WO2018221578A1 - Paste composition for solar battery - Google Patents

Paste composition for solar battery Download PDF

Info

Publication number
WO2018221578A1
WO2018221578A1 PCT/JP2018/020749 JP2018020749W WO2018221578A1 WO 2018221578 A1 WO2018221578 A1 WO 2018221578A1 JP 2018020749 W JP2018020749 W JP 2018020749W WO 2018221578 A1 WO2018221578 A1 WO 2018221578A1
Authority
WO
WIPO (PCT)
Prior art keywords
paste composition
mol
glass frit
aluminum
solar cell
Prior art date
Application number
PCT/JP2018/020749
Other languages
French (fr)
Japanese (ja)
Inventor
マルワン ダムリン
直哉 森下
正博 中原
卓也 高山
禎隆 真弓
Original Assignee
東洋アルミニウム株式会社
日本山村硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋アルミニウム株式会社, 日本山村硝子株式会社 filed Critical 東洋アルミニウム株式会社
Priority to CN201880033818.XA priority Critical patent/CN110663119B/en
Priority to JP2019521266A priority patent/JP7013458B2/en
Publication of WO2018221578A1 publication Critical patent/WO2018221578A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Definitions

  • the present invention relates to a solar cell paste composition, and more particularly to a solar cell intended to form a p + layer on a crystalline solar cell having a passivation film provided with an opening using laser irradiation or the like.
  • the present invention relates to a paste composition.
  • PERC Passivated emitter and rear cell
  • the PERC type high conversion efficiency cell has a structure including an electrode layer mainly composed of aluminum, for example.
  • This electrode layer (especially the back electrode layer) is formed, for example, by applying a paste composition mainly composed of aluminum in a pattern shape so as to cover the opening of the passivation film, and drying and baking as necessary. Is done. It is known that the conversion efficiency of the PERC type high conversion efficiency cell can be improved by appropriately designing the configuration of the electrode layer.
  • Patent Document 1 discloses an aluminum paste composition containing a glass frit composed of 30 to 70 mol% Pb 2+ , 1 to 40 mol% Si 4+ , 10 to 65 mol% B 3+ , and 1 to 25 mol% Al 3+. Has been.
  • Patent Document 2 relates to a paste composition containing aluminum powder, aluminum-silicon alloy powder, silicon powder, glass powder, and an organic vehicle, particularly as glass powder, “lead as glass powder ( Pb), bismuth (Bi), vanadium (V), boron (B), silicon (Si), tin (Sn), phosphorus (P), and one selected from the group consisting of zinc (Zn), or It may contain two or more kinds, and lead-containing glass powder or lead-free glass powder such as bismuth, vanadium, tin-phosphorus, zinc borosilicate, alkali borosilicate, etc. may be used. Can be made ”(paragraph [0035] in Patent Document 2).
  • the present invention has been made in view of the above, and in a crystalline solar cell, high conversion efficiency was obtained, the structure of the glass frit was stable, and the change in viscosity (thickening) over time was suppressed. It aims at providing the paste composition for solar cells.
  • this invention relates to the following paste composition for solar cells.
  • a solar cell paste composition comprising aluminum powder, an organic vehicle and glass frit, wherein the glass frit contains 50 to 90 mol% of Sb 2 O 3 .
  • the solar cell paste composition according to Item 1 comprising 30 to 35 parts by mass of the organic vehicle and 0.5 to 5.0 parts by mass of the glass frit with respect to 100 parts by mass of the aluminum powder. .
  • Item 3. The solar cell paste composition according to Item 1 or 2, wherein the glass frit further contains SiO 2 and / or B 2 O 3 .
  • the solar cell paste composition of the present invention a high conversion efficiency is obtained in a crystalline solar cell (particularly a PERC type high conversion efficiency cell), the structure of the glass frit is stable, and the viscosity changes over time. (Thickening) is suppressed.
  • the paste composition of this invention has favorable applicability
  • the solar cell paste composition of the present invention can be used, for example, to form electrodes of crystalline solar cells. Although it does not specifically limit as a crystalline solar cell, For example, a PERC (Passivated * emitter * and * rear * cell) type high conversion efficiency cell (henceforth a "PERC type solar cell”) is mentioned.
  • the solar cell paste composition of the present invention can be used, for example, to form a back electrode of a PERC solar cell.
  • the paste composition of the present invention is also simply referred to as “paste composition”.
  • FIGS. 1A and 1B are schematic views of a general cross-sectional structure of a PERC type solar cell.
  • the PERC type solar cell includes a silicon semiconductor substrate 1, an n-type impurity layer 2, an antireflection film (passivation film) 3, a grid electrode 4, an electrode layer (back electrode layer) 5, an alloy layer 6, and a p + layer 7. Can be provided as an element.
  • the silicon semiconductor substrate 1 is not particularly limited.
  • a p-type silicon substrate having a thickness of 180 to 250 ⁇ m is used.
  • the n-type impurity layer 2 is provided on the light receiving surface side of the silicon semiconductor substrate 1.
  • the thickness of the n-type impurity layer 2 is, for example, 0.3 to 0.6 ⁇ m.
  • the antireflection film 3 and the grid electrode 4 are provided on the surface of the n-type impurity layer 2.
  • the antireflection film 3 is formed of, for example, a silicon nitride film and is also referred to as a passivation film.
  • the antireflection film 3 acts as a so-called passivation film, so that recombination of electrons on the surface of the silicon semiconductor substrate 1 can be suppressed, and as a result, the recombination rate of the generated carriers can be reduced. Thereby, the conversion efficiency of a PERC type photovoltaic cell is increased.
  • the antireflection film (passivation film) 3 is also provided on the back surface side of the silicon semiconductor substrate 1, that is, the surface opposite to the light receiving surface.
  • a contact hole (opening) formed through the antireflection film (passivation film) 3 on the back surface side and scraping a part of the back surface of the silicon semiconductor substrate 1 is formed on the back surface of the silicon semiconductor substrate 1. Formed on the side.
  • the method of forming the contact hole is not limited, but a so-called LCO (Laser contact opening) method of providing an opening using laser irradiation or the like is general.
  • the electrode layer 5 is formed in contact with the silicon semiconductor substrate 1 through the contact hole.
  • the electrode layer 5 is a member formed by the paste composition of the present invention, and is formed in a predetermined pattern shape.
  • the electrode layer 5 may be formed so as to cover the entire back surface of the PERC type solar battery cell as in the form of FIG. 1A, or the contact hole and the electrode layer 5 as in the form of FIG. You may form so that the vicinity may be covered. Since the main component of the electrode layer 5 is aluminum, the electrode layer 5 is an aluminum electrode layer.
  • the electrode layer 5 is formed, for example, by applying a paste composition in a predetermined pattern shape and baking it.
  • the coating method is not particularly limited, and examples thereof include known methods such as screen printing. After applying the paste composition and drying it as necessary, the electrode layer 5 is formed by firing for a short time at a temperature exceeding the melting point of aluminum (about 660 ° C.), for example.
  • the firing temperature may be a temperature exceeding the melting point of aluminum (about 660 ° C.), but is preferably about 750 to 950 ° C., more preferably about 780 to 900 ° C.
  • the firing time can be appropriately set according to the firing temperature within the range in which the desired electrode layer 5 is formed.
  • an aluminum-silicon (Al—Si) alloy layer (alloy layer 6) is formed between the electrode layer 5 and the silicon semiconductor substrate 1, and at the same time, by diffusion of aluminum atoms, p as an impurity layer is formed. A + layer 7 is formed.
  • the p + layer 7 can bring about an effect of preventing recombination of electrons and improving the collection efficiency of generated carriers, that is, a so-called BSF (Back Surface Field) effect.
  • BSF Back Surface Field
  • the electrode formed by the electrode layer 5 and the alloy layer 6 is the back electrode 8 shown in FIG. Accordingly, the back electrode 8 is formed using a paste composition, and is applied, for example, so as to cover the contact hole 9 (opening) provided in the antireflection film (passivation film) 3 on the back side. Accordingly, the back electrode 8 can be formed by baking after drying.
  • the paste composition of the present invention high conversion efficiency can be obtained in the solar battery cell.
  • the paste composition of the present invention since the viscosity change (thickening) with time is suppressed, the paste composition of the present invention has good coating properties (printability) even when time elapses from preparation.
  • the paste composition of the present invention is a solar cell paste composition containing aluminum powder, an organic vehicle and glass frit, and the glass frit contains 50 to 90 mol% of Sb 2 O 3.
  • the back electrode of a solar battery cell such as a PERC solar battery cell can be formed by using the paste composition. That is, the paste composition of the present invention is used to form a back electrode for a solar cell that is in electrical contact with a silicon substrate through an opening (contact hole) provided in a passivation film formed on the silicon substrate. it can. According to the paste composition of the present invention, high conversion efficiency is obtained in a crystalline solar cell (particularly PERC type solar cell), the structure of the glass frit is stable, and the viscosity change (increase) with time. (Viscous) is suppressed.
  • the paste composition of the present invention high conversion efficiency is obtained in a crystalline solar cell (particularly PERC type solar cell), the structure of the glass frit is stable, and the viscosity change (increase) with time. (Viscous) is suppressed.
  • the paste composition includes aluminum powder, an organic vehicle and glass frit as constituent components. And since the paste composition contains aluminum powder (conductive material), the sintered body formed by baking the coating film of the paste composition exhibits electrical conductivity that is electrically connected to the silicon substrate. . (Aluminum powder) The aluminum powder contained in the paste composition exhibits electrical conductivity in the aluminum electrode layer formed by firing the paste composition. In addition, the aluminum powder can obtain the BSF effect by forming the aluminum-silicon alloy layer 6 and the p + layer 7 between the aluminum powder and the silicon semiconductor substrate 1 when the paste composition is fired.
  • the shape of the aluminum powder is not particularly limited, and may be any of a spherical shape, an elliptical shape, an indefinite shape, a scale shape, a fiber shape, and the like. If the shape of the aluminum powder is spherical, in the electrode layer 5 formed of the paste composition, the filling property of the aluminum powder can be increased and the electrical resistance can be effectively reduced.
  • the average particle diameter measured by a laser diffraction method is preferably in the range of 1 to 10 ⁇ m.
  • the aluminum powder may be composed only of high-purity aluminum or may contain an aluminum alloy.
  • examples of the aluminum alloy include an aluminum-silicon alloy and an aluminum-boron alloy.
  • the aluminum powder preferably contains an aluminum-silicon alloy, and the silicon content in the aluminum powder is preferably 10 to 25 atomic%.
