluminum, a part of the aluminum atoms in the Al-Si alloy melt is left behind in the silicon. At the same time when the Si alloy layer 6 is formed, the p + layer 7 (that is, the BSF layer) is formed as a silicon layer containing a high concentration of aluminum.

一方、太陽電池の変換効率をより向上させる目的として、均一のBSF層を形成する方法、または、BSF層に含まれる不純物の濃度を増加する方法等が従来から多く検討されている。たとえば、特開2003−69056号公報(特許文献1)に記載の太陽電池においては、ホウ素粉末、無機ホウ素化合物および有機ホウ素化合物からなる群より選ばれた少なくとも1種のホウ素含有物をペースト組成物に添加することによって、BSF効果の向上が図られている。   On the other hand, for the purpose of further improving the conversion efficiency of solar cells, a method for forming a uniform BSF layer, a method for increasing the concentration of impurities contained in the BSF layer, and the like have been conventionally studied. For example, in the solar cell described in Japanese Patent Application Laid-Open No. 2003-69056 (Patent Document 1), at least one boron-containing material selected from the group consisting of boron powder, inorganic boron compounds and organic boron compounds is used as a paste composition. The BSF effect is improved by adding to the above.

特表2009−530845号公報(特許文献2)に記載の太陽電池においては、BSF層の不純物の濃度を増加させるために、Al-B合金を含むペースト組成物が用いられている。これらのように、アルミニウムと同じ3価の価数を持つホウ素含有物をペースト組成物に添加することによって、BSF層における不純物の濃度を増加させる方法が従来から検討されている。   In the solar cell described in JP-T-2009-530845 (Patent Document 2), a paste composition containing an Al—B alloy is used in order to increase the concentration of impurities in the BSF layer. As described above, a method for increasing the concentration of impurities in the BSF layer by adding a boron-containing material having the same trivalent valence as aluminum to the paste composition has been conventionally studied.

特開2003−69056号公報JP 2003-69056 A 特表2009−530845号公報Special table 2009-530845

しかしながら、特開2003−69056号公報(特許文献1)に記載される方法によれば、ホウ素含有物がペースト組成物において単体で分布しているため、BSF層が形成される仕組みを考慮すると、ホウ素原子がBSF層に不均一に拡散すると考えられる。そして、BSF層におけるホウ素の不均一な拡散は、開放電圧の増大の障害となる。   However, according to the method described in Japanese Patent Application Laid-Open No. 2003-69056 (Patent Document 1), since the boron-containing material is distributed alone in the paste composition, considering the mechanism in which the BSF layer is formed, It is believed that boron atoms diffuse unevenly into the BSF layer. Then, the non-uniform diffusion of boron in the BSF layer becomes an obstacle to increasing the open circuit voltage.

特表2009−530845号公報(特許文献2)に記載される太陽電池の実施例において用いられるホウ素を0.2質量%含むAl-0.2質量%B合金については、状態図においてこの合金の液相線が示される位置が1000℃付近であって、太陽電池素子を実際に焼成する温度(つまり、一般的に700〜900℃)においては、金属間化合物であるAlB2のままでホウ素とアルミニウムの液相とが混在するため、BSF層にホウ素原子を拡散させることができない。 Regarding the Al-0.2 mass% B alloy containing 0.2 mass% of boron used in the example of the solar cell described in JP-T-2009-530845 (Patent Document 2), The position where the liquidus is shown is around 1000 ° C., and at the temperature at which the solar cell element is actually fired (that is, generally 700 to 900 ° C.), the intermetallic compound AlB 2 remains as boron. Since an aluminum liquid phase coexists, boron atoms cannot be diffused into the BSF layer.

さらに、ペースト組成物を太陽電池素子の裏面に塗布した場合にペースト組成物のホウ素の量が多いときには、BSF層に含まれる不純物の濃度の過多によって、裏面における光の反射率の低下を招くおそれがある。裏面における光の反射率の低下によれば、電流密度の減少を招く。   Furthermore, when the paste composition is applied to the back surface of the solar cell element, if the amount of boron in the paste composition is large, an excessive concentration of impurities contained in the BSF layer may cause a decrease in light reflectance on the back surface. There is. The decrease in the light reflectance on the back surface causes a decrease in current density.

そこで、本発明の目的は、上記の課題を解決することであり、シリコン半導体基板の裏面上に電極を形成するために用いられるペースト組成物であって、開放電圧を増大させるとともに、電流密度の減少を抑制することが可能なペースト組成物と、その組成物を用いて形成された裏面電極を備えた太陽電池素子を提供することである。   Accordingly, an object of the present invention is to solve the above-described problem, and is a paste composition used for forming an electrode on the back surface of a silicon semiconductor substrate, which increases an open-circuit voltage and has a current density. It is providing the solar cell element provided with the paste composition which can suppress a reduction | decrease, and the back surface electrode formed using the composition.

本願発明の発明者らは、従来技術の問題点を解決するために鋭意研究を重ねた結果、シリコン半導体基板の裏面上に電極を形成するために、アルミニウム粉末とAl-B合金粉末との混合粉末が含まれ、かつ、特定の量のホウ素を含有するペースト組成物を用いることにより、上記の目的を達成できることを見出した。この知見に基づいて、本発明に従ったペースト組成物は、次のような特徴を備えている。   The inventors of the present invention have conducted extensive research to solve the problems of the prior art, and as a result, in order to form an electrode on the back surface of the silicon semiconductor substrate, a mixture of aluminum powder and Al—B alloy powder is used. It has been found that the above object can be achieved by using a paste composition containing a powder and containing a specific amount of boron. Based on this finding, the paste composition according to the present invention has the following characteristics.

本発明に従ったペースト組成物は、結晶系シリコン太陽電池を構成するシリコン半導体基板の裏面上に電極を形成するために用いられるペースト組成物であって、アルミニウム粉末、Al-B合金粉末、ガラス粉末、および、有機ビヒクルを含有する。当該ペースト組成物におけるホウ素の濃度は、0.005質量%以上0.05質量%以下である。   A paste composition according to the present invention is a paste composition used for forming an electrode on the back surface of a silicon semiconductor substrate constituting a crystalline silicon solar cell, and comprises an aluminum powder, an Al—B alloy powder, glass Contains powder and organic vehicle. The concentration of boron in the paste composition is 0.005% by mass or more and 0.05% by mass or less.