  • the silicon content is more preferably 15-22 atomic%.
  • organic vehicle a material in which various additives and resins are dissolved in a solvent as required can be used.
  • the resin itself may be used as the organic vehicle without containing the solvent.
  • solvent known types can be used, and specific examples include diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether, and the like.
  • an antioxidant for example, an antioxidant, a corrosion inhibitor, an antifoaming agent, a thickener, a tack fire, a coupling agent, an electrostatic imparting agent, a polymerization inhibitor, a thixotropic agent, an antisettling agent, etc.
  • an antioxidant for example, an antioxidant, a corrosion inhibitor, an antifoaming agent, a thickener, a tack fire, a coupling agent, an electrostatic imparting agent, a polymerization inhibitor, a thixotropic agent, an antisettling agent, etc.
  • polyethylene glycol ester compound polyethylene glycol ether compound, polyoxyethylene sorbitan ester compound, sorbitan alkyl ester compound, aliphatic polycarboxylic acid compound, phosphate ester compound, amide amine salt of polyester acid, polyethylene oxide Series compounds, fatty acid amide waxes and the like can be used.
  • Known resins can be used, such as ethyl cellulose, nitrocellulose, polyvinyl butyral, phenolic resin, melanin resin, urea resin, xylene resin, alkyd resin, unsaturated polyester resin, acrylic resin, polyimide resin, furan resin, Thermosetting resin such as urethane resin, isocyanate compound, cyanate compound, polyethylene, polypropylene, polystyrene, ABS resin, polymethyl methacrylate, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl alcohol, polyacetal, polycarbonate, polyethylene terephthalate, Polybutylene terephthalate, polyphenylene oxide, polysulfone, polyimide, polyethersulfone, polyarylate, polyetherether Tons, polytetrafluoroethylene, can be used in combination of two or more kinds of such as silicon resin.
  • the ratio of the resin, solvent, and various additives contained in the organic vehicle can be arbitrarily adjusted.
  • the component ratio can be the same as that of a known organic vehicle.
  • the content of the organic vehicle is not particularly limited, for example, from the viewpoint of having good printability, it is preferably 20 to 45 parts by mass, and 30 to 35 parts by mass with respect to 100 parts by mass of the aluminum powder. Is particularly preferred. (Glass frit)
  • the glass frit is said to have an effect of assisting the reaction between the aluminum powder and silicon and the sintering of the aluminum powder itself.
  • the glass frit (100 mol%) contains 50 to 90 mol% of Sb 2 O 3 . Since such a glass frit suppresses a change in viscosity (thickening) over time of the paste composition, it has good coatability (printability) even when time elapses from preparation.
  • the Sb 2 O 3 content in the glass frit may be 50 to 90 mol%.
  • the structure of the glass frit is particularly stable in 52 to 70 mol%, and the viscosity change with time (thickening) ) Is preferred.
  • Sb 2 O 3 content of the conversion efficiency of the solar cell (Eff) is low in the case of less than 50 mole%, and there is a time afraid to thicken than 5 Pa ⁇ s in the paste composition.
  • Sb 2 O 3 content is 90 mol% excess is may not be used as an electrode material becomes difficult to vitrify.
  • the Sb 2 O 3 content is more than 70 mol% and 90 mol% or less, it can be used as an electrode material, but the glass frit structure may be realized depending on temperature, pressure, or glass frit manufacturing conditions. May fall within acceptable range of use.
  • the glass frit preferably further contains SiO 2 and / or B 2 O 3 as the balance excluding Sb 2 O 3 .
  • 2 component as a glass frit Sb 2 O 3 -B 2 O 3, or Sb 2 O 3 -B 2 O 3 but it is preferably composed from any of the three components of -SiO 2, the effect of the present invention It is permissible to further contain other components within a range that does not affect the above.
  • the content of components other than Sb 2 O 3 is not limited, but the content of B 2 O 3 is preferably 30 to 40 mol%, more preferably 30 to 36 mol%.
  • the content of SiO 2 is preferably 0 to 14 mol%, and more preferably 0 to 5 mol%. 1 mol% is preferable as the lower limit of the content of the time of addition of SiO 2.
  • the content of the glass frit is not particularly limited, but for example, it is preferably 0.5 to 5.0 parts by mass with respect to 100 parts by mass of the aluminum powder. In this case, the adhesion between the silicon semiconductor substrate 1 and the antireflection film 3 (passivation film) is good, and the electrical resistance is hardly increased.
  • the paste composition of the present invention preferably has a composition containing 30 to 35 parts by mass of the organic vehicle and 0.5 to 5.0 parts by mass of the glass frit with respect to 100 parts by mass of the aluminum powder. .
  • a composition containing 30 to 35 parts by mass of the organic vehicle and 0.5 to 5.0 parts by mass of the glass frit with respect to 100 parts by mass of the aluminum powder. By setting to such a range, high conversion efficiency is obtained, the structure of the glass frit is stable, and the change in viscosity (thickening) with time is suppressed.
  • the paste composition of the present invention is suitable for use, for example, for forming an electrode layer of a solar battery cell (in particular, a back electrode 8 of a PERC type solar battery cell as shown in FIG. 1). Therefore, the paste composition of this invention can be used also as a solar cell back surface electrode formation agent.
  • Example 1 (Preparation of paste composition) 100 parts by mass of D 50 : 4.0 ⁇ m aluminum powder produced by the gas atomization method, 1.5 parts by mass of glass frit of Sb 2 O 3 —B 2 O 3 (70 mol% -30 mol%), ethyl cellulose A paste was formed on 35 parts by mass of a resin solution dissolved in butyl diglycol using a dispersing device (disper). This obtained the paste composition.
  • a fired substrate that is a solar cell A fired substrate as a solar cell for evaluation was produced as follows.
  • a silicon semiconductor substrate 1 having a thickness of 180 ⁇ m (including a passivation film on the back side) was prepared.
  • a contact hole 9 having a width D of 50 ⁇ m and a depth of 1 ⁇ m was formed on the back surface of the silicon semiconductor substrate 1 using a YAG laser having a wavelength of 532 nm as a laser oscillator.
  • This silicon semiconductor substrate 1 had a resistance value of 3 ⁇ ⁇ cm and was a back surface passivation type single crystal.
  • the passivation film is not shown and is handled as being included in the silicon semiconductor substrate 1, and the passivation film is a laminate of a 30 nm aluminum oxide layer and a 100 nm silicon nitride layer on the back side of the silicon semiconductor substrate 1. Included as a body.
  • the paste composition 10 obtained above is applied to the surface of the silicon semiconductor substrate 1 so as to cover the entire back surface (the surface on the side where the contact holes 9 are formed). On the top, printing was carried out at 1.0 to 1.1 g / pc using a screen printer. Next, although not shown, an Ag paste prepared by a known technique was printed on the light receiving surface.
  • the prepared paste composition was left in an oven at 50 ° C. for 1 week, and the viscosity change before and after the test was measured with a viscometer.
  • a viscometer a corn plate type viscometer DV2T manufactured by Brookfield was used, and measurement was performed in accordance with 2.3 corn plate viscometer method of JIS K5600.
  • the viscosity change before and after the test was less than 5 Pa ⁇ s.
  • a mending tape (12 mm width, manufactured by 3M Company) is 3 cm long on the surface of the electrode layer 5 (aluminum electrode) formed on the back surface of the silicon semiconductor substrate 1. After pasting, the tape is peeled off at an angle of 45 degrees with respect to the silicon semiconductor substrate 1, and the ratio of the total area of the part to which the aluminum has adhered and the area of the pasted mending tape is binarized. Evaluation was performed by calculating using possible analysis software. The evaluation of adhesion was performed for all the same persons with the same posture, angle, force, and constant speed. The case where there was no adhesion of aluminum to the mending tape was evaluated as ⁇ , and the case where there was any adhesion was evaluated as ⁇ .
  • Example 2 A paste composition was prepared and evaluated in the same manner as in Example 1 except that 1.5 parts by mass of glass frit of Sb 2 O 3 —B 2 O 3 (65 mol% -35 mol%) was used.
  • Example 3 A paste composition was prepared and evaluated in the same manner as in Example 1 except that 1.5 parts by mass of a glass frit of Sb 2 O 3 —B 2 O 3 (60 mol% -40 mol%) was used.
  • Example 4 A paste composition was prepared in the same manner as in Example 1 except that 1.5 parts by mass of glass frit of Sb 2 O 3 —B 2 O 3 —SiO 2 (55 mol% -35 mol% -10 mol%) was used. And evaluated.
  • Example 5 A paste composition was prepared in the same manner as in Example 1 except that 1.5 parts by mass of glass frit of Sb 2 O 3 —B 2 O 3 —SiO 2 (52 mol% -34 mol% -14 mol%) was used. And evaluated.
  • Example 6 A paste composition was prepared in the same manner as in Example 1 except that 0.5 parts by mass of glass frit of Sb 2 O 3 —B 2 O 3 —SiO 2 (52 mol% -34 mol% —14 mol%) was used. And evaluated.
  • Example 7 A paste composition was prepared in the same manner as in Example 1 except that 5.0 parts by mass of glass frit of Sb 2 O 3 —B 2 O 3 —SiO 2 (52 mol% —34 mol% —14 mol%) was used. And evaluated.
  • Comparative Example 1 Example 1 except that 1.5 parts by mass of a glass frit of B 2 O 3 —SiO 2 —BaO—CaO—ZnO (35 mol% -10 mol% -35 mol% -10 mol% -10 mol%) was used. A paste composition was prepared and evaluated in the same manner as described above.
  • Comparative Example 2 Sb 2 O 3 (100 mol%) could not be vitrified. That is, a paste composition was prepared and evaluated in the same manner as in Example 1 except that 1.5 parts by mass of non-vitrified Sb 2 O 3 (100 mol%) frit was used.
  • Comparative Example 3 A glass frit of Sb 2 O 3 —B 2 O 3 (46 mol% -54 mol%) cannot be used as an electrode material because it absorbs moisture, deliquescents, and when added, moisture mixes in the paste.
  • Comparative Example 4 Paste composition as in Example 1 except that 1.5 parts by mass of glass frit of B 2 O 3 —BaO—CaO—ZnO (27 mol% ⁇ 45 mol% ⁇ 10 mol% ⁇ 18 mol%) was used. Were prepared and evaluated.
  • Comparative Example 5 Example except that 1.5 parts by mass of glass frit of SiO 2 —Al 2 O 3 —B 2 O 3 —PbO (1 mol% -4 mol% -30 mol% -65 mol% -10 mol%) was used In the same manner as in No. 1, a paste composition was prepared and evaluated.
  • Comparative Example 6 A paste composition was prepared in the same manner as in Example 1 except that 0.4 parts by mass of glass frit of Sb 2 O 3 —B 2 O 3 —SiO 2 (52 mol% —34 mol% —14 mol%) was used. And evaluated.
  • Comparative Example 7 A paste composition was prepared in the same manner as in Example 1 except that 6.0 parts by mass of glass frit of Sb 2 O 3 —B 2 O 3 —SiO 2 (52 mol% ⁇ 34 mol% ⁇ 14 mol%) was used. And evaluated.
  • Table 1 below shows the conditions and evaluation results of the examples and comparative examples.
  • Comparative Example 6 In Comparative Example 6 in which the glass frit addition amount is 0.4 parts by mass, the conversion efficiency is lower than 19.0%, and in Comparative Example 7 in which the glass frit addition amount is 6.0% by mass, the electrode layer 5 (aluminum electrode) ) was poor.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Conductive Materials (AREA)
  • Glass Compositions (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