好ましくは、Al-B合金粉末が0.01質量%以上0.07質量%以下のホウ素を含有する。   Preferably, the Al—B alloy powder contains 0.01 mass% or more and 0.07 mass% or less of boron.

本発明に従った太陽電池素子は、上述のいずれかの特徴を有するペースト組成物をシリコン半導体基板の裏面上に塗布した後、焼成することにより形成した電極を備える。   The solar cell element according to the present invention includes an electrode formed by applying a paste composition having any one of the above-described features on the back surface of a silicon semiconductor substrate and then baking the paste composition.

以上のように、本発明によれば、シリコン半導体基板の裏面上に電極を形成するために、アルミニウム粉末とAl-B合金粉末との混合粉末が含まれ、かつ、特定の量のホウ素を含有するペースト組成物を用いることにより、開放電圧を増大させるとともに、電流密度の減少を抑制することが可能なペースト組成物と、その組成物を用いて形成された裏面電極を備えた太陽電池素子を提供することができる。   As described above, according to the present invention, in order to form an electrode on the back surface of the silicon semiconductor substrate, a mixed powder of aluminum powder and Al—B alloy powder is included, and a specific amount of boron is included. A paste composition capable of increasing an open-circuit voltage and suppressing a decrease in current density by using a paste composition to be used, and a solar cell element including a back electrode formed using the composition Can be provided.

一つの実施の形態として本発明が適用される太陽電池素子の一般的な断面構造を模式的に示す図である。It is a figure which shows typically the general cross-section of the solar cell element to which this invention is applied as one embodiment.

本発明者らは、従来技術の問題点を解決するために鋭意研究を重ねた結果、シリコン半導体基板の裏面上に電極を形成するために用いられるペースト組成物に、アルミニウム粉末とAl-B合金粉末との混合粉末を含ませ、かつ、特定の量のホウ素を含ませることにより、上記の目的を達成できることを見出した。この知見に基づいて、本発明に従ったペースト組成物は、次のような特徴を備えている。   As a result of intensive studies to solve the problems of the prior art, the present inventors have developed an aluminum powder and an Al-B alloy into a paste composition used for forming an electrode on the back surface of a silicon semiconductor substrate. It has been found that the above object can be achieved by including a powder mixed with the powder and including a specific amount of boron. Based on this finding, the paste composition according to the present invention has the following characteristics.

本発明に従ったペースト組成物は、結晶系シリコン太陽電池を構成するシリコン半導体基板の裏面上に電極を形成するために用いられるペースト組成物であって、アルミニウム粉末、Al-B合金粉末、ガラス粉末、および、有機ビヒクルを含有する。本発明のペースト組成物におけるホウ素の濃度は、0.005質量%以上0.05質量%以下である。   A paste composition according to the present invention is a paste composition used for forming an electrode on the back surface of a silicon semiconductor substrate constituting a crystalline silicon solar cell, and comprises an aluminum powder, an Al—B alloy powder, glass Contains powder and organic vehicle. The density | concentration of the boron in the paste composition of this invention is 0.005 mass% or more and 0.05 mass% or less.

本発明のペースト組成物に用いられるAl-B合金粉末は、0.01質量%以上0.07質量%以下のホウ素を含有することが好ましい。   The Al—B alloy powder used in the paste composition of the present invention preferably contains 0.01% by mass or more and 0.07% by mass or less of boron.

シリコン半導体基板の裏面上に電極を形成するために用いられるペースト組成物として、アルミニウム粉末およびAl-B合金粉末を含有するとともに、特定の量のホウ素を含む本発明に従ったペースト組成物によれば、BSF層へのホウ素の拡散を均一化させることによって開放電圧の増大を図ることができるとともに、太陽電池素子の裏面における光の反射率の悪化による電流密度の減少を抑制することができる。
<太陽電池素子>
図1に示すように、本発明に従った太陽電池素子の一つの実施の形態としてのp型の太陽電池素子は、たとえば、厚みが180〜250μmのp型のシリコン半導体基板1を用いて構成される。シリコン半導体基板1の受光面側の表面には、厚みが0.3〜0.6μmのn型不純物層としてn+層2と、その上に、たとえば、窒化シリコン膜からなる反射防止膜(パッシベーション膜)3と、グリッド電極4とが形成されている。表面電極としてのグリッド電極4は、たとえば、銀ペーストをスクリーン印刷したうえで焼成することによって形成される。
According to the paste composition according to the present invention containing an aluminum powder and an Al-B alloy powder and containing a specific amount of boron as a paste composition used for forming an electrode on the back surface of a silicon semiconductor substrate For example, it is possible to increase the open circuit voltage by making the diffusion of boron into the BSF layer uniform, and it is possible to suppress the decrease in current density due to the deterioration of the reflectance of light on the back surface of the solar cell element.
<Solar cell element>
As shown in FIG. 1, a p-type solar cell element as one embodiment of a solar cell element according to the present invention is configured using, for example, a p-type silicon semiconductor substrate 1 having a thickness of 180 to 250 μm. Is done. On the surface of the silicon semiconductor substrate 1 on the light-receiving surface side, an n + layer 2 as an n-type impurity layer having a thickness of 0.3 to 0.6 μm, and an antireflection film (passivation) made of, for example, a silicon nitride film thereon. Film) 3 and grid electrode 4 are formed. The grid electrode 4 as the surface electrode is formed, for example, by screen-printing a silver paste and firing it.