The present invention provides a paste composition for a solar battery with which it is possible to obtain high conversion efficiency in a crystal-based solar cell, the glass frit structure is stable, and the change in viscosity (thickening) over time is minimized. The present invention provides a paste composition for a solar battery containing an aluminum powder, an organic vehicle, and glass frit, wherein the paste composition for a solar battery is characterized in that the glass frit contains 50-90 mol% of Sb2O3.

Description

太陽電池用ペースト組成物Solar cell paste composition
 本発明は、太陽電池用ペースト組成物に関し、特にレーザー照射などを用いて開口部を設けたパッシベーション膜を有する結晶系太陽電池セルに対してp層を形成することを目的とした太陽電池用ペースト組成物に関する。 TECHNICAL FIELD The present invention relates to a solar cell paste composition, and more particularly to a solar cell intended to form a p + layer on a crystalline solar cell having a passivation film provided with an opening using laser irradiation or the like. The present invention relates to a paste composition.
 近年、結晶系太陽電池セルの変換効率(発電効率)、信頼性等を向上させることを目的として、種々の研究開発が行われている。その一つとして、セル裏面に窒化ケイ素、酸化ケイ素、酸化アルミニウム等からなるパッシベーション膜を有するPERC(Passivated emitter and rear cell)型高変換効率セルが注目されている。 In recent years, various research and development have been conducted for the purpose of improving the conversion efficiency (power generation efficiency), reliability and the like of crystalline solar cells. As one of them, a PERC (Passivated emitter and rear cell) type high conversion efficiency cell having a passivation film made of silicon nitride, silicon oxide, aluminum oxide or the like on the back surface of the cell has attracted attention.
 PERC型高変換効率セルは、例えばアルミニウムを主成分とする電極層を備えた構造を有する。この電極層(特に裏面電極層)は、例えばアルミニウムを主体とするペースト組成物を、パッシベーション膜の開口部を被覆するようにパターン形状に塗布し、必要に応じて乾燥後、焼成することにより形成される。そして、電極層の構成を適切に設計することで、PERC型高変換効率セルの変換効率を改善できることが知られている。 The PERC type high conversion efficiency cell has a structure including an electrode layer mainly composed of aluminum, for example. This electrode layer (especially the back electrode layer) is formed, for example, by applying a paste composition mainly composed of aluminum in a pattern shape so as to cover the opening of the passivation film, and drying and baking as necessary. Is done. It is known that the conversion efficiency of the PERC type high conversion efficiency cell can be improved by appropriately designing the configuration of the electrode layer.
 例えば、特許文献1には、30~70mol%Pb2+、1~40mol%Si4+、10~65mol%B3+、1~25mol%Al3+から構成されるガラスフリットを含有するアルミニウムペースト組成物が開示されている。また、特許文献2には、アルミニウム粉末と、アルミニウム-シリコン合金粉末と、シリコン粉末と、ガラス粉末と、有機ビヒクルとを含むペースト組成物に関し、特にガラス粉末として、「ガラス粉末としては、鉛(Pb)、ビスマス(Bi)、バナジウム(V)、ホウ素(B)、シリコン(Si)、スズ(Sn)、リン(P)、および、亜鉛(Zn)からなる群より選ばれた1種、または2種以上を含有してもよい。また、鉛を含むガラス粉末、または、ビスマス系、バナジウム系、スズ‐リン系、ホウケイ酸亜鉛系、アルカリホウケイ酸系等の無鉛のガラス粉末を用いることができる。」と記載されている(特許文献2の[0035]段落など)。 For example, Patent Document 1 discloses an aluminum paste composition containing a glass frit composed of 30 to 70 mol% Pb 2+ , 1 to 40 mol% Si 4+ , 10 to 65 mol% B 3+ , and 1 to 25 mol% Al 3+. Has been. Further, Patent Document 2 relates to a paste composition containing aluminum powder, aluminum-silicon alloy powder, silicon powder, glass powder, and an organic vehicle, particularly as glass powder, “lead as glass powder ( Pb), bismuth (Bi), vanadium (V), boron (B), silicon (Si), tin (Sn), phosphorus (P), and one selected from the group consisting of zinc (Zn), or It may contain two or more kinds, and lead-containing glass powder or lead-free glass powder such as bismuth, vanadium, tin-phosphorus, zinc borosilicate, alkali borosilicate, etc. may be used. Can be made ”(paragraph [0035] in Patent Document 2).
特開2013-145865号公報JP 2013-145865 A 特開2013-143499号公報JP 2013-143499 A
 しかしながら、上記特許文献1、2等に開示された技術によっても結晶系太陽電池セルには依然として変換効率に改善の余地がある。また、従来のペースト組成物はガラスフリットの構造が安定ではなく、ペースト組成物の粘度が経時的に変化し(特に5Pa・s以上に増粘)、ペースト組成物の塗布性(印刷性)を低下させるという問題がある。 However, there is still room for improvement in the conversion efficiency of the crystalline solar cells even by the techniques disclosed in Patent Documents 1 and 2 and the like. Moreover, the structure of the glass frit is not stable in the conventional paste composition, the viscosity of the paste composition changes with time (particularly thickening to 5 Pa · s or more), and the applicability (printability) of the paste composition is improved. There is a problem of lowering.
 本発明は、上記に鑑みてなされたものであり、結晶系太陽電池セルにおいて、高い変換効率が得られるとともに、ガラスフリットの構造が安定であり経時的な粘度変化(増粘)が抑制された太陽電池用ペースト組成物を提供することを目的とする。 The present invention has been made in view of the above, and in a crystalline solar cell, high conversion efficiency was obtained, the structure of the glass frit was stable, and the change in viscosity (thickening) over time was suppressed. It aims at providing the paste composition for solar cells.
 本発明者は、上記目的を達成すべく鋭意研究を重ねた結果、アルミニウム粉末、有機ビヒクル及び特定のガラスフリットを含有する太陽電池用ペースト組成物が上記目的を達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above object, the present inventors have found that a solar cell paste composition containing an aluminum powder, an organic vehicle, and a specific glass frit can achieve the above object, thereby completing the present invention. It came to do.
 即ち、本発明は、下記の太陽電池用ペースト組成物に関する。
1.アルミニウム粉末、有機ビヒクル及びガラスフリットを含有する太陽電池用ペースト組成物であって、前記ガラスフリットはSbを50~90モル%含有することを特徴とする太陽電池用ペースト組成物。
2.前記アルミニウム粉末100質量部に対して、前記有機ビヒクルを30~35質量部、及び前記ガラスフリットを0.5~5.0質量部を含有する、上記項1に記載の太陽電池用ペースト組成物。
3.前記ガラスフリットは、更にSiO及び/又はBを含有する、上記項1又は2に記載の太陽電池用ペースト組成物。
That is, this invention relates to the following paste composition for solar cells.
1. A solar cell paste composition comprising aluminum powder, an organic vehicle and glass frit, wherein the glass frit contains 50 to 90 mol% of Sb 2 O 3 .
2. Item 2. The solar cell paste composition according to Item 1, comprising 30 to 35 parts by mass of the organic vehicle and 0.5 to 5.0 parts by mass of the glass frit with respect to 100 parts by mass of the aluminum powder. .
3. Item 3. The solar cell paste composition according to Item 1 or 2, wherein the glass frit further contains SiO 2 and / or B 2 O 3 .
 本発明の太陽電池用ペースト組成物によれば、結晶系太陽電池セル(特にPERC型高変換効率セル)において、高い変換効率が得られるとともに、ガラスフリットの構造が安定であり経時的な粘度変化(増粘)が抑制されている。経時的な粘度変化(増粘)が抑制されていることにより、本発明のペースト組成物は良好な塗布性(印刷性)を有する。 According to the solar cell paste composition of the present invention, a high conversion efficiency is obtained in a crystalline solar cell (particularly a PERC type high conversion efficiency cell), the structure of the glass frit is stable, and the viscosity changes over time. (Thickening) is suppressed. The paste composition of this invention has favorable applicability | paintability (printability) by the viscosity change (thickening) with time being suppressed.
PERC型太陽電池セルの断面構造の一例を示す模式図であり、(a)はその実施形態の一例を、(b)はその実施形態の他例である。It is a schematic diagram which shows an example of the cross-section of a PERC type | mold solar cell, (a) is an example of the embodiment, (b) is another example of the embodiment. 実施例及び比較例において作製された電極構造の断面の模式図である。It is a schematic diagram of the cross section of the electrode structure produced in the Example and the comparative example.
 以下、本発明の太陽電池用ペースト組成物について詳細に説明する。なお、本明細書において、「~」で示される範囲は、特に説明する場合を除き「以上、以下」を意味する。 Hereinafter, the solar cell paste composition of the present invention will be described in detail. In the present specification, a range indicated by “to” means “above or below” unless otherwise specified.
 本発明の太陽電池用ペースト組成物は、例えば、結晶系太陽電池セルの電極を形成するために使用することができる。結晶系太陽電池セルとしては特に限定されないが、例えば、PERC(Passivated emitter and rear cell)型高変換効率セル(以下、「PERC型太陽電池セル」という。)が挙げられる。本発明の太陽電池用ペースト組成物は、例えば、PERC型太陽電池セルの裏面電極を形成するために使用することができる。以下、本発明のペースト組成物を、単に「ペースト組成物」とも記載する。 The solar cell paste composition of the present invention can be used, for example, to form electrodes of crystalline solar cells. Although it does not specifically limit as a crystalline solar cell, For example, a PERC (Passivated * emitter * and * rear * cell) type high conversion efficiency cell (henceforth a "PERC type solar cell") is mentioned. The solar cell paste composition of the present invention can be used, for example, to form a back electrode of a PERC solar cell. Hereinafter, the paste composition of the present invention is also simply referred to as “paste composition”.
 最初に、PERC型太陽電池セルの構造の一例を説明する。 First, an example of the structure of a PERC type solar cell will be described.
 1.PERC型太陽電池セル
 図1(a)、(b)は、PERC型太陽電池セルの一般的な断面構造の模式図である。PERC型太陽電池セルは、シリコン半導体基板1、n型不純物層2、反射防止膜(パッシベーション膜)3、グリッド電極4、電極層(裏面電極層)5、合金層6、p層7を構成要素として備えることができる。
1. PERC Type Solar Cell FIGS. 1A and 1B are schematic views of a general cross-sectional structure of a PERC type solar cell. The PERC type solar cell includes a silicon semiconductor substrate 1, an n-type impurity layer 2, an antireflection film (passivation film) 3, a grid electrode 4, an electrode layer (back electrode layer) 5, an alloy layer 6, and a p + layer 7. Can be provided as an element.
 シリコン半導体基板1は特に限定されず、例えば、厚みが180~250μmのp型シリコン基板が用いられる。 The silicon semiconductor substrate 1 is not particularly limited. For example, a p-type silicon substrate having a thickness of 180 to 250 μm is used.
 n型不純物層2は、シリコン半導体基板1の受光面側に設けられる。n型不純物層2の厚みは、例えば、0.3~0.6μmである。 The n-type impurity layer 2 is provided on the light receiving surface side of the silicon semiconductor substrate 1. The thickness of the n-type impurity layer 2 is, for example, 0.3 to 0.6 μm.