また、シリコン半導体基板1の受光面と反対側の裏面には、アルミニウム電極層5が形成されている。アルミニウム電極層5は、本発明のペースト組成物をスクリーン印刷等によって塗布し、乾燥させた後、660℃(アルミニウムの融点)を超える温度にて短時間焼成すること(ファイヤースルー法)によって形成されている。本発明のペースト組成物は、アルミニウム粉末と、Al-B合金粉末と、ガラス粉末と、有機ビヒクルとを含む。この焼成の際にアルミニウムがシリコン半導体基板1の内部に拡散することにより、アルミニウム電極層5とシリコン半導体基板1との間にAl-Si合金層6が形成されると同時に、アルミニウム原子の拡散による不純物層としてのp+層(BSF層)7が形成される。このp+層7の存在により、電子の再結合を防止し、生成キャリアの収集効率を向上させるBSF(Back Surface Field)効果が得られる。このようにして、シリコン半導体基板1の裏面側には、アルミニウム電極層5とAl-Si合金層6とからなる裏面電極8が形成され、さらに、アルミニウム電極層5に対面するシリコン半導体基板1の領域にはBSF層7が形成されている。 An aluminum electrode layer 5 is formed on the back surface of the silicon semiconductor substrate 1 opposite to the light receiving surface. The aluminum electrode layer 5 is formed by applying the paste composition of the present invention by screen printing or the like, drying it, and baking it at a temperature exceeding 660 ° C. (melting point of aluminum) for a short time (fire-through method). ing. The paste composition of the present invention includes aluminum powder, Al—B alloy powder, glass powder, and an organic vehicle. During the firing, aluminum diffuses into the silicon semiconductor substrate 1, whereby an Al—Si alloy layer 6 is formed between the aluminum electrode layer 5 and the silicon semiconductor substrate 1, and at the same time, due to the diffusion of aluminum atoms. A p + layer (BSF layer) 7 as an impurity layer is formed. Due to the presence of the p + layer 7, a BSF (Back Surface Field) effect that prevents recombination of electrons and improves the collection efficiency of generated carriers can be obtained. In this way, the back electrode 8 composed of the aluminum electrode layer 5 and the Al—Si alloy layer 6 is formed on the back surface side of the silicon semiconductor substrate 1, and the silicon semiconductor substrate 1 facing the aluminum electrode layer 5 is further formed. A BSF layer 7 is formed in the region.

<ペースト組成物>
本発明のペースト組成物は、上記のアルミニウム電極層5を形成するためにシリコン半導体基板1の受光面と反対側の裏面に塗工されるペースト組成物であって、アルミニウム粉末と、Al-B合金粉末とを含有し、バインダーとして、ガラス粉末と、有機ビヒクルとを含有する。ペースト組成物におけるホウ素の濃度は、0.005質量%以上0.05質量%以下である。さらに、好ましくは、ペースト組成物に用いられるAl-B合金粉末が0.01質量%以上0.07質量%以下のホウ素を含有する。
<Paste composition>
The paste composition of the present invention is a paste composition that is applied to the back surface opposite to the light receiving surface of the silicon semiconductor substrate 1 in order to form the aluminum electrode layer 5 described above. An alloy powder is contained, and a glass powder and an organic vehicle are contained as a binder. The concentration of boron in the paste composition is 0.005 mass% or more and 0.05 mass% or less. Furthermore, Preferably, the Al-B alloy powder used for a paste composition contains 0.01 mass% or more and 0.07 mass% or less of boron.

<アルミニウム粉末>
ペースト組成物に含まれるアルミニウム粉末は、その導電性から電極としての効果を発揮する。また、アルミニウム粉末は、ペースト組成物を焼成した際にシリコン半導体基板1との間にAl‐Si合金層6とp+層(BSF層)7を形成するので、上述のBSF効果または所望のp+層が得られる。
<Aluminum powder>
The aluminum powder contained in the paste composition exhibits an effect as an electrode due to its conductivity. Also, the aluminum powder forms the Al—Si alloy layer 6 and the p + layer (BSF layer) 7 between the aluminum powder and the silicon semiconductor substrate 1 when the paste composition is baked. + Layer is obtained.

アルミニウム粉末の形状は、特に限定されない。アルミニウム粉末の形状は、球状であることが好ましい。アルミニウム粉末を構成するアルミニウム粒子の短径に対する長径の比率は、1以上1.5以下であることが好ましい。このような形状のアルミニウム粒子を含む粉末を用いることによって、アルミニウム電極層5におけるアルミニウム粒子の充填性が増し、電極としての電気抵抗を効果的に低下させることができる。また、シリコン半導体基板1とアルミニウム粒子との接点が増え、良好なAl‐Si合金層6を形成することができる。   The shape of the aluminum powder is not particularly limited. The shape of the aluminum powder is preferably spherical. The ratio of the major axis to the minor axis of the aluminum particles constituting the aluminum powder is preferably 1 or more and 1.5 or less. By using the powder containing aluminum particles having such a shape, the filling property of the aluminum particles in the aluminum electrode layer 5 can be increased, and the electrical resistance as an electrode can be effectively reduced. Further, the number of contacts between the silicon semiconductor substrate 1 and the aluminum particles is increased, and a good Al—Si alloy layer 6 can be formed.

アルミニウム粉末を構成するアルミニウム粒子の平均粒径は、1μm以上10μm以下であることが好ましい。アルミニウム粒子の平均粒径が1μm以上10μm以下の範囲内であれば、良好な分散性を得ることができる。平均粒子径が1μm未満であると、アルミニウム粒子同士が凝集するおそれがある。平均粒子径が10μmを越えると、アルミニウム粒子の分散性が悪くなるおそれがある。   The average particle size of the aluminum particles constituting the aluminum powder is preferably 1 μm or more and 10 μm or less. If the average particle diameter of the aluminum particles is in the range of 1 μm or more and 10 μm or less, good dispersibility can be obtained. There exists a possibility that aluminum particles may aggregate that an average particle diameter is less than 1 micrometer. If the average particle diameter exceeds 10 μm, the dispersibility of the aluminum particles may be deteriorated.

アルミニウム粉末におけるアルミニウムの純度は、99.7%以上であることが好ましい。アルミニウム粉末に不純物が混入されているとしても、アルミニウム粉末においてFeとSiとを合わせて0.1%未満であれば、不純物の混入は許容される。   The aluminum purity in the aluminum powder is preferably 99.7% or more. Even if impurities are mixed in the aluminum powder, mixing of impurities is allowed if the total amount of Fe and Si in the aluminum powder is less than 0.1%.

<Al-B合金粉末>
本発明のペースト組成物がAl-B合金粉末を含むことによって、BSF層における不純物の濃度をホウ素によって増加させることができる。また、ペースト組成物におけるAl-B合金粉末中のホウ素の含有量が0.01質量%以上0.07質量%以下であれば、太陽電池素子を焼成するときに液相を十分に形成することができるので、良好なBSF層を形成することができる。
<Al-B alloy powder>
By including the Al—B alloy powder in the paste composition of the present invention, the concentration of impurities in the BSF layer can be increased by boron. Moreover, if the content of boron in the Al—B alloy powder in the paste composition is 0.01% by mass or more and 0.07% by mass or less, a liquid phase is sufficiently formed when the solar cell element is fired. Therefore, a good BSF layer can be formed.