 反射防止膜3及びグリッド電極4は、n型不純物層2の表面に設けられる。反射防止膜3は、例えば、窒化シリコン膜で形成されパッシベーション膜とも称される。反射防止膜3は、いわゆるパッシベーション膜として作用することで、シリコン半導体基板1の表面での電子の再結合を抑制でき、結果として、発生したキャリアの再結合率を減らすことを可能にする。これにより、PERC型太陽電池セルの変換効率が高められる。 The antireflection film 3 and the grid electrode 4 are provided on the surface of the n-type impurity layer 2. The antireflection film 3 is formed of, for example, a silicon nitride film and is also referred to as a passivation film. The antireflection film 3 acts as a so-called passivation film, so that recombination of electrons on the surface of the silicon semiconductor substrate 1 can be suppressed, and as a result, the recombination rate of the generated carriers can be reduced. Thereby, the conversion efficiency of a PERC type photovoltaic cell is increased.
 反射防止膜(パッシベーション膜)3は、シリコン半導体基板1の裏面側、つまり、前記受光面と逆側の面にも設けられる。また、この裏面側の反射防止膜(パッシベーション膜)3を貫通し、かつ、シリコン半導体基板1の裏面の一部を削るように形成されたコンタクト孔(開口部)が、シリコン半導体基板1の裏面側に形成されている。コンタクト孔の形成方法は限定的ではないが、レーザー照射などを用いて開口部を設けるいわゆるLCO(Laser contact opening)の方法が一般的である。 The antireflection film (passivation film) 3 is also provided on the back surface side of the silicon semiconductor substrate 1, that is, the surface opposite to the light receiving surface. A contact hole (opening) formed through the antireflection film (passivation film) 3 on the back surface side and scraping a part of the back surface of the silicon semiconductor substrate 1 is formed on the back surface of the silicon semiconductor substrate 1. Formed on the side. The method of forming the contact hole is not limited, but a so-called LCO (Laser contact opening) method of providing an opening using laser irradiation or the like is general.
 電極層5は、前記コンタクト孔を通じてシリコン半導体基板1に接触するように形成されている。電極層5は、本発明のペースト組成物によって形成される部材であり、所定のパターン形状に形成される。図1(a)の形態のように、電極層5は、PERC型太陽電池セルの裏面全体を覆うように形成されていてもよいし、又は図1(b)の形態のようにコンタクト孔及びその近傍を覆うように形成されていてもよい。電極層5の主成分はアルミニウムであるので、電極層5はアルミニウム電極層である。 The electrode layer 5 is formed in contact with the silicon semiconductor substrate 1 through the contact hole. The electrode layer 5 is a member formed by the paste composition of the present invention, and is formed in a predetermined pattern shape. The electrode layer 5 may be formed so as to cover the entire back surface of the PERC type solar battery cell as in the form of FIG. 1A, or the contact hole and the electrode layer 5 as in the form of FIG. You may form so that the vicinity may be covered. Since the main component of the electrode layer 5 is aluminum, the electrode layer 5 is an aluminum electrode layer.
 電極層5は、例えば、ペースト組成物を所定のパターン形状に塗布し、焼成することで形成される。塗布方法は特に限定されず、例えば、スクリーン印刷等の公知の方法が挙げられる。ペースト組成物を塗布し、必要に応じて乾燥させた後、例えば、アルミニウムの融点(約660℃)を超える温度にて短時間焼成することで、電極層5が形成される。 The electrode layer 5 is formed, for example, by applying a paste composition in a predetermined pattern shape and baking it. The coating method is not particularly limited, and examples thereof include known methods such as screen printing. After applying the paste composition and drying it as necessary, the electrode layer 5 is formed by firing for a short time at a temperature exceeding the melting point of aluminum (about 660 ° C.), for example.
 本発明では、焼成温度はアルミニウムの融点(約660℃)を超える温度であればよいが、750~950℃程度が好ましく、780~900℃程度がより好ましい。焼成時間は所望の電極層5が形成される範囲で焼成温度に応じて適宜設定することができる。 In the present invention, the firing temperature may be a temperature exceeding the melting point of aluminum (about 660 ° C.), but is preferably about 750 to 950 ° C., more preferably about 780 to 900 ° C. The firing time can be appropriately set according to the firing temperature within the range in which the desired electrode layer 5 is formed.
 このように焼成すると、ペースト組成物に含まれるアルミニウムが、シリコン半導体基板1の内部に拡散する。これにより、電極層5とシリコン半導体基板1との間に、アルミニウム-シリコン(Al-Si)合金層(合金層6)が形成され、これと同時に、アルミニウム原子の拡散によって、不純物層としてのp層7が形成される。 When fired in this manner, aluminum contained in the paste composition diffuses into the silicon semiconductor substrate 1. As a result, an aluminum-silicon (Al—Si) alloy layer (alloy layer 6) is formed between the electrode layer 5 and the silicon semiconductor substrate 1, and at the same time, by diffusion of aluminum atoms, p as an impurity layer is formed. A + layer 7 is formed.
 p層7は、電子の再結合を防止し、生成キャリアの収集効率を向上させる効果、いわゆる、BSF(Back Surface Field)効果をもたらすことができる。 The p + layer 7 can bring about an effect of preventing recombination of electrons and improving the collection efficiency of generated carriers, that is, a so-called BSF (Back Surface Field) effect.
 前記電極層5と合金層6とで形成される電極が、図1に示す裏面電極8である。従って、裏面電極8は、ペースト組成物を用いて形成され、例えば、裏面側の反射防止膜(パッシベーション膜)3に設けたコンタクト孔9(開口部)を被覆するように塗工し、必要に応じて乾燥後、焼成することによって裏面電極8を形成できる。ここで、本発明のペースト組成物を用いて裏面電極8を形成することにより、太陽電池セルにおいて高い変換効率が得られる。また、本発明のペースト組成物は経時的な粘度変化(増粘)が抑制されているため、調製から時間が経過した場合でも良好な塗布性(印刷性)を有する。 The electrode formed by the electrode layer 5 and the alloy layer 6 is the back electrode 8 shown in FIG. Accordingly, the back electrode 8 is formed using a paste composition, and is applied, for example, so as to cover the contact hole 9 (opening) provided in the antireflection film (passivation film) 3 on the back side. Accordingly, the back electrode 8 can be formed by baking after drying. Here, by forming the back electrode 8 using the paste composition of the present invention, high conversion efficiency can be obtained in the solar battery cell. Moreover, since the viscosity change (thickening) with time is suppressed, the paste composition of the present invention has good coating properties (printability) even when time elapses from preparation.
 2.ペースト組成物
 本発明のペースト組成物は、アルミニウム粉末、有機ビヒクル及びガラスフリットを含有する太陽電池用ペースト組成物であって、前記ガラスフリットはSbを50~90モル%含有することを特徴とする。
2. Paste Composition The paste composition of the present invention is a solar cell paste composition containing aluminum powder, an organic vehicle and glass frit, and the glass frit contains 50 to 90 mol% of Sb 2 O 3. Features.
 前述したように、ペースト組成物を使用することで、PERC型太陽電池セル等の太陽電池セルの裏面電極を形成することができる。つまり、本発明のペースト組成物は、シリコン基板上に形成されたパッシベーション膜に設けた開口部(コンタクト孔)を通じてシリコン基板に電気的に接触する太陽電池用裏面電極を形成するために用いることができる。そして、本発明のペースト組成物によれば、結晶系太陽電池セル(特にPERC型太陽電池セル)において、高い変換効率が得られるとともに、ガラスフリットの構造が安定であり経時的な粘度変化(増粘)が抑制されている。 As described above, the back electrode of a solar battery cell such as a PERC solar battery cell can be formed by using the paste composition. That is, the paste composition of the present invention is used to form a back electrode for a solar cell that is in electrical contact with a silicon substrate through an opening (contact hole) provided in a passivation film formed on the silicon substrate. it can. According to the paste composition of the present invention, high conversion efficiency is obtained in a crystalline solar cell (particularly PERC type solar cell), the structure of the glass frit is stable, and the viscosity change (increase) with time. (Viscous) is suppressed.
 ペースト組成物は、アルミニウム粉末、有機ビヒクル及びガラスフリットを構成成分として含む。そして、ペースト組成物がアルミニウム粉末(導電性材料)を含むことで、ペースト組成物の塗膜が焼成されて形成される焼結体は、シリコン基板と電気的に接続する導電性が発揮される。
(アルミニウム粉末)
 ペースト組成物に含まれるアルミニウム粉末は、ペースト組成物を焼成することによって形成されたアルミニウム電極層において導電性を発揮する。また、アルミニウム粉末は、ペースト組成物を焼成した際にシリコン半導体基板1との間にアルミニウム-シリコン合金層6とp層7を形成することによりBSF効果が得られる。
The paste composition includes aluminum powder, an organic vehicle and glass frit as constituent components. And since the paste composition contains aluminum powder (conductive material), the sintered body formed by baking the coating film of the paste composition exhibits electrical conductivity that is electrically connected to the silicon substrate. .
(Aluminum powder)
The aluminum powder contained in the paste composition exhibits electrical conductivity in the aluminum electrode layer formed by firing the paste composition. In addition, the aluminum powder can obtain the BSF effect by forming the aluminum-silicon alloy layer 6 and the p + layer 7 between the aluminum powder and the silicon semiconductor substrate 1 when the paste composition is fired.
 アルミニウム粉末の形状は特に限定されず、例えば、球状、楕円状、不定形状、鱗片状、繊維状等のいずれでもよい。アルミニウム粉末の形状が球状であれば、ペースト組成物により形成される前記電極層5において、アルミニウム粉末の充填性が増大して電気抵抗を効果的に低下させることができる。 The shape of the aluminum powder is not particularly limited, and may be any of a spherical shape, an elliptical shape, an indefinite shape, a scale shape, a fiber shape, and the like. If the shape of the aluminum powder is spherical, in the electrode layer 5 formed of the paste composition, the filling property of the aluminum powder can be increased and the electrical resistance can be effectively reduced.
 また、アルミニウム粉末の形状が球状である場合、ペースト組成物により形成される前記電極層5において、シリコン半導体基板1とアルミニウム粉末との接点が増えるので、良好なBSF層を形成しやすい。球状の場合には、レーザー回折法により測定される平均粒子径が1~10μmの範囲であることが好ましい。 In addition, when the shape of the aluminum powder is spherical, in the electrode layer 5 formed of the paste composition, the number of contacts between the silicon semiconductor substrate 1 and the aluminum powder increases, so that it is easy to form a good BSF layer. In the case of a spherical shape, the average particle diameter measured by a laser diffraction method is preferably in the range of 1 to 10 μm.
 アルミニウム粉末は、高純度のアルミニウムのみから構成されてもよく、アルミニウム合金を含んでいてもよい。例えば、アルミニウム合金としては、アルミニウム-シリコン合金、アルミニウム-ボロン合金等が挙げられる。 The aluminum powder may be composed only of high-purity aluminum or may contain an aluminum alloy. For example, examples of the aluminum alloy include an aluminum-silicon alloy and an aluminum-boron alloy.
 本発明では、アルミニウム粉末がアルミニウム-シリコン合金を含有し、当該アルミニウム粉末中のシリコン含有量が10~25原子%であることが好ましい。シリコン含有量は15~22原子%であることがより好ましい。このようなアルミニウム粉末を用いることにより、シリコン半導体基板1との密着性がより高まる。 In the present invention, the aluminum powder preferably contains an aluminum-silicon alloy, and the silicon content in the aluminum powder is preferably 10 to 25 atomic%. The silicon content is more preferably 15-22 atomic%. By using such an aluminum powder, the adhesion to the silicon semiconductor substrate 1 is further increased.
 なお、アルミニウム粉末が高純度のアルミニウムのみから構成される場合、及びアルミニウム合金である場合のいずれにおいても、不可避不純物及び原料由来の微量の添加元素の存在は排除しない。
(有機ビヒクル)
 有機ビヒクルとしては、溶剤に、必要に応じて各種添加剤及び樹脂を溶解した材料を使用できる。又は、溶剤を含まず、樹脂そのものを有機ビヒクルとして使用してもよい。
It should be noted that the presence of inevitable impurities and a small amount of additive elements derived from the raw materials is not excluded in both cases where the aluminum powder is composed only of high-purity aluminum and an aluminum alloy.
(Organic vehicle)
As the organic vehicle, a material in which various additives and resins are dissolved in a solvent as required can be used. Alternatively, the resin itself may be used as the organic vehicle without containing the solvent.
 溶剤は、公知の種類が使用可能であり、具体的には、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールモノメチルエーテル等が挙げられる。 As the solvent, known types can be used, and specific examples include diethylene glycol monobutyl ether, diethylene glycol monobutyl ether acetate, dipropylene glycol monomethyl ether, and the like.
 各種添加剤としては、例えば、酸化防止剤、腐食抑制剤、消泡剤、増粘剤、タックファイヤー、カップリング剤、静電付与剤、重合禁止剤、チキソトロピー剤、沈降防止剤等を使用することができる。具体的には、例えば、ポリエチレングリコールエステル化合物、ポリエチレングリコールエーテル化合物、ポリオキシエチレンソルビタンエステル化合物、ソルビタンアルキルエステル化合物、脂肪族多価カルボン酸化合物、燐酸エステル化合物、ポリエステル酸のアマイドアミン塩、酸化ポリエチレン系化合物、脂肪酸アマイドワックス等を使用することができる。 As various additives, for example, an antioxidant, a corrosion inhibitor, an antifoaming agent, a thickener, a tack fire, a coupling agent, an electrostatic imparting agent, a polymerization inhibitor, a thixotropic agent, an antisettling agent, etc. are used. be able to. Specifically, for example, polyethylene glycol ester compound, polyethylene glycol ether compound, polyoxyethylene sorbitan ester compound, sorbitan alkyl ester compound, aliphatic polycarboxylic acid compound, phosphate ester compound, amide amine salt of polyester acid, polyethylene oxide Series compounds, fatty acid amide waxes and the like can be used.
 樹脂としては公知の種類が使用可能であり、エチルセルロース、ニトロセルロース、ポリビニールブチラール、フェノール樹脂、メラニン樹脂、ユリア樹脂、キシレン樹脂、アルキッド樹脂、不飽和ポリエステル樹脂、アクリル樹脂、ポリイミド樹脂、フラン樹脂、ウレタン樹脂、イソシアネート化合物、シアネート化合物等の熱硬化樹脂、ポリエチレン、ポリプロピレン、ポリスチレン、ABS樹脂、ポリメタクリル酸メチル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、ポリビニルアルコール、ポリアセタール、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンオキサイド、ポリスルフォン、ポリイミド、ポリエーテルスルフォン、ポリアリレート、ポリエーテルエーテルケトン、ポリ4フッ化エチレン、シリコン樹脂等の二種以上を組み合わせて用いることができる。 Known resins can be used, such as ethyl cellulose, nitrocellulose, polyvinyl butyral, phenolic resin, melanin resin, urea resin, xylene resin, alkyd resin, unsaturated polyester resin, acrylic resin, polyimide resin, furan resin, Thermosetting resin such as urethane resin, isocyanate compound, cyanate compound, polyethylene, polypropylene, polystyrene, ABS resin, polymethyl methacrylate, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, polyvinyl alcohol, polyacetal, polycarbonate, polyethylene terephthalate, Polybutylene terephthalate, polyphenylene oxide, polysulfone, polyimide, polyethersulfone, polyarylate, polyetherether Tons, polytetrafluoroethylene, can be used in combination of two or more kinds of such as silicon resin.
 有機ビヒクルに含まれる樹脂、溶剤、各種添加剤の割合は任意に調整することができ、例えば、公知の有機ビヒクルと同様の成分比とすることができる。 The ratio of the resin, solvent, and various additives contained in the organic vehicle can be arbitrarily adjusted. For example, the component ratio can be the same as that of a known organic vehicle.
 有機ビヒクルの含有量は特に限定されないが、例えば、良好な印刷性を有するという観点から、アルミニウム粉末100質量部に対して20~45質量部であることが好ましく、30~35質量部であることが特に好ましい。
(ガラスフリット)
 ガラスフリットは、アルミニウム粉末とシリコンとの反応、及びアルミニウム粉末自身の焼結を助ける作用があるとされている。
Although the content of the organic vehicle is not particularly limited, for example, from the viewpoint of having good printability, it is preferably 20 to 45 parts by mass, and 30 to 35 parts by mass with respect to 100 parts by mass of the aluminum powder. Is particularly preferred.
(Glass frit)
The glass frit is said to have an effect of assisting the reaction between the aluminum powder and silicon and the sintering of the aluminum powder itself.
 本発明のペースト組成物において、ガラスフリット(100モル%)はSbを50~90モル%含有する。かかるガラスフリットであることにより、ペースト組成物の経時的な粘度変化(増粘)が抑制されているため、調製から時間が経過した場合でも良好な塗布性(印刷性)を有する。ガラスフリット中のSb含有量は50~90モル%であればよいが、その中でも52~70モル%がガラスフリットの構造が特に安定的であり、且つ経時的な粘度変化(増粘)が抑制されるため好ましい。なお、Sb含有量が50モル%未満の場合には太陽電池セルの変換効率(Eff)が低くなり、且つペースト組成物の経時的に5Pa・s以上に増粘するおそれがある。また、Sb含有量が90モル%超過の場合にはガラス化が困難となり電極材として使用できないおそれがある。なお、Sb含有量が70モル%超過90モル%以下の場合には、電極材として使用することはできるものの、温度や圧力、又はガラスフリットの製造条件によってはガラスフリットの構造が実使用の許容範囲内で低下する場合がある。 In the paste composition of the present invention, the glass frit (100 mol%) contains 50 to 90 mol% of Sb 2 O 3 . Since such a glass frit suppresses a change in viscosity (thickening) over time of the paste composition, it has good coatability (printability) even when time elapses from preparation. The Sb 2 O 3 content in the glass frit may be 50 to 90 mol%. Among them, the structure of the glass frit is particularly stable in 52 to 70 mol%, and the viscosity change with time (thickening) ) Is preferred. Incidentally, Sb 2 O 3 content of the conversion efficiency of the solar cell (Eff) is low in the case of less than 50 mole%, and there is a time afraid to thicken than 5 Pa · s in the paste composition. In addition, when Sb 2 O 3 content is 90 mol% excess is may not be used as an electrode material becomes difficult to vitrify. When the Sb 2 O 3 content is more than 70 mol% and 90 mol% or less, it can be used as an electrode material, but the glass frit structure may be realized depending on temperature, pressure, or glass frit manufacturing conditions. May fall within acceptable range of use.
 前記ガラスフリットは、Sbを除いた残部として、更にSiO及び/又はBを含有することが好ましい。ガラスフリットとしてはSb-Bの2成分、又はSb-B-SiOの3成分のいずれかから構成されていることが望ましいが、本発明の効果に影響を与えない範囲において他の成分を更に含有することは許容される。Sb以外の成分の含有量は限定的ではないが、Bの含有量は30~40モル%であることが好ましく、30~36モル%であることがより好ましい。SiOの含有量は0~14モル%であることが好ましく、0~5モル%であることがより好ましい。SiOを添加する際の含有量の下限値としては1モル%が好ましい。 The glass frit preferably further contains SiO 2 and / or B 2 O 3 as the balance excluding Sb 2 O 3 . 2 component as a glass frit Sb 2 O 3 -B 2 O 3, or Sb 2 O 3 -B 2 O 3 but it is preferably composed from any of the three components of -SiO 2, the effect of the present invention It is permissible to further contain other components within a range that does not affect the above. The content of components other than Sb 2 O 3 is not limited, but the content of B 2 O 3 is preferably 30 to 40 mol%, more preferably 30 to 36 mol%. The content of SiO 2 is preferably 0 to 14 mol%, and more preferably 0 to 5 mol%. 1 mol% is preferable as the lower limit of the content of the time of addition of SiO 2.
 ガラスフリットの含有量は特に限定されないが、例えば、アルミニウム粉末100質量部に対して0.5~5.0質量部であることが好ましい。この場合、シリコン半導体基板1及び反射防止膜3(パッシベーション膜)との密着性が良好となり、また、電気抵抗も増大しにくい。 The content of the glass frit is not particularly limited, but for example, it is preferably 0.5 to 5.0 parts by mass with respect to 100 parts by mass of the aluminum powder. In this case, the adhesion between the silicon semiconductor substrate 1 and the antireflection film 3 (passivation film) is good, and the electrical resistance is hardly increased.
 以上の通り、本発明のペースト組成物は、アルミニウム粉末100質量部に対して、有機ビヒクルを30~35質量部、及びガラスフリットを0.5~5.0質量部を含有する組成が特に好ましい。かかる範囲に設定することにより、高い変換効率が得られるとともに、ガラスフリットの構造が安定であり経時的な粘度変化(増粘)が抑制されている。 As described above, the paste composition of the present invention preferably has a composition containing 30 to 35 parts by mass of the organic vehicle and 0.5 to 5.0 parts by mass of the glass frit with respect to 100 parts by mass of the aluminum powder. . By setting to such a range, high conversion efficiency is obtained, the structure of the glass frit is stable, and the change in viscosity (thickening) with time is suppressed.
 本発明のペースト組成物は、例えば、太陽電池セルの電極層(特には図1で示されるようなPERC型太陽電池セルの裏面電極8)を形成するための使用として適している。よって、本発明のペースト組成物は、太陽電池裏面電極形成剤としても使用され得る。 The paste composition of the present invention is suitable for use, for example, for forming an electrode layer of a solar battery cell (in particular, a back electrode 8 of a PERC type solar battery cell as shown in FIG. 1). Therefore, the paste composition of this invention can be used also as a solar cell back surface electrode formation agent.
 以下に実施例及び比較例を示して本発明を具体的に説明する。但し、本発明は実施例に限定されない。 Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the examples.
 実施例1
(ペースト組成物の調製)
 ガスアトマイズ法により生成したD50:4.0μmのアルミニウム粉末100質量部と、Sb-B(70モル%-30モル%)のガラスフリット1.5質量部とを、エチルセルロースをブチルジグリコールに溶解した樹脂液35質量部に分散装置(ディスパー)を用いてペースト化した。これによりペースト組成物を得た。
(太陽電池セルである焼成基板の作製)
 評価用の太陽電池セルである焼成基板を次のように作製した。
Example 1
(Preparation of paste composition)
100 parts by mass of D 50 : 4.0 μm aluminum powder produced by the gas atomization method, 1.5 parts by mass of glass frit of Sb 2 O 3 —B 2 O 3 (70 mol% -30 mol%), ethyl cellulose A paste was formed on 35 parts by mass of a resin solution dissolved in butyl diglycol using a dispersing device (disper). This obtained the paste composition.
(Preparation of a fired substrate that is a solar cell)
A fired substrate as a solar cell for evaluation was produced as follows.
 まず、図2の(A)に示すように、まず、厚みが180μmのシリコン半導体基板1(裏面側にパッシベーション膜を含む)を準備した。そして、図2の(B)に示すように、レーザー発振器として波長が532nmのYAGレーザーを用いて、幅Dが50μm、深さが1μmのコンタクト孔9をシリコン半導体基板1の裏面に形成した。このシリコン半導体基板1は、抵抗値3Ω・cmであり、裏面パッシベーション型単結晶であった。 First, as shown in FIG. 2A, first, a silicon semiconductor substrate 1 having a thickness of 180 μm (including a passivation film on the back side) was prepared. 2B, a contact hole 9 having a width D of 50 μm and a depth of 1 μm was formed on the back surface of the silicon semiconductor substrate 1 using a YAG laser having a wavelength of 532 nm as a laser oscillator. This silicon semiconductor substrate 1 had a resistance value of 3 Ω · cm and was a back surface passivation type single crystal.