Al-B合金粉末の形状は、特に限定されない。Al-B合金粉末の形状は、球状であることが好ましい。Al-B合金粉末の形状として、真球度が0.5以上であると、アルミニウム電極層5における充填の性能を増大させることができるので、電気抵抗の低下を抑制することができる。   The shape of the Al—B alloy powder is not particularly limited. The shape of the Al—B alloy powder is preferably spherical. When the sphericity is 0.5 or more as the shape of the Al—B alloy powder, the filling performance in the aluminum electrode layer 5 can be increased, so that a decrease in electrical resistance can be suppressed.

なお、ここでいう真球度としては、たとえば、球状のAl-B合金粉末の粒子を走査電子顕微鏡(Scanning Electron Microscopy:SEM)で観察することによって得ることができる。任意に選んだ複数個(たとえば20個)の粒子において、各粒子の最小径(この直径は、顕微鏡における観察用の視野上または当該視野の範囲が撮影された写真上で、各粒子を平行な2本の線分で挟むことによって得られる2本の線分の間の距離のうち、最短の距離のことである)と、最大径(この直径は、顕微鏡における観察用の視野上または当該視野の範囲が撮影された写真上で、各粒子を平行な2本の線分で挟むことによって得られる2本の線分の間の距離のうち、最長の距離のことである)とを測定する。この最小径と最大径との平均を粒子ごとに算出する。さらに、任意に選んだ複数個の粒子における最小径と最大径との各平均の平均値を算出する(つまり、任意で選んだ複数個の粒子における最短径と最長径との各平均を加算した値を、用いられた粒子の個数で除算する)。   The sphericity herein can be obtained, for example, by observing spherical Al—B alloy powder particles with a scanning electron microscope (SEM). In a plurality of arbitrarily selected particles (for example, 20 particles), the minimum diameter of each particle (this diameter is determined based on the observation field in the microscope or the photograph in which the range of the field is photographed) The shortest distance between the two line segments obtained by sandwiching the two line segments, and the maximum diameter (this diameter is on the field of observation in the microscope or the field of view) Is the longest distance among the distances between two line segments obtained by sandwiching each particle between two parallel line segments). . The average of the minimum diameter and the maximum diameter is calculated for each particle. Furthermore, the average value of the minimum and maximum diameters of a plurality of arbitrarily selected particles is calculated (that is, the average of the shortest and maximum diameters of a plurality of arbitrarily selected particles is added). Divide the value by the number of particles used).

なお、本発明のペースト組成物におけるAl-B合金粉末の平均粒子径は、好ましくは、1μmよりも大きく10μm未満である。平均粒子径が1μm以下であると、ペースト中における分散性が悪化し、10μm以上であると、反応性が低下してしまう。   The average particle size of the Al—B alloy powder in the paste composition of the present invention is preferably greater than 1 μm and less than 10 μm. When the average particle size is 1 μm or less, the dispersibility in the paste is deteriorated, and when it is 10 μm or more, the reactivity is lowered.

<ガラス粉末>
ガラス粉末は、アルミニウム粉末とシリコン半導体基板との反応と、アルミニウム粉末自身の焼結とを助ける作用があるとされている。ガラス粉末は、鉛(Pb)、ビスマス(Bi)、バナジウム(V)、ホウ素(B)、シリコン(Si)、スズ(Sn)、リン(P)、亜鉛(Zn)からなる群から選択される1種または2種以上を含有していてもよい。
<Glass powder>
The glass powder is said to have an effect of assisting the reaction between the aluminum powder and the silicon semiconductor substrate and the sintering of the aluminum powder itself. The glass powder is selected from the group consisting of lead (Pb), bismuth (Bi), vanadium (V), boron (B), silicon (Si), tin (Sn), phosphorus (P), and zinc (Zn). You may contain 1 type, or 2 or more types.

さらに、ガラス粉末には、鉛を含むガラス粉末、もしくは、ビスマス系、バナジウム系、錫-燐系、ホウ珪酸亜鉛系、アルカリホウ珪酸系等の無鉛のガラス粉末を用いることができる。特に人体への影響、または、耐環境性能を鑑みると、無鉛のガラス粉末の利用が望ましい。   Further, as the glass powder, lead-containing glass powder or lead-free glass powder such as bismuth, vanadium, tin-phosphorus, zinc borosilicate, alkali borosilicate, or the like can be used. In particular, in view of the influence on the human body or environmental resistance, it is desirable to use lead-free glass powder.

また、ガラス粉末の軟化点は750℃以下であることが好ましい。軟化点が750℃を超えるガラス粉末であると、特定のパッシベーション膜を用いた際にパッシベーション膜の性能を著しく損なわせてしまうおそれがある。   Moreover, it is preferable that the softening point of glass powder is 750 degrees C or less. If the glass powder has a softening point exceeding 750 ° C., the performance of the passivation film may be significantly impaired when a specific passivation film is used.

さらに、ガラス粉末を構成するガラス粒子の平均粒径は、1μm以上3μm以下であることが好ましい。   Furthermore, it is preferable that the average particle diameter of the glass particle which comprises glass powder is 1 micrometer or more and 3 micrometers or less.

なお、本発明のペースト組成物に含まれるガラス粉末の含有量は、特に限定されないが、アルミニウム粉末100重量部に対して、0.1重量部以上15重量部以下であることが好ましい。ガラス粉末の含有量が0.1重量部未満であると、シリコン半導体基板1との密着性が低下するおそれがある。ガラス粉末の含有量が15重量部以上であると、形成されるアルミニウム電極層5の電気抵抗が増加してしまうおそれがある。   In addition, content of the glass powder contained in the paste composition of this invention is although it does not specifically limit, It is preferable that they are 0.1 weight part or more and 15 weight part or less with respect to 100 weight part of aluminum powder. There exists a possibility that adhesiveness with the silicon semiconductor substrate 1 may fall that content of glass powder is less than 0.1 weight part. There exists a possibility that the electrical resistance of the aluminum electrode layer 5 formed as content of glass powder is 15 weight part or more may increase.