 なお、図2では、パッシベーション膜は図示しておらずシリコン半導体基板1に含まれるものとして取り扱い、パッシベーション膜はシリコン半導体基板1の裏面側に30nmの酸化アルミニウム層と100nmの窒化ケイ素層との積層体として含まれている。 In FIG. 2, the passivation film is not shown and is handled as being included in the silicon semiconductor substrate 1, and the passivation film is a laminate of a 30 nm aluminum oxide layer and a 100 nm silicon nitride layer on the back side of the silicon semiconductor substrate 1. Included as a body.
 次に、図2の(C)に示すように、裏面全体(コンタクト孔9が形成されている側の面)を覆うように、上記で得たペースト組成物10を、シリコン半導体基板1の表面上に、スクリーン印刷機を用いて、1.0~1.1g/pcになるように印刷した。次いで、図示はしていないが、受光面に公知の技術で調製したAgペーストを印刷した。 Next, as shown in FIG. 2C, the paste composition 10 obtained above is applied to the surface of the silicon semiconductor substrate 1 so as to cover the entire back surface (the surface on the side where the contact holes 9 are formed). On the top, printing was carried out at 1.0 to 1.1 g / pc using a screen printer. Next, although not shown, an Ag paste prepared by a known technique was printed on the light receiving surface.
 その後、800℃に設定した赤外ベルト炉を用いて焼成した。この焼成により、図2の(D)に示すように、電極層5を形成し、また、この焼成の際にアルミニウムがシリコン半導体基板1の内部に拡散することにより、電極層5とシリコン半導体基板1との間にAl-Siの合金層6が形成されると同時に、アルミニウム原子の拡散による不純物層としてp層(BSF層)7が形成された。これにより、評価用の焼成基板を製作した。
(太陽電池セルの評価)
 得られた太陽電池セルの評価においては、ワコム電創のソーラーシュミレータ:WXS-156S-10、I-V測定装置:IV15040-10を用いて、I-V測定を実施した。Effが19.0%以上のものを合格とした。
(ペースト組成物の経時的な粘度変化の評価)
 調製したペースト組成物を50℃のオーブン中で1週間放置し、試験前後の粘度変化を粘度計により測定した。粘度計としては、ブルックフィールド社製コーンプレート型粘度計DV2Tを使用し、JIS K5600の2.3 コーンプレート粘度計法に準拠して測定を行った。試験前後の粘度変化が5Pa・s未満のものを合格とした。
(電極層5(アルミニウム電極)の密着性の評価)
 電極層5(アルミニウム電極)の密着性の評価については、シリコン半導体基板1の裏面に形成された電極層5(アルミニウム電極)の表面にメンディングテープ(12mm幅、3M社製)を長さ3cm程度貼り付けた後、シリコン半導体基板1に対し45度の角度で勢いよくテープを剥がし、アルミニウムが付着した部分の合計面積と、貼り付けた元のメンディングテープの面積の割合を二値化処理可能な解析ソフトを用いて算出することで評価を行った。密着性の評価は、全て同一人物が同一の姿勢、角度、力、及び一定の速度で行った。メンディングテープにアルミニウムの付着が全くないものを○、少しでも付着していたものを×と評価した。
Then, it baked using the infrared belt furnace set to 800 degreeC. By this firing, as shown in FIG. 2D, an electrode layer 5 is formed, and during the firing, aluminum diffuses into the silicon semiconductor substrate 1 so that the electrode layer 5 and the silicon semiconductor substrate At the same time, an Al—Si alloy layer 6 was formed between the p + layer 1 and the p + layer (BSF layer) 7 as an impurity layer by diffusion of aluminum atoms. Thereby, a fired substrate for evaluation was manufactured.
(Evaluation of solar cells)
In the evaluation of the obtained solar battery cells, IV measurement was performed using a Wacom Denso solar simulator: WXS-156S-10 and an IV measuring device: IV15040-10. A sample having an Eff of 19.0% or more was accepted.
(Evaluation of change in viscosity of paste composition over time)
The prepared paste composition was left in an oven at 50 ° C. for 1 week, and the viscosity change before and after the test was measured with a viscometer. As a viscometer, a corn plate type viscometer DV2T manufactured by Brookfield was used, and measurement was performed in accordance with 2.3 corn plate viscometer method of JIS K5600. The viscosity change before and after the test was less than 5 Pa · s.
(Evaluation of adhesion of electrode layer 5 (aluminum electrode))
For the evaluation of the adhesion of the electrode layer 5 (aluminum electrode), a mending tape (12 mm width, manufactured by 3M Company) is 3 cm long on the surface of the electrode layer 5 (aluminum electrode) formed on the back surface of the silicon semiconductor substrate 1. After pasting, the tape is peeled off at an angle of 45 degrees with respect to the silicon semiconductor substrate 1, and the ratio of the total area of the part to which the aluminum has adhered and the area of the pasted mending tape is binarized. Evaluation was performed by calculating using possible analysis software. The evaluation of adhesion was performed for all the same persons with the same posture, angle, force, and constant speed. The case where there was no adhesion of aluminum to the mending tape was evaluated as ◯, and the case where there was any adhesion was evaluated as ×.
 実施例2
 Sb-B(65モル%-35モル%)のガラスフリット1.5質量部を用いた以外は実施例1と同様にしてペースト組成物を調製し、評価を行った。
Example 2
A paste composition was prepared and evaluated in the same manner as in Example 1 except that 1.5 parts by mass of glass frit of Sb 2 O 3 —B 2 O 3 (65 mol% -35 mol%) was used.
 実施例3
 Sb-B(60モル%-40モル%)のガラスフリット1.5質量部を用いた以外は実施例1と同様にしてペースト組成物を調製し、評価を行った。
Example 3
A paste composition was prepared and evaluated in the same manner as in Example 1 except that 1.5 parts by mass of a glass frit of Sb 2 O 3 —B 2 O 3 (60 mol% -40 mol%) was used.
 実施例4
 Sb-B-SiO(55モル%-35モル%-10モル%)のガラスフリット1.5質量部を用いた以外は実施例1と同様にしてペースト組成物を調製し、評価を行った。
Example 4
A paste composition was prepared in the same manner as in Example 1 except that 1.5 parts by mass of glass frit of Sb 2 O 3 —B 2 O 3 —SiO 2 (55 mol% -35 mol% -10 mol%) was used. And evaluated.
 実施例5
 Sb-B-SiO(52モル%-34モル%-14モル%)のガラスフリット1.5質量部を用いた以外は実施例1と同様にしてペースト組成物を調製し、評価を行った。
Example 5
A paste composition was prepared in the same manner as in Example 1 except that 1.5 parts by mass of glass frit of Sb 2 O 3 —B 2 O 3 —SiO 2 (52 mol% -34 mol% -14 mol%) was used. And evaluated.
 実施例6
 Sb-B-SiO(52モル%-34モル%-14モル%)のガラスフリット0.5質量部を用いた以外は実施例1と同様にしてペースト組成物を調製し、評価を行った。
Example 6
A paste composition was prepared in the same manner as in Example 1 except that 0.5 parts by mass of glass frit of Sb 2 O 3 —B 2 O 3 —SiO 2 (52 mol% -34 mol% —14 mol%) was used. And evaluated.
 実施例7 
 Sb-B-SiO(52モル%-34モル%-14モル%)のガラスフリット5.0質量部を用いた以外は実施例1と同様にしてペースト組成物を調製し、評価を行った。
Example 7
A paste composition was prepared in the same manner as in Example 1 except that 5.0 parts by mass of glass frit of Sb 2 O 3 —B 2 O 3 —SiO 2 (52 mol% —34 mol% —14 mol%) was used. And evaluated.
 比較例1
 B-SiO-BaO-CaO-ZnO(35モル%-10モル%-35モル%-10モル%-10モル%)のガラスフリット1.5質量部を用いた以外は実施例1と同様にしてペースト組成物を調製し、評価を行った。
Comparative Example 1
Example 1 except that 1.5 parts by mass of a glass frit of B 2 O 3 —SiO 2 —BaO—CaO—ZnO (35 mol% -10 mol% -35 mol% -10 mol% -10 mol%) was used. A paste composition was prepared and evaluated in the same manner as described above.
 比較例2
 Sb(100モル%)ではガラス化できなかった。つまり、ガラス化していないSb(100モル%)のフリット1.5質量部を用いた以外は実施例1と同様にしてペースト組成物を調製し、評価を行った。
Comparative Example 2
Sb 2 O 3 (100 mol%) could not be vitrified. That is, a paste composition was prepared and evaluated in the same manner as in Example 1 except that 1.5 parts by mass of non-vitrified Sb 2 O 3 (100 mol%) frit was used.
 比較例3
 Sb-B(46モル%-54モル%)のガラスフリットは、吸湿、潮解し、添加するとペーストに水分が混入するため電極材として使用不可であった。
Comparative Example 3
A glass frit of Sb 2 O 3 —B 2 O 3 (46 mol% -54 mol%) cannot be used as an electrode material because it absorbs moisture, deliquescents, and when added, moisture mixes in the paste.
 比較例4
 B-BaO-CaO-ZnO(27モル%-45モル%-10モル%-18モル%)のガラスフリット1.5質量部を用いた以外は実施例1と同様にしてペースト組成物を調製し、評価を行った。
Comparative Example 4
Paste composition as in Example 1 except that 1.5 parts by mass of glass frit of B 2 O 3 —BaO—CaO—ZnO (27 mol% −45 mol% −10 mol% −18 mol%) was used. Were prepared and evaluated.
 比較例5
 SiO-Al-B-PbO(1モル%-4モル%-30モル%-65モル%-10モル%)のガラスフリット1.5質量部を用いた以外は実施例1と同様にしてペースト組成物を調製し、評価を行った。
Comparative Example 5
Example except that 1.5 parts by mass of glass frit of SiO 2 —Al 2 O 3 —B 2 O 3 —PbO (1 mol% -4 mol% -30 mol% -65 mol% -10 mol%) was used In the same manner as in No. 1, a paste composition was prepared and evaluated.
 比較例6
 Sb-B-SiO(52モル%-34モル%-14モル%)のガラスフリット0.4質量部を用いた以外は実施例1と同様にしてペースト組成物を調製し、評価を行った。
Comparative Example 6
A paste composition was prepared in the same manner as in Example 1 except that 0.4 parts by mass of glass frit of Sb 2 O 3 —B 2 O 3 —SiO 2 (52 mol% —34 mol% —14 mol%) was used. And evaluated.
 比較例7 
 Sb-B-SiO(52モル%-34モル%-14モル%)のガラスフリット6.0質量部を用いた以外は実施例1と同様にしてペースト組成物を調製し、評価を行った。
Comparative Example 7
A paste composition was prepared in the same manner as in Example 1 except that 6.0 parts by mass of glass frit of Sb 2 O 3 —B 2 O 3 —SiO 2 (52 mol% −34 mol% −14 mol%) was used. And evaluated.
 各実施例及び比較例の条件及び各評価結果を下記表1に示す。 Table 1 below shows the conditions and evaluation results of the examples and comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果からは、本発明所定のガラスフリットを用いる実施例1~7のペースト組成物を用いた場合には、高い変換効率が得られるとともに、ガラスフリットの構造が安定であり経時的な粘度変化(増粘)が抑制されることが分かる。他方、本発明所定のガラスフリットを用いない比較例1~7のペースト組成物を用いた場合には、変換効率及び/又はペースト粘度変化の点で実施例1~7のペースト組成物に劣ることが分かる。特にSb含有量が90モル%超過である比較例2では、Sbがガラス化せず電極材として使用できなかった。ガラスフリット添加量が0.4質量部である比較例6では変換効率が19.0%を下回っており、ガラスフリット添加量が6.0質量%である比較例7では電極層5(アルミニウム電極)の密着性で劣っていた。 From the results shown in Table 1, when the paste compositions of Examples 1 to 7 using the predetermined glass frit of the present invention were used, high conversion efficiency was obtained, and the structure of the glass frit was stable and time-dependent. It turns out that a viscosity change (thickening) is suppressed. On the other hand, when the paste compositions of Comparative Examples 1 to 7 not using the glass frit according to the present invention are used, they are inferior to the paste compositions of Examples 1 to 7 in terms of conversion efficiency and / or paste viscosity change. I understand. In particular, in Comparative Example 2 in which the Sb 2 O 3 content exceeded 90 mol%, Sb 2 O 3 was not vitrified and could not be used as an electrode material. In Comparative Example 6 in which the glass frit addition amount is 0.4 parts by mass, the conversion efficiency is lower than 19.0%, and in Comparative Example 7 in which the glass frit addition amount is 6.0% by mass, the electrode layer 5 (aluminum electrode) ) Was poor.
1:シリコン半導体基板
2:n型不純物層
3:反射防止膜(パッシベーション膜)
4:グリッド電極
5:電極層
6:合金層
7:p+層
8:裏面電極
9:コンタクト孔(開口部)
10:ペースト組成物
1: silicon semiconductor substrate 2: n-type impurity layer 3: antireflection film (passivation film)
4: Grid electrode 5: Electrode layer 6: Alloy layer 7: p + layer 8: Back electrode 9: Contact hole (opening)
10: Paste composition

Claims (3)

  1.  アルミニウム粉末、有機ビヒクル及びガラスフリットを含有する太陽電池用ペースト組成物であって、前記ガラスフリットはSbを50~90モル%含有することを特徴とする太陽電池用ペースト組成物。 A solar cell paste composition comprising aluminum powder, an organic vehicle and glass frit, wherein the glass frit contains 50 to 90 mol% of Sb 2 O 3 .
  2.  前記アルミニウム粉末100質量部に対して、前記有機ビヒクルを30~35質量部、及び前記ガラスフリットを0.5~5.0質量部を含有する、請求項1に記載の太陽電池用ペースト組成物。 The solar cell paste composition according to claim 1, comprising 30 to 35 parts by mass of the organic vehicle and 0.5 to 5.0 parts by mass of the glass frit with respect to 100 parts by mass of the aluminum powder. .
  3.  前記ガラスフリットは、更にSiO及び/又はBを含有する、請求項1又は2に記載の太陽電池用ペースト組成物。 The solar cell paste composition according to claim 1 or 2, wherein the glass frit further contains SiO 2 and / or B 2 O 3 .
PCT/JP2018/020749 2017-05-31 2018-05-30 Paste composition for solar battery WO2018221578A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880033818.XA CN110663119B (en) 2017-05-31 2018-05-30 Paste composition for solar cell
JP2019521266A JP7013458B2 (en) 2017-05-31 2018-05-30 Paste composition for solar cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017107599 2017-05-31
JP2017-107599 2017-05-31