<有機ビヒクル>
有機ビヒクルとしては、溶剤に、必要に応じて各種添加剤および樹脂を溶解したものが使用される。溶剤としては公知のものが使用可能であり、具体的には、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル等が挙げられる。各種添加剤としては、たとえば、酸化防止剤、腐食抑制剤、消泡剤、増粘剤、カップリング剤、静電付与剤、重合禁止剤、チキソトロピー剤、沈降防止剤等を使用することができる。具体的には、たとえば、ポリエチレングリコールエステル化合物、ポリエチレングリコールエーテル化合物、ポリオキシエチレンソルビタンエステル化合物、ソルビタンアルキルエステル化合物、脂肪族多価カルボン酸化合物、燐酸エステル化合物、ポリエステル酸のアマイドアミン塩、酸化ポリエチレン系化合物、脂肪酸アマイドワックス等を使用することができる。樹脂としては公知のものが使用可能であり、エチルセルロース、ニトロセルロース、ポリビニールブチラール、フェノール樹脂、メラニン樹脂、ユリア樹脂、キシレン樹脂、アルキッド樹脂、不飽和ポリエステル樹脂、アクリル樹脂、ポリイミド樹脂、フラン樹脂、ウレタン樹脂、イソシアネート化合物、シアネート化合物等の熱硬化樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、ポリメタクリル酸メチル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、ポリアセタール、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンオキサイド、ポリスルフォン、ポリイミド、ポリエーテルスルフォン、ポリアリレート、ポリエーテルエーテルケトン、ポリ4フッ化エチレン、シリコン樹脂等の二種以上を組み合わせて用いることができる。本発明のペースト組成物に含められる有機ビヒクルとして、溶剤に溶解させないで樹脂を用いてもよい。
<Organic vehicle>
As the organic vehicle, a solvent in which various additives and a resin are dissolved as necessary is used. As the solvent, known solvents can be used, and specific examples include diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether and the like. As various additives, for example, an antioxidant, a corrosion inhibitor, an antifoaming agent, a thickener, a coupling agent, an electrostatic imparting agent, a polymerization inhibitor, a thixotropic agent, an anti-settling agent and the like can be used. . Specifically, for example, polyethylene glycol ester compound, polyethylene glycol ether compound, polyoxyethylene sorbitan ester compound, sorbitan alkyl ester compound, aliphatic polycarboxylic acid compound, phosphate ester compound, amide amine salt of polyester acid, polyethylene oxide Series compounds, fatty acid amide waxes and the like can be used. Known resins can be used, such as ethyl cellulose, nitrocellulose, polyvinyl butyral, phenol resin, melanin resin, urea resin, xylene resin, alkyd resin, unsaturated polyester resin, acrylic resin, polyimide resin, furan resin, Thermosetting resin such as urethane resin, isocyanate compound, cyanate compound, polyethylene, polypropylene, polystyrene, ABS resin, polymethyl methacrylate, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl alcohol, polyacetal, polycarbonate, polyethylene terephthalate, Polybutylene terephthalate, polyphenylene oxide, polysulfone, polyimide, polyethersulfone, polyarylate, polyetheretherke Emissions, polytetrafluoroethylene, can be used in combination of two or more kinds of such as silicon resin. As the organic vehicle included in the paste composition of the present invention, a resin may be used without being dissolved in a solvent.

なお、本発明のペースト組成物中に含まれる有機ビヒクルの含有量は、特に限定されないが、アルミニウム粉末100重量部に対して、30重量部以上100重量部以下であることが好ましい。有機ビヒクルの含有量が30重量部未満、または、100重量部を越えると、ペースト組成物の印刷性が低下するおそれがある。   In addition, content of the organic vehicle contained in the paste composition of this invention is although it does not specifically limit, It is preferable that they are 30 to 100 weight part with respect to 100 weight part of aluminum powder. If the content of the organic vehicle is less than 30 parts by weight or exceeds 100 parts by weight, the printability of the paste composition may be lowered.

以下、本発明の実施例と比較例について説明する。   Examples of the present invention and comparative examples will be described below.

(ペースト組成物の準備)
実施例1〜4と比較例1〜4のペースト組成物を次のようにして準備した。
(Preparation of paste composition)
The paste compositions of Examples 1 to 4 and Comparative Examples 1 to 4 were prepared as follows.

(実施例1)
粒径が約3〜6μmの球状を有するアルミニウム粉末とAl-0.011質量%B合金粉末とをそれぞれ用意する。合計で100重量部のアルミニウム粉末およびAl-0.011質量%B合金粉末に対して、1.5重量部のガラス粉末と、40重量部の有機ビヒクルとを周知の混合機で混合し、ペースト組成物におけるホウ素の含有量が0.005質量%のアルミニウムペーストを得た。
Example 1
An aluminum powder having a spherical shape with a particle size of about 3 to 6 μm and an Al-0.011 mass% B alloy powder are prepared. A total of 100 parts by weight of aluminum powder and Al-0.011 mass% B alloy powder are mixed with 1.5 parts by weight of glass powder and 40 parts by weight of an organic vehicle using a known mixer, and paste An aluminum paste having a boron content of 0.005% by mass in the composition was obtained.

(実施例2)
粒径が約3〜6μmの球状を有するアルミニウム粉末とAl-0.032質量%B合金粉末とをそれぞれ用意し、実施例1と同様の方法によって、合計で100重量部のアルミニウム粉末およびAl-0.032質量%B合金粉末に対して、1.5重量部のガラス粉末と、40重量部の有機ビヒクルとを混合し、ペースト組成物におけるホウ素の含有量が0.02質量%のアルミニウムペーストを得た。
(Example 2)
An aluminum powder having a spherical shape with a particle size of about 3 to 6 μm and an Al-0.032 mass% B alloy powder were prepared, respectively, and a total of 100 parts by weight of aluminum powder and Al- An aluminum paste having a boron content of 0.02 mass% in a paste composition, in which 1.5 parts by weight of glass powder and 40 parts by weight of an organic vehicle are mixed with 0.032 mass% B alloy powder. Got.

(実施例3)
粒径が約3〜6μmの球状を有するアルミニウム粉末とAl-0.051質量%B合金粉末とをそれぞれ用意し、実施例1,2と同様の方法によって、合計で100重量部のアルミニウム粉末およびAl-0.051質量%B合金粉末に対して、1.5重量部のガラス粉末と、40重量部の有機ビヒクルとを混合し、ペースト組成物におけるホウ素の含有量が0.034質量%のアルミニウムペーストを得た。
Example 3
An aluminum powder having a spherical shape with a particle size of about 3 to 6 μm and an Al-0.051 mass% B alloy powder were prepared, respectively, and a total of 100 parts by weight of aluminum powder and 1.5 parts by weight of glass powder and 40 parts by weight of organic vehicle are mixed with Al-0.051% by mass B alloy powder, and the boron content in the paste composition is 0.034% by mass. An aluminum paste was obtained.