Publications (1)

Publication Number Publication Date
WO2018221578A1 true WO2018221578A1 (en) 2018-12-06

Family

ID=64455986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020749 WO2018221578A1 (en) 2017-05-31 2018-05-30 Paste composition for solar battery

Country Status (3)

Country Link
JP (1) JP7013458B2 (en)
CN (1) CN110663119B (en)
WO (1) WO2018221578A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109493991A (en) * 2018-12-28 2019-03-19 广州市儒兴科技开发有限公司 A kind of PERC battery is starched with boron
WO2021036264A1 (en) * 2019-08-29 2021-03-04 苏州腾晖光伏技术有限公司 Anti-reflection film structure and perc cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112542530B (en) * 2020-12-01 2024-03-08 浙江晶科能源有限公司 Photovoltaic cell and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100201A (en) * 2011-11-09 2013-05-23 Hitachi Chemical Co Ltd Electronic component, conductive paste for aluminum electrode applied to the same, and glass composition for aluminum electrode
JP2015041741A (en) * 2013-08-23 2015-03-02 旭硝子株式会社 Glass powder for electrode formation, conductive paste for electrode formation, and solar cell
JP2015043301A (en) * 2013-08-26 2015-03-05 帝人株式会社 Aluminum paste, and solar cell element and production method of the solar cell element
US20160141068A1 (en) * 2014-11-13 2016-05-19 Samsung Sdi Co., Ltd. Paste for forming solar cell electrode and electrode prepared using the same

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3075506B2 (en) * 1995-06-27 2000-08-14 旭テクノグラス株式会社 Low melting point glass and lamp seal using the same
US8093491B2 (en) * 2005-06-03 2012-01-10 Ferro Corporation Lead free solar cell contacts
JP5026121B2 (en) * 2007-03-20 2012-09-12 日本山村硝子株式会社 Antimony phosphate glass composition
CN101271929B (en) * 2008-05-04 2012-02-01 常州亿晶光电科技有限公司 Leadless solar battery silver paste and method for producing the same
JP2011035024A (en) * 2009-07-30 2011-02-17 Toyo Aluminium Kk Paste composition and solar cell element employing the same
CN101630695B (en) * 2009-08-05 2011-11-02 贵研铂业股份有限公司 Lead-free cadmium-free electrode slurry for crystalline silicon solar battery and preparation method thereof
CN102123961A (en) * 2009-08-07 2011-07-13 Lg化学株式会社 Lead-free glass frit powder for manufacturing silicon solar cell, preparation method thereof, metal paste composition comprising same, and silicon solar cell
JP2013512571A (en) * 2009-11-25 2013-04-11 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for forming silver back electrode of passivated emitter and back contact silicon solar cell
US20120160314A1 (en) * 2010-06-24 2012-06-28 E. I. Du Pont De Nemours And Company Process for the formation of a silver back anode of a silicon solar cell
KR101309809B1 (en) * 2010-08-12 2013-09-23 제일모직주식회사 Aluminium paste for solar cell and solar cell using the same
JP6027171B2 (en) * 2011-07-04 2016-11-16 株式会社日立製作所 Glass frit for sealing, glass paste for sealing, conductive glass paste, and electric and electronic parts using them
JP5856178B2 (en) * 2011-09-29 2016-02-09 株式会社ノリタケカンパニーリミテド Lead-free conductive paste composition for solar cells
CN102850942B (en) * 2012-09-20 2014-10-08 东莞市聚亚光电科技有限公司 Environment-friendly inorganic binder for silicon solar cell aluminum paste and its preparation method
WO2014157958A1 (en) * 2013-03-27 2014-10-02 제일모직 주식회사 Composition for forming solar cell electrode and electrode produced from same
KR101608123B1 (en) * 2013-09-13 2016-03-31 제일모직주식회사 Composition for forming solar cell electrode and electrode prepared using the same
TWI521548B (en) * 2014-12-08 2016-02-11 碩禾電子材料股份有限公司 A conductive paste containing lead-free glass frit
JP2016213284A (en) * 2015-05-01 2016-12-15 東洋アルミニウム株式会社 Aluminum paste composition for PERC type solar cell
CN105047690B (en) * 2015-08-27 2020-12-04 京东方科技集团股份有限公司 Glass cement, photoelectric packaging device, packaging method of photoelectric packaging device and display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013100201A (en) * 2011-11-09 2013-05-23 Hitachi Chemical Co Ltd Electronic component, conductive paste for aluminum electrode applied to the same, and glass composition for aluminum electrode
JP2015041741A (en) * 2013-08-23 2015-03-02 旭硝子株式会社 Glass powder for electrode formation, conductive paste for electrode formation, and solar cell
JP2015043301A (en) * 2013-08-26 2015-03-05 帝人株式会社 Aluminum paste, and solar cell element and production method of the solar cell element
US20160141068A1 (en) * 2014-11-13 2016-05-19 Samsung Sdi Co., Ltd. Paste for forming solar cell electrode and electrode prepared using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109493991A (en) * 2018-12-28 2019-03-19 广州市儒兴科技开发有限公司 A kind of PERC battery is starched with boron
WO2021036264A1 (en) * 2019-08-29 2021-03-04 苏州腾晖光伏技术有限公司 Anti-reflection film structure and perc cell

Also Published As

Publication number Publication date
JPWO2018221578A1 (en) 2020-04-02
CN110663119A (en) 2020-01-07
CN110663119B (en) 2023-08-29
JP7013458B2 (en) 2022-01-31

Similar Documents

Publication Publication Date Title
TWI667218B (en) PERC type aluminum paste composition for solar cells
EP2461366A1 (en) Paste composition and solar cell element using same
EP2418656A1 (en) Aluminium paste and solar cell using the same
JP7173960B2 (en) Solar cell paste composition
WO2018221578A1 (en) Paste composition for solar battery
WO2018135430A1 (en) Paste composition for solar battery
JP6896506B2 (en) Paste composition for solar cells
CN108022672B (en) Paste composition
JP5338846B2 (en) Solar cell collecting electrode forming method, solar cell and solar cell module
KR101974096B1 (en) Aluminum-based compositions and solar cells including aluminum-based compositions
JP7303036B2 (en) Conductive paste and method for producing TOPCon type solar cell
KR20160045716A (en) Paste composition and solar cell element
JP5134722B1 (en) Solar cell and paste material used therefor
JP7433776B2 (en) Conductive paste composition and crystalline silicon solar cell using the same
JP6825948B2 (en) Paste composition for solar cells
JP2022189025A (en) Aluminum paste composition for solar cells
JP2022074097A (en) Method for forming electrode of solar battery cell
JP2012238754A (en) Conductive composition for forming solar cell collector electrode and solar cell
TW201917903A (en) Composition for solar cell electrodes and solar cell electrode fabricated using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18808871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521266

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18808871

Country of ref document: EP

Kind code of ref document: A1