(実施例4)
粒径が約3〜6μmの球状を有するアルミニウム粉末とAl-0.070質量%B合金粉末とをそれぞれ用意し、実施例1,2,3と同様の方法によって、合計で100重量部のアルミニウム粉末およびAl-0.070質量%B合金粉末に対して、1.5重量部のガラス粉末と、40重量部の有機ビヒクルとを混合し、ペースト組成物におけるホウ素の含有量が0.05質量%のアルミニウムペーストを得た。
Example 4
A spherical aluminum powder having a particle diameter of about 3 to 6 μm and an Al-0.070 mass% B alloy powder were prepared, respectively, and a total of 100 parts by weight of aluminum was prepared in the same manner as in Examples 1, 2, and 3. 1.5 parts by weight of glass powder and 40 parts by weight of organic vehicle are mixed with the powder and Al-0.070 mass% B alloy powder, and the boron content in the paste composition is 0.05 mass. % Aluminum paste was obtained.

(比較例1)
粒径が約3〜6μmの球状を有するアルミニウム粉末を用意する。100重量部のアルミニウム粉末に対して、1.5重量部のガラス粉末と、40重量部の有機ビヒクルとを周知の混合機で混合することにより、アルミニウムペーストを得た。
(Comparative Example 1)
An aluminum powder having a spherical shape with a particle size of about 3 to 6 μm is prepared. An aluminum paste was obtained by mixing 1.5 parts by weight of glass powder and 40 parts by weight of an organic vehicle with 100 parts by weight of aluminum powder using a known mixer.

(比較例2)
粒径が約3〜6μmの球状を有するアルミニウム粉末とAl-0.006質量%B合金粉末とをそれぞれ用意する。合計で100重量部のアルミニウム粉末およびAl-0.006質量%B合金粉末に対して、1.5重量部のガラス粉末と、40重量部の有機ビヒクルとを周知の混合機にて混合し、ペースト組成物におけるホウ素の含有量が0.002質量%のアルミニウムペーストを得た。
(Comparative Example 2)
A spherical aluminum powder having a particle size of about 3 to 6 μm and an Al-0.006 mass% B alloy powder are prepared. For a total of 100 parts by weight of aluminum powder and Al-0.006 mass% B alloy powder, 1.5 parts by weight of glass powder and 40 parts by weight of organic vehicle are mixed in a known mixer, An aluminum paste having a boron content of 0.002% by mass in the paste composition was obtained.

(比較例3)
粒径が約3〜6μmの球状を有するアルミニウム粉末とAl-0.083質量%B合金粉末とをそれぞれ用意し、比較例2と同様の方法で、合計で100重量部のアルミニウム粉末およびAl-0.083質量%B合金粉末に対して、1.5重量部のガラス粉末と、40重量部の有機ビヒクルとを混合し、ペースト組成物におけるホウ素の含有量が0.06質量%のアルミニウムペーストを得た。
(Comparative Example 3)
An aluminum powder having a spherical shape with a particle size of about 3 to 6 μm and an Al-0.083 mass% B alloy powder were prepared, respectively, and a total of 100 parts by weight of aluminum powder and Al- An aluminum paste having a boron content of 0.06 mass% in a paste composition, in which 1.5 parts by weight of glass powder and 40 parts by weight of an organic vehicle are mixed with 0.083 mass% B alloy powder. Got.

(比較例4)
粒径が約5〜8μmの球状を有するアルミニウム粉末とAl-0.240質量%B合金粉末とをそれぞれ用意し、比較例2,3と同様の方法で、合計で100重量部のアルミニウム粉末およびAl-0.240質量%B合金粉末に対して、1.5重量部のガラス粉末と、40重量部の有機ビヒクルとを混合し、ペースト組成物におけるホウ素の含有量が0.2質量%のアルミニウムペーストを得た。
(Comparative Example 4)
A spherical aluminum powder having a particle size of about 5 to 8 μm and an Al-0.240 mass% B alloy powder were prepared, respectively, in the same manner as in Comparative Examples 2 and 3, and a total of 100 parts by weight of aluminum powder and 1.5 parts by weight of glass powder and 40 parts by weight of organic vehicle are mixed with Al-0.240% by mass B alloy powder, and the boron content in the paste composition is 0.2% by mass. An aluminum paste was obtained.

(アルミニウム電極層の形成)
5インチの単結晶セルにおいて、シリコン半導体基板1の表面(受光面)に予め銀ペーストが印刷されたシリコン半導体基板1の裏面上の全体に、スクリーン印刷機を用いて、上記で得られた実施例1〜4と比較例1〜4のペースト組成物を厚さ40μmで塗布した。スクリーンメッシュには、250Meshを使用した。そして、各ペースト組成物が塗布されたセルのそれぞれを、100℃の温度で10分間乾燥させた後、赤外線焼成炉にて、空気雰囲気中で焼成した。焼成では、赤外線焼成炉の焼成ゾーンの温度を750〜800℃に設定した。この焼成により、各セルのシリコン半導体基板1に、図1に示すようにアルミニウム電極層5が形成された。このようにして、それぞれ異なるp+層(BSF層)7を有する8種の単結晶セルを得た。
(Formation of aluminum electrode layer)
In a 5-inch single crystal cell, the implementation obtained above using a screen printer on the entire back surface of the silicon semiconductor substrate 1 on which the silver paste was previously printed on the surface (light receiving surface) of the silicon semiconductor substrate 1 The paste compositions of Examples 1 to 4 and Comparative Examples 1 to 4 were applied at a thickness of 40 μm. 250 Mesh was used for the screen mesh. Then, after each cell coated with each paste composition was dried at a temperature of 100 ° C. for 10 minutes, it was fired in an air atmosphere in an infrared firing furnace. In firing, the temperature of the firing zone of the infrared firing furnace was set to 750 to 800 ° C. By this firing, an aluminum electrode layer 5 was formed on the silicon semiconductor substrate 1 of each cell as shown in FIG. In this way, eight types of single crystal cells having different p + layers (BSF layers) 7 were obtained.

(変換効率の評価)
上記のようにして得られた各セルのI−V特性を、株式会社ワコム電創製のソーラシミュレータを用いて測定した。当該ソーラシミュレータをAM1.5の条件に設定した。各セルのI−V特性については、当該ソーラシミュレータに表示されたものを用いた。なお、変換効率Eff(%)は下記式によって算出する。

変換効率Eff(%)=(電流密度I×開放電圧V)×フィルファクタ値F.F.
(Evaluation of conversion efficiency)
The IV characteristics of each cell obtained as described above were measured using a solar simulator manufactured by Wacom Denso Corporation. The solar simulator was set to AM1.5 conditions. About the IV characteristic of each cell, what was displayed on the said solar simulator was used. The conversion efficiency Eff (%) is calculated by the following formula.

Conversion efficiency Eff (%) = (current density I × open voltage V) × fill factor value F.I. F.

実施例1〜4と比較例1〜4の評価結果を表1に示す。   Table 1 shows the evaluation results of Examples 1 to 4 and Comparative Examples 1 to 4.

Figure 2015041713
Figure 2015041713

変換効率Effの向上を考える場合には、電流密度と開放電圧との積である電力値W(=I・V)に着目すべきであるから、ペースト組成物においてホウ素を含有しない比較例1に比べて、実施例1〜4と比較例2,3とのペースト組成物のようにAl-B合金粉末またはアルミニウム粉末およびAl-B粉末の混合物を用いることによって、電流密度の減少の抑制と開放電圧の増大との両立(つまり、電力値I・Vの増大)が可能であることが表1からわかる。   When considering improvement in the conversion efficiency Eff, attention should be paid to the power value W (= I · V), which is the product of the current density and the open circuit voltage, so that the paste composition does not contain boron in Comparative Example 1. In comparison, by using Al—B alloy powder or a mixture of aluminum powder and Al—B powder as in the paste compositions of Examples 1 to 4 and Comparative Examples 2 and 3, the reduction and release of current density are reduced. It can be seen from Table 1 that it is possible to achieve both increase in voltage (that is, increase in power value I · V).

さらに、表1から、上記の実施例1〜4のペースト組成物によれば、ペースト組成物におけるホウ素含有量の増大に従って電流密度の減少の抑制および開放電圧の増大が可能であることがわかる。一方、ペースト組成物におけるホウ素含有量が0.005質量%未満であると、開放電圧の増大が顕著に現れないことがわかる(比較例2参照)。また、比較例1の変換効率Effと比較例2の変換効率Effとの間には殆ど差が無いことがわかる。また一方、ペースト組成物におけるホウ素含有量が0.05質量%よりも多い場合(比較例3参照)には、ホウ素含有量の増大に伴って電流密度が著しく減少した。また、比較例3のペースト組成物においては、ホウ素を含有しない比較例1のペースト組成物に比べて、変換効率Effが同等以下であることが確認された。さらに、ホウ素を過多に含有する比較例4のペースト組成物においては、ホウ素を含有しない比較例1のペースト組成物に比べて、開放電圧が著しく低下し、変換効率Effも著しく低下した。   Furthermore, it can be seen from Table 1 that according to the paste compositions of Examples 1 to 4 above, it is possible to suppress the decrease in current density and increase the open circuit voltage as the boron content in the paste composition increases. On the other hand, when the boron content in the paste composition is less than 0.005% by mass, it can be seen that the increase in the open circuit voltage does not appear remarkably (see Comparative Example 2). It can also be seen that there is almost no difference between the conversion efficiency Eff of Comparative Example 1 and the conversion efficiency Eff of Comparative Example 2. On the other hand, when the boron content in the paste composition is more than 0.05% by mass (see Comparative Example 3), the current density significantly decreased as the boron content increased. Moreover, in the paste composition of the comparative example 3, compared with the paste composition of the comparative example 1 which does not contain boron, it was confirmed that conversion efficiency Eff is equivalent or less. Furthermore, in the paste composition of Comparative Example 4 containing excessive boron, the open-circuit voltage was remarkably reduced and the conversion efficiency Eff was also significantly reduced as compared with the paste composition of Comparative Example 1 not containing boron.

以上、表1に示す結果から、本発明のペースト組成物(実施例1〜4)が塗布されたシリコン半導体基板1を用いることによって、太陽電池素子の変換効率のさらなる向上を図ることができることがわかる。   As described above, from the results shown in Table 1, by using the silicon semiconductor substrate 1 coated with the paste composition of the present invention (Examples 1 to 4), the conversion efficiency of the solar cell element can be further improved. Recognize.

以上に開示された実施の形態や実施例はすべての点で例示であって制限的なものではないと考慮されるべきである。本発明の範囲は、以上の実施の形態や実施例ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての修正や変形を含むものと意図される。   It should be considered that the embodiments and examples disclosed above are illustrative and non-restrictive in every respect. The scope of the present invention is shown not by the above embodiments and examples but by the scope of claims, and is intended to include all modifications and variations within the meaning and scope equivalent to the scope of claims. .

1:p型シリコン半導体基板、2:n型不純物層、3:反射防止膜、4:グリッド電極、5:アルミニウム電極層、6:Al-Si合金層、7:p+層、8:裏面電極。
1: p-type silicon semiconductor substrate, 2: n-type impurity layer, 3: antireflection film, 4: grid electrode, 5: aluminum electrode layer, 6: Al—Si alloy layer, 7: p + layer, 8: back electrode .

Claims (3)

結晶系シリコン太陽電池を構成するシリコン半導体基板の裏面上に電極を形成するために用いられるペースト組成物であって、
アルミニウム粉末、Al-B合金粉末、ガラス粉末、および、有機ビヒクルを含有し、
当該ペースト組成物におけるホウ素の濃度が0.005質量%以上0.05質量%以下である、ペースト組成物。
A paste composition used for forming an electrode on the back surface of a silicon semiconductor substrate constituting a crystalline silicon solar cell,
Containing aluminum powder, Al-B alloy powder, glass powder, and organic vehicle,
The paste composition whose density | concentration of the boron in the said paste composition is 0.005 mass% or more and 0.05 mass% or less.
前記Al-B合金粉末が0.01質量%以上0.07質量%以下のホウ素を含有する、請求項1に記載のペースト組成物。   The paste composition according to claim 1, wherein the Al-B alloy powder contains 0.01 mass% or more and 0.07 mass% or less of boron. 請求項1または請求項2に記載のペースト組成物をシリコン半導体基板の裏面上に塗布した後、焼成することにより形成した電極を備えた、太陽電池素子。
The solar cell element provided with the electrode formed by apply | coating the paste composition of Claim 1 or Claim 2 on the back surface of a silicon semiconductor substrate, and baking.
JP2013172808A 2013-08-23 2013-08-23 Paste composition and solar cell element Active JP6202939B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013172808A JP6202939B2 (en) 2013-08-23 2013-08-23 Paste composition and solar cell element
CN201480046204.7A CN105474409B (en) 2013-08-23 2014-08-15 Paste composition and solar cell device
KR1020167004597A KR102217722B1 (en) 2013-08-23 2014-08-15 Paste composition and solar cell element
PCT/JP2014/071462 WO2015025799A1 (en) 2013-08-23 2014-08-15 Paste composition and solar cell element
TW103129037A TWI632562B (en) 2013-08-23 2014-08-22 Paste composition and solar cell components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013172808A JP6202939B2 (en) 2013-08-23 2013-08-23 Paste composition and solar cell element

Publications (2)

Publication Number Publication Date
JP2015041713A true JP2015041713A (en) 2015-03-02
JP6202939B2 JP6202939B2 (en) 2017-09-27

Family

ID=52483575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013172808A Active JP6202939B2 (en) 2013-08-23 2013-08-23 Paste composition and solar cell element

Country Status (5)

Country Link
JP (1) JP6202939B2 (en)
KR (1) KR102217722B1 (en)
CN (1) CN105474409B (en)
TW (1) TWI632562B (en)
WO (1) WO2015025799A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835552A (en) * 2015-04-28 2015-08-12 华东理工大学 Doped slurry used for N-type solar cell metallization
CN106601330B (en) * 2016-08-30 2018-02-23 南通天盛新能源股份有限公司 High fill-ratio PERC battery locals contact back field aluminum paste and preparation method and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0468382A1 (en) * 1990-07-24 1992-01-29 Nukem GmbH Electric conductor material for solar cell
JP2003069056A (en) * 2001-08-22 2003-03-07 Toyo Aluminium Kk Paste composition and solar battery using the same
JP2009530845A (en) * 2006-03-20 2009-08-27 フエロ コーポレーション Aluminum-boron solar cell contact
CN101937947A (en) * 2010-09-16 2011-01-05 浙江大学 Aluminium and boron codoped silicon solar cell back surface field and manufacturing method thereof
CN102522156A (en) * 2011-12-06 2012-06-27 南昌大学 Preparation method of aluminum boron slurry for crystalline silicon solar battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100538915C (en) * 2004-07-01 2009-09-09 东洋铝株式会社 Paste composite and use the solar cell device of this paste composite
JP4843291B2 (en) * 2005-10-18 2011-12-21 東洋アルミニウム株式会社 Aluminum paste composition and solar cell element using the same
KR20120002257A (en) * 2010-06-30 2012-01-05 동우 화인켐 주식회사 Aluminium paste composition for back electrode of solar cell
CN101944555A (en) * 2010-09-16 2011-01-12 浙江大学 Al and B doped silicon solar cell back surface and preparation method thereof
CN102543253A (en) * 2012-02-17 2012-07-04 杜国平 Aluminum-silicon-boron paste and preparation method for same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0468382A1 (en) * 1990-07-24 1992-01-29 Nukem GmbH Electric conductor material for solar cell
JP2003069056A (en) * 2001-08-22 2003-03-07 Toyo Aluminium Kk Paste composition and solar battery using the same
JP2009530845A (en) * 2006-03-20 2009-08-27 フエロ コーポレーション Aluminum-boron solar cell contact
CN101937947A (en) * 2010-09-16 2011-01-05 浙江大学 Aluminium and boron codoped silicon solar cell back surface field and manufacturing method thereof
CN102522156A (en) * 2011-12-06 2012-06-27 南昌大学 Preparation method of aluminum boron slurry for crystalline silicon solar battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
G.DU: "Efficient Boron Doping in the Back Surface Field of Crystalline Silicon Solar Cells via Alloyed-Alu", IEEE ELECTRON DEVICE LETTERS, vol. Vol.33, No.4 (2012), JPN6017012616, pages 573 - 575 *

Also Published As

Publication number Publication date
JP6202939B2 (en) 2017-09-27
CN105474409A (en) 2016-04-06
TW201519259A (en) 2015-05-16
TWI632562B (en) 2018-08-11
KR102217722B1 (en) 2021-02-18
WO2015025799A1 (en) 2015-02-26
CN105474409B (en) 2018-02-13
KR20160045716A (en) 2016-04-27

Similar Documents

Publication Publication Date Title
JP5924945B2 (en) Paste composition
WO2016178386A1 (en) Aluminum paste composition for perc solar cell
JP6214400B2 (en) Paste composition
JP5542212B2 (en) Silver paste composition and solar cell using the same
JP5853541B2 (en) Conductive composition for forming solar battery collecting electrode and solar battery cell
TWI556457B (en) Silver paste composition, front electrode for solar cell formed using it, and solar cell employing it
JP7173960B2 (en) Solar cell paste composition
CN108022672B (en) Paste composition
WO2018135430A1 (en) Paste composition for solar battery
JP6896506B2 (en) Paste composition for solar cells
JP5338846B2 (en) Solar cell collecting electrode forming method, solar cell and solar cell module
JP6202939B2 (en) Paste composition and solar cell element
WO2018221578A1 (en) Paste composition for solar battery
JP7303036B2 (en) Conductive paste and method for producing TOPCon type solar cell
JP6188480B2 (en) Paste composition, method for producing solar cell element, and solar cell element
JP6403963B2 (en) Firing paste for solar cell electrode, solar cell and silver powder
JP2011146591A (en) Paste for solar cell electrode and single solar cell
JP2012248790A (en) Conductive composition for forming solar cell collector electrode, and solar cell
JP2013008759A (en) Paste composition, manufacturing method of solar cell element, and solar cell element
JP2012238754A (en) Conductive composition for forming solar cell collector electrode and solar cell
JP2015115400A (en) Conductive aluminum paste
KR20180018209A (en) Front electrode for solar cell and solar cell comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170829

R150 Certificate of patent or registration of utility model

Ref document number: 6202939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